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PREPERIODIC PORTRAITS FOR UNICRITICAL

POLYNOMIALS OVER A RATIONAL FUNCTION FIELD

JOHN R. DOYLE

Abstract. Let K be an algebraically closed field of characteristic zero, and
let K := K(t) be the rational function field over K. For each d ≥ 2, we consider
the unicritical polynomial fd(z) := zd + t ∈ K[z], and we ask the following
question: If we fix α ∈ K and integers M ≥ 0, N ≥ 1, and d ≥ 2, does there
exist a place p ∈ SpecK[t] such that, modulo p, the point α enters into an N-
cycle after precisely M steps under iteration by fd? We answer this question
completely, concluding that the answer is generally affirmative and explicitly

giving all counterexamples. This extends previous work by the author in the
case that α is a constant point.

1. Introduction

Let F be a field, and let ϕ(z) ∈ F (z) be a rational function, thought of as a
self-map of P1(F ). For an integer n ≥ 0, we denote by ϕn the n-fold composition of
ϕ; that is, ϕ0 is the identity map, and ϕn = ϕ ◦ ϕn−1 for each n ≥ 1. We say that
α ∈ P

1(F ) is periodic for ϕ if there exists an integer N ≥ 1 for which ϕN (α) = α;
the minimal such N is called the period of α. More generally, we say that α is
preperiodic if there exist integers M ≥ 0 and N ≥ 1 such that fM (α) has period
N ; if M is minimal, we say that (M,N) is the preperiodic portrait (or simply
portrait) of α under ϕ. If M ≥ 1, then we say that α is strictly preperiodic.
The orbit of α under ϕ is the set

Oϕ(α) := {ϕn(α) : n ∈ Z≥0}.
Note that α is preperiodic for ϕ if and only if Oϕ(α) is finite. We say that a point
is wandering if it is not preperiodic.

Let MF denote the set of places of F . (If F is a function field, we require
the places to be trivial on the constant subfield.) For a place p ∈ MF , let kp
denote the residue field at p. Given a rational map ϕ and a place p, one can
consider the reduction of ϕ at p: Write ϕ(z) = p(z)/q(z) with coprime p, q ∈ F [z],
normalized so that all coefficients are integral at p, and at least one coefficient is
a unit at p. Then the reduction of ϕ at p is the map ϕ̃(z) ∈ kp(z) obtained by
reducing the coefficients modulo p. We say that ϕ has good reduction modulo
p if deg ϕ̃ = degϕ. If p is a place of good reduction for ϕ, then we say that a
point α ∈ P

1(F ) is preperiodic for ϕ modulo p if the reduction α̃ ∈ P
1(kp) is

preperiodic for the map ϕ̃. We say that α has (preperiodic) portrait (M,N)
for ϕ modulo p if α̃ has preperiodic portrait (M,N) for ϕ̃.
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If α is not preperiodic for ϕ, it may still be true that α is preperiodic for ϕ
modulo p at some place p of good reduction. For example, this will necessarily
be true if F has finite residue fields. We now consider the following more specific
question regarding preperiodicity modulo places of F :

Question 1.1. Let ϕ ∈ F (z). Fix α ∈ F and integers M ≥ 0, N ≥ 1. Does there
exist a place p ∈ MF of good reduction for ϕ such that α has preperiodic portrait
(M,N) for ϕ modulo p?

If the answer to Question 1.1 is “yes”, we will say that α realizes portrait
(M,N) for ϕ.

Question 1.1 has been studied by multiple authors in the case that F is a number
field, dating back to related questions addressed by Bang [2] and Zsigmondy [24]
in the late nineteenth century. Much more recently, Ingram and Silverman [12]
conjectured that if F is a number field and α ∈ F is a wandering point for ϕ, then
α realizes all but finitely many portraits for ϕ. Faber and Granville [8] later gave
counterexamples to this conjecture, noting that if ϕ(z) ∈ F (z) is totally ramified
over all points of period N , then a given α ∈ F will fail to realize portrait (M,N)
for all but finitely many M . Ghioca, Nguyen, and Tucker [10] subsequently pointed
out that if ϕ is totally ramified over ϕM (α) for some M ≥ 1, then α cannot
realize portrait (M,N) for any N ∈ N; their main result is that these are the only
obstructions to the analogue of the Ingram-Silverman conjecture in the setting
where F is the function field1 of a curve over an algebraically closed field K of
characteristic zero. For simplicity, we state a slightly weaker form of their result in
the case that ϕ(z) is non-isotrivial ; that is, ϕ cannot, after a change of coordinates,
be defined over K.

Theorem 1.2 ([10, Thm. 1.3]). Let K be an algebraically closed field of character-
istic zero, and let F be the function field of a curve defined over K. Let ϕ(z) ∈ F (z)
be non-isotrivial, let X(ϕ) be the set of N ∈ N such that ϕ is totally ramified at all
points of period N for ϕ, and for each α ∈ F let Y (ϕ, α) be the set of M ∈ N such
that ϕ is totally ramified over ϕM (α). Then there exists an effectively computable
finite subset ZF (ϕ) ⊂ Z≥0 × N such that the following holds: For every wandering
point α ∈ F , if (M,N) ∈ (Z≥0 ×N) \ZF (ϕ), N �∈ X(ϕ), and M �∈ Y (ϕ, α), then α
realizes portrait (M,N) for ϕ.

The purpose of the present article is to explicitly describe all exceptions to this
result of Ghioca-Nguyen-Tucker in a natural special case. For the remainder of the
paper, K will be an algebraically closed field of characteristic zero, and K = K(t)
will be the rational function field over K. Places of K correspond naturally to
points on P

1(K), and the residue field at each place is isomorphic to K. For a
point c ∈ P1(K), we denote by pc ∈ MK the place corresponding to c.

We take our rational maps to be the unicritical polynomials

fd(z) := zd + t ∈ K[z]

of degree d ≥ 2, which have good reduction away from p∞. The map fd is non-
isotrivial (see, for example, the proof of [1, Cor. 3.13]) and, using the notation
of Theorem 1.2, we have X(fd) = ∅, Y (fd, 0) = {1}, and Y (fd, α) = ∅ for all

1They also claim that the appropriate modification of the Ingram-Silverman conjecture over
number fields may be proven, under the assumption of the abc-conjecture, by adapting the methods
of [10].
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α ∈ K×. For each c ∈ K, we denote by fd,c the specialization of fd at pc; that is,
fd,c(z) = zd + c ∈ K[z].

Our main result fully answers Question 1.1 with F = K and ϕ = fd. For what
follows, let

ϕ1(z) := − t(z + 1)

z − (t− 1)
and ϕ2(z) :=

(t+ 1)(z − 1)

z + t
.

Theorem 1.3. Let K be an algebraically closed field of characteristic zero, let
K := K(t) be the rational function field over K, and let (α,M,N, d) ∈ K × Z3

with M ≥ 0, N ≥ 1, and d ≥ 2. Then there exists a place p ∈ MK \ {p∞} =
SpecK[t] such that α has preperiodic portrait (M,N) under fd modulo p if and
only if (α,M,N, d) does not satisfy one of the following conditions:

• M = 1 and α = 0;
• (M,N, d) = (0, 2, 2) and α = −1/2;
• (M,N, d) = (1, 1, 2) and α ∈ Oϕ1

(0) ∪ Oϕ1
(∞);

• (M,N, d) = (1, 2, 2) and α ∈ Oϕ2
(0) ∪ Oϕ2

(1/2) ∪Oϕ2
(∞); or

• (M,N, d) = (2, 2, 2) and α = ±1.

Remark 1.4. The families of counterexamples in the (1, 1, 2) and (1, 2, 2) cases were
discovered experimentally, and it was unclear whether some dynamical properties
of the maps ϕ1 and ϕ2 could explain their appearance. Tom Tucker later pointed
out that ϕ1 (resp., ϕ2) fixes each of the points in K of portrait (1, 1) (resp., (1, 2))
for f2 and preserves vanishing at p0 (resp. p−1), the unique place at which the
totally ramified point 0 is fixed (resp., has period two) for f2,c. Finally, we note
that these exceptions have arbitrarily large height: for each k ≥ 0, the points ϕk

1(0)
and ϕk

1(∞) have height k, as do the points ϕk
2(0), ϕk

2(1/2), and ϕk
2(∞) — see

Propositions 5.17 and 5.18.

Using the notation from Theorem 1.2, our main result implies that

ZK(fd) =

{
{(0, 2), (1, 1), (1, 2), (2, 2)}, if d = 2;

∅, if d ≥ 3.

In fact, not only does Theorem 1.3 explicitly describe the exceptional set of portraits
from Theorem 1.2 in this special case, but it also completely determines those points
α ∈ K that fail to realize each exceptional portrait in the d = 2 case.

Theorem 1.3 may also be viewed as a natural extension of a previous result of
the author:

Theorem 1.5 ([7, Thm. 1.3]). Let K be as before, and let (α,M,N, d) ∈ K × Z3

with M ≥ 0, N ≥ 1, and d ≥ 2. There exists c ∈ K for which α has portrait (M,N)
under fd,c if and only if

(α,M) �= (0, 1) and (α,M,N, d) �∈
{(

−1

2
, 0, 2, 2

)
,

(
1

2
, 1, 2, 2

)
, (±1, 2, 2, 2)

}
.

This is precisely the case of Theorem 1.3 in which α lies in the constant sub-
field K. The proof of Theorem 1.5 almost exclusively used the geometry of certain
dynamical modular curves associated to the maps fd, whereas the proof of Theo-
rem 1.3 requires Diophantine methods much like those used in [10]. In particular,
the argument for the d ≥ 3 case of Theorem 1.3 provides a completely different
proof of the d ≥ 3 case of Theorem 1.5 — except for the case M = 0, for which
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we simply refer to Theorem 1.5 for constant points. The same is true for d = 2,
except for the cases where M = 1 and N ≤ 3, where the Diophantine methods are
insufficient for constant points.

We now give a brief overview of the article. In §2, we collect the main tools
required for the proof of the main theorem. In §3, we prove the M = 0 case of
Theorem 1.3, and we then show that the problem for M ≥ 1 may essentially be
reduced to M = 1.

We prove the general case (d ≥ 3) of Theorem 1.3 in §4. Focusing on the
situation with M = 1, we apply the abc-theorem for function fields due to Mason
and Stothers [14, 22] to get a lower bound on the number of places at which f(α)
and fN+1(α) agree; we then show that this bound must be greater than the number
of places at which either α is periodic or f(α) has period strictly less than N , so
there must be some place at which α has portrait (1, N). The arguments in this
case are quite similar to those used in [10], though we make modifications based on
the specific nature of our maps fd in order to obtain sufficiently nice bounds.

The case d = 2 must be handled separately; this case is discussed in §5. A
technique similar to that used for d ≥ 3 is used when N ≥ 4. While this particular
method is insufficient when N = 3, we are able to prove the result in this case by
applying the abc-theorem together with properties of the period-three dynatomic
polynomial associated to the map z2 + t. Unfortunately, the abc-theorem can no
longer be applied when N = 1 and N = 2, so we handle these cases with completely
different techniques, again appealing to the appropriate dynatomic polynomials.
Theorem 1.3 is then proven by combining Proposition 4.3 (for the case d ≥ 3) with
Propositions 5.2, 5.11, 5.17, and 5.18 (for d = 2 and N ≥ 4, N = 3, N = 2, and
N = 1, respectively).

We conclude this section by discussing the limitations of our methods in terms
of possible generalizations of Theorem 1.3. One direction to generalize would be to
replace K = C(t) with an arbitrary finite extension L/K. At this level of generality,
though, the statement of Theorem 1.2 is best possible, in the sense that the finite
set ZL(fd) does indeed depend on L. More precisely, there does not exist a finite
subset Z(fd) ⊂ Z≥0 × N such that ZL(fd) ⊆ Z(fd) for all L/K. In fact, given any
finite subset S ∈ Z≥0×N, there exists a finite extension L/K such that S ⊆ ZL(fd).

Indeed, for each (M,N) ∈ S, let αM,N ∈ K be a root of fM+N
d (z) − fM

d (z) + s,
where s ∈ K× is chosen so that αM,N is not preperiodic for fd. That such s
exists follows from the fact that K is infinite and that there are only finitely many
preperiodic points for fd of bounded degree; this, in turn, follows from the fact that
the irreducible factors of the generalized dynatomic polynomials Φm,n(z), whose
roots are precisely the points of portrait (m,n) for fd, have degree exponential in

m + n. Since the quantity fM+N
d (αM,N ) − fM

d (αM,N ) is a unit, it cannot vanish
at any place in K(αM,N ), hence αM,N does not realize portrait (M,N) for fd. If
we now let L be the compositum

∏
(M,N)∈S K(αM,N ), we have S ⊆ ZL(fd) by

construction.
One might then ask for a statement like Theorem 1.3 over a specific extension

L/K, but there are restrictions on the fields over which a similar classification could
be proven using our methods. One major obstruction to carrying our proof over to
larger function fields is the appearance of the genus in our bounds derived from the
abc-theorem — see the proofs of Lemmas 4.2, 5.1, and 5.7, which rely on the fact
that K has genus 0. We are also implicitly using the fact that certain places of K(t)
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are unramified2 in K, especially in the proofs of Lemma 2.1 and Proposition 3.2.
We note, however, that an appropriate modification of Lemma 2.1 — hence also
of Corollary 2.2 — holds over general function fields, and the height formula from
Lemma 2.3 holds in full generality.

Another natural direction to generalize would be to replace fd(z) = zd + t with
an arbitrary polynomial in K[z, t] ⊂ K[z]. However, our proof of Theorem 1.3
relies on the following property of the polynomials fd with d ≥ 3: given α ∈ K×,
there are at least two distinct K-rational preimages of fd(α) different from α itself
(namely ζα and ζ2α, where ζ is a primitive dth root of unity). While this property
is not exclusive to unicritical polynomials — it holds for any polynomial in zd with
d ≥ 3 — it does put a significant restriction on the set of polynomials for which our
method of proof could be applied. Moreover, in §3.1, where we prove the M = 0
case of Theorem 1.3, we rely on the smoothness of the affine curves defined by
the dynatomic polynomials for the class of unicritical polynomials, a property not
guaranteed to hold more generally. However, if one had a polynomial f(z) ∈ K[z]
of the appropriate shape and with smooth dynatomic curves, one should expect a
modification of our argument to give a similar result.

2. Preliminaries

2.1. Valuations and heights. Let L be a finite extension of K, which corresponds
to a finite morphism of curves XL → XK ∼= P1

K . For a place p ∈ MK, we denote by
ML,p the set of places of L that restrict to p. Associated to each place q ∈ ML is

a valuation vq and its corresponding absolute value | · |q = e−vq(·). When L = K,
so that places correspond to points on P1(K), we abuse notation and write vc, | · |c,
and ML,c for vpc

, | · |pc
, and ML,pc

, respectively.
We normalize the valuations on L so that vq(L×) = Z; equivalently, if πq is a

uniformizer at q, then vq(πq) = 1. Thus, if p is the restriction of q to K, and if
α ∈ K, then vq(α) = eq/p · vp(α), where eq/p is the ramification degree of q over p.
This normalization of the valuations also ensures that the product formula holds:
For all α ∈ L×, we have∏

q∈ML

|α|q = 1, or equivalently,
∑

q∈ML

vq(α) = 0.

For each α ∈ L, set

hL(α) = −
∑

q∈ML

min{vq(α), 0} = −
∑

q∈ML
vq(α)<0

vq(α).

By the product formula, this is equivalent (when α �= 0) to defining

hL(α) =
∑

q∈ML

max{vq(α), 0} =
∑

q∈ML
vq(α)>0

vq(α).

If we consider α ∈ L as a rational map XL → P1, then hL(α) is simply the degree
of the map. If L′ is a finite extension of L, then hL′(α) = [L′ : L]hL(α) for all

2This is because, in our case, K = K(t).
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α ∈ L. This allows us to give a well-defined (absolute) height function on all of
K, given by

h(α) :=
1

[L : K]
· hL(α)

for any finite extension L/K containing α. Given a rational map ϕ(z) ∈ K(z) of
degree d ≥ 2, we also define the canonical height associated to ϕ:

ĥϕ(α) := lim
n→∞

1

dn
h(ϕn(α)).

That this is well-defined follows from the fact that h(ϕ(α)) = dh(α) +O(1), where

the implied constant depends only on ϕ; see [21, §3.2]. Note that ĥϕ(ϕ(α)) =

dĥϕ(α) for all α ∈ K.
We now record a basic height identity for elements of the orbit of a point α ∈ K.

Lemma 2.1. Let α ∈ K, and let d ≥ 2. Then for each n ≥ 1, the poles of fn
d (α)

are precisely p∞ and the poles of α. Moreover,

(A) if p is a finite pole of α, then vp(f
n
d (α)) = dnvp(α);

(B) v∞(fn
d (α)) = dn ·

{
v∞(α), if v∞(α) < 0;

−1/d, if v∞(α) ≥ 0.

Therefore h(fn
d (α)) = dn ·

{
h(α), if v∞(α) < 0;

h(α) + 1/d, if v∞(α) ≥ 0.

Proof. Since fn
d (z) is a polynomial in z and t, every pole of fn

d (α) must be equal
to p∞ or a pole of α. That the poles of fn

d (α) are precisely p∞ and the poles of α
then follows from parts (A) and (B), which we now prove by induction on n.

For n = 1, we have fd(α) = αd + t, so part (A) follows immediately from
the ultrametric inequality. Furthermore, since v∞(αd) �= −1 = v∞(t), we have
v∞(fd(α)) = min{dv∞(α),−1}.

Now suppose n ≥ 2. First, let p be a finite pole of α. By the induction hypothesis,
p is a pole of fn−1

d (α) of order dn−1vp(α); applying the n = 1 case with α replaced

by fn−1
d (α) yields (A). We now consider p = p∞, in which case the induction

hypothesis tells us that

v∞(fn−1
d (α)) = dn−1 ·

{
v∞(α), if v∞(α) < 0

−1/d, if v∞(α) ≥ 0.

Since this quantity is necessarily negative, the n = 1 case implies v∞(fn
d (α)) =

dv∞(fn−1
d (α)), which gives us (B).
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Finally, we note that for all n ≥ 1,

h(fn
d (α)) = −

∑
vp(fn

d (α))<0

vp(f
n
d (α))

= −
∑

vp(α)<0
p �=p∞

dnvp(α)− dn ·
{
v∞(α), if v∞(α) < 0,

−1/d, if v∞(α) ≥ 0

= dn ·

⎛⎝−
∑

vp(α)<0

vp(α) +

{
0, if v∞(α) < 0

1/d, if v∞(α) ≥ 0

⎞⎠
= dn ·

{
h(α), if v∞(α) < 0

h(α) + 1/d, if v∞(α) ≥ 0.

�

The following description of the canonical height for points in K now follows
immediately from the definition.

Corollary 2.2. Let α ∈ K and d ≥ 2. Then

ĥfd(α) =

{
h(α), if v∞(α) < 0,

h(α) + 1/d, if v∞(α) ≥ 0.

Thus, for all n ≥ 1, we have h(fn
d (α)) = dnĥfd(α).

2.2. Dynatomic polynomials for fd. Throughout the article, we will require
certain properties of the dynatomic polynomials for the maps fd(z) = zd + t. Sup-
pose x, c ∈ K are such that x has period N for fd,c(z) = zd + c. Then (x, c) is a
solution to the equation fN

d,c(x) − x = 0. However, this equation is also satisfied
whenever x has period dividing N for fd,c. We therefore define the Nth dynatomic
polynomial for fd to be the polynomial

ΦN (z, t) :=
∏
n|N

(fn
d (z)− z)μ(N/n) ∈ Z[z, t],

where μ is the Möbius function. (To ease notation, we omit the dependence on d.)
The dynatomic polynomials give a natural factorization fN

d (z)−z =
∏

n|N Φn(z, t).

If x has period N for fd,c, then ΦN (x, c) = 0, and for each N ≥ 1 the converse is
true for all but finitely many pairs (x, c). That ΦN (z, t) is indeed a polynomial is
shown in [18, Thm. 3.1]; see also [21, Thm. 4.5]. For each N ≥ 1, we set

D(N) := degz ΦN (z, t) =
∑
n|N

μ(N/n)dn.

It is not difficult to verify that ΦN (z, t) is monic in both z and t, that degt ΦN (z, t) =
D(N)/d, and that

ΦN (z, t) = zD(N) + (terms of lower total degree).

In particular, this implies that if p ∈ MK is a pole of α ∈ K, or if p = p∞, then

(2.1) vp(ΦN (α, t)) = min

{
D(N)vp(α),

D(N)

d
vp(t)

}
< 0.
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Lemma 2.3. Let α ∈ K and N ≥ 1. Then v∞(ΦN (α, t)) < 0 and

h(ΦN (α, t)) = D(N) · ĥfd(α).

In particular, ΦN (α, t) vanishes at precisely D(N) · ĥfd(α) finite places, counted
with multiplicity.

Proof. Since ΦN (z, t) is a polynomial in z and t, if p is a pole of ΦN (α, t), then
p = p∞ or p is a pole of α. It then follows from (2.1) that the poles of ΦN (α, t) are
precisely p∞ and the poles of α. Therefore

h(ΦN (α, t)) = −
∑

vp(α)<0
or p=p∞

min

{
D(N)vp(α),

D(N)

d
vp(t)

}

= −
∑

vp(α)<0
p �=p∞

D(N)vp(α)−
{
D(N)v∞(α), if v∞(α) < 0

−D(N)/d, if v∞(α) ≥ 0

= D(N) ·
{
h(α), if v∞(α) < 0

h(α) + 1/d, if v∞(α) ≥ 0

= D(N) · ĥfd(α).

�

Finally, we record the following geometric result:

Theorem 2.4. For each integer N ≥ 1 and d ≥ 2, the affine plane curve defined
by ΦN (z1, t) = 0 is smooth and irreducible over K.

Theorem 2.4 was originally proven in the d = 2 case by Douady and Hubbard
(smoothness; [6, §XIV]) and Bousch (irreducibility; [4, Thm. 1 (§3)], with a subse-
quent proof by Buff and Lei [5, Thm. 3.1]. For d ≥ 2, irreducibility was proven by
Lau and Schleicher [13, Thm. 4.1] using analytic methods and by Morton [16, Cor.
2] using algebraic methods, while both irreducibility and smoothness were later
proven by Gao and Ou [9, Thms. 1.1, 1.2] using the methods of Buff-Lei. The the-
orem was originally proven over C, but the Lefschetz principle allows us to extend
the result to arbitrary fields of characteristic zero.

2.3. The abc-theorem for function fields. Our main tool for proving the general
case of Theorem 1.3 is the abc-theorem for function fields due to Mason and Stothers
[14, 22]; see also [20] and [11, Thm. F.3.6].

Theorem 2.5. Let L/K be a finite extension, and let gL be the genus of L. Let
u ∈ L \ K, and define S ⊂ ML to be the set of places q for which vq(u) �= 0 or
vq(1− u) �= 0. Then

hL(u) ≤ 2gL − 2 + |S|.

3. An elementary reduction

For the majority of this article, we focus on the case of Theorem 1.3 in which M
is equal to 1. In this section, we justify this approach: First, we prove the theorem
when M = 0, and then we show how the M ≥ 1 case may essentially be reduced
to M = 1.
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3.1. Periodic points. In order to have α not realize portrait (0, N) for fd, it must
be the case that whenever ΦN (α, t) vanishes, so too does Φn(α, t) for some proper
divisor n of N .

Lemma 3.1. Fix integers N ≥ 1 and d ≥ 2.

(A) Let x, c ∈ K, and suppose ΦN (x, c) = Φn(x, c) = 0 for some proper divisor
n of N . Then

∂ΦN (z, t)

∂z

∣∣∣∣
(x,c)

= 0.

(B) There are strictly fewer than D(N) elements c ∈ K for which there exists
x ∈ K with ΦN (x, c) = Φn(x, c) = 0 for some proper divisor n of N .

Proof. For part (A), see [17, Thm. 2.4]; for part (B), see [19, Cor. 3.3]. �
We may now prove the M = 0 case of Theorem 1.3.

Proposition 3.2. Let α ∈ K, and let N ≥ 1 and d ≥ 2 be integers. Then α realizes
portrait (0, N) for fd if and only if (α,N, d) �= (−1/2, 2, 2).

Proof. For α ∈ K, the result follows from Theorem 1.5, so we assume that α ∈ K\K.

In this case, we have ĥfd(α) ≥ h(α) ≥ 1, so it follows from Lemma 2.3 that the
number of places, counted with multiplicity, at which ΦN (α, t) vanishes is at least
D(N). Now suppose pc is a place at which ΦN (α, t) vanishes, but α has period
n < N modulo pc. By Lemma 3.1(B), there are fewer than D(N) such places, so
to prove the proposition it suffices to show that ΦN (α, t) vanishes to order one at
each such place. By Lemma 3.1(A), we have

∂ΦN (z, t)

∂z

∣∣∣∣
(α(c),c)

= 0.

Here we write α(c) for the reduction of α modulo pc, since this is the image of c
under α if we consider α as a rational map. Since the affine curve {ΦN (z, t) = 0}
is smooth, we must also have

∂ΦN (z, t)

∂t

∣∣∣∣
(α(c),c)

�= 0.

This implies that

∂ΦN (α, t)

∂t

∣∣∣∣
t=c

=
∂ΦN (z, t)

∂z

∣∣∣∣
(α(c),c)

· α′(c) +
∂ΦN (z, t)

∂t

∣∣∣∣
(α(c),c)

�= 0,

so t = c is a simple root of ΦN (α, t); i.e., ΦN (α, t) vanishes to order one at pc,
completing the proof. �
3.2. Strictly preperiodic points. As mentioned previously, we will generally
restrict our attention to the case M = 1. We now justify this approach.

Lemma 3.3. Fix α ∈ K and integers M ≥ 2, N ≥ 1, and d ≥ 2. Then α realizes
portrait (M,N) for fd if and only if fM−1

d (α) realizes portrait (1, N) for fd.

Proof. We simply note that both statements are equivalent to the statement that,
at some place p ∈ MK\{p∞}, fM

d (α) reduces to a point of periodM while fM−1
d (α)

does not. �
We also record a useful characterization of points in K of portrait (1, N).
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Lemma 3.4. Fix x, c ∈ K, d ≥ 2, and N ≥ 1. Then x has portrait (1, N) for fd,c
if and only if x �= 0 and ζx has period N for fd,c for some dth root of unity ζ �= 1.

Proof. We first note that two points x and y have the same image under fd,c if and
only if y = ζx for some dth root of unity ζ.

Suppose x has portrait (1, N) for fd,c. Then x is not periodic, but fd,c(x) has
period N and therefore has exactly one preimage y with period N . We can write
y = ζx for some dth root of unity ζ, and since x �= y = ζx, we must have ζ �= 1 and
x �= 0.

Now suppose x �= 0 and ζx has period N for fd,c for some dth root of unity
ζ �= 1. Since ζx has period N , so must fd,c(ζx) = fd,c(x). However, since x �= 0
and ζ �= 1, we have x �= ζx. Thus x is not periodic, and therefore x has portrait
(1, N). �

Corollary 3.5. Fix integers d ≥ 2 and N ≥ 1. Then 0 does not realize portrait
(1, N) for fd.

4. The degree d ≥ 3 case

In this section, we show that if d ≥ 3 and α �= 0, then α realizes portrait (1, N)
for every N ≥ 1. We then use this to prove the d ≥ 3 case of Theorem 1.3; see
Proposition 4.3 below.

Fix α ∈ K×, integers d ≥ 3 and N ≥ 1, and a primitive dth root of unity ζ.
Define the polynomial

σ(z) :=
1

ζ − 1

(
1

ζα
z − 1

)
∈ K[z],

which maps ζα, ζ2α, and ∞ to 0, 1, and ∞, respectively. Set γ := fN
d (α), and

define

A := {p ∈ MK : vp(σ(γ)) �= 0 or vp(σ(γ)− 1) > 0};
B := {p∞} ∪ {p ∈ MK : vp(α) �= 0

or vp(Φn(ζ
kα)) > 0 for some n < N and k ∈ {1, 2}}.

Lemma 4.1. If p ∈ A \ B, then α has portrait (1, N) for fd modulo p.

Proof. Let p ∈ A \ B. Since vp(α) = 0, the map σ has good reduction — hence
remains invertible — modulo p. Since p ∈ A, σ(γ) reduces to 0, 1, or ∞ modulo
p, which implies that γ reduces to ζα, ζ2α, or ∞ modulo p. Since the only poles
of γ = fN

d (α) are p∞ and the poles of α, and since such places lie in B, it must be
the case that fN

d (α) ≡ ζkα (mod p) for some k ∈ {1, 2}.
Since ζkα ≡ fN

d (α) = fN
d (ζkα) (mod p) and p is not a pole of α, ζkα reduces

to a finite point of period dividing N for fd modulo p, and the period must equal
N since Φn(ζ

kα) �≡ 0 (mod p) for all n < N . Finally, since α �≡ 0 (mod p), α has
portrait (1, N) modulo p by Lemma 3.4. �

Lemma 4.2. The set A \ B is non-empty.

Proof. We first get an upper bound for |A|. In order to apply Theorem 2.5 with
u = σ(γ), we first verify that σ(γ) �∈ K. Indeed, suppose σ(γ) = λ ∈ K. Then

fN
d (α) = γ = σ−1(λ) = ζ((ζ − 1)λ+ 1) · α,
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so fN
d (α) is a constant multiple of α. However, this implies that h(fN

d (α)) ≤ h(α),
contradicting Lemma 2.1. Therefore σ(γ) �∈ K, so we may apply Theorem 2.5 to
get

|A| ≥ h(σ(γ)) + 2.

Since h(σ(γ)) = h(γ/α) ≥ h(γ)− h(α) and h(γ) = h(fN
d (α)) = dN ĥfd(α), we have

|A| ≥ h(γ)− h(α) + 2 = dN ĥfd(α)− h(α) + 2 ≥ (dN − 1)ĥfd(α) + 2.

On the other hand, it is straightforward to verify that

|B| ≤ 1 + 2h(α) +

2∑
k=1

∑
n|N
n<N

h(Φn(ζ
kα)) = 1 + 2h(α) +

2∑
k=1

∑
n|N
n<N

ĥfd(ζ
kα)D(n)

= 1 + 2h(α) + 2ĥfd(α)
∑
n|N
n<N

D(n)

≤ 1 + ĥfd(α)

⎛⎜⎜⎝2 + 2
∑
n|N
n<N

D(n)

⎞⎟⎟⎠ .

Combining these bounds on |A| and |B|, we find that |A \ B| ≥ κĥfd(α) + 1, where

κ := dN − 3− 2
∑
n|N
n<N

D(n).

To show that A \ B is non-empty, it suffices to show that κ ≥ 0, since ĥfd(α) > 0
for all α ∈ K. Now observe that∑

n|N
n<N

D(n) ≤
∑
n|N
n<N

dn ≤
�N/2	∑
n=1

dn ≤ d

d− 1
(dN/2 − 1),

and therefore

κ ≥ dN − 3− 2d

d− 1
(dN/2 − 1) ≥ dN − 3− d(dN/2 − 1)

= dN/2+1
(
dN/2−1 − 1

)
+ d− 3.

This expression is non-negative for all d ≥ 3 and N ≥ 2; on the other hand,
when N = 1, we have κ = d − 3 ≥ 0. In either case, we conclude that A \ B is
non-empty. �

We may now prove Theorem 1.3 for the general case d ≥ 3.

Proposition 4.3. Let (α,M,N, d) ∈ K×Z3 with M ≥ 0, N ≥ 1, and d ≥ 3. Then
α realizes portrait (M,N) for fd if and only if (α,M) �= (0, 1).

Proof. For M = 0, this follows from Proposition 3.2. Corollary 3.5 says that 0 does
not realize portrait (1, N) for any N ≥ 1 and d ≥ 2, so suppose α �= 0. Letting A
and B be as above, the set A \ B is non-empty, thus α realizes portrait (1, N) for
fd, proving the statement for M = 1.
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Finally, let M ≥ 2. Since 0 /∈ fd(K), the point fM−1
d (α) is non-zero, so fM−1

d (α)
realizes portrait (1, N) for fd. By Lemma 3.3, we conclude that α realizes portrait
(M,N) for fd. �

5. The degree d = 2 case

We henceforth drop the subscript and write f = f2 and fc = f2,c. To prove
Theorem 1.3 when N ≥ 4, we proceed much like in §4; however, we require different
methods when N ≤ 3, so we consider these cases separately.

5.1. N ≥ 4. The proof of Proposition 4.3 in the previous section relied on fixing
two preimages of fd(α) different from α itself, then counting the number of places
at which fN

d (α) had the same reduction as one of those two preimages. When
d = 2, however, there is only one preimage of f(α) different from α (namely, −α),
so we require a minor modification of the technique from §4.

Fix α ∈ K and N ≥ 4. Let η ∈ K satisfy η2 + t = −α, set L := K(η), and set
δ := [L : K] ∈ {1, 2}. Define the polynomial

σ(z) := −1

2

(
z

η
− 1

)
∈ K[z],

which maps η, −η, and ∞ to 0, 1, and ∞, respectively. Set γ := fN−1(α), and
define

A := {q ∈ ML : vq(σ(γ)) �= 0 or vq(σ(γ)− 1) > 0};
B := ML,∞ ∪ {q ∈ ML : vq(η) �= 0, vq(α) > 0,

or vq(Φn(−α)) > 0 for some n < N}.

By a proof similar to that of Lemma 4.1, if q ∈ A \ B, then α has portrait (1, N)
for f modulo q. We now show that there exists at least one such place.

Lemma 5.1. The set A \ B is non-empty.

Proof. We first get a lower bound for |A|. By an argument similar to the beginning
of the proof of Lemma 4.2, we have σ(γ) �∈ K, so we apply Theorem 2.5 to get

|A| ≥ hL(σ(γ))− (2gL − 2).

We get a lower bound on hL(σ(γ)) by noting that hL(σ(γ)) = hL(γ/η) ≥ hL(γ)−
hL(η); since also hL(γ) = δ · h(γ) = δ · 2N−1ĥf (α), we have

hL(σ(γ)) ≥ δ(2N−1ĥf (α)− h(η)).

We also require an upper bound on 2gL − 2. Let RL/K be the ramification

divisor of the extension L/K. Since L/K is generated by η =
√
−(α+ t), the

only places in MK over which L may ramify are zeros and poles of α + t. Thus
degRL/K ≤ (δ− 1) · 2h(α+ t) = 4(δ − 1)h(η), so it follows from Riemann-Hurwitz
that 2gL − 2 ≤ −2δ + 4(δ − 1)h(η). Therefore

|A| ≥ δ(2N−1ĥf (α)− h(η))− (−2δ + 4(δ − 1)h(η))

= δ ·
(
2N−1ĥf (α)−

(
5− 4

δ

)
h(η) + 2

)
.
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On the other hand, it is straightforward to verify that

|B| ≤ #ML,∞ + 2hL(η) + hL(α) +
∑
n|N
n<N

hL(Φn(−α))

≤ δ + 2δh(η) + δh(α) +
∑
n|N
n<N

δh(Φn(−α))

= δ

⎛⎜⎜⎝1 + 2h(η) + h(α) + ĥf (α)
∑
n|N
n<N

D(n)

⎞⎟⎟⎠ .

Combining these bounds on |A| and |B| yields

|A \ B| ≥ δ ·

⎡⎢⎢⎣
⎛⎜⎜⎝2N−1 −

∑
n|N
n<N

D(n)

⎞⎟⎟⎠ ĥf (α)− h(α)−
(
7− 4

δ

)
h(η) + 1

⎤⎥⎥⎦ .
It remains to show that this bound is positive for all N ≥ 4 and α ∈ K×.

First, suppose v∞(α) < 0. Then ĥf (α) = h(α) and

h(η) =
1

2
h(α+ t) ≥ 1

2
(h(α)− 1).

Therefore

|A \ B| ≥ δ ·

⎡⎢⎢⎣
⎛⎜⎜⎝2N−1 −

∑
n|N
n<N

D(n)

⎞⎟⎟⎠h(α)− h(α)−
(
7− 4

δ

)
1

2
(h(α)− 1) + 1

⎤⎥⎥⎦

= δ ·

⎡⎢⎢⎣
⎛⎜⎜⎝2N−1 − 9

2
+

2

δ
−
∑
n|N
n<N

D(n)

⎞⎟⎟⎠h(α) +

(
9

2
− 2

δ

)⎤⎥⎥⎦

≥ δ ·

⎡⎢⎢⎣
⎛⎜⎜⎝2N−1 − 7

2
−
∑
n|N
n<N

D(n)

⎞⎟⎟⎠h(α) +
5

2

⎤⎥⎥⎦ ,
where the last inequality follows from the fact that δ ∈ {1, 2}. Since h(α) ≥ 0 for
all α ∈ K, it suffices to show that the quantity

(5.1) 2N−1 − 7

2
−
∑
n|N
n<N

D(n)

is non-negative for all N ≥ 4. We bound the sum just as in the proof of Lemma 4.2
to get

2N−1 − 7

2
−
∑
n|N
n<N

D(n) ≥ 2N−1 − 7

2
− 2(2N/2 − 1) = 2N/2+1(2N/2−2 − 1)− 3

2
.
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The rightmost expression is positive for N ≥ 5 but negative for N = 4; however, for
N = 4 one can show directly that (5.1) is positive since D(1) = D(2) = 2. (Note
that (5.1) is negative for N ≤ 3.) Thus |A \ B| is positive for all N ≥ 4.

Now suppose that v∞(α) ≥ 0, in which case we have ĥf (α) = h(α) + 1
2 and

h(η) = 1
2h(α + t) = 1

2 (h(α) + 1). By an estimate similar to the previous case, we
find that

|A \ B| ≥ δ ·

⎡⎢⎢⎣
⎛⎜⎜⎝2N−1 − 7

2
−
∑
n|N
n<N

D(n)

⎞⎟⎟⎠h(α) +
1

2

⎛⎜⎜⎝2N−1 − 3−
∑
n|N
n<N

D(n)

⎞⎟⎟⎠
⎤⎥⎥⎦ .

Since we have already shown that (5.1) is positive for all N ≥ 4, it follows that this
expression is positive for all N ≥ 4 as well.

In both cases, our lower bound on |A \ B| is positive, so A\B is non-empty. �

The same argument as for Proposition 4.3 yields the d = 2, N ≥ 4 case of
Theorem 1.3.

Proposition 5.2. Let (α,M,N) ∈ K×Z2 with M ≥ 0 and N ≥ 4. Then α realizes
portrait (M,N) for f2 if and only if (α,M) �= (0, 1).

5.2. N = 3. Since the technique used for periods N ≥ 4 gives a negative lower
bound when N ≤ 3, we again require a different method. For N = 3, we consider
the third dynatomic polynomial

Φ3(z, t) =
f3(z)− z

f(z)− z

= z6 + z5 + (3t+ 1)z4 + (2t+ 1)z3 + (3t2 + 3t+ 1)z2

+ (t+ 1)2z + t3 + 2t2 + t+ 1.

The roots of Φ3(z, t) in K are the points of period 3 for f , which fall naturally
into two 3-cycles. Let η be one such root, and let L := K(η); since Φ3(z, t) is
irreducible, we have [L : K] = 6. Set η1 := η, η2 := f(η), and η3 := f2(η), and
note that each ηi is a root of Φ3(z, t) that generates L/K. Denote by XL the
normalization of the projective closure of the affine curve {Φ3(z, t) = 0}, and note
that the extension L/K corresponds to the morphism XL → P1 mapping (z, t) �→ t.
In his thesis, Bousch gave a general formula [4, §3, Thm. 2] for the genera of
the curves {ΦN (z, t) = 0}, and in this case we have gL = 0. (For an explicit
parametrization of the curve XL; see [23].)

By a result of Morton [16, Prop. 10] for more general dynatomic curves, ML,∞
consists of three places, each of which has ramification degree two over p∞. To
describe the ramification at finite places, Morton shows in [15, p. 358] that the
discriminant of Φ3(z, t) ∈ K[z] is given by

(5.2) discΦ3(z, t) = Δ2
3,1Δ

3
3,3,

where Δ3,1 := Resz(Φ3(z, t),Φ1(z, t)) = −(16t2+4t+7) and Δ3,3 := −(4t+7). The
roots c of Δ3,1 correspond to maps fc for which one cycle of length three collapses
to a fixed point, while the roots of Δ3,3 correspond to maps where the two 3-cycles
collide to form a single 3-cycle.

Of particular relevance for us is the polynomial Δ3,1. Let c1, c2 ∈ K be the two
roots of Δ3,1. For each i, ML,ci consists of four places: qi, which has ramification
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degree three, and qi,1, qi,2, and qi,3, each of which is unramified — see the proof of
[16, Prop. 9]. The places q1 and q2 are precisely the places at which η has period-
one; that is, the finite places at which η1, η2, and η3 have the same reduction.

We briefly explain this geometrically: Let c ∈ K be a root of Δ3,1. Instead of
having two 3-cycles, fc has one 3-cycle {x1, x2, x3} and a fixed point x which satisfies
Φ3(x, c) = 0. Thus the only points on XL that map to c ∈ P1 are (x, c) and (xj , c) for
j ∈ {1, 2, 3}. Since (x, c) is fixed by the order three automorphism (z, t) �→ (f(z), t),
this point ramifies over c, while the three points (xj , c) are unramified.

Lemma 5.3. Let c be a root of Δ3,1, and let q ∈ ML be the unique place ramified
over pc. For each 1 ≤ i < j ≤ 3,

(A) vq(ηi) = 0;
(B) vq(ηi − ηj) = 1;
(C) vq(ηi) = −1 for each place q ∈ ML,∞;
(D) there exists a place qi,j ∈ ML,∞ such that, for q ∈ ML,∞,

vq(ηi − ηj) =

{
0, if q = qi,j ;

−1, otherwise.

Moreover, q1,2, q1,3, and q2,3 are distinct.

Proof. Since Φ3(z, t) is monic in z, the only poles of η1, η2, and η3 must lie above
p∞. Therefore, to prove part (A), it suffices to show that none of the ηi vanish at
q. This follows by noting that Φ3(0, c) �= 0.

For each i, j, the points ηi and ηj have the same reduction modulo q, so
vq(ηi − ηj) ≥ 1. Now, we observe that the product∏

1≤i<j≤3

(ηi − ηj)
2

divides discΦ3(z, t), which then implies that∑
1≤i<j≤3

2vq(ηi − ηj) ≤ vq(discΦ3(z, t)) = vq(Δ
2
3,1Δ

3
3,3).

This sum has three terms, and each term is at least 2, hence the sum is at least
6. Also, the polynomial Δ3,3 does not vanish at q; moreover, if we factor Δ3,1 into
linear factors, only the factor (t− c) vanishes at q. This implies that

6 ≤
∑

1≤i<j≤3

2vq(ηi − ηj) ≤ 2vq(t− c) = 2eq/pc
= 6.

We therefore have equality throughout, so vq(ηi − ηj) = 1 for each 1 ≤ i < j ≤ 3,
proving (B).

Now fix q ∈ ML,∞ and 1 ≤ i ≤ 3. Note that vq(t) = −eq/p∞ = −2. If
vq(ηi) < −1, then an induction argument shows that vq(f

n(ηi)) = 2nvq(ηi) for
each n ∈ N; in particular, we have vq(ηi) = vq(f

3(ηi)) = 8vq(ηi), a contradiction.
If instead vq(ηi) > −1, then vq(f(ηi)) = vq(t) < −1, so we reduce to the previous
case to get a contradiction. Therefore vq(ηi) = −1, proving (C).

The only finite zeros of ηi − ηj are the two simple zeros at q1 and q2, so there
must be at least two poles of ηi − ηj . By part (C), these must be simple poles
lying above p∞. Comparing the degrees of its zero and pole divisors, ηi − ηj must
have a simple pole at precisely two places above p∞; moreover, if we let qi,j be the
remaining infinite place, then vqi,j

(ηi − ηj) = 0.
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Finally, suppose (i, j) �= (i′, j′) but qi,j = qi′,j′ . Reordering the indices if neces-
sary, we may assume that q1,2 = q1,3. Since η1−η2 and η1−η3 have exactly the same
zeros and poles, with exactly the same orders, it must be that λ := (η1−η2)/(η1−η3)
is constant. This implies that

0 = (η1 − η2)− λ(η1 − η3) =
(
η − (η2 + t)

)
− λ
(
η −
(
(η2 + t)2 + t

))
for some λ ∈ K, contradicting the fact that η has degree 6 over K. We conclude
that the places q1,2, q1,3, and q2,3 are distinct, completing the proof. �

Remark 5.4. It follows from Lemma 5.3 and its proof that hL(ηi) = 3 for each
1 ≤ i ≤ 3, since the only poles of ηi are simple poles at the three places lying above
p∞. Similarly, we have hL(ηi − ηj) = 2 for each 1 ≤ i < j ≤ 3.

Now consider the affine rational map

σ(z) :=
η2 − η3
η2 − η1

· z − η1
z − η3

,

which is constructed to map η1, η2, and η3 to 0, 1, and ∞ respectively. Note that

σ−1(z) =
η3(η1 − η2)z + η1(η2 − η3)

(η1 − η3)z + (η2 − η3)
.

Lemma 5.5. For all x ∈ L, hL(σ(x)) ≥ hL(x)− 4.

Proof. By considering y = σ(x), it suffices to show that hL(σ
−1(y)) ≤ hL(y) + 4

for all y ∈ L. A standard height argument (see [21, pp. 90–92]) shows that for any
y ∈ L we have

hL(σ
−1(y))

≤ hL(y)−
∑

q∈ML

min{vq(η3(η1−η2)), vq(η1(η2−η3)), vq(η1−η3), vq(η2−η3)},

so it suffices to show that the quantity

(5.3)
∑

q∈ML

min{vq(η3)+ vq(η1− η2), vq(η1)+ vq(η2− η3), vq(η1− η3), vq(η2− η3)}

is equal to −4. We now determine the places q at which the ‘min’ term is non-zero.
If the minimum is positive at q, then q ∈ {q1, q2}. By Lemma 5.3, at each such

q and for each 1 ≤ i < j ≤ 3, we have vq(ηi − ηj) = 1 and vq(ηi) = 0. Thus the
contribution to (5.3) at each such place is equal to 1, so the combined contribution
at both places is equal to 2.

If the minimum is negative at q, then q necessarily lies above p∞. Again apply-
ing Lemma 5.3, vq(ηi) = −1 for each 1 ≤ i ≤ 3, and exactly one of vq(η1 − η2),
vq(η1 − η3), and vq(η2 − η3) is non-negative. In particular, this means that
min{vq(η1 − η2), vq(η2 − η3)} = −1, so the combined contribution to (5.3) at the
three infinite places is 3 ·(−2) = −6. Since we have accounted for all non-zero terms
in the sum, we conclude that the expression (5.3) is equal to −4, as claimed. �

Now let α ∈ K× be arbitrary. We will show that α realizes portrait (1, 3) for f .
Define

A := {q ∈ ML : vq(σ(−α)) �= 0 or vq(σ(−α)− 1) > 0};
B := ML,∞ ∪ {q1, q2} ∪ {q ∈ ML : vq(ηi) > 0 for some i = 1, 2, 3}.
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Lemma 5.6. If q ∈ A \ B, then α has portrait (1, 3) for f modulo q.

Proof. Let q ∈ A \ B. Since q �∈ ML,∞, f has good reduction at q. Since η has
period 3 for f , it follows that η has period 1 or 3 for f modulo q. The only poles
of η are places at infinity, so η �≡ ∞ (mod q); moreover, since q �∈ {q1, q2} we have

f(η)− η = η2 − η1 �≡ 0 (mod q),

so η cannot have period 1. Thus η has period 3 for f modulo q.
The zeros and poles of the coefficients of σ all lie in B, so each coefficient is a unit

in the residue field kq. Since also η1 �≡ η3 (mod q), the reduction of σ has degree
one over kq; i.e., σ remains invertible modulo q. Thus, since σ(−α) reduces to 0,
1, or ∞ modulo q, −α must reduce to ηi for some i ∈ {1, 2, 3}. We have already
shown that each ηi has period 3 modulo q, so the same is true for −α. Finally,
since −α ≡ ηi �≡ 0 (mod q), α must reduce to a point of portrait (1, 3). �

Lemma 5.7. Suppose h(α) ≥ 3. Then A \ B is non-empty.

Proof. We have by Lemma 5.5 that hL(σ(−α)) ≥ 14, so σ(−α) �∈ K. Applying
Theorem 2.5, it follows that the set A has size at least hL(σ(−α)) − (2gL − 2) =
hL(σ(−α)) + 2. Again applying the bound in Lemma 5.5 gives

|A| ≥ (hL(α)− 4) + 2 = 6h(α)− 2.

We also have |B| ≤ |ML,∞| + 2 +
∑3

i=1 hL(ηi) = 14, which implies that |A \ B| ≥
6h(α)− 16. Therefore A \ B is non-empty when h(α) ≥ 3. �

We have just shown that if h(α) ≥ 3, then there exists a place q ∈ ML for which
α has portrait (1, 3) modulo q; choosing p ∈ MK below q, the same holds modulo
p. It remains to prove this in the case h(α) ≤ 2. The constant point case h(α) = 0
is covered by Theorem 1.5, so we henceforth assume h(α) ∈ {1, 2}. To handle these
remaining cases — as well as the N = 2 and N = 1 cases in § 5.3 — we use the
following consequence of Lemma 3.4:

Corollary 5.8. Let α ∈ K and N ∈ N. The following are equivalent:

(A) The point α does not realize portrait (1, N) for f .
(B) For every place p ∈ MK at which ΦN (−α, t) vanishes, either Φn(−α, t) also

vanishes at p for some proper divisor n of N , or α also vanishes at p.

Remark 5.9. If ΦN (β, t) and Φn(β, t) both vanish at p for some proper divisor n of
N , then it follows from the proof of Proposition 3.2 that vp(ΦN (β, t)) = 1.

If α does not realize portrait (1, 3) for f , then wherever Φ3(−α, t) vanishes, either
α or Φ1(−α, t) must vanish as well. We will show that such behavior is impossible
when h(α) ∈ {1, 2}, having already handled all other cases.

Lemma 5.10. Let β ∈ K, and suppose h(β) = 1 or h(β) = 2. There exists a place
p ∈ MK \ {p∞} such that Φ3(β, t) vanishes at p but Φ1(β, t) and β do not.

Proof. Suppose to the contrary that there does not exist such a place. Then, if we
fix a place p = pc for which vc(Φ3(β, t)) > 0, we must also have vc(Φ1(β, t)) > 0 or
vc(β) > 0.

If vc(Φ1(β, t)) > 0, then it must be that c ∈ {c1, c2}, where c1 and c2 are as
above in Lemma 5.3. Moreover, in this case the order of vanishing of Φ3(β, t) at pc
must equal one by Remark 5.9.
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By Lemma 2.3, Φ3(β, t) vanishes at precisely 6ĥf (β) ≥ 6 places, counted with
multiplicity. Since Φ3(β, t) can have at most simple roots at c1 and c2, there must
be a place pc at which both Φ3(β, t) and β vanish. In this case, we must have

Φ3(0, c) = c3 + 2c2 + c+ 1 = 0.

Let C1, C2, and C3 be the three roots of Φ3(0, t). Since h(β) ≤ 2, β can have at
most two roots; reordering the roots if necessary, we assume that Φ3(β, t) and β
both vanish at C1 and possibly C2.

We have put certain restrictions on the places at which Φ3(β, t) may vanish as
well as the order of vanishing at each such place. Let ρ(β) ∈ K[t] denote the
numerator of Φ3(β, t); scaling if necessary, we assume that ρ(β) is monic. Set

R := deg ρ(β) = 6ĥf (β).
If Φ3(β, t) vanishes at pC1

but not pC2
, then β = (t−C1)p/q for some p, q ∈ K[t]

with deg p ≤ 1 and deg q ≤ 2, and

(5.4) ρ(β) = (t− c1)
ε1(t− c2)

ε2(t− C1)
R−ε1−ε2

for some ε1, ε2 ∈ {0, 1}. If Φ3(β, t) vanishes at both pC1
and pC2

, then β =
(t− C1)(t− C2)/q for some q ∈ K[t] with deg q ≤ 2, and

(5.5) ρ(β) = (t− c1)
ε1(t− c2)

ε2(t− C1)
k(t− C2)

R−ε1−ε2−k

for some ε1, ε2 ∈ {0, 1} and 1 ≤ k ≤ R− ε1 − ε2 − 1.
The idea is to write p and q as polynomials with indeterminate coefficients; then

compare the coefficients of both sides of (5.4) (resp., (5.5)). This will determine an
affine scheme over K; if this scheme is empty, or if the only points on the scheme
yield a constant map β, then we will have completed the proof of the lemma.

We illustrate this computation in one case. Suppose that Φ3(β, t) vanishes at
pC1

but not pC2
, and let us suppose that deg q = 2, in which case R = 15. Write

β = (t−C1)(p1t+p0)/(t
2+q1t+q0). Then ρ(β) is a polynomial in t with coefficients

in K[p0, p1, q0, q1], and comparing the coefficients of ρ(β) with the coefficients of
(t−c1)

ε1(t−c2)
ε2(t−C1)

15−ε1−ε2 for each pair (ε1, ε2) ∈ {0, 1}2 yields four different
subschemes of A4

K = SpecK[p0, p1, q0, q1]. A computation in Magma [3] verifies
that each of these schemes is empty. The proof of the lemma is then completed by
a number of similar computations; for the interested reader, the Magma code and
output have been included as an ancillary file with this article’s arXiv submission.

�

Applying Lemma 5.10 with β = −α shows that if h(α) ∈ {1, 2}, then α realizes
portrait (1, 3) for f ; as mentioned above, we may now conclude that this holds for
all α ∈ K×. Finally, arguing as in the proof of Proposition 4.3, we have the d = 2,
N = 3 case of Theorem 1.3:

Proposition 5.11. Let α ∈ K, and let M ≥ 0. Then α realizes portrait (M, 3) for
f2 if and only if (α,M) �= (0, 1).

5.3. N ≤ 2. In this section, we prove Theorem 1.3 in the d = 2, N = 2 case. The
proof for N = 1 uses essentially the same technique, so we omit the proof in that
case.

Consider the rational map

ϕ2(z) :=
(t+ 1)(z − 1)

z + t
,
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with inverse

ϕ−1
2 (z) = − tz + (t+ 1)

z − (t+ 1)
.

It follows from Theorem 1.5 that 0, 1/2, and ∞ (which is a fixed point for f) are
the only points in P

1(K) that fail to realize portrait (1, 2) for f . We will show that
the points in K that fail to realize portrait (1, 2) are precisely the points in the
orbits of 0, 1/2, and ∞ under ϕ2:

Proposition 5.12. Let α ∈ K. Then α does not realize portrait (1, 2) for f if and
only if

α ∈ Oϕ2
(0) ∪Oϕ2

(1/2) ∪ Oϕ2
(∞).

Moreover, for each k ≥ 0 we have

h(ϕk(0)) = h(ϕk(1/2)) = h(ϕk(∞)) = k.

We begin by giving an alternative description of those points that do not realize
portrait (1, 2):

Lemma 5.13. Let α ∈ K. Then α does not realize portrait (1, 2) for f if and only
if α = 1/2 or α satisfies the following conditions:

(∗)

⎧⎪⎨⎪⎩
α vanishes at p−1;

Φ2(−α, t) vanishes at p−1 and possibly at p−3/4, but nowhere else; and

if Φ2(−α, t) vanishes at p−3/4, then α− 1/2 also vanishes at p−3/4.

Moreover, if in this case Φ2(−α, t) vanishes at p−3/4, then it does so to order 1.

Proof. By Theorem 1.5, the only constant points α ∈ K ⊂ K which fail to realize
portrait (1, 2) are α = 0, which satisfies (∗), and α = 1/2. We henceforth assume

α ∈ K \K, so that ĥf (α) ≥ h(α) ≥ 1.
First, suppose that α does not realize portrait (1, 2) for f . Let pc ∈ MK be

a place at which Φ2(−α, t) vanishes. Then Φ1(−α, t) or α also vanishes at pc by
Corollary 5.8. If Φ1(−α, t) vanishes at pc, then Φ2(−α(c), c) = Φ1(−α(c), c) = 0.
Thus z = −α(c) satisfies both

Φ2(z, c) = z2 + z + c+ 1 = 0 and Φ1(z, c) = z2 − z + c = 0,

which implies that c = −3/4 and α(c) = α(−3/4) = 1/2. That t = −3/4 is a simple

root of Φ2(−α, t) follows from Remark 5.9. Since h(Φ2(−α, t)) = 2ĥf (α) ≥ 2, and
since Φ2(−α, t) has at most a simple root at p−3/4, Φ2(−α, t) must vanish at some
place pc �= p−3/4. In this case, Φ2(−α, t) and α must both vanish at pc; hence
0 = Φ2(0, c) = c+ 1, so c = −1. Therefore α satisfies (∗).

Now suppose α satisfies (∗). By Corollary 5.8, it suffices to show that wherever
Φ2(−α, t) vanishes, so too must Φ1(−α, t) or α. Since α satisfies (∗), Φ2(−α, t)
vanishes only at p−1 and possibly p−3/4. The result follows by noting that condition
(∗) forces α to vanish at p−1, and if Φ2(−α, t) vanishes at p−3/4, then condition (∗)
says that α reduces to 1/2 — and therefore Φ1(−α, t) reduces to Φ1(−1/2,−3/4) =
0 — modulo p−3/4. �

We now verify that ϕ2 and ϕ−1
2 preserve property (∗), and that ϕ2 behaves nicely

with respect to the heights of points satisfying (∗).
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Lemma 5.14. Let α ∈ K satisfy property (∗). Then

(A) ϕ2(α) satisfies (∗) as well, and
(B) h(ϕ2(α)) = h(α) + 1.

Proof. Since α vanishes at p−1, it is clear that ϕ2(α) also vanishes at p−1. Also,
we have

Φ2(−ϕ2(α), t) = ϕ2(α)
2 − ϕ2(α) + (t+ 1) =

(t+ 1)2(α2 − α+ (t+ 1))

(α+ t)2

=
(t+ 1)2Φ2(−α, t)

(α+ t)2
,

so Φ2(−ϕ2(α), t) vanishes at p−1; moreover, since Φ2(−α, t) only vanishes at p−1

and possibly to order one at p−3/4, the same holds for Φ2(−ϕ2(α), t). (Any pole

of (α + t)2 is a pole of at least the same order for (t + 1)2Φ2(−α, t), so the above
expression may only vanish at the zeros of its numerator.) Finally, if Φ2(−ϕ2(α), t)
vanishes at p−3/4, then so must Φ2(−α, t), in which case v−3/4(α−1/2) > 0. Hence

ϕ2(α)−
1

2
=

(t+ 1/2)(α− 1/2)− (t+ 3/4)

(α− 1/2) + (t+ 1/2)

vanishes at p−3/4. Therefore ϕ2(α) satisfies (∗).
We now prove (B). Letting

γ :=
1

ϕ2(α)
=

1

t+ 1
+

1

α− 1
,

it suffices to show that h(γ) = h(α) + 1. Suppose that p is a pole of γ. Then
either p = p−1, in which case property (∗) implies that vp(α − 1) = 0, hence
vp(γ) = −vp(t + 1) = −1; or else p �= p−1 is a zero of α − 1, in which case
vp(γ) = −vp(α− 1). Therefore

h(γ) = −
∑

vp(γ)<0

vp(γ) = −v−1(γ) +
∑

vp(α−1)>0

vp(α− 1) = 1 + h(α− 1).

Since h(α− 1) = h(α), we are done. �

Lemma 5.15. Let α ∈ K satisfy (∗), and assume α �∈ {0, t+ 1,− t+1
2t+1}.

(A) We have

v−1(α) = 1,

v−1(α− (t+ 1)) = 2, and

v−1(tα+ (t+ 1)) ≥ 3.

(B) The point ϕ−1
2 (α) also satisfies (∗).

Proof. We first show that v−1(Φ2(−α, t)) ≥ 3. Since Φ2(−α, t) can only vanish at
p−1 and possibly, to order one, at p−3/4, we have

v−1(Φ2(−α, t)) = h(Φ2(−α, t))− v−3/4(Φ2(−α, t))

= 2ĥf (α)−
{
0, if Φ2(−α, t) does not vanish at p−3/4,

1, if Φ2(−α, t) vanishes at p−3/4.

Thus v−1(Φ2(−α, t)) ≤ 2 if and only if ĥf (α) ≤ 1 or ĥf (α) = 3/2 and Φ2(−α, t)
vanishes at p−3/4. A simple calculation then verifies that the only such α ∈ K
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satisfying (∗) are the three values of α excluded from the statement of the lemma.
Therefore v−1(Φ2(−α, t)) ≥ 3.

Now, write

α = (t+ 1) + α2 − (α2 − α+ (t+ 1)) = (t+ 1) + α2 − Φ2(−α, t).

Since v−1(α) ≥ 1 by assumption, we have v−1(α
2) ≥ 2, thus v−1(α) = v−1(t+1) =

1. This implies that v−1(α
2) = 2, and therefore

v−1(α− (t+ 1)) = v−1(α
2 − Φ2(−α, t)) = 2

as well. Finally, we write

tα+ (t+ 1) = Φ2(−α, t)− α(α− (t+ 1)),

and by what we have already shown, this has valuation at least 3 at p−1, proving
(A).

We now show that ϕ−1
2 (α) satisfies (∗). By part (A), we have

v−1(ϕ
−1
2 (α)) = v−1(tα+ (t+ 1))− v−1(α− (t+ 1)) ≥ 1,

so ϕ−1
2 (α) vanishes at p−1. Now consider

Φ2(−ϕ−1
2 (α), t) =

(
−ϕ−1

2 (α)
)2 − ϕ−1

2 (α) + t+ 1 =
(t+ 1)2Φ2(−α, t)

(α− (t+ 1))2
.

Since Φ2(−α, t) vanishes to order at least three and (α − (t + 1))2 vanishes to
order four at p−1, it follows that Φ2(−ϕ−1

2 (α), t) vanishes at p−1. Moreover,
Φ2(−ϕ−1

2 (α), t) can only vanish at p−1 and the places at which Φ2(−α, t) van-
ishes, which are only p−1 and possibly p−3/4 by assumption. (As before, we are
using the fact that the above expression cannot vanish at poles of its denominator.)

Finally, suppose Φ2(−ϕ−1
2 (α), t) vanishes at p−3/4. This is equivalent to the

vanishing of Φ2(−α, t), necessarily to order one, at p−3/4, in which case α − 1/2
also vanishes at p−3/4. Thus

v−3/4(Φ2(−ϕ−1
2 (α), t)) = v−3/4(Φ2(−α, t)) = 1.

Moreover, we have

ϕ−1
2 (α)− 1

2
= − (t+ 1/2)(α− 1/2) + (t+ 3/4)

α− (t+ 1)
,

which vanishes at p−3/4 by our assumptions on α. Therefore ϕ−1
2 (α) satisfies (∗)

as well. �

Proof of Proposition 5.12. Suppose first that α fails to realize portrait (1, 2) for f .
Since clearly 1/2 ∈ Oϕ2

(1/2), we will assume that α �= 1/2, so α satisfies (∗). We
proceed by induction on h(α).

By Theorem 1.5, the only constant points α ∈ K ⊂ K that do not realize
portrait (1, 2) for f are α ∈ {0, 1/2}; thus the h(α) = 0 case holds. Now suppose
h(α) ≥ 1. Since t + 1 = ϕ2(∞) and −(t + 1)/(2t + 1) = ϕ2(1/2) we will assume
α �∈ {t+1,−(t+1)/(2t+1)}. Then Lemma 5.15 says that ϕ−1

2 (α) satisfies (∗), hence
h(ϕ−1

2 (α)) = h(α)− 1 by Lemma 5.14. By induction, we have ϕ−1
2 (α) ∈ Oϕ2

(δ) for
some δ ∈ {0, 1/2,∞}, and therefore α ∈ Oϕ2

(δ) as well.
Now suppose α ∈ Oϕ2

(δ) for some δ ∈ {0, 1/2,∞}. Write α = ϕk
2(δ) for some

k ≥ 0. We show by induction on k that h(α) = k and that α satisfies (∗), which is
equivalent (for α �= 1/2) to the assertion that α fails to realize portrait (1, 2) for f .
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Since 0 and 1/2 fail to realize portrait (1, 2) for f , the statement holds for k = 0.
The points ϕ2(0) = −(t+1)/t, ϕ2(1/2) = −(t+ 1)/(2t+ 1), and ϕ2(∞) = t+ 1 all
satisfy (∗), and certainly all three have height equal to one, establishing the k = 1

case. Now suppose k ≥ 2. By induction, ϕk−1
2 (δ) satisfies property (∗) and has

height k − 1. By Lemma 5.14, we conclude that α = ϕk
2(δ) satisfies (∗) and has

height k, completing the proof. �
In order to prove the more general statement involving points of portrait (M, 2)

with M ≥ 2, we require the following:

Lemma 5.16. Let k ≥ 1. Then

v∞(ϕk
2(0)) = v∞(ϕk

2(1/2)) = 0; and

v∞(kϕk
2(∞)− t) ≥ 0.

Proof. The map ϕ2 reduces to z− 1 modulo p∞, so ϕk
2(δ) ≡ δ− k (mod p∞) for all

δ ∈ K and k ∈ N. If we take δ ∈ {0, 1/2}, then δ − k is a non-zero constant for all
k ≥ 1, thus v∞(ϕk

2(δ)) = 0.
Now, for each k ≥ 1 we set uk := kϕk

2(∞) − t. We show that v∞(uk) ≥ 0 by
induction on k. The result clearly holds for k = 1, since u1 = ϕ2(∞)− t = 1, so we
assume k ≥ 2. Then

uk = kϕ2(ϕ
k−1
2 (∞))− t = kϕ2

(
uk−1 + t

k − 1

)
− t

=
t((k − 1)uk−1 − k2 + 2k) + (kuk−1 − k2 + k)

uk−1 + kt
.

By induction, we have v∞(uk−1) ≥ 0, and it therefore follows that v∞(uk) ≥ 0. �
We now prove Theorem 1.3 in the case d = N = 2.

Proposition 5.17. Let α ∈ K, and let M ≥ 0. Then α realizes portrait (M, 2) for
f2 if and only if (α,M) does not satisfy one of the following conditions:

• M = 0 and α = −1/2;
• M = 1 and α ∈ Oϕ2

(0) ∪ Oϕ2
(1/2) ∪Oϕ2

(∞); or
• M = 2 and α = ±1.

Moreover, for each k ≥ 0, we have h(ϕk
2(0)) = h(ϕk

2(1/2)) = h(ϕk
2(∞)) = k.

Proof. The M = 0 and M = 1 cases follow from Propositions 3.2 and 5.12, respec-
tively. We therefore assume M ≥ 2.

That ±1 do not realize portrait (2, 2) for f follows from Theorem 1.5. Now
suppose that α does not realize portrait (M, 2) for f ; equivalently, suppose that
fM−1(α) does not realize portrait (1, 2) for f . By Proposition 5.12, we have
fM−1(α) = ϕk

2(δ) for some k ≥ 0 and δ ∈ {0, 1/2,∞}. Lemma 2.1 asserts that
any point in the image of f must have a pole at p∞; since points in the orbits
of 0 and 1/2 under ϕ2 do not have poles at p∞ by Lemma 5.16, we must have
fM−1(α) = ϕk

2(∞) for some k ≥ 0. Since the only preimage of ∞ is ∞ itself, we
must have k ≥ 1.

Set β := fM−2(α). Then f(β) = ϕk
2(∞), so by Lemma 5.16 we have that

kϕk
2(∞)− t = kf(β)− t = kβ2 + (k − 1)t

is regular at p∞. This implies that k = 1, so fM−1(α) = ϕ2(∞) = t + 1. The
preimages of t + 1 under f are ±1, and the preimages of ±1 lie outside of K.
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Therefore, if fM−1(α) = t + 1 for some M ≥ 2 and α ∈ K, then M = 2 and
α = ±1, as claimed. �

As mentioned at the beginning of this section, the proof of the following state-
ment — the d = 2, N = 1 case of the main theorem — uses the same ideas as for
Proposition 5.17, and we therefore omit the proof.

Proposition 5.18. Let α ∈ K, and let M ≥ 0. Then α fails to realize portrait
(M, 1) for f2 if and only if M = 1 and α ∈ Oϕ1

(0) ∪ Oϕ1
(∞), where

ϕ1(z) = − t(z + 1)

z − (t− 1)
.

Moreover, for each k ≥ 0, we have h(ϕk
1(0)) = h(ϕk

1(∞)) = k.

Proposition 5.18 is the final case of Theorem 1.3. Therefore, by combining
Propositions 5.17 and 5.18 with the results of the previous sections, we have proven
the main theorem.
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