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SEQUENCES OF POWERS WITH SECOND DIFFERENCES

EQUAL TO TWO AND HYPERBOLICITY

NATALIA GARCIA-FRITZ

Abstract. By explicitly finding the complete set of curves of genus 0 or 1 in
some surfaces of general type, we prove that under the Bombieri-Lang conjec-
ture for surfaces, there exists an absolute bound M > 0 such that there are
only finitely many sequences of length M formed by k-th rational powers with
second differences equal to 2. Moreover, we prove the unconditional analogue
of this result for function fields, with M depending only on the genus of the
function field. We also find new examples of Brody-hyperbolic surfaces arising
from the previous arithmetic problem. Finally, under the Bombieri-Lang con-
jecture and the ABC-conjecture for four terms, we prove analogous results for
sequences of integer powers with possibly different exponents, in which case
some exceptional sequences occur.

1. Introduction and main results

A sequence a1, . . . , an is said to have second differences equal to 2 if for all
3 ≤ i ≤ n one has

(ai − ai−1)− (ai−1 − ai−2) = 2,

that is,

ai − 2ai−1 + ai−2 = 2.

The main problem that motivates our work is

Problem 1. Let k > 2. Does there exist a positive integer M such that there are
no sequences of length M formed by k-th integer powers having second differences
equal to 2?

An example of a sequence of this type is the sequence of cubes 64,−1,−64,−125;
hence for k = 3 the bound M has to be at least 5.

Let us discuss some context for the above problem. If instead we consider integer
squares, then no such M can exist, because any sequence of the form (x+ i)2, with
x an integer and i = 1, . . . ,M , has second differences equal to 2, and these are
called trivial sequences. The following problem was proposed by Büchi in 1970 (see
[Lip90], [Maz94]), and it has been extensively studied due to its implications in
undecidability aspects in number theory (cf. [PPV10]).
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Problem 2 (n-Squares Problem). Does there exist a positive integer n such that
every sequence of n or more integers, whose squares have second differences equal
to 2, is necessarily a trivial sequence?

The n-Squares Problem was solved positively under the Bombieri-Lang conjec-
ture in 2000 by Vojta [Voj00a], inspired by the work of Bogomolov (cf. [Bog10],
[Des79]) on curves of low genus on surfaces. Vojta’s approach consists of explicitly
finding all the curves of genus 0 or 1 on certain surfaces of general type associated to
this problem. From this, and using the Bombieri-Lang conjecture, it is proved that
there are finitely many non-trivial integer sequences of length 8 formed by integer
squares having second differences equal to 2, and hence there exists an n (possibly
greater than 8) such that the only sequences of length n formed by integer squares
with second differences equal to 2 are the trivial sequences.

The purpose of this work is to investigate a higher degree version of the n-
Squares Problem, namely Problem 1, which as we will see leads to the construction
of algebraic surfaces with some interesting geometric features, to new results in
arithmetic, and to some undecidability results in number theory. To some extent,
we use this arithmetic problem as an opportunity to spell out and exemplify a
method implicit in Vojta’s work [Voj00a]. This can be of independent interest.

In our work, for any k ≥ 3 and n ≥ 2, we will consider the smooth surfaces
Xn,k ⊆ Pn defined by the equations

(1) Xn,k :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2xk
0 = xk

1 − 2xk
2 + xk

3

...

2xk
0 = xk

n−2 − 2xk
n−1 + xk

n.

Note that rational points on Xn,k with x0 �= 0 correspond to sequences of length n
formed by rational k-th powers having second differences equal to 2.

As in [Voj00a], we will study the curves of genus 0 or 1 in Xn,k, for n large
enough. Moreover, in Section 3 below we spell out and extend the method implicit
in Vojta’s work, which can be used in further applications. Let us now state our
main results.

Theorem 3. Let k ≥ 3, let g ≥ 1, and let n > 4g
k−1 + 3. If C is an irreducible

curve in Xn,k, then the geometric genus of C satisfies g(C) > g.

Note that in the statement we do not require that the curve C be smooth.
Also note that after fixing g, the bound for n can be made independent of k. For
example, there are no curves of geometric genus less than or equal to g onXn,k when
n ≥ g

2 + 3. This good dependence on k does not follow from a direct adaptation
of Vojta’s work [Voj00a], but instead, we need finer control on ramification. See
Theorem 24 and Proposition 25 in Section 3 for details.

Theorem 3 specializes as follows for g = 0, 1:

Corollary 4. There are no curves of genus 0 or 1 on Xn,k if

(a) k = 3 and n ≥ 6;
(b) k = 4, 5 and n ≥ 5;
(c) k ≥ 6 and n ≥ 4.
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The case k = 2 is considered by Vojta in [Voj00a], and for every n ≥ 2 the
surfaceXn,2 indeed has rational curves, which are associated to the trivial sequences
discussed above.

Actually, the intermediate results that we obtain in order to prove Theorem 3,
together with Proposition 43, also give the following result, which is stronger than
Corollary 4:

Theorem 5. The surface Xn,k is Brody-hyperbolic if

(a) k = 3 and n ≥ 6;
(b) k = 4, 5 and n ≥ 5;
(c) k ≥ 6 and n ≥ 4.

Observe that Brody-hyperbolicity does not hold for the surfaces studied by Vojta
in [Voj00a], due to the presence of trivial lines.

Corollary 4 gives us examples of regular surfaces (i.e., q := dimH0(X,Ω1
X/C) =

0) without rational or elliptic curves. While the approach of using symmetric dif-
ferentials to study curves in surfaces is by now classical, there is a crucial difference
between the approach of Bogomolov (and others) and the approach used in this work
(originated in [Voj00a]): Bogomolov uses a numerical condition to ensure existence
of symmetric differentials by means of the Hirzebruch-Riemann-Roch theorem to
count dimensions, while here we explicitly construct the symmetric differentials us-
ing ramified coverings. In fact, we obtain examples of surfaces which do not satisfy
Bogomolov’s condition on Chern numbers c21 > c2 (see [Des79], [Bog10]), but which
have no curves of geometric genus 0 or 1 and, in fact, are Brody-hyperbolic. The
following examples of numerical invariants for Xn,k were computed using Magma:

n k c21 c2 c21 − c2
4 6 1764 2088 −324
4 7 3969 4263 −294
4 8 7744 7808 −64
6 3 2025 2187 −162

In the case that k = 2, Vojta notes that Bogomolov’s condition holds for n ≥ 10,
although he is able to explicitly find all the curves of genus 0 or 1 on Xn,2 for n ≥ 8.
However, as mentioned before, in Vojta’s work trivial rational curves do exist; thus
those examples are not Brody-hyperbolic.

From Theorem 3 we obtain the following unconditional result on the arithmetic
of function fields.

Theorem 6. Let K be a function field of genus g ≥ 0 with constant field C, let

k ≥ 3, and let n > 4max{g,1}
k−1 + 3. Let f1, . . . , fn ∈ K be such that the k-th powers

of this sequence have second differences equal to 2. Then the sequence (f1, . . . , fn)
is a sequence of complex numbers.

Let us now discuss arithmetic applications of the previous geometric results.
A common topic in arithmetic geometry is the study of how the geometry of a
variety implies some control on its rational points. For instance, one expects that
“complicated” varieties should have a sparse set of rational points. The following
conjectures are concrete instances of this expectation. The first one is a conjecture
due to Bombieri (see [Nog81]) and Lang (see [Lan86], Corollary 5.7).
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Conjecture 7 (Bombieri-Lang). If X is a smooth projective algebraic variety of
general type defined over a number field K0, then there exists a proper Zariski-closed
subset Z of X such that for all number fields K containing K0, the set X(K)\Z(K)
is finite.

The second one is due to Lang; see [Lan91, VIII.1.2].

Conjecture 8 (Lang). The following conditions are equivalent for a projective
variety X, defined over a subfield of the complex numbers finitely generated over
the rationals:

• X(C) is hyperbolic,
• X is Mordellic,
• every subvariety of X is pseudocanonical.

From Theorem 5 and Corollary 4, these two conjectures are equivalent for the
surfaces Xn,k for n > 4g

k−1 + 3 (they are of general type for n ≥ 4
k−1 + 2; see

Proposition 17 below), so we will refer to them as the Bombieri-Lang conjecture.
In this case, we will prove

Theorem 9. Assume the Bombieri-Lang conjecture for the surfaces Xn,k. Let L
be a number field. There are only finitely many sequences of N elements of L whose
k-th powers have second differences equal to 2, provided that

• N = 6 if k = 3;
• N = 5 if k = 4 or k = 5;
• N = 4 if k ≥ 6.

Moreover, for any k ≥ 3, there exists Mk,L > 0 such that there are no sequences of
Mk,L elements of L whose k-th powers have second differences equal to 2.

We can also ask the question of finding a bound for the length of sequences
with second differences equal to 2 formed by powers of possibly different exponents.
We also obtain a result in this direction by using the 4-term ABC conjecture over
Z from [BB94], as proposed by Browkin and Brzezinski, and the Bombieri-Lang
conjecture.

Theorem 10. Assume the Bombieri-Lang conjecture for the surfaces Xn,k with
n > 4

k−1+3 and the 4-term ABC conjecture. There exists an M > 0 such that there

are no non-trivial sequences of length M consisting of integer powers (of possibly
different exponents greater than or equal to 2) which have constant differences equal
to 2.

To prove this result, we will (partially) reduce to the case of powers of equal
exponents by a combinatorial argument involving Szemerédi’s theorem. Theorem
10 was motivated by a question of M. R. Murty about the n-term ABC conjecture
in our context. I thank him for asking that question. An unconditional result for
the analogue of Theorem 10 for powers in the ring K[x] of polynomials over any
field was studied by the author in [Gar13] by a different method.

The problem of finiteness of non-trivial sequences of length n formed by powers
with second differences equal to 2 in number fields was conditionally solved by
Pasten [Pas13] under Vojta’s general ABC conjecture for algebraic numbers of
bounded degree [Voj98]. He also gives a solution for the analogue of Problem 1 for
function fields over fields of characteristic zero using completely different methods
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(Nevanlinna theory), but his bounds on n are much weaker than ours due to the
methods that he uses.

Let us briefly compare the conjectural assumptions in our work and those in
Pasten’s work [Pas13]. The Bombieri-Lang conjecture and the 4-term ABC conjec-
ture that we use concern a fixed number field, while Vojta’s ABC conjecture used
in [Pas13] concerns algebraic points of bounded degree in infinitely many number
fields. This is necessary even if one is only interested in Q. On the other hand,
the Bombieri-Lang conjecture for surfaces and the 4-term ABC conjecture can be
seen as diophantine statements in dimension 2, while Vojta’s ABC conjecture is in
dimension 1.

Pasten also obtains results in logic in [Pas13]. He proves an undecidability result
for systems of linear equations when some prescribed unknowns are required to
be powers, again under Vojta’s general ABC conjecture for algebraic numbers of
bounded degree. In our case the undecidability result for powers is obtained under
the Bombieri-Lang conjecture and the 4-term ABC conjecture and is as follows:

Theorem 11. Assume the Bombieri-Lang conjecture for surfaces and the 4-term
ABC conjecture. Then there is no algorithm to decide whether a system of lin-
ear equations with integer coefficients has an integer solution or not, with some
prescribed unknowns required to be powers.

The proof is similar to the proofs in Section 5 of [Pas13], but in our case we
use Theorem 10 as our arithmetic input. Note that the analogous undecidability
result for squares (rather than powers) is established under the Bombieri-Lang
conjecture in [Voj00a]. In all these cases, the undecidability results are deduced
from the arithmetic results generalizing standard ideas from Büchi’s work in 1970
(see [Lip90], [Maz94]).

Finally, let us briefly mention that there is another generalization for the n-
Squares Problem in the literature, proposed by Pheidas and Vidaux [PV05], con-
sidering k-th differences of k-th powers. Although we will not consider this gener-
alization, let us briefly comment on the existing results for it. Pasten [Pas13] also
solves this under Vojta’s general ABC conjecture for algebraic numbers and uncon-
ditionally for function fields over fields of characteristic zero. Moreover, An, Huang,
and Wang [AHW13] give an alternative solution for function fields of characteristic
zero following the methods of [PV06], [PV10]. In all the works just mentioned, the
methods are very different from the approach in [Voj00a] and in this work. Also,
let us remark that the problem of k-th differences of k-th powers does not lead
to results on Brody-hyperbolicity and non-existence of low genus curves, because
in fact the associated varieties contain “trivial lines” (corresponding to sequences
(x+ i)k, i = 1, 2, . . . ).

2. The geometry of the surfaces Xn,k

Let n ≥ 2 and k > 2. By convention, we define X2,k := P2. Recall that for each
n, the scheme Xn,k defined by equation (1) is in Pn

C
. For 3 ≤ i ≤ n, let

fi = 2xk
0 − xk

i−2 + 2xk
i−1 − xk

i

be the generators of the ideal defining Xn,k, and let

gi = (i− 1)(i− 2)xk
0 − (i− 2)xk

1 + (i− 1)xk
2 − xk

i .

The equality of ideals (f3, . . . , fn) = (g3, . . . , gn) in C[x1, . . . , xn] can be proved.
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Lemma 12. If [x0 : · · · : xn] is a point on Xn,k, then no three of x0, . . . , xn are
zero.

Proof. If x0 = x1 = x2 = 0, then all xi are zero, because Xn,k is defined by the
equations gi. From this we know that at least one of x0, x1, x2 is different from
zero.

Now view (j − 1)(j − 2)xk
0 − (j − 2)xk

1 + (j − 1)xk
2 = 0 as an equation in j. It

can be written in the form

(2) xk
0j

2 + (−3xk
0 − xk

1 + xk
2)j + 2xk

0 + 2xk
1 − xk

2 = 0.

If x0 �= 0, then equation (2) has at most two solutions; hence there are at most two
values of j for which xj = 0. If x0 = 0, then equation (2) becomes a linear equation
in j. If also both −3xk

0 − xk
1 + xk

2 = 0 and 2xk
1 − xk

2 = 0, we get x0 = x1 = x2 = 0,
which is not possible. Hence equation (2) has at most one solution in j when
x0 = 0. �

For each n ≥ 3, let πn : Xn,k → Xn−1,k be the restriction to Xn,k of the
morphism

π̃n : Pn \ {[0 : · · · : 0 : 1]} → Pn−1

[x0 : · · · : xn] �→ [x0 : · · · : xn−1].

The rational map π̃n corresponds to C[x0, . . . , xn−1] → C[x0, . . . , xn] (which re-
spects the grading) in the sense of [Har77, Ex. II.2.14(b)], and the morphism πn

corresponds to the induced map

C[x0, . . . , xn−1]/(f3, . . . , fn−1) → C[x0, . . . , xn]/(f3, . . . , fn),

which exists because

(f3, . . . , fn−1) ⊆ C[x0, . . . , xn−1] ∩ (f3, . . . , fn).

Lemma 13. For each n ≥ 3, the map πn : Xn,k → Xn−1,k is finite and surjective.

Proof. Let P = [x0 : · · · : xn−1] be in Xn−1,k. Then for any xn ∈ C, the point

P̃ = [x0 : · · · : xn] is a preimage of P under π̃n. We have that P̃ lies on Xn,k if and
only if

xk
n = (n− 1)(n− 2)xk

0 − (n− 2)xk
1 + (n− 1)xk

2 .

Since this equation always has a solution xn ∈ C, we see that πn is surjective.
Moreover, we see that #(π−1

n (P )) ≤ k, so the map is quasi-finite, hence finite, by
[Har77, Ex. III.11.2] because πn is projective. �

Since Xn,k is the intersection of n − 2 hypersurfaces in Pn, we have by [Har77,
Theorem I.7.2] that each irreducible component of Xn,k has dimension greater than
or equal to 2. By Lemma 13, the morphism ρn,k = π3 ◦ · · · ◦ πn : Xn,k → P2

is finite and surjective; hence any irreducible component Y of Xn,k must satisfy
dimY ≤ dimP2. We thus obtain

Lemma 14. Each irreducible component of Xn,k has dimension 2.

The following observation will be useful for several subsequent lemmas.

Observation 15. Let α, β �= 1, 2, with α �= β. The matrix(
−(α− 2)(α− 1)xk−1

0 (α− 2)xk−1
1

−(β − 2)(β − 1)xk−1
0 (β − 2)xk−1

1

)
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has determinant xk−1
0 xk−1

1 (α− 2)(β − 2)(β − α) �= 0 when x0x1 �= 0. The matrix(
−(α− 2)(α− 1)xk−1

0 −(α− 1)xk−1
2

−(β − 2)(β − 1)xk−1
0 −(β − 1)xk−1

2

)

has determinant xk−1
0 xk−1

2 (α− 1)(β − 1)(α− β) �= 0 when x0x2 �= 0. The matrix(
(α− 2)xk−1

1 −(α− 1)xk−1
2

(β − 2)xk−1
1 −(β − 1)xk−1

2

)

has determinant xk−1
1 xk−1

2 (β − α) �= 0 when x1x2 �= 0.

Lemma 16. For each n ≥ 2, the scheme Xn,k is smooth.

Proof. Note that X2,k
∼= P2; thus it is smooth and irreducible. Let [x0 : · · · : xn]

be a point in Xn,k with n ≥ 3. We need to check that the Jacobian matrix of the
homogeneous equations defining Xn,k evaluated at [x0 : · · · : xn] ∈ Xn,k has rank
n− 2, because Xn,k is equidimensional of dimension 2. Since the ideal (g1, . . . , gn)
defines Xn,k, we get the (n− 2)× (n+ 1) matrix

k

⎛
⎜⎜⎜⎝

−2xk−1
0 xk−1

1 −2xk−1
2 xk−1

3 0 ··· 0

−6xk−1
0 2xk−1

1 −3xk−1
2 0 xk−1

4

. . .
...

...
...

...
...

. . .
. . . 0

−(n−2)(n−1)xk−1
0 (n−2)xk−1

1 −(n−1)xk−1
2 0 ··· 0 xk−1

n

⎞
⎟⎟⎟⎠ .

We will prove by induction on i that this matrix has rank n − 2 at every point
of Xn,k. We know from Lemma 12 that no three of x0, . . . , xn are zero; hence

k
(
−2xk−1

0 xk−1
1 −2xk−1

2 xk−1
3

)
is not the zero vector. Let 3 ≤ i ≤ n− 1 and suppose by the induction hypothesis
that the following (i− 2)× (i+ 1) matrix has rank i− 2:

Mi = k

⎛
⎜⎜⎜⎝

−2xk−1
0 xk−1

1 −2xk−1
2 xk−1

3 0 ··· 0

−6xk−1
0 2xk−1

1 −3xk−1
2 0 xk−1

4

. . .
...

...
...

...
...

. . .
. . . 0

−(i−2)(i−1)xk−1
0 (i−2)xk−1

1 −(i−1)xk−1
2 0 ··· 0 xk−1

i

⎞
⎟⎟⎟⎠

and consider the (i− 1)× (i+ 2) matrix

Mi+1 = k

⎛
⎜⎜⎜⎝

−2xk−1
0 xk−1

1 −2xk−1
2 xk−1

3 0 ··· 0

−6xk−1
0 2xk−1

1 −3xk−1
2 0 xk−1

4

. . .
...

...
...

...
...

. . .
. . . 0

−(i−1)(i)xk−1
0 (i−1)xk−1

1 −ixk−1
2 0 ··· 0 xk−1

i+1

⎞
⎟⎟⎟⎠ .

If xi+1 �= 0, then the matrix Mi+1 has maximal rank rk(Mi+1) = rk(Mi)+1 = i−1.
Now suppose that xi+1 = 0. If none of x3, . . . , xi are zero, then Mi+1 has

maximal rank. By Lemma 12, at most one among x0, . . . , xi can be zero. If xj = 0,
then we only have to prove that the j-th row is not a multiple of the (i+1)-st row.
By Lemma 12 we have that at least two of x0, x1, x2 are different from zero. Then
by Observation 15, we obtain that the j-th row is not a multiple of the (i + 1)-st
row, so the matrix Mi+1 has maximal rank. Therefore the Jacobian matrix has
rank n− 2, and thus the surface Xn,k is smooth. �
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Proposition 17. The projective surface Xn,k is smooth and irreducible. It is a
regular complete intersection. Its canonical sheaf is O(k(n − 2) − n − 1). The
surface Xn,k is of general type for n ≥ 2k+2

k−1 = 2 + 4
k−1 .

Proof. The surface Xn,k is a complete intersection because it is defined by n − 2
equations in Pn. Since Xn,k is a complete intersection, from [Har77, Ex. II.8.4(c)],
we obtain that Xn,k is connected, and since it is smooth we have that it is irre-
ducible. Since Xn,k is a complete intersection in Pn, we deduce from [Har77, Ex.
III.5.5(c)] that dimH0(Xn,k,Ω

1
Xn,k/C

) = 0; that is, Xn,k is regular.

From [Har77, Ex. II.8.4(e)], we know that the canonical sheaf of Xn,k is

O(k(n− 2)−n− 1). We have that k(n− 2)−n− 1 ≥ 1 when n ≥ 2k+2
k−1 . Thus Xn,k

is of general type when n ≥ 2k+2
k−1 . �

3. Explanation of the method

This section is an account of the method implicit in Vojta’s work [Voj00a], in-
spired by work of Bogomolov. For analytic proofs of these facts in the case studied
by Vojta, see [Voj00a]. For the general case treated in an algebraic setting, see
Chapter 3 of [Gar15]. In particular Theorem 24 (cf. Theorem 3.87 in [Gar15]) is an
improvement of Lemma 2.10 in [Voj00a] and permits us to obtain better numeri-
cal results. We outline this method in some generality beyond what we need here
because it can be useful in other applications.

We work with the notion of ω-integral curve from [Voj00a]:

Definition 18. Let X be a smooth variety over a field of characteristic zero, let L
be an invertible sheaf on X, and let ω ∈ H0(X,L⊗SrΩ1

X/C), where r is an integer.

An irreducible curve C on X is said to be ω-integral if the image of the section ϕ∗
Cω

in H0(C̃, ϕ∗
CL⊗ SrΩ1

C̃
) is zero, where ϕC : C̃ → X is the normalization of C ⊂ X.

From this point on, we restrict to the case of surfaces. One can check if an
irreducible curve C on X is ω-integral by looking at its equations, thanks to the
following result (see Corollary 3.72 in [Gar15]):

Theorem 19. Let X be a smooth complex surface, and let ω ∈ H0(X,L⊗SrΩ1
X/C).

Let C be an irreducible curve in X, let U = Spec(A) be an affine open set in X
such that C ∩ U is non-empty and principal, and let L|U ∼= OU . Let I = (g) be an
ideal in A such that C ∩U is defined by I. Let ω0 be the image of ω under the maps

H0(X,L ⊗ SrΩ1
X/C) → H0(U,L ⊗ SrΩ1

X/C) → H0(U, SrΩ1
U/C) = SrΩ1

A/C.

If ω0 ∈ SrΩ1
A/C lies in gSr(Ω1

A/C) + dgSr−1Ω1
A/C, then C is ω-integral.

From this, we can verify for any C ⊂ X whether it is an ω-integral curve.
Once we find a list of ω-integral curves on X, we want to check if this list consists

of all ω-integral curves of X. We can do this by defining the discriminant of ω,
which permits us to locally count the number of ω-integral curves passing through
a point. Fix a non-empty affine open subset V on X such that there are regular
functions u, v ∈ OX(V ) with the property that du, dv are a basis of Ω1

X/C(V ) as

an OX(V )-module. Let U ⊂ V be a non-empty basic affine open set such that
L|U ∼= OU . Under the isomorphism H0(U,L⊗ SrΩ1

X/C)
∼= H0(U, SrΩ1

X/C) we have

that the image of ω|U in H0(U, SrΩ1
X/C) can be written as

∑r
i=0 Ai(du)

r−i(dv)i

with Ai ∈ OU (U).
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Definition 20. Let δ ∈ K := k(X) be the discriminant of the monic polynomial∑r
i=0

Ai

A0
T r−i ∈ K[T ]. We define the discriminant of ω to be the Zariski closed set

ΔU := (X/U) ∪ VU (A0) ∪ VU\VU (A0)(δ) ⊂ X

(where VW (f) denotes the zero locus of f ∈ OW (W ) on the open set W ).

One can count the number of ω-integral curves passing through any point P
outside ΔU by the following result (see Theorem 3.76 in [Gar15]):

Theorem 21. Let ω ∈ H0(X,L ⊗ SrΩ1
X/C), and let ΔU be defined as before. For

any given point P ∈ X\ΔU there are at most r ω-integral curves passing through
P . More precisely, the sum of the multiplicities μP (C) for all ω-integral curves C
passing through P is at most r.

Hence, if we find r ω-integral curves for a point P ∈ X\ΔU we know that these
are all the ω-integral curves passing through P . Verifying that we have found r
ω-integral curves passing through each point of X\U and checking if the component
curves of ΔU are ω-integral (using Theorem 19) leads us to know that our list of
ω-integral curves of X is complete.

In applications we would like to use an ω ∈ H0(X,L ⊗ SrΩ1
X/C), for which it is

easy to find all ω-integral curves.
Once we find all ω-integral curves in X, we can use a morphism π : X ′ → X to

find all ω′-integral curves on X ′, for ω′ a suitable differential in X ′ which depends
on ω. Here we consider ω′ = π•ω, where given any morphism f : Y → Z of
varieties, the homomorphism f• is the induced map on global sections from the
OZ-homomorphism

L ⊗ SrΩ1
Z/C → f∗f

∗(L ⊗ SrΩ1
Z/C)

→ f∗(f
∗L ⊗ f∗SrΩ1

Z/C)

→ f∗(f
∗L ⊗ Srf∗Ω1

Z/C)

→ f∗(f
∗L ⊗ SrΩ1

Y/C),

where the last map is induced by the morphism

fY/Z/C : f∗Ω1
Z/C → Ω1

Y/C

from [EGA, IV.16.4.19.1]. (Note that translating Definition 18 into this language,
we say that a curve C on a surface X is ω-integral if and only if ϕ•

Cω = 0.)
The following result will allow us to find all π•ω-integral curves on X ′ (which

corresponds to Theorem 3.35 in [Gar15]).

Theorem 22. Let π : X ′ → X be a dominant morphism of smooth surfaces. Let
C ′ ⊂ X ′ be an irreducible curve and let C = π(C ′) be an irreducible curve on X.
Let L be an invertible sheaf on X and let ω ∈ H0(X,L ⊗ SrΩ1

X/C). The following

are equivalent:

• the curve C is ω-integral;
• the curve C ′ is π•ω-integral.

The last step is to have a criterion to check that any irreducible curve C ⊂ X ′

of genus less than or equal to g is in the list of π•ω-integral curves. This is done
by showing that the degree of the sheaf ϕ∗

CL ⊗ SrΩ1
C̃/C

(from Definition 18) over

the normalization C̃ of a curve of genus less than or equal to g on X ′ is negative,
so the section ϕ•

C(π
•ω) is forced to be zero.
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If this degree is not negative for the sheaf L under consideration, we can find
a “better sheaf L” when the branch curves of the morphism π : X ′ → X are
ω-integral. This requires the following definition:

Definition 23. Given a smooth irreducible surface X, an effective Cartier divisor
D of X with associated subscheme Y = YD, a locally free sheaf F , and a section
s ∈ H0(X,F), we say that s vanishes identically along D if the image of s under
the map H0(X,F) → H0(X,F ⊗ iY ∗OY ) is zero.

In this context, one can see that if D and D′ are effective divisors with no
common component, then s vanishes along D and D′ if and only if s vanishes along
D +D′ (cf. Proposition 3.79 in [Gar15]).

The following result is a generalization of Lemma 2.10 in [Voj00a] to morphisms
with higher order ramification. For a proof, note that Vojta’s argument already
covers this case using analytic methods. Alternatively, see Theorem 3.87 in [Gar15]
for a purely algebraic proof.

Theorem 24. Let X and X ′ be smooth integral surfaces defined over C. Let
π : X ′ → X be a dominant morphism and let D ⊆ X ′ be a prime divisor such
that C =π(D) is a curve. Suppose that π has ramification index e=eD/C(π)> 1
at D. Let L be an invertible sheaf on X, let r be a positive integer, and let ω ∈
H0(X,L⊗SrΩ1

X/C). If C is ω-integral, then π•ω ∈ H0(X ′, π∗L⊗SrΩ1
X′/C) vanishes

identically along (e− 1)D.

Tensoring the exact sequence

0 → OX(−D) → OX → iD∗OD → 0

from [Mum66, p. 63] by the locally free sheaf F := L ⊗ SrΩ1
X/C and then taking

global sections, we obtain the exact sequence

0 → H0(X,OX(−D)⊗F) → H0(X,F) → H0(X, iD∗OD ⊗F),

which leads us to the following result (corresponding to Proposition 3.88 in [Gar15];
see also Corollary 2.11 in [Voj00a]):

Proposition 25. Let X be a smooth integral surface and let

ω ∈ H0(X,L ⊗ SrΩ1
X/C).

Let D be an effective divisor on X. Suppose that ω vanishes identically along D.
Then there is a symmetric differential ω′ ∈ H0(X,O(−D)⊗L⊗SrΩ1

X/C) such that

all ω′-integral curves are among the ω-integral curves.

This proposition combined with Theorem 24 allows us to prove that the invertible
sheaf L′ = O(−(e− 1)D)⊗ π∗L has a section ω̄ making all ω̄-integral curves in X ′

to be π•ω-integral.

4. Finding all ω2,k-integral curves in X2,k

Let us prove the following lemma, which will be useful later.

Lemma 26. Consider the complex polynomial

P (x1, x2) := 1 + x2k
1 + x2k

2 − 2xk
1 − 2xk

2 − 2xk
1x

k
2 .
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• If k is an even integer, then P factors in irreducible factors as follows:

P = (−x
k
2
1 − x

k
2
2 − 1)(x

k
2
1 + x

k
2
2 − 1)(−x

k
2
1 + x

k
2
2 − 1)(x

k
2
1 − x

k
2
2 − 1).

• If k is an odd integer, then P (x1, x2) is irreducible.

Proof. That P (x1, x2) factors in that form for k even is easily checked. When k is
an odd integer, we want to prove that P (x1, x2) is irreducible. Let F : k[x1, x2] →
k[u, v] be the homomorphism of k-algebras defined by F (x1) = u2, F (x2) = v2. If
P (x1, x2) = Q(x1, x2)R(x1, x2), then P (u2, v2) = Q(u2, v2)R(u2, v2). Note that

P (u2, v2) = (−uk − vk − 1)(uk + vk − 1)(−uk + vk − 1)(uk − vk − 1)

by the previous assertion, and this factorization into irreducible factors is unique
(up to constants) because k[u, v] is a unique factorization domain.

Therefore (without loss of generality, because of the symmetry of Q and R) we
have, from the above factorization of P (u2, v2), that Q(u2, v2) is either irreducible
or a product of two irreducible factors.

In the first case Q(u2, v2) = ε1u
k − εk2 − 1, with εi ∈ {±1}, and in the second

case we have that

Q(u2, v2) = (ε1u
k + ε2v

k − 1)(ε3u
k + ε4v

k − 1)

= ε1ε3u
2k + ε1ε4u

kvk − ε1u
k + ε2ε3u

kvk + ε2ε4v
2k

−ε2v
k − ε3u

k − ε4v
k + 1,

but neither of these two polynomials is in the image of F , because k is odd and in
both cases we obtain some exponent equal to k. Therefore P (x1, x2) is irreducible.

�

Let {Ui} ⊆ P2 be the usual affine open cover of P2. In U0 with affine coordinates
x1 = X1

X0
, x2 = X2

X0
, consider the following symmetric differential form:

xk−1
1 x2dx1dx1 + (1− xk

1 − xk
2)dx1dx2 + x1x

k−1
2 dx2dx2.

Proposition 27. This differential form in U0 can be extended to a global section

ω2,k ∈ H0(P2,O(k + 3)⊗ S2Ω1
P2).

Proof. In the open set U1 with affine coordinates x0 = X0

X1
, x2 = X2

X1
, this form

becomes

ω2,k|U1
=

x2

xk
0

d
1

x0
d
1

x0
+

(
1− 1

xk
0

− xk
2

xk
0

)
d
1

x0
d
x2

x0
+

xk−1
2

xk
0

d
x2

x0
d
x2

x0

=
1

xk+3
0

(xk−1
0 x2dx0dx0 + (1− xk+1

0 − xk
2)dx0dx2 + x0x

k−1
2 dx2dx2).

Similarly on U2 we have (with affine coordinates x0 = X0

X2
, x1 = X1

X2
)

ω2,k|U2
=

1

xk+3
0

(xk−1
0 x1dx0dx0 + (−xk

1 − xk
0 + 1)dx0dx1 + x0x

k−1
1 dx1dx1).

�

Remark 28. Choosing this particularly convenient symmetric differential is a non-
trivial key step in the argument. In view of the method outlined in Section 3,
this ω2,k must make all the irreducible components of the branch curves of the
morphisms ρn,k to be ω-integral. In Appendix A in [Voj00a], Vojta explains how
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he found a suitable differential by using a computer search in positive characteristic.
In this work instead, we impose the condition that branch curves of the tower of
morphisms of surfaces be ω2,k-integral. This is a strong constraint on which ω2,k

can be taken, which led to our choice of ω2,k.

Lemma 29. For a natural number k ≥ 1, the following irreducible curves are
ω2,k-integral curves on X2,k = P2:

(i) x0 = 0, x1 = 0, x2 = 0;
(ii) Dc : c(c+ 1)xk

0 = cxk
1 − (c+ 1)xk

2, with c ∈ C \ {−1, 0}.
If k is an even natural number, the following are also ω2,k-integral curves on X2,k:

(iii) x
k
2
0 ± x

k
2
1 = ±x

k
2
2 .

If k is an odd natural number, the following (irreducible) curve is also ω2,k-integral:

(iv) x2k
0 + x2k

1 + x2k
2 − 2xk

0x
k
1 − 2xk

0x
k
2 − 2xk

1x
k
2 = 0.

Proof. For curves of type (i), the curve xi = 0 satisfies dxi = 0 (writing ω2,k in
appropriate coordinates for each case). Hence by Theorem 19 one gets that curves
of type (i) are ω2,k-integral.

For a curve Dc of type (ii), we have c(c + 1) = cxk
1 − (c + 1)xk

2 in U0. Taking

differentials we obtain dx1 =
(
c+1
c

) (
x2

x1

)k−1

dx2. Hence on that curve ω2,k is

(
xk−1
1 x2

(
c+ 1

c

)2 (
x2

x1

)2k−2

+ (1− xk
1 − xk

2)
c+ 1

c

(
x2

x1

)k−1

+ x1x
k−1
2

)
dx2dx2

=

(
xk
2

(
c+ 1

c

)2

+
c+ 1

c
(−c− 2c+ 1

c
xk
2) + c+ 1 +

c+ 1

c
xk
2

)
xk−1
2

xk−1
1

dx2dx2

= 0.

By Theorem 19 we get that Dc is ω2,k-integral.

Let Ck
ε1,ε2 : x

k
2
0 +ε1x

k
2
1 = ε2x

k
2
2 with ε1, ε2 ∈ {±1} be a curve of type (iii). Then we

have 1+ε1x
k
2
1 = ε2x

k
2
2 in U0. Taking differentials we obtain ε1x

k
2−1
1 dx1 = ε2x

k
2−1
2 dx2,

and doing a similar computation, we obtain that Ck
ε1,ε2 is ω2,k-integral.

Now we consider the case k odd and the curve of type (iv): Note that this curve is
irreducible by Lemma 26. Taking differentials of 1+x2k

1 +x2k
2 −2xk

1−2xk
2−2xk

1x
k
2 = 0

we obtain

(x2k−1
1 − xk−1

1 − xk−1
1 xk

2)dx1 − (xk
1x

k−1
2 + xk−1

2 − x2k−1
2 )dx2 = 0.

Hence, by a similar computation, ω2,k restricted to the curve of type (iv) on the
open set U3 ∩D+(x

k
1 − xk

2 − 1) has equation

−x1−k
1 xk−1

2 (1 + x2k
1 + x2k

2 − 2xk
1 − 2xk

2 − 2xk
1x

k
2)

(xk
1 − xk

2 − 1)2
dx2dx2 = 0.

We have that U3 ∩D+(x
k
1 − xk

2 − 1) intersects the irreducible curve

1 + x2k
1 + x2k

2 − 2xk
1 − 2xk

2 − 2xk
1x

k
2 = 0

because xk
1 −xk

2 − 1 is not a multiple of this curve. Therefore applying Theorem 19
to this open set, we have that the curve

1 + x2k
1 + x2k

2 − 2xk
1 − 2xk

2 − 2xk
1x

k
2 = 0

is ω2,k-integral when k is odd. �
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Lemma 30. If k is an odd natural number, the curves of types (i), (ii), and (iv)
are the only ω2,k-integral curves on X2,k = P2. If k is even, the curves of types (i),
(ii), and (iii) are the only ω2,k-integral curves on X2,k.

Proof. The restriction of ω2,k to U0 has equation

ω2,k = xk−1
1 x2dx1dx1 + (1− xk

1 − xk
2)dx1dx2 + x1x

k−1
2 dx2dx2.

We have from Definition 20,

Δ = (P2\U0) ∪
{
P ∈ U0 : A0(P ) = 0 or A2

1(P )− 4A0(P )A2(P ) = 0
}
⊆ P2.

In our case (for P = (x1, x2))

A0 = xk−1
1 x2,

A1 = 1− xk
1 − xk

2 ,

A2 = x1x
k−1
2 ,

so the last condition becomes

A2
2(P )− 4A1(P )A3(P ) = (1− xk

1 − xk
2)

2 − 4(xk−1
1 x2)(x1x

k−1
2 )

= 1 + x2k
1 + x2k

2 − 2xk
1 − 2xk

2 − 2xk
1x

k
2 .

Therefore

Δ =
{
[x0 : x1 : x2] : x0x1x2(1 + x2k

1 + x2k
2 − 2xk

1 − 2xk
2 − 2xk

1x
k
2) = 0

}
.

Note that by Lemma 29, when k is odd, Δ is the union of the curves of types (i)
and (iv), and when k is even, Δ is the union of the curves of types (i) and (iii).

Now we want to prove that the ω2,k-integral curves not contained in Δ are exactly
the curves of type (ii). Let P = [x1 : x2 : x3] be a point outside Δ. From Theorem
21 we only need to prove that there are at least two ω2,k-integral curves of type (ii)
passing through P . The point P lies on Dc if and only if c(c+1)xk

0 = cxk
1−(c+1)xk

2 .
The discriminant of the equation cxk

1 − (c+1)xk
2 = c(c+1) (with c the variable) is

1 + x2k
1 + x2k

2 − 2xk
1 − 2xk

2 − 2xk
1x

k
2 ,

which is different from zero because P is outside Δ. Therefore there are two values
of c for which Dc passes through P . �

5. Pullbacks of ω2,k-integral curves

Now that we have the complete list of ω2,k-integral curves of X2,k
∼= P2 for any

k, we will use them to find integral curves on the other surfaces Xn,k.
We have an infinite chain of finite surjective morphisms:

X2,k
π3← X3,k

π4← X4,k
π5← · · · .

Recall that for each n ≥ 3 we denoted by ρn,k the composition π3 ◦ π4 ◦ · · · ◦ πn.

Lemma 31. The morphisms πn : Xn,k → Xn−1,k are finite of degree k. Therefore
the morphisms ρn,k : Xn,k → X2,k are finite of degree kn−2.

Proof. From the proof of Lemma 13, the preimage of a point in Xn−1,k under the
finite morphism πn generically consists of k points. Since the surfaces Xi,k are
irreducible, we obtain that deg(πn) = k. �

Lemma 32. The pullbacks under ρn,k of the curves of types (i) and (ii) with
c �= −1, . . . , n− 2 of Lemma 29 are smooth complete intersection curves.
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Proof. The pullback of a curve of type (ii) with c �= −1, . . . , n − 2 is given by the
equations

c(c+ 1)xk
0 − cxk

1 + (c+ 1)xk
2 = 0,

2xk
0 − xk

1 + 2xk
2 = xk

3
...

(n− 1)(n− 2)xk
0 − (n− 2)xk

1 + (n− 1)xk
2 = xk

n.

The pullback of a curve of type (i) is given by the equations

xj = 0,

2xk
0 − xk

1 + 2xk
2 = xk

3
...

(n− 1)(n− 2)xk
0 − (n− 2)xk

1 + (n− 1)xk
2 = xk

n

with j = 1, 2, 3.
These curves are clearly complete intersections. They are smooth by a compu-

tation similar to the proof of Lemma 16. �

In the discussion below, we will consider the following divisor of Xj,k:

Cj = divXj,k
(xj).

Lemma 33. Let n ≥ 3. The morphism πn : Xn,k → Xn−1,k is ramified only at the
components of the divisor Cn. Moreover, we have

ρn,k(Cn) = Dn−2,

with Dn−2 a curve of type (ii) as defined in Lemma 29. In addition,

ρ∗n,kDn−2 = kCn.

Proof. From the proof of Lemma 13, we see that #(π−1
n (P )) = k for all P ∈ Xn−1,k

except when P = [x0 : . . . : xn−1] lies on the curve D̃n−2 = ρ∗n−1,k(Dn−2), which is
defined on Xn−1,k by the equation

(n− 1)xk
2 − (n− 2)xk

1 − (n− 1)(n− 2)xk
0 = 0.

Thus πn is unramified at any curve C �⊂ D̃n−2. Moreover, since #(π−1
n (P )) = 1

for each P ∈ supp(D̃n−2), we see that πn is totally branched of degree k at each

component of D̃n−2. Now

π∗
nD̃n−2 = divXn,k

((n− 1)xk
2 − (n− 2)xk

1 − (n− 1)(n− 2)xk
0)

= divXn,k
(xk

n) = kCn.

Thus, πn is ramified precisely in the components of Cn. Finally

ρ∗n,kDn−2 = π∗
nρ

∗
n−1,kDn−2 = π∗

nD̃n−2 = kCn.

�

Lemma 34. Let 3 ≤ j ≤ n, and let Cn,j = (πj+1◦· · ·◦πn)
∗Cj in Xn,k. The curves

Cn,j are smooth complete intersection curves. In particular, the curve Cn = Cn,n

is a smooth complete intersection.
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Proof. Let Cn,j = (πj+1 ◦ · · · ◦ πn)
∗Cj . It is given by the following equations:

xj = 0,

2xk
0 − xk

1 + 2xk
2 = xk

3
...

(n− 1)(n− 2)xk
0 − (n− 2)xk

1 + (n− 1)xk
2 = xk

n.

These curves are complete intersections, and they are smooth by a proof similar to
Lemma 16. �

For k an even integer and ε1, . . . , εn ∈ {±1}, define the schemes Ck
ε1,...,εn ⊆ Pn

by the equations

x
k
2
0 + ε1x

k
2
1 = ε2x

k
2
2

...

(n− 1)x
k
2
0 + ε1x

k
2
1 = εnx

k
2
n .(3)

Lemma 35. For k even, the schemes Ck
ε1,...,εn are smooth irreducible curves in

Xn,k.

Proof. Let Ck
ε1,ε2 be of type (iii). Squaring the first equation of Ck

ε1,...,εn we have

2ε1x
k
2
0 x

k
2
1 = −xk

0−xk
1+xk

2 . Squaring (i−1)x
k
2
0 +ε1x

k
2
1 = εix

k
2
i and replacing 2ε1x

k
2
0 x

k
2
1

by −xk
0 − xk

1 + xk
2 one gets

(i− 1)(i− 2)xk
0 − (i− 2)xk

1 + (i− 1)xk
2 = xk

i .

Since this holds for every i ≥ 3 we obtain that Ck
ε1,...,εn ⊆ Xn,k.

We have πn(C
k
ε1,...,εn) ⊆ Ck

ε1,...,εn−1
⊆ Xn,k. Since for any

P = [x0 : · · · : xn−1] ∈ Ck
ε1,...,εn−1

⊆ Xn,k

we have that Q = [x0 : · · · : xn] ∈ Ck
ε1,...,εn with εnx

k/2
n = ε1x

k/2
1 + (n − 1)x

k/2
0

is a preimage of P , we obtain that πn(C
k
ε1,...,εn) ⊇ Ck

ε1,...,εn−1
; thus πn(C

k
ε1,...,εn) =

Ck
ε1,...,εn−1

. From this we also get that every component of Ck
ε1,...,εn has dimension

less than or equal to 1 since πn(C
k
ε1,...,εn) �= πn(Xn,k) = Xn−1,k and πn is finite.

On the other hand, every component of Ck
ε1,...,εn has dimension at least 1 because

it is defined by n−1 equations in Pn, and we conclude by Theorem I.7.2 in [Har77].
Therefore, Ck

ε1,...,εn has all its irreducible components of dimension exactly 1 (it is
equidimensional).

Since Ck
ε1,...,εn

is equidimensional of dimension 1 in Pn and is defined by n − 1

equations, it is a complete intersection. The Jacobian matrix of Ck
ε1,...,εn evaluated

at [x0 : · · · : xn] is the following (n− 1)× (n+ 1) matrix:

k

2

⎛
⎜⎜⎜⎜⎜⎝

x
k
2−1
0 ε1x

k
2−1
1 ε2x

k
2−1
2 0 · · · 0

2x
k
2−1
0 ε1x

k
2−1
1 0 ε3x

k
2−1
3

. . .
...

...
...

...
. . .

. . . · · ·
(n− 1)x

k
2−1
0 ε1x

k
2−1
1 0 · · · 0 εnx

k
2−1
n

⎞
⎟⎟⎟⎟⎟⎠ .

If none of x2, . . . , xn are zero, then this matrix has maximal rank. If one of
x2, . . . , xn is zero, then at least one of x0, x1 is not zero; hence the matrix has
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maximal rank. If two of x2, . . . , xn are zero, then we have x0x1 �= 0. Noting that
for any 2 ≤ i �= j ≤ n, the determinant⎛

⎝ (i− 1)x
k
2−1
0 ε1x

k
2−1
1

(j − 1)x
k
2−1
0 ε1x

k
2−1
1

⎞
⎠

is non-zero, we obtain that the (n − 1) × (n+ 1) matrix has maximal rank. Since
Ck

ε1,...,εn is a smooth complete intersection, we obtain that it is irreducible. �

Lemma 36. If εi �= ε′i for some 1 ≤ i ≤ n, then the curves Ck
ε1,...,εn and Ck

ε′1,...,ε
′
n

are distinct.

Proof. Let i′ = i if i �= 1, and i′ = 2 if i = 1. The linear projection Pn ��� P2

[x0 : · · · : xn] �→ [x0 : x1 : xi′ ] maps Ck
ε and Ck

ε′ to two different Fermat type
curves. �
Lemma 37. Let k be an even integer. Then

ρ∗n,kC
k
ε1,ε2 =

∑
ε1,...,εn∈{±1}

Ck
ε1,...,εn .

Proof. For fixed ε1, ε2 the image of any Ck
ε1,...,εn under ρn,k is Ck

ε1,ε2 . Now we

want to prove that these irreducible curves are all the preimages of Ck
ε1,ε2 . The

restriction of the morphism Pn\ [0 : · · · : 0 : 1] → Pn−1 to Ck
ε1,...,εn gives a morphism

Ck
ε1,...,εn → Ck

ε1,...,εn−1
which has degree k

2 . The composition of these restrictions

has degree
(
k
2

)n−2
, hence deg(ρn,k|Ck

ε1,...,εn
) =

(
k
2

)n−2
. From Lemma 36, all the

components of the preimage of Ck
ε1,ε2 under ρn,k are distinct.

Since there are 2n−2 distinct curves Ck
ε1,...,εn in the preimage of Ck

ε1,ε2 , we get(
k
2

)n−2
2n−2 = kn−2. Hence the curves Ck

ε1,...,εn are all the components of the

pullback of Ck
ε1,ε2 counting multiplicities. �

Lemma 38. Let k be odd. If C
(iv)
n,k is defined as the pullback to Xn,k of the curve

of type (iv) of X2,k, then C
(iv)
n,k is reduced, irreducible, and given by the equations

x2k
0 + x2k

1 + x2k
2 − 2xk

0x
k
1 − 2xk

0x
k
2 − 2xk

1x
k
2 = 0,

2xk
0 − xk

1 + 2xk
2 = xk

3
...

(n− 1)(n− 2)xk
0 − (n− 2)xk

1 + (n− 1)xk
2 = xk

n.

Moreover, the 2n curves C2k
ε1,...,εn ⊆ Xn,2k are isomorphic to each other and are

birational to C
(iv)
n,k .

Proof. The rule [x0 : · · · : xn] �→ [x2
0 : · · · : x2

n] defines a surjective morphism
Fn : Xn,2k → Xn,k. We have the commutative diagram (as can be seen from the
equations)

Xn,2k
Fn−−−−→ Xn,k

ρn,2k

⏐⏐� ⏐⏐�ρn,k

X2,2k −−−−→
F2

X2,k
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Note that C
(iv)
2,k = divP2(P̄k) with P̄k = x2k

0 +x2k
1 +x2k

2 −2xk
0x

k
1 −2xk

0x
k
2 −2xk

1x
k
2 ,

which is the homogenization of the polynomial P from Lemma 26. By that lemma,

we have F ∗
2C

(iv)
2,k =

∑
ε1,ε2

C2k
ε1,ε2 .

By Lemma 37 we obtain ρ∗n,2k
∑

ε1,ε2
C2k

ε1,ε2 =
∑

ε̄∈G C2k
ε̄ , where G = {±1}n. By

definition, we have C
(iv)
n,k := ρ∗n,kC

(iv)
2,k , so we get

F ∗
nC

(iv)
n,k = F ∗

nρ
∗
n,kC

(iv)
2,k = ρ∗n,2kF

∗
2C

(iv)
2,k =

∑
ε̄∈G

C2k
ε̄ .

In particular C
(iv)
n,k is reduced because the curves C2k

ε̄ are reduced by Lemma 37.

Let G = {±1}n ∼= (Z/2Z)n act on Pn via

τ ([x0 : · · · : xn]) = [x0 : τ1x1 : · · · : τnxn].

Then τ (Xn,2k) = Xn,2k, for all τ ∈ G and Fn◦τ = Fn. Moreover τC2k
ε̄ = C2k

τε̄ (since
k is odd), where ε̄ = (ε1, . . . , εn) ∈ G, and so C2k

ε̄ = ε̄C2k
(1,...,1) are all isomorphic to

each other. Thus Fn(C
2k
ε̄ ) = Fn(C

2k
(1,...,1)), for all ε̄ ∈ G.

Thus, since Fn is surjective, we have

C
(iv)
n,k = FnF

−1
n (C

(iv)
n,k ) = Fn(

⋃
C2k

ε̄ ) = Fn(τC
2k
(1,...,1)) = Fn(C

2k
(1,...,1)).

Since C2k
(1,...,1) is irreducible, so is C

(iv)
n,k = Fn(C

2k
ε̄ ). Thus C

(iv)
n,k is a reduced and

irreducible curve, and Fn(C
2k
ε̄ ) = C

(iv)
n,k , for all ε̄. Since deg(Fn) = 2n and we have

2n curves Ck
ε1,...,εn , we have that the residue degrees f

C2k
ε̄ /C

(iv)
n,k

= 1 for all ε̄, and

hence Fn|C2k
ε̄

: C2k
ε̄ → C

(iv)
n,k is birational. �

Finally, we obtain

Lemma 39. The pullbacks under ρn,k of curves of type (i) and the curves of type
(ii) with c �= −1, . . . , n− 2 are smooth, irreducible, and reduced. If k is even, then
the pullbacks of the curves of type (iii) comprise the sum of the curves Ck

ε̄ with
ε̄ ∈ G which are smooth, irreducible, and reduced. If k is odd, the pullback of the
curve of type (iv) is irreducible and reduced. The pullback of curves of type (ii)
with c = 1, . . . , n − 2 is ρ∗n,k(Dc) = kCn,c+2, where Cn,j are smooth, irreducible,
and reduced.

Proof. From Lemma 38 we know that the curves of type (iv) are irreducible. The
pullbacks of the curves of types (i), (iii), and (ii) with c �= −1, . . . , n−2 are smooth
and complete intersection curves by Lemmas 32 and 37. From Lemma 34 we know
that the curves Ci are smooth complete intersections. From [Har77, Ex. II.8.4(c)]
we get that all these curves are connected, hence irreducible. The curves of type
(ii) with c = 1, . . . , n−2 are irreducible (but not reduced) because they are k times
a curve Cn,c+2 (see Lemma 34). �

6. ωn,k-integral curves on Xn,k

Since the morphisms πn are linear projections, we have that ρ∗n,kOP2(1) =

OXn,k
(1). Thus, we can define

ωn,k = ρ•n,kω2,k ∈ H0(Xn,k,O(k + 3)⊗ S2Ω1
Xn,k

).



3458 NATALIA GARCIA-FRITZ

Proposition 40. For k ≥ 2, the ωn,k-integral curves in Xn,k are the following:

(a) The pullbacks under ρn,k of the coordinate axes of X2,k. These curves are

smooth and irreducible with genus kn−2

2 (k(n− 2)− n) + 1.
(b) Cn,c+2 = (ρ∗n,k(Dc))red with c �= {−1, 0}. These curves are smooth and

irreducible. When c /∈ {1, . . . , n− 2}, they have genus

kn−1

2
(k(n− 1)− n− 1) + 1,

and when c ∈ {1, . . . , n− 2}, they have genus kn−2

2 (k(n− 2)− n) + 1.

Moreover, the following curves are also ωn,k-integral:

(c) If k is odd, the pullback of the curve of type (iii). It is reduced, irreducible,

and has geometric genus kn−1

2 (k(n− 1)− n− 1) + 1.

(d) If k is even, the 2n curves Cε1,...,εn :

ε1x
k
2
1 = ε2x

k
2
2 − x

k
2
0

...

ε1x
k
2
1 = εnx

k
2
n − (n− 1)x

k
2
0 .

They are smooth and irreducible of genus 1
2 (

k
2 )

n−1(k2 (n− 1)− n− 1) + 1.

Proof. Let C ⊆ Xn,k be an ωn,k-integral curve. By Theorem 22, its image D =
ρn,k(C) must be ω2,k-integral. Therefore C is a component of ρ∗n,k(D). Hence by
Lemma 29 and Lemma 39, C is a curve described in this proposition.

Now we compute the genus of these curves. Let C be a curve of type (a). We
have from Ex. IV.3.3.2 in [Har77] that degC i∗OPn(1) = deg(C), which is equal
to 1 · kn−2 by [EH00, Theorem III-71]. From Lemma 32 we know that they are a
complete intersection, so by [Har77, Ex. II.8.4(e)] we have KC = O(k(n− 2)− n);

hence the genus of C is kn−2

2 (k(n− 2)− n) + 1.

Let C be a curve of type (b) with c /∈ {1, . . . , n − 2}. Then deg(C) = kn−1,
and from Lemma 32 we have KC = O(k(n− 1)− n− 1). Hence the genus of C is
kn−1

2 (k(n− 1)− n− 1) + 1. If C is a curve of type (b) with c ∈ {1, . . . , n− 2}, we
have deg(C) = kn−2 and KC = O(k(n− 2)− n) by Lemmas 34 and 39; hence the

genus of C is kn−2

2 (k(n− 2)− n) + 1.
Let k be even and let C be a curve of type (d). By Lemma 37 we have

deg(C) =
(
k
2

)n−1
and KC = O

(
(n− 1)k2 − n− 1

)
, and we obtain that C has

genus 1
2 (

k
2 )

n−1(k2 (n− 1)− n− 1) + 1.

Since the genus of a curve of type (d) in Xn,2k is 1
2 (

2k
2 )n−1( 2k2 (n−1)−n−1)+1,

we obtain by Lemma 38 that the geometric genus of the curve of type (c) in Xn,k

is kn−1

2 (k(n− 1)− n− 1) + 1. �

7. Curves of low genus on Xn,k

Now we will show that the curves of bounded genus (for a suitable bound de-
pending on n and k) on Xn,k are ωn,k-integral.

Lemma 41. The section ωn,k defines a unique section

ω′
n,k ∈ H0(Xn,k,O(k + 3− (k − 1)(n− 2))⊗ S2Ω1

Xn,k
).

Moreover, every ω′
n,k-integral curve is ωn,k-integral.
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Proof. By Lemma 39, we have that ρ∗i,k(Di−2) = kCn,i for i = 3, . . . , n. Since the
curves Dc with c = 1, . . . , n−2 are ω2,k-integral, Theorem 24 shows that the section
ωn,k vanishes along (k−1)

∑n
i=3 Cn,i. Thus by Proposition 25, we get that for each

n, the section ωn,k ∈ H0(Xn,k,O(k + 3) ⊗ S2Ω1
Xn,k

) determines a unique section

ω′
n,k ∈ H0(Xn,k,O(k+3− (k−1)(n−2))⊗S2Ω1

Xn,k
) which makes the ω′

n,k-integral

curves be ωn,k-integral. Here we used O(Cn,i) = OXn,k
(1) as Cn,i = divXn,k

(xi);
cf. the proof of Lemma 34. �

Proposition 42. Let k ≥ 3, let g ≥ 1, and let n > 4g
k−1 + 3. If C is an irreducible

curve of geometric genus g(C) ≤ g in Xn,k, then C is ω′
n,k-integral. In particular,

it is ωn,k-integral.

Proof. Recall that ϕC : C̃ → Xn,k is the normalization of C. We know from
Example IV.3.3.2 in [Har77] that degC̃ ϕ∗

CO(1) = deg(C) ≥ 1. Thus, since n >
4

k−1 + 3, we have that

degC̃(ϕ
∗
CO(k + 3− (k − 1)(n−2))⊗ S2Ω1

C̃/C
)

≤ degC̃(ϕ
∗
CO(k + 3− (k − 1)(n− 2))) + 2(2g − 2)

= (k + 3− (k − 1)(n− 2)) degC̃ ϕ∗
CO(1) + 4g − 4

< k − (k − 1)(n− 2) + 4g − 1.

Hence H0(C̃, ϕ∗
CO(k + 3 − (k − 1)(n − 2)) ⊗ S2Ω1

C̃/C
) = 0 because n > 4g

k−1 + 3,

and therefore in this case the curve C is ω′
n,k-integral. The last statement holds by

Lemma 41. �

8. Proof of the main results

Proof of Theorem 3. Let g ≥ 1 be fixed and let n > 4g
k−1 + 3. Recall that k ≥ 3.

By Proposition 40, we know the genus of all the ωn,k-integral curves in Xn,k. We
will now show that the genus of any of these curves is strictly greater than g.

The curves of type (a) and the curves of type (b) with c ∈ {1, . . . , n− 2} have
genus

kn−2

2
(k(n− 2)− n) + 1 =

kn−2

2
(n(k − 1)− 2k) + 1

>
kn−2

2
(4g + 3(k − 1)− 2k) + 1

=
kn−2

2
(4g + k − 3) + 1 > 4g + 2− 3 + 1 ≥ g.

Hence curves of type (a) and curves of type (b) with c ∈ {1, . . . , n− 2} have genus
strictly greater than g.

Curves of type (b) with c /∈ {1, . . . , n− 2} and curves of type (c) have genus

kn−1

2
(k(n− 1)− n− 1) + 1 =

kn−1

2
(n(k − 1)− k − 1) + 1

>
kn−1

2
(4g + 3(k − 1)− k − 1) + 1

=
kn−1

2
(4g + 2k − 4) + 1 > 4g + 4− 4 ≥ g.

Thus, curves of type (b) with c /∈ {1, . . . , n− 2} and curves of type (c) have genus
strictly greater than g.
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Now suppose that k ≥ 4 is even. Curves of type (d) have genus

1

2

(
k

2

)n−1 (
k

2
(n− 1)− n− 1

)
+ 1 =

1

2

(
k

2

)n−1 (
n

(
k

2
− 1

)
− k

2
− 1

)
+ 1

>
1

2

(
k

2

)n−1 ((
4g

k − 1
+ 3

)(
k

2
− 1

)
− k

2
− 1

)
+ 1

=
1

2

(
k

2

)n−1 (
2g

k − 2

k − 1
+ k − 4

)
+ 1

>

(
2g

2

3
+ 4− 4

)
+ 1 ≥ g.

Hence for even k ≥ 4, curves of type (d) have genus greater than g.
From Proposition 42 we get that all curves with geometric genus g(C) ≤ g

are ωn,k-integral. Since for k ≥ 3 and n > 4g
k−1 + 3 the ωn,k-integral curves have

geometric genus strictly greater than g, we get that there are no curves of geometric
genus g(C) ≤ g in Xn,k. �

Proof of Corollary 4. If k ≥ 3 and n ≥ 6, then we have n > 4·1
k−1 + 3. If k = 4, 5

and n ≥ 5, then we have n > 4·1
k−1 + 3. If k ≥ 6 and n ≥ 4, then we also have

n > 4·1
k−1 + 3. Therefore by Theorem 3 we get that there are no curves of genus

g(C) ≤ 1 on Xn,k in these cases. �
Proof of Theorem 6. Let K be a function field of genus g ≥ 0, let k ≥ 3, and let

n > 4max{g,1}
k−1 + 3. The solutions over K (up to scaling) of the system of equations

(1) are in bijection with the morphisms {f : CK → X/C}, with CK the curve (up
to isomorphism) with function field K. By Riemann-Hurwitz, these morphisms are
either constant or must map the curve CK to curves in X with genus less than
or equal to g. By Theorem 3, there are no curves of genus less than or equal to
g in Xn,k. Therefore there are no non-constant solutions in K of the system of
equations (1), so after dehomogenizing we see that there are no sequences of length
n of elements in K not all constant whose k-th powers have second differences equal
to 2. �

To prove Theorem 5 we will need the following result from [Voj00b] (see also
[McQ98]). We will be using standard notation from Nevanlinna theory; cf. [Voj11].

Proposition 43. Let X be a non-singular complex projective variety, let f : C → X
be a holomorphic curve, let d be a positive integer, let L be a line sheaf on X, let
ω be a global section of L∨ ⊗ SdΩ1

X/C, and let A be an ample line sheaf on X. If

f∗ω �= 0, then
TL,f (r) ≤exc O(log+ TA,f (r)) + o(log r),

where the notation ≤exc means that the inequality holds for all r > 0 outside a set
of finite Lebesgue measure.

Proof of Theorem 5. Let n > 4
k−1 +3 and let f : C → Xn,k be a holomorphic map.

We will show that f must be constant.
Suppose that f is a non-constant map. Then we can consider the holomor-

phic symmetric differential f∗ω′
n,k on C, with ω′

n,k as in Lemma 41. Write M =

(k−1)(n−2)−(k−3) and note that M ≥ 1 by our assumption on n, so L := O(M)
is ample and ω′

n,k ∈ H0(Xn,k,L∨ ⊗ S2Ω1
Xn,k

).
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If f∗ω′
n,k �= 0, then we can apply Proposition 43 with A = L as it is ample.

Since f is non-constant and L is ample, there is a constant c > 0 such that

(4) TL,f (r) > c · log(r)

for r large enough. Note that

TL,f (r) +O(log+ TA,f (r)) ≥
1

2
TL,f (r) +O(1),

and from Proposition 43 we have

TL,f (r) ≤exc o(log r),

which contradicts equation (4). Hence in this case f must be constant.
On the other hand, if f∗ω′

n,k = 0, then f is locally a solution to the algebraic

differential equations defined by ω′
n,k, and the image of f is contained in an ω′

n,k-
integral curve; hence it is contained in an algebraic curve.

Let C ⊆ Xn,k be the irreducible algebraic curve containing the image of f . Then

we get a map f : C → C which lifts to a map f̃ : C → C̃ satisfying ϕC ◦f̃ = f , where
ϕC : C̃ → C is the normalization map. The holomorphic map f̃ is non-constant, so
by Picard’s theorem g(C̃) ≤ 1. By our assumption on n we can apply Corollary 4
to deduce that there is no curve of geometric genus 0 or 1 in Xn,k; hence C cannot
exist. Therefore f is constant. Hence, Xn,k is Brody-hyperbolic. �

Remark 44. The proof of Theorem 9 uses the fact that a sequence a1, . . . , an in a
number field has second differences equal to 2 if and only if for all 1 ≤ j ≤ n we
have

aj = −(j − 2)a1 + (j − 1)a2 + (j − 1)(j − 2),

which can be easily checked.

Proof of Theorem 9. Let a1, . . . , an be a sequence of n elements of L whose k-th
powers have second differences equal to 2. Then [1 : a1 : · · · : an] is an L-rational
point on Xn,k by the previous remark and because the ideal of Xn,k is (g1, . . . , gn);
cf. Section 2. If we have infinitely many sequences of length n satisfying these
conditions, then we obtain infinitely many L-rational points on Xn,k. There are
only finitely many L-rational points on Xn,k which are not in the curves of genus
0 or 1 of Xn,k by the Bombieri-Lang conjecture, since Xn,k is of general type for
n ≥ 4 by Proposition 17. By Corollary 4, we get that there are finitely many
sequences of this form for n ≥ 6 when k > 2 and for n ≥ 4 when k ≥ 6. This finite
number depends only on k and L. (Independently, Xn,k(L) is finite by Conjecture
8 and Theorem 5.)

Let k > 2, and suppose that there are N sequences of length 6 whose k-th powers
have second differences equal to 2 (for k ≥ 6 we can replace 6 by 4 in this argument).
Let a1, . . . , aN+7 be a sequence of elements of L whose k-th powers have second
differences equal to 2. By a proof similar to the one of Lemma 12, we have that no
term appears three times in the sequence. The N + 2 sequences ai, . . . , ai+5 (for
1 ≤ i ≤ N + 2) contain at least N + 1 distinct sequences of length 6 whose k-th
powers have second differences equal to 2. This contradicts the fact that there are
only N sequences satisfying this condition. �
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Now we will prove Theorem 10. The following conjecture is due to Browkin and
Brzezinski [BB94]:

Conjecture 45 (n-term ABC conjecture). Given any integer n > 2 and any ε > 0,
there exists a constant Cn,ε such that for all integers a1, . . . , an with a1+· · ·+an = 0,
gcd(a1, . . . , an) = 1 and no proper zero subsum, we have

max(|a1|, . . . , |an|) ≤ Cn,εrad(a1 · · · an)2n−5+ε.

We will need the following very important theorem:

Theorem 46 (Szemerédi’s theorem). Let k be a positive integer and let 0 < δ < 1.
There exists a positive integer N = N(k, δ) such that every subset of {1, . . . , N} of
size at least δN contains an arithmetic progression of length k.

Lemma 47. For k ≥ 2, define the sets

Sk = {n ∈ Z : n is a k-th power} =
{
mk : m ∈ Z

}
,

and also define

S∞ = {n ∈ Z : n is a k-th power, with k ≥ 13} =
⋃

k≥13

Sk.

There exists an N such that for any sequence a1, . . . , aN formed by integer powers,
there is an arithmetic progression

m,m+ n, . . . ,m+ 20n

(of length 21) in {1, . . . , N} such that for all 0 ≤ j ≤ 20 we have am+jn ∈ Sk, for
a fixed k ∈ {2, . . . , 12,∞}. Moreover, n ≤ (N − 1)/20.

Proof. LetN = N(21, 1/13) be the integer obtained by Szemerédi’s theorem. There
exists k ∈ {2, . . . , 12,∞} such that at least 1

13 of the elements of {a1, . . . , aN} are in
Sk (since the sequence consists of integer powers with exponent at least 2). Hence
by Theorem 46, there is an arithmetic progression m,m+n, . . . ,m+20n such that
am, . . . , am+20n consists of elements of the same Sk. �
Notation 48. If α is an algebraic number over Q, then we denote the number field
Q(α) by Lα.

Lemma 49. Fix N as in the previous lemma. Assume the Bombieri-Lang conjec-
ture. Then there is a finite collection F of integer sequences of length 21, depending
only on the choice of N , with the following property:

Let a1, . . . , aN be a sequence of powers with second differences equal to 2. Suppose
that for some k ∈ {2, 3, . . . , 12} and some n ∈

{
1, . . . , N−1

20

}
there is a subsequence

am, . . . , am+20n consisting of k-th powers.

(i) If k > 2, then this subsequence belongs to F .
(ii) If k = 2, then either the subsequence am, . . . , am+20n belongs to F or the

sequence a1, . . . , aN is a trivial sequence.

Proof. Since a1, . . . , aN have second differences equal to 2, there exists a monic
polynomial P (x) = x2 + bx+ c ∈ Q[x] such that P (i) = ai (cf. Remark 44).

Suppose that P (m), P (m + n), . . . , P (m + 20n) are all k-th powers. Then the
monic polynomial

Q(z) :=
1

n2
P (m+ zn) = z2 +

1

n
(2m+ b)z +

1

n2
(m2 + bm+ c)
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(which is an element in Q[z]) satisfies that Q(0), . . . , Q(20) are k-th powers in Ln2/k .
As Q(z) is monic of degree 2, the sequence Q(0), . . . , Q(20) has second differences
equal to 2.

Let us prove the two items separately. For item (i), Theorem 9 and the Bombieri-
Lang conjecture (for the number field Ln2/k) give us that there are finitely many
sequences of length 21 formed by k-th powers (in Ln2/k) whose second differences
are equal to two. Let Sn,k be this finite set of sequences. Then am, . . . , am+20n

belongs to n2Sn,k, where we multiply each term of each element of Sn,k by n2.
Therefore, every subsequence considered in item (i) belongs to the finite set

12⋃
k=3

(N−1)/20⋃
n=1

n2Sn,k.

For item (ii), note that Ln2/k = Q. From Theorem 0.5 in [Voj00a], the sequence
Q(0), . . . , Q(20) is either trivial or it belongs to a finite set S. In the case that the
subsequence belongs to S, we conclude the proof amplifying by n2 and taking the
union of these finite sets for n = 1, . . . , N−1

2 . Suppose now that Q(0), . . . , Q(20) is

a trivial sequence. This means that Q(z) = (z + h)2 for some h ∈ Q, and therefore

(z + h)2 =
1

n2
P (m+ zn),

from which we deduce that P (x) = (x−m+nh)2, and we conclude that the sequence
a1, . . . , aN is trivial. �

The following observation will help us to prove finiteness for sequences in the
remaining cases.

Observation 50. Let G ⊂ Q be a finite set, and fix N . Let TG,N be the set of all
sequences s = (a1, . . . , aN ) which satisfy:

• The sequence s has second differences equal to 2.
• At least 2 terms of s belong to G.

Then TG,N is finite.

Lemma 51. Assume the 4-term ABC conjecture. There is a finite collection F ′ of
integer sequences of length 21, depending only on the choice of N , with the following
property:

Let n ∈
{
1, . . . , N−1

20

}
and a1, . . . , aN be a sequence with second differences equal

to 2. If the subsequence am, . . . , am+20n consists of elements in S∞, then it belongs
to F ′.

Proof. We know that there are at most 2 values of j for which am+jn = 0, that
there are at most 2 values of j for which am+jn = 2n2, and that there are at
most 2 values of j for which am+jn = −n2. Since our subsequence consists of 21
elements, there are three consecutive elements such that they all are different from
0, 2n2,−n2. The elements am+jn (in our subsequence) satisfy (for 0 ≤ j ≤ 21) the
relation

am+(j+2)n − 2am+(j+1)n + am+jn − 2n2 = 0,(5)

because the sequence a1, a2, . . . , an has second differences equal to 2. If a subsum
of three terms in equation (5) is equal to zero, then the fourth term has to be equal
to zero, but this cannot hold since all terms are different from zero. We cannot
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have am+jn = 2n2, am+(j+2)n = 2n2, or am+(j+1)n = −n2; hence no proper subsum
consisting of two terms is zero. Therefore no proper subzero sum of

am+(j+2)n − 2am+(j+1)n + am+jn − 2n2

is zero, and am+(j+2)n − 2am+(j+1)n + am+jn − 2n2 = 0. If

gcd(am+(l+2)n, 2am+(l+1)n, am+ln, 2n
2) �= 1

we divide by the common factor. From Conjecture 45 with ε = 1
5 , there exists

C4,ε > 0 such that

max(|am+(l+2)n|, |2am+(l+1)n|, |am+ln|, |2n2|)

≤ C4,εrad(am+(l+2)nam+(l+1)nam+ln)
16
5 .

(The gcd condition can be omitted because the relevant gcd is at most 2n2 < N2,
which can be absorbed in C4,ε.) Hence we have

|am+(l+2)nam+(l+1)nam+ln|1/3 ≤ max(|am+(l+2)n|, |2am+(l+1)n|, |am+ln|, |2n2|)
≤ C4,εrad(am+(l+2)nam+(l+1)nam+ln)

16
5

≤ C ′(|am+(l+2)nam+(l+1)nam+ln|1/13)16/5

for an absolute constant C ′, because am+(l+2)n, 2am+(l+1)n, am+ln are powers of
exponent at least 13 (they are in S∞). As 1/3 > (1/13)(16/5) we conclude that
am+(l+2)n, 2am+(l+1)n, am+ln are bounded by an absolute constant; hence there are
only finitely many possibilities for these three integers. Thus there are only finitely
many am+ln, am+(l+1)n, am+(l+2)n in S∞ satisfying equation (5). We conclude by
Observation 50. �

Proof of Theorem 10. The fact that the sets F and F ′ from the previous lemmas are
finite, together with Observation 50, gives the result up to finitely many sequences.
We conclude by the same combinatorial argument as in the proof of Theorem 9. �
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San Joaqúın, Avenida Vicuña Mackenna 4860, Santiago, Chile

Email address: natalia.garcia@mat.uc.cl

http://www.ams.org/mathscinet-getitem?mr=1802018
http://www.ams.org/mathscinet-getitem?mr=1771576
http://www.ams.org/mathscinet-getitem?mr=2757629

	1. Introduction and main results
	2. The geometry of the surfaces 𝑋_{𝑛,𝑘}
	3. Explanation of the method
	4. Finding all 𝜔_{2,𝑘}-integral curves in 𝑋_{2,𝑘}
	5. Pullbacks of 𝜔_{2,𝑘}-integral curves
	6. 𝜔_{𝑛,𝑘}-integral curves on 𝑋_{𝑛,𝑘}
	7. Curves of low genus on 𝑋_{𝑛,𝑘}
	8. Proof of the main results
	Acknowledgment
	References

