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HARDY-TYPE RESULTS ON THE AVERAGE

OF THE LATTICE POINT ERROR TERM

OVER LONG INTERVALS

BURTON RANDOL

Abstract. Suppose D is a suitably admissible compact subset of Rk having
a smooth boundary with possible zones of zero curvature. Let R(T, θ, x) =
N(T, θ, x)−T kvol(D), where N(T, θ, x) is the number of integral lattice points
contained in an x-translation of Tθ(D), with T > 0 a dilation parameter and
θ ∈ SO(k). Then R(T, θ, x) can be regarded as a function with parameter T

on the space E+
∗ (k), where E+

∗ (k) is the quotient of the direct Euclidean group

by the subgroup of integral translations and E+
∗ (k) has a normalized invariant

measure which is the product of normalized measures on SO(k) and the k-

torus. We derive an integral estimate, valid for almost all (θ, x) ∈ E+
∗ (k), one

consequence of which in two dimensions is that for almost all (θ, x) ∈ E+
∗ (2),

a counterpart of the Hardy circle estimate (1/T )
∫ T
1 |R(t, θ, x) dt| � T

1
4
+ε is

valid with an improved estimate. We conclude with an account of hyperbolic
versions for which, drawing on previous work of Hill and Parnovski, we give
counterparts in all dimensions for both the compact and non-compact finite
volume cases.

1. The Euclidean case

Define N(T ) to be the number of integral lattice points in R
2 which are at

distance ≤ T from the origin. Then the study of the so-called remainder term
N(T )− πT 2, the difference of N(T ) from the area of a disk of radius T , has been
pursued for many decades. Various ways of measuring the size, for large T , of R(T )
have been investigated, for example, asymptotic estimates for R(T ) itself, as well
as estimates on various averages, for instance,

1

T

∫ T

1

|R(t)| dt .

There are also corresponding results when the center is allowed to shift and become
a new parameter in the definition of R (cf. [1], [2], [5], [16], [38]). We note that it

was usual in the older literature to replace T by
√
T in the definitions of N(T ) and

R(T ), since then N(T ) counts the number of ordered pairs (n1, n2) in Z × Z with

n2
1 + n2

2 ≤ T . The definition with T in place of
√
T is generally more usual if one

regards the question geometrically as arising from dilations of a fixed body D (in
this case the closed unit disk around the origin).
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Expressed with the
√
T scaling, an important result of the averaging type was

obtained by Hardy in [10], in which he showed that for any ε > 0,

1

T

∫ T

1

|R(t)| dt � T
1
4+ε ,

a result which was subsequently refined by Cramér, in [6], with later improvements
over time by numerous authors.

Hardy, at the beginning of [10], wrote that it is “not unlikely” that for any ε > 0,

R(T ) � T
1
4+ε .

This estimate has not yet been confirmed or refuted, although Hardy’s average
result is suggestive of its possible truth.

The originating question has led to numerous fruitful areas of investigation,
e.g., the asymptotic study of the lattice point count in dilations of a given general
domain in Euclidean space R

k or the asymptotics of the count, within a dilat-
ing ball in hyperbolic k-space H

k, of elements of the orbit{γ(x)} (γ ∈ Γ) of a
point under the action of a discontinuous group Γ. We note that the Euclidean
question can be directly related to counting the number of eigenvalues ≤ T for
differential operators on the integral k-torus, i.e., the quotient of Rk by Z

k. For
example, if P (x1, . . . , xk) is a real polynomial which is homogeneous of degree
h and positive except at the origin, the operator P ( ∂

∂x1
. . . , ∂

∂xk
) has eigenvalues

P (2πin1, . . . , 2πink) = (2πi)hP (n1, . . . , nk) for (n1, . . . , nk) ∈ Z
k, and so up to a

real factor (by positivity of P , h must be even), one is counting the number of
lattice points in dilates by T 1/h of the domain defined by P (x1, . . . , xk) ≤ 1, with
the convention that we count eigenvalues of the negative of the operator when 4
does not divide h.

There are counterparts for general Riemannian manifolds of the eigenvalue as-
ymptotic question. To take an example, suppose S is a compact Riemann surface
of genus greater than 1 and constant curvature −1, and 0 = λ0 < λ1 ≤ λ2 . . .
is the sequence of eigenvalues for the problem Δf + λf = 0 on S. By the Weyl
asymptotic law, if N(T ) is the corresponding eigenvalue count in [0, T ], N(T ) =
(A/4π)T + R(T ), where A is the area of the surface, and the remainder R(T ) is
o(T ). This general estimate on R(T ) can be improved (cf. [11], [31]), and, as in the
case of the circle problem, examination of the analysis makes it tempting to believe
that R(T ) � T

1
4+ε for any ε > 0. It has been shown in arithmetic cases (cf. [11])

that the 1
4 in this estimate cannot be reduced. I have not been able to establish or

refute the estimate, but in [32] was able to establish its almost everywhere valid-
ity for a closely related version of the eigenvalue remainder problem, in which the
eigenfunctions figure in the count.

Intrigued by this result, LaPointe, Polterovich, and Safarov in [17] subsequently
obtained several interesting results of this type in a general Riemannian context.

After this brief introduction to the general background and context for the results
of this paper, we return to the theme of asymptotic estimates for lattice point counts
in dilating bodies in R

k, in particular, to considerations in which rotations as well
as shifts are taken into account. The inclusion of rotations becomes necessary in
the presence of zones of zero curvature on ∂D, because the asymptotics in this case
can be exquisitely sensitive to the rotational orientation of D, and lattice point
asymptotics in the zero curvature case can sharply differ from those in the positive
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curvature case (cf. [26], [27]). An important example where vanishing curvature can
play a role arises in the case of positive homogeneous forms that are not quadratic,
for example, x2m

1 + · · ·+ x2m
k , with m > 1 (cf. [27]).

Accordingly, we will now examine the lattice point count corresponding to dila-
tions of a rotation θ(D) of the body D, with θ ∈ SO(k).

Since the integral lattice point count over Tθ(D) is clearly unaffected by integral
translations, it can be naturally regarded as a parametrized function N(T, θ, x) on
the integral torus Tk, with x ∈ T

k.
The Poisson summation formula is true in this context as a statement in L2(Tk)

and shows that in L2(Tk),

N(T, θ, x) =
∑
n

χ̂T (θ
−1(n)) e2π(n,x) ,

where χ̂T is the Fourier transform of the indicator function χT of TD and the
summation is over Z

k. Since χ̂T (θ
−1(n)) = T kχ̂(Tθ−1(n)), with χ̂ = χ̂1, and

χ̂(0) = vol(D), we thus find that in L2(Tk), the remainder term, R(T, θ, x) =
N(T, θ, x)− T kvol(D) equals

T k
∑′

χ̂(Tθ−1(n)) e2π(n,x) ,

where the prime indicates that the origin is omitted from the sum.
At this point, we briefly review some results which establish comparison theorems

between the decay of the Fourier transform of the indicator function of a compact
domain D in R

k and the decay of the Fourier transform of the indicator function of
a ball. Of particular interest, when ∂D is adequately smooth, are examples having
zones of zero curvature on ∂D. We begin with an early pointwise estimate, stronger
than required for the specific purposes of this paper, but applicable to situations to
which later L2 averaging estimates are less suited. It was motivated by questions
arising from the study of representations by positive forms.

Lemma 1.1 (Randol [28], [29]). Suppose D is a body in R
k satisfying:

If k = 2: ∂D is of class Cn+3 for some integer n ≥ 1, and the Gaussian
curvature of ∂D is non-zero at all points of ∂D, with the possible exception
of a finite set, at each point of which the tangent line has contact of order
≤ n.

If k ≥ 3: D is convex and ∂D is real analytic.

Let χ̂(r, φ) be the Fourier transform in polar coordinates of the indicator function
of D. Then

|χ̂(r, φ)| � Ψ(φ)r−(k+1)/2 ,

where Ψ ∈ Lp(Sk−1), for some (in principle computable) p > 2. As a pointwise
estimate about numbers, this is of course to be interpreted as valid for almost all
φ ∈ Sk−1.

In other words, the Fourier transform of a body in either of the above classes
decays like that of a ball, up to multiplication by an Lp function on the sphere,
with p > 2. Note that this result implies the weaker corollary that for some p > 2,∫

Sk−1

|χ̂(r, φ)|p dφ � r−(p/2)(k+1) .
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Remark. The real analyticity can be relaxed, as Svennson, following a suggestion
of Hörmander, showed by extending the above result to the C∞ category, with
an additional hypothesis about the absence of tangent lines having infinite contact
order with ∂D [34], but I do not know the current extent to which the convexity and
contact requirements can be relaxed for this type of pointwise result (the possibility
that convexity might be inessential was suggested in [29]). Both requirements can
be eliminated for some L2 averaging results (see below), for which a good recent
reference and bibliography is [14].

As noted above, for results of L2 averaging type, more general types of domains
can be handled. We next describe one such result, valid for C∞ boundaries without
a convexity or contact condition. It arose from a conjecture Arnold put forward
in his seminar, during the course of expositions of Lemma 1.1, and of a later re-
sult of Colin de Verdière [7], and was established in final form by Varchenko. The
removal of the convexity requirement in the resulting averaging theorem unrestrict-
edly extends the applicability of several results of the present paper to all positive
homogeneous forms.

Lemma 1.2 (Varchenko [35], [36]). Suppose D is compact in R
k, with C∞ bound-

ary. Then ∫
Sk−1

|χ̂(r, φ)|2 dφ � r−(k+1) .

Later, Brandolini, Hofmann, and Iosevich, as part of an ongoing program to
explore the maximum generality of such averaging results, established this estimate
for general bounded convex domains in R

k and for domains without the convexity
restriction that satisfy a C3/2 smoothness hypothesis.

Lemma 1.3 (Brandolini, Hofmann, and Iosevich [3]). If D is convex or of class
C3/2 with no convexity hypothesis, then∫

Sk−1

|χ̂(r, φ)|2 dφ � r−(k+1) .

After this brief historical survey, we will establish the following theorem, taking
normalized Haar measure on SO(k) and on T

k, and the invariant product measure
on the space of pairs E+

∗ (k) = (θ, x), which is the quotient of the direct Euclidean
group by the subgroup of integral translations.

Theorem 1.1. Suppose f(t) > 0 is differentiable and non-increasing on [a,∞),
with a > 0 and

∫∞
a

f(t)/t dt < ∞, and assume that D is a body in R
k of a type

described in the above lemmas. Then for almost all (θ, x),

1

T

∫ T

a

|R(t, θ, x)| dt � T (k−1)/2(f(T ))−1/2 ,

where the implied constant in the inequality depends on the particular choice of θ
and x.

Corollary (Counterpart of Hardy’s theorem). For almost all (θ, x) and for any
ε > 0,

1

T

∫ T

1

|R(t, θ, x)| dt � T ((k−1)/2)+ε .

(Take f(t) = t−2ε.)
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Remark. If we scale by T 1/h instead of by T , T 1/2 being the scaling used by Hardy
in his treatment of the circle case, the estimate on the right becomes T ((k−1)/2h)+ε,

which for k = 2 corresponds to the Hardy estimate T
1
4+ε.

It is obvious from the theorem that stronger results are true. For example,

Corollary. For almost all (θ, x) and any ε > 0,

1

T

∫ T

2

|R(t, θ, x)| dt � T (k−1)/2 log
1
2+ε T .

(Take f(t) = log−(1+ε) t.)

Proof of Theorem 1.1. As we have seen, in L2(Tk),

R(T, θ, x) = T k
∑′

χ̂(Tθ−1(n)) e2π(n,x) ,

so the result of integrating |R(T, θ, x)|2 over the torus is

T 2k
∑′

|χ̂(Tθ−1(n))|2 .

Now invoking the dimensionally appropriate estimate and noting that |Tθ−1(n)|
= T |n|, we see that this quantity can be bounded by

T k−1
∑′

|Ψ(θ−1(nφ))|2|n|−(k+1) ,

where Ψ ∈ L2(Sk−1) and nφ is the spherical component of n.
Integrating over SO(k), noting that the result is the same as integrating |Ψ|2

over the measure-normalized sphere and that the series in the resulting estimate
converges absolutely, we find that∫

SO(k)

dθ

∫
Tk

|R(T, θ, x)|2 dx � T k−1 .

We next remark that throughout what follows the dependency on parameters
of constants that will be associated with various estimates will not be explicitly
mentioned, but should be clear from context. Bearing this in mind, note that the
last estimate implies that∫ ∞

a

t−kf(t) dt

(∫
SO(k)

dθ

∫
Tk

|R(t, θ, x)|2 dx
)

≤ C ,

for some C > 0.
Now, as in [32], we note that by the Fubini-Tonelli theorem, the integral in the

t variable is finite for almost all (θ, x) ∈ E+
∗ (k), which implies that for almost all

(θ, x) ∈ E+
∗ (k), ∫ T

a

t−kf(t)|R(t, θ, x)|2 dt � 1 .

Define

R1(T, θ, x) =

∫ T

a

|R(t, θ, x)|2 dt .
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Then, integrating by parts and noting that R1(a, θ, x) = 0,

1 �
∫ T

a

t−kf(t)|R(t, θ, x)|2 dt

= T−kf(T )R1(T, θ, x) +

∫ T

a

(kt−k−1f(t)− t−kf ′(t))R1(t, θ, x) dt .

The second term in the last expression is non-negative since f ′(t) ≤ 0, which
implies that

T−kf(T )R1(T, θ, x) � 1 ,

so

R1(T, θ, x) =

∫ T

a

|R(t, θ, x)|2 dt � T k(f(T ))−1 .

This in turn implies by the Schwartz inequality, since |R(t, θ, x)|=1×|R(t, θ, x)|,
that ∫ T

a

|R(t, θ, x)| dt � T 1/2T k/2(f(T ))−1/2 = T (k+1)/2(f(T ))−1/2 ,

so for almost all (θ, x) ∈ E+
∗ (k),

1

T

∫ T

a

|R(t, θ, x)| dt � T (k−1)/2(f(T ))−1/2 . �

Remark. It can be shown by, for example, adapting the stationary phase argument
used to derive an Ω-estimate in [26] that in the presence of zero curvature, the
almost everywhere estimate of the theorem can fail for specific values of (θ, x).

2. The hyperbolic case

We continue with a description of counterparts of these results in the hyperbolic
case, for which the analytically natural dilating object is a ball (the Selberg theory,
which furnishes the applicable method, deals with point-pair invariants, which are
functions of distance). With this in mind, the goal is to first formulate a suitable
hyperbolic analogue of the result of Kendall’s foundational paper [16] on variance
of the lattice point count over shifted ovals. The formulation we will first consider
is one in which Γ is a torsion-free co-compact group acting on hyperbolic k-space
H

k, with the role of lattice points played by the Γ-orbit of a point y in H
k, the

aim being to obtain a Hardy-type integral estimate for the lattice point count of
T -dilates of a unit ball with center x, valid for almost all (x, y) ∈ S × S, where S
is the compact hyperbolic manifold of constant curvature −1 and volume V that
is the quotient of Hk by Γ. Other questions of this type have been considered by
several authors, e.g., [12], [13], [18], [24], [25], [33], [37]. A discussion of a version
in which y is fixed but x varies and the variance over the x variable is studied
can be found in [12], the latter formulation being more suited to the non-compact
case, since in that case the lattice point count is not in L2(S × S), as is noted
in [12] and [37]. We remark for later use that our general technique for deriving
a.e. integral estimates is applicable to the results in [12]. We also remark that the
study of variance removes a barrier to the known accuracy of estimates in T that
are valid for specific points in S×S, the analysis of which may not include possible
contributions from small eigenvalues near ((k − 1)/2)2 (cf. [18], [24], [25]).

As the last sentence suggests, the results of the analysis depend very much on
whether or not S has small eigenvalues, i.e., on whether or not there are eigenvalues
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in (0, ((k − 1)/2)2) for the problem Δf + λf = 0 on S. It is known that any
compact hyperbolic manifold with non-vanishing first Betti number has finite covers
for which they are present, as close to 0 as desired, and in numbers that can be
made arbitrarily large by passage to sufficiently deep covers (cf. [4], [30], [33]). All
compact hyperbolic surfaces satisfy the Betti number condition, and Millson [21]
has demonstrated the existence of examples with non-vanishing first Betti number
in all dimensions ≥ 3. In particular, all hyperbolic compact Riemann surfaces
have finite covers with small eigenvalues, the number of which is, however, always
bounded by 2g − 3, where g is the genus of the surface [23], although it is possible
that such eigenvalues do not occur for certain arithmetic surfaces. For instance, it
is known in some cases that none are present in intervals of the form (a, 14 ), with

a < 1
4 dependent on the surfaces being studied (cf., for example, [20]), but a very

general result of this type that completely excludes (0, 14 ) has not been established.

We will begin with a quick analysis of the illustrative example of H
3, since

the general ideas and techniques are exceptionally easy to follow in that case. In
particular, the required transforms take a very simple form there and are explicitly
given on p. 280 of [33]. We will afterwards discuss the general case, as well as the
previously mentioned variant of the problem that is applicable to the non-compact
finite volume case. We note that there is an inconsequential misprint on p. 280
of [33], on line 13 from the top, where what should be O(r−2e(t)) is mistakenly
printed as O(r−3e(t)).

Suppose now that Γ is as above and that N(T, x, y) is the number of points of the
form γy (γ ∈ Γ, y ∈ H

k) contained in the closed hyperbolic ball of radius T centered
at x ∈ H

k. This can clearly be regarded as a function on S × S, and in order to
reproduce our previous argument we need an expression for the integral over S×S
of a suitable quantity related to N(T, x, y). The Selberg pre-trace formula is well
adapted to this situation, and as mentioned, the necessary analysis is carried out
in [33]. In general, in H

k, the pre-trace formula tells us that in L2(S × S),

N(T, x, y) =

∞∑
n=0

hT (rn)ϕn(x)ϕn(y) ,

where hT (r) denotes the Selberg transform of the point-pair invariant corresponding
to the indicator function of a ball of radius T . Here, as usual for general k, the
rn’s are related to the eigenvalues by rn = (λn − ((k − 1)/2)2)1/2 and the ϕn’s
are corresponding orthonormal eigenfunctions of the Laplace operator on S. This
correspondence produces two rn’s for each eigenvalue, counting the rn at 0 with
multiplicity 2 if it is present. In order to ensure a 1 − 1 correspondence between
eigenvalues and rn’s, we will only count those rn’s that lie on the union of (0,∞)
with the closed segment of the imaginary axis from the origin to ((k − 1)/2)i, and
count the rn at 0 once if it is present. The rn’s on this segment of the imaginary
axis correspond to small eigenvalues, augmented by the eigenvalue at ((k − 1)/2)2

if present, which corresponds to rn = 0, together with the eigenvalue λ0 = 0, which
corresponds to r0 = ((k − 1)/2)i. For purposes of this paper, we will call all such
eigenvalues special eigenvalues.

The above series for N(T, x, y) in L2(S × S) contains a finite number of explicit
terms coming from Selberg transforms corresponding to special eigenvalues and
infinitely many coming from the remaining eigenvalues corresponding to rn’s on
the real axis minus the origin. That is, in L2(S × S), we can rewrite our previous
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identity as

N(T, x, y)−
N∑

n=0

hT (rn)ϕn(x)ϕn(y) =
∞∑

n=N+1

hT (rn)ϕn(x)ϕn(y) ,

where the sum on the left side is the contribution to the pre-trace formula from the
special eigenvalues. Note that ϕ0(·) = V −1/2, so

hT (r0)ϕ0(x)ϕ0(y) = V −1hT (r0) ,

and since it can be shown that hT (r0) = Bk(T ), where Bk(T ) is the volume of a
ball of radius T in H

k, we can further rewrite the identity as

N(T, x, y)−B(T )/V −
N∑

n=1

hT (rn)ϕn(x)ϕn(y) =

∞∑
n=N+1

hT (rn)ϕn(x)ϕn(y) .

As mentioned, the description of the Selberg transform hT (r) is particularly
simple for H3 and is as follows:

(1) For all r except 0 and i,

hT (r) = (4π/r(1 + r2))(coshT sin rT − r sinhT cos rT ) .

(2) hT (i) = π sinh 2T − 2πT = B3(T ).
(3) hT (0) = 4π(T coshT − sinhT ).

The following lemma is now a consequence of these facts and can be inferred
from either Parseval’s theorem or Weyl’s law for the rn’s, specifically, in the case
of the latter, the consequence that

∞∑
n=N+1

r−4
n < ∞.

Lemma 2.1. Define, in L2(S × S),

Ñ(T, x, y) = N(T, x, y)−B3(T )/V

−(hT (r1)ϕ1(x)ϕ1(y) + · · ·+ hT (rN )ϕN (x)ϕN (y))

=

∞∑
n=N+1

hT (rn)ϕn(x)ϕn(y) .

Then ∫
S×S

|Ñ(T, x, y)|2dxdy =
∞∑

n=N+1

|hT (rn)|2 � e2T .

This estimate is employed exactly as in the treatment of the Euclidean case.
Namely, we integrate it from a to ∞ over the dilation parameter, using a measure
suitably weighted to produce integrability, and then invoke a variant of the Fubini-
Tonelli theorem to ultimately derive the local property of integrability from a to ∞
in the dilation parameter, valid for almost all points in the base space S × S, and
consequently boundedness, for almost any point in the base space, of the integrals
from a to T , where the bound depends on the point in the base space. This leads to
an L2 Hardy-type result, which is then converted to an L1 result via the Schwartz
inequality. This technique, which was used for a similar purpose in [32] and has
undoubtedly been employed multiple times in various guises, is probably applicable
to a wide variety of genericity questions in probabilistic number theory and other
areas.
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Remark. The last estimate can be supplemented with an estimate from below. In
more detail, since for r ∈ R1 − {0},

hT (r) = (4π/r(1 + r2))(coshT sin rT − r sinhT cos rT ) ,

it follows that ∫
S×S

|Ñ(T, x, y)e−T |2dxdy =

∞∑
n=N+1

|e−ThT (rn)|2

can be written in the form Ψ(T )+Φ(t), where Ψ(T ), a uniform limit of generalized
trigonometric polynomials, is a non-vanishing Bohr almost periodic function, and
Φ(T ) � e−2T . In particular therefore,∫

S×S

|Ñ(T, x, y)e−T |2dxdy = Ω(1)

or ∫
S×S

|Ñ(T, x, y)|2dxdy = Ω(e2T ) .

This said, we return to the statement of our conclusion in the 3-dimensional
hyperbolic case, and as noted, since the derivation is methodologically identical to
that of the already discussed counterparts in the Euclidean case, we will simply
state the result:

Theorem 2.1. If f(t) > 0 is differentiable, non-increasing, and integrable on
[a,∞), then for almost all (x, y) ∈ S × S,

1

T

∫ T

a

|Ñ(t, x, y)| dt � eT (Tf(T ))−1/2 .

For example, taking f(t) = t−1 log−(1+ε) t, we obtain, for almost all (x, y)∈ S×S,
the estimate

1

T

∫ T

a

|Ñ(t, x, y)| dt � eT log
1
2+ε T ,

for any ε > 0.

We conclude with a brief account of the situation in general dimension, for which
the results in the paper [12] of Hill and Parnovski are very useful.

As already mentioned, Hill and Parnovski analyze a formulation in which x,
the center of the ball, varies, but y, whose orbit determines the lattice points, is
fixed, and they study the variance of N(T, x, y), taken over the x variable. As
we have also mentioned, in their version the variance remains finite in the non-
compact finite volume case, since then the integration is taken over S rather than
over S × S, and y is thereby constrained from excursions which would otherwise
lead to an infinite square integral. Consequently, they discuss the non-compact as
well as the compact case, and in the non-compact case, the contribution from the
continuous, as well as that from the discrete spectrum, must be considered. The
Selberg transform plays a role in both cases, which they analyze in terms of the
Gaussian hypergeometric function 2F1(a, b; c; z), an approach which was introduced
in this context in a startlingly prescient paper by Delsarte [8] and later used, among
others, by Levitan [19]. We note that in his 1942 announcement, Delsarte gave what
would now be called the Selberg transform for the important case of the indicator
function of a ball of radius T in H

2. In that announcement, he also explicitly
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identified the importance of small eigenvalues for the asymptotics of N(T, x, y),
and specifically raised the question of their possible existence. His short Comptes
Rendus announcement [8] does not contain all his detailed derivations of these
results, but they are present in in his complete works [9].

We now recall the required results from [12], which are somewhat intricate to
state and for which we require some preliminary definitions from [12]. Since the
notation of this paper differs in a few particulars from that of [12], we have, in
stating what is required, made small necessary adjustments to bring the notation
into conformity with that of this paper.

Definitions.

(1) D = (k − 1)/2.
(2) sj is one of the two roots of λj = sj(k − 1 − sj), all of which are present

on the union of the real segment [0, k − 1] and the line Re(s) = D. For
definiteness, we will take the sj ’s to lie on the union of [D, k − 1] and the
half-line defined by Re(s) = D, Im(s) > 0. Note that the definition of the
sj ’s differs slightly from the Selberg convention for the rj ’s, for which the
sj ’s are counterparts in [12], and that r and s are related by s = −ir +D.

(3) w(s) = πDΓ(s−D)/Γ(s+ 1).
(4)

fs(x) = w(s)(1− x)k
∑

0≤n<s−D

(k − s)n(D + 1)n
(D − s+ 1)n

xn

n!
,

where (x)n is a Pochhammer symbol, defined, for n = 0, by (x)0 = 1 and
for n ≥ 1, by (x)n = x(x+ 1) · · · (x+ n− 1).

(5)

clog(s) =
2(−1)s−Dπk−1

(s−D)Γ(s+ 1)Γ(k − s)

if s−D ∈ Z, and is 0 otherwise.
(6)

hk = −
(k−1)/2∑

j=1

1

j

if k is odd, and is

log 4−
(k−2)/2∑

j=0

2

2j + 1

if k is even.

Lemma 2.2 (Hill and Parnovski, Theorem 1 of [12]). Assume S compact and
k-dimensional, with k ≥ 4. Then∫

S

|(N(T, x, y)−Bk(T )/V |2 dx

=
∑

j:0<λj<D2

fsj (e
−2T )2|ϕj(y)|2e2sjT +

∑
j:0<λj<D2

clog(sj)|ϕj(y)|2Te(k−1)T

+
4πk−1

Γ(D + 1)2

∑
j:λj=D2

|ϕj(y)|2(hk + T )2e(k−1)T +O
(
e(k−1)T

)
.
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If k equals 2 or 3, this specializes to∫
S

|(N(T, x, y)−Bk(T )/V |2 dx =
∑

j:0<λj<D2

(w(sj))
2|ϕj(y)|2e2sjT

+
4πk−1

Γ(D + 1)2

∑
j:λj=D2

|ϕj(y)|2(hk + T )2e(k−1)T +O
(
e(k−1)T

)
.

In all cases, the implied constant in the O-term depends on Γ.

Lemma 2.3 (Hill and Parnovski, Theorem 2 of [12]). Denote, depending on the
dimension, the expression on the right side of the last equality, except for the
O
(
e(k−1)T

)
term, by H(T, y). Assume S non-compact, of finite volume, and k-

dimensional. Then, for fixed y,∫
S

|(N(T, x, y)−Bk(T )/V |2 dx = H(T, y) +
πk−1

Γ(D + 1)2
|E(y,D)|2Te(k−1)T

+O
(
e(k−1)T

)
,

where |E(y,D)| is the Euclidean norm of the vector of the normalized Eisenstein
series corresponding to the cusps of S, evaluated at (y,D). The implied constant
in the O-term depends on y and Γ.

In view of Lemmas 2.2 and 2.3, bearing in mind that they describe asymptotic
behavior for large T , it is natural, as before, to subtract the corresponding principal
asymptotics from the Fourier expansion of N(T, x, y) and to introduce a function

Ñ(T, x, y), defined separately for the compact and non-compact cases, to asymptot-
ically represent the Fourier expansion of the remainder when T is large. Depending
on circumstances, the definitions will be valid for L2(S) or L2(S × S).

Beginning with the definition for the compact case, for which we will initially
take the context to be L2(S × S), and assuming k ≥ 4, set, for large T ,

Ñ(T, x, y) = N(T, x, y)−Bk(T )/V

−
∑

j:0<λj<D2

[
fsj (e

−2T )e2sjT + clog(sj)Te
((k−1)T )/2)

]1/2
ϕj(x)ϕj(y)

− 2π(k−1)/2

Γ(D + 1)

∑
j:λj=D2

(hk + T )e((k−1)T )/2ϕj(x)ϕj(y) .

Remark. For sj in the applicable range and large T , the quantity in brackets above
is positive, and the positive square root is taken in the definition.

If k is 2 or 3, set

Ñ(T, x, y) = N(T, x, y)−Bk(T )/V

−
∑

j:0<λj<D2

w(sj)e
sjTϕj(x)ϕj(y)

− 2π(k−1)/2

Γ(D + 1)

∑
j:λj=D2

(hk + T )e((k−1)T )/2ϕj(x)ϕj(y) .

To facilitate the definition of Ñ(T, x, y) in the non-compact case, we denote
by H(T, x, y) the quantity subtracted from N(T, x, y) on the right sides of the
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equations defining Ñ(T, x, y) in the compact case, bearing in mind that y is held
fixed in the non-compact case, and that for fixed T and y, N(T, x, y) is piecewise
constant and of compact support on S.

Specifically, in the non-compact case, we set

Ñ(T, x, y) = N(T, x, y)−H(T, x, y)− C(T, x, y) ,

where the new term C(T, x, y) arises from the role played by Eisenstein series in
the spectral analysis of S in this case. For the purposes of this paper, we will only
define C(T, x, y), but it originates from considerations which arise from Theorem B
and the literature on Eisenstein series, to which we refer the reader seeking further
details (cf., for example, [15], [22]).

In order to define C(T, x, y), we recall that for suitable functions f(x) on S, the
Fourier-Eisenstein transform corresponding to a cusp is defined by

f̂(D + it) =

∫
S

f(x)Ej(x,D + it) dx ,

where Ej(x, s) is the normalized Eisenstein series associated to the cusp. The do-

main of f̂ is the line D + it (−∞ < t < ∞) in the complex plane, which, in the
previously described parametrization by s of eigenvalues, corresponds to λ ≥ D.
By the general theory, the continuous spectrum associated to such a cusp lies on
this line, and the projection of f on the orthocomplement in L2(S) of the subspace
spanned by eigenfunctions corresponding to the discrete spectrum is given by the
sum of the inverse transforms

1

4π

∑
j

∫ ∞

−∞
f̂(D + it)Ej(x,D + it) dt .

Now, regarding y and T as constants, so that N̂ can be considered as a function of
D + it, we define

C(T, x, y) =
1

4π

∑
j

∫ ∞

−∞
N̂(D + it)Ej(x,D + it) dt .

With the preceding definitions, examination of the square of the L2 norm of
Ñ(T, x, y) now brings Theorem 2.3 into play. We remark that the Eisenstein term
in Theorem 2.3 derives from an analysis of a dominating contribution, for fixed y,
to the T asymptotics of the square of the L2 norm of N̂ (cf. Theorem 4 of [12]).

This said, it now follows from Theorems 2.2 and 2.3 (expand the integrand on the
left in the statements of those theorems) that in both the compact and non-compact
cases, ∫

S

|Ñ(T, x, y)|2 dx = O
(
e(k−1)T

)
,

with the previously described dependencies of the implied constants.
Note, as is mentioned in [12], that in the compact case, in which we can simul-

taneously vary x and y, we can further integrate this with respect to y, to deduce
that in the compact case, we also have∫

S×S

|Ñ(T, x, y)|2 dxdy = O
(
e(k−1)T

)
.
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With these preparatory facts in hand, we can now state various Hardy-type inte-
gral estimates for the hyperbolic case. Their derivation exactly follows the already
described method, so we will content ourselves with statements of the conclusions.

Theorem 2.2. Suppose that S is compact and that f(t) > 0 is differentiable, non-
increasing, and integrable on [a,∞). Then for almost all (x, y) ∈ S × S,

1

T

∫ T

a

|Ñ(t, x, y)| dt � e
1
2 (k−1)T (Tf(T ))−1/2 .

For example, taking f(t) = t−1 log−(1+ε) t, we obtain, for almost all (x, y)∈ S×S,
the estimate

1

T

∫ T

a

|Ñ(t, x, y)| dt � e
1
2 (k−1)T log

1
2+ε T ,

for any ε > 0.

Theorem 2.3. Suppose that S is either compact or non-compact with finite volume
and that f(t) > 0 is differentiable, non-increasing, and integrable on [a,∞). Then,
assuming y fixed, for almost all x ∈ S,

1

T

∫ T

a

|Ñ(t, x, y)| dt � e
1
2 (k−1)T (Tf(T ))−1/2 .

For example, taking f(t) = t−1 log−(1+ε) t, we obtain, for almost all x ∈ S, the
estimate

1

T

∫ T

a

|Ñ(t, x, y)| dt � e
1
2 (k−1)T log

1
2+ε T ,

for any ε > 0.

Remark 1. For k = 2, this accords well, up to the logarithmic factor introduced by
our methodology, with the numerical results described in [25].
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