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GENERA OF BRILL-NOETHER CURVES AND STAIRCASE

PATHS IN YOUNG TABLEAUX

MELODY CHAN, ALBERTO LÓPEZ MARTÍN, NATHAN PFLUEGER,
AND MONTSERRAT TEIXIDOR I BIGAS

Abstract. In this paper, we compute the genus of the variety of linear series
of rank r and degree d on a general curve of genus g, with ramification at least
α and β at two given points, when that variety is 1-dimensional. Our proof
uses degenerations and limit linear series along with an analysis of random
staircase paths in Young tableaux, and produces an explicit scheme-theoretic
description of the limit linear series of fixed rank and degree on a generic chain

of elliptic curves when that scheme is itself a curve.

1. Introduction

Fix numbers g, r, d, and let X be a smooth, proper curve of genus g over an
algebraically closed field. A linear series of rank r and degree d on X, or a grd for

short, is the pair of a line bundle L ∈ Picd(X) together with an (r+1)-dimensional
space V ⊆ H0(X,L). Linear series are the central object of study in the classical
Brill-Noether theory of algebraic curves. For example, the main results of Brill-
Noether theory imply that when

ρ(g, r, d) := g − (r + 1)(g − d+ r)

is nonnegative, the grds on a general curveX of genus g form a proper scheme Gr
d(X)

that is smooth of expected dimension ρ, and connected if ρ > 0 [11–13]. Thus, if
ρ = 1, then Gr

d(X) is a smooth, proper curve, whose genus g′ is known:

Theorem 1.1. Suppose ρ(g, r, d) = 1. For a general smooth curve X of genus g,
the genus of the curve Gr

d(X) is

(1) g′ = 1 +
(r + 1)(g − d+ r)

g − d+ 2r + 1
· g! ·

r∏
i=0

i!

(g − d+ r + i)!
.

This result is due to Eisenbud-Harris [6] and Pirola [22]; the case r = 1 had been
proven previously by Kempf [14]. Theorem 1.1 is not a mere curiosity. It features
as an ingredient in the proof of the main theorem of [6]. Moreover, the rational map
Mg ��� Mg′ of moduli spaces obtained by assigning to a curve its Brill Noether
curve for suitable values of r, d is exploited in recent work of Farkas [7] and Ortega
[16].

Received by the editors July 22, 2015 and, in revised form, May 31, 2016 and August 8, 2016.
2010 Mathematics Subject Classification. Primary 05A15, 14H51.
The first author was supported by NSF DMS Award 1204278.
The second author was supported by CAPES-Brazil.

c©2017 American Mathematical Society

3405

http://www.ams.org/tran/
http://www.ams.org/tran/
http://dx.doi.org/10.1090/tran/7044
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g − d + r

r + 1

Figure 1. Skew shape σ(g, r, d, α, β) associated to the data
(g, r, d) = (6, 3, 4), α=(0,0,2,3), β=(2,1,0,0).

In this paper, we give a new proof of Theorem 1.1, and we generalize it to the
case of curves parametrizing grds on X with prescribed ramification profiles at two
generic fixed points of X.

Theorem 1.2. Fix g, r, and d, and let α = (α0, . . . , αr) be a nondecreasing and
β = (β0, . . . , βr) a nonincreasing sequence of integers. Let σ = σ(g, r, d, α, β) be the
skew shape defined by (g, r, d, α, β) as in Definition 3.1. Suppose that the adjusted
Brill Noether number is

(2) ρ(g, r, d, α, β) = g − (r + 1)(g − d+ r)− |α| − |β| = 1.

Then for a general twice-pointed smooth curve (X, p, q) of genus g, the scheme

Gr,α,β
d (X, p, q) is a curve, with at most nodes as singularities, of arithmetic genus

(3) 1 + (r+1)(n+1)fσ +

r+1∑
i=1

(r+1−i)·f iσ −
r+1∑
i=1

(r+ 2−i)·fσi

,

where fσ denotes the number of standard fillings of the skew shape σ in Definition
3.1, and where σi and iσ refer to shapes closely related to σ (see Definition 2.8).

The construction of the shape σ is illustrated by an example in Figure 1. The

numbers fσi

and f
iσ defined in Definition 2.8 are explicitly calculable using the

determinantal formula (5). When α = β = 0, our formula reduces directly to (1)
(see Corollary 6.4).

The original proofs of Theorem 1.1 were based on computations of cohomology
classes in the Jacobian. Our proofs use degeneration and limit linear series building
on the techniques introduced by Castorena-López-Teixidor in [3], who considered
the case r = 1 and no ramification points. We enumerate components of the space of
limit linear series on a chain of elliptic curves according to ramification data at the
nodes. This type of curve was introduced by Welters in [31] and used successfully
thereafter in a number of applications (see [4], [21], [26], [27], [28], [29], [30]). In this
paper, we prove Theorem 1.1 for all r and prescribed ramification at two points.
We also give an original proof of the reducedness of the special fiber of the relevant
degeneration to limit linear series when ρ = 1. The proof is not based on the
standard study of the Gieseker-Petri map, but relies instead on the representability
of the Brill-Noether functor. Results of Osserman and Murray-Osserman on the
comparison of Osserman and Eisenbud-Harris linear series developed in [15, 19],
allow us to deduce the genus of the Brill-Noether locus of the general curve from
the genus of the Brill-Noether locus of the degeneration.

Brill-Noether loci with fixed ramification have not been studied much so far. We
expect to come back to this topic in the future. A direct generalization of our results
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to more than two points of ramification will require considerable more work and
might fail in some cases in positive characteristic, as the Brill-Noether dimension
estimate may no longer apply in this case [20, Remark 2.7.8].

Our methods also apply in the case ρ(g, r, d, α, β) = 0, where they give the
following enumerative geometry result. This result was already deduced by Tarasca
[25, Section 3.1] using the formula [10, 14.7.11(v)] for intersecting Schubert classes.
In recent work, Farkas and Tarasca [8] also consider a similar problem where a
single ramification point is allowed to move. Our proof generalizes the proof given
in [3] in the case of trivial ramification and makes the role of skew tableaux explicit.

Theorem 1.3. Fix g, r, d, α, β, and let ρ(g, r, d, α, β) be defined as in Theorem 1.2,
and assume that

ρ(g, r, d, α, β) = 0.

Then for a general twice-pointed smooth curve (X, p, q) of genus g, the scheme

Gr,α,β
d (X, p, q) consists of fσ reduced points.

As we mentioned above, our strategy in the proof of Theorem 1.2 is to compute
the arithmetic genus of the scheme of Eisenbud-Harris limit linear series on a generic
elliptic chain. We describe the main ingredients of the proof below.

Our aim in Sections 2 and 3 is to develop the combinatorial techniques we need
in the proof of our main theorems, but some of the results (see Theorem 2.9,
Lemma 2.11, and Corollary 2.15) can be of independent interest. In particular, we
show the following: Pick a lattice path from the lower-left to upper-right corners
of an a × b rectangle σ, with probability proportional to the number of standard
compatible fillings of σ. Then the expected number of turns in this path is exactly
the harmonic mean of a and b. The set up of Section 2 is better expressed in terms of
a graph (the Brill-Noether graph) associated to a generalization of Young tableaux
called skew Young tableaux. In Section 3, we introduce a further generalization of
skew Young tableaux that we call pontableaux and the corresponding subdivision
of the Brill-Noether graph that we call the augmented Brill-Noether graph. Valid
sequences relate pontableaux to the orders of vanishing of linear series.

In Section 4, we describe the schemes Gr,α,β
d (E, p, q) parameterizing the space

of linear series on an elliptic curve with prescribed ramification profiles α, β at two
points, in the case that that scheme has dimension at most 1. This gives a transver-
sality result for two Schubert conditions on Gr

d(E), viewed as a Grassmann bundle

over Picd(E). Section 5 gives an explicit description of the scheme Gr,α,β
d (X, p, q)

of limit linear series on an elliptic chain X. We show that Gr,α,β
d (X, p, q) is a nodal

curve with elliptic and rational components, whose dual graph is the augmented
Brill-Noether graph.

Finally, we use a result of [15] to conclude that the arithmetic genus of the nodal

curve Gr,α,β
d (X, p, q) of limit linear series coincides with the genus of the corre-

sponding locus of linear series over a nearby smooth curve. Specifically, Osserman
constructs a moduli functor for limit linear series [19], in such a way that they
form flat and proper families over one-parameter degenerations; however, it is not
always clear that the scheme structures on Osserman’s limit linear series coincide
with the Eisenbud-Harris scheme structures. The paper [15] shows that under rela-
tively mild conditions that are satisfied in our situation, the two scheme structures
do coincide, and the statement on equality of genera follows. This is described fully
in Section 6.
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We want to point out two directions for future work. First, our tools apply to
Brill-Noether loci of any dimension and could be used to study Brill-Noether loci
of dimension larger than one. Moreover, the description of the locus of limit linear
series on elliptic chains is very explicit and allows us to compute invariants of the
Brill-Noether locus on the generic curve that are finer than the genus. Indeed, the
aim of [3] was to find the gonality of the G1

4(X) where X is a generic curve of genus
5.

Notational conventions. We mention a few conventions here that will be used
throughout the paper.

• The word “variety” refers to a finite-type reduced separated scheme over
an algebraically closed field (not necessarily irreducible).

• The numbers g, r, d will always be nonnegative and satisfy g − d+ r ≥ 0.
• The symbols ai, bi will refer to vanishing orders of a linear series. The
numbers ai will be in increasing order, while the numbers bi will be in
decreasing order. The symbols αi, βi will be the corresponding ramification
orders, defined by αi = ai−i, βi = bi+i−r, and the symbols α, β will refer
to the sequence of all of these numbers. In particular, α is nondecreasing
and β is nonincreasing.

2. Staircase paths and Young tableaux

The goal of this section is to count the number of vertices and edges in a par-
ticular graph that is related to Young tableaux, which we call the Brill-Noether
graph. The main result is Theorem 2.9. We will begin by reviewing the definitions
of standard and skew-standard Young tableaux. Then we will come to our main
new combinatorial definitions, of almost-standard tableaux and the Brill-Noether
graph. To count the edges in the Brill-Noether graph, we will define and study a
probability distribution on staircase paths in Young diagrams that seems to be new
and interesting.

Throughout, let n be a nonnegative integer. A partition of n is a tuple λ =
(λ1, . . . , λk) of positive integers, nonincreasing, summing to n. By convention, if
i > k, then λi = 0. The Young diagram of λ is an array of boxes that has λi boxes,
left-justified, in the ith row (this convention for drawing diagrams is known as
English notation). We will often identify partitions with their Young diagrams and
vice versa, without further mention. The conjugate partition to λ is the partition,
denoted λ∗, obtained from λ by reflecting over the diagonal. In other words, λ∗

i is
the number of boxes in the ith column of λ.

A standard Young tableau of shape λ is a filling of the Young diagram of λ
with the numbers {1, . . . , n}, each appearing exactly once, such that the entries in
each row and in each column are strictly increasing. See Figure 3 for an example.
Write SY T (λ) for the set of standard Young tableaux of shape λ. Standard Young
tableaux of a given shape λ are counted by the celebrated hook-length formula, as
follows. Write (i, j) ∈ λ for the box in the ith row and jth column of the Young
diagram. The hook length of box (i, j) ∈ λ is defined as

h(i, j) := λi + λ∗
j − i− j + 1,

i.e., h(i, j) is one more than the number of boxes below (i, j) plus the number of
boxes to the right of (i, j). Then by [9], the number of standard Young tableaux of
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Figure 2. The Brill-Noether graph BN((2, 2)).

shape λ is

(4) fλ =
n!∏

(i,j)∈λ h(i, j)
.

Definition 2.1. Consider two partitions λ and μ such that μi ≤λi for all i. The
shape resulting from removing μ from λ is called a skew Young diagram or skew
shape and will be denoted σ = λ\μ. We write |σ| for the number of boxes in σ. We
say that σ is connected if the lower-left and upper-right corners of σ are connected
by a walk along the edges of the boxes in the diagram.

Suppose |σ| = n. A skew-standard Young tableau of shape σ is a bijective filling
of the boxes of σ with the numbers {1, . . . , n}, such that the entries in each row
and in each column are strictly increasing. We will write sSY T (σ) for the set of
skew-standard Young tableaux of shape σ, and write fσ = |sSY T (σ)|.

The number of skew-standard Young tableaux of shape σ, are counted by Aitken’s
determinantal formula ([1]; see also [24, Corollary 7.16.3]):

(5) fλ\μ = |λ\μ|! det
(

1

(λi − i− μj + j)!

)
i,j∈{1,2,...,k}

.

Here k denotes the number of parts of λ, and we interpret 1/m! = 0 when m is
negative. When μ = (∅) then the formula (5) specializes to the more explicit hook-
length product formula (4). When we refer to skew Young diagrams, we include
Young diagrams as the special case μ = (∅).

Next we will define almost-standard Young tableaux and the Brill-Noether graph.

Definition 2.2. Let σ be a skew shape with n boxes. We define an almost-standard
skew Young tableau of shape σ to be an injective numbering of the boxes of σ with
numbers chosen from {1, . . . , n+ 1}, such that the entries in each row and in each
column are strictly increasing. Write aSY T (σ) for the set of almost-standard skew
Young tableaux of shape σ.

Definition 2.3. Let σ be a skew shape with n boxes. We define the Brill-Noether
graph BN(σ) as follows: the vertices of BN(σ) are the almost-standard skew Young
tableaux of shape σ, and two vertices are adjacent in BN(σ) if they differ in exactly
one box.

Figure 2 shows the Brill-Noether graph on the 2× 2 square.
For our intended application, we must count the number of vertices and the

number of edges of BN(σ). It is relatively straightforward to see that the number of
vertices is (n+1)fσ (see Lemma 2.7), but the number of edges is more complicated.
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1 2 3 5 6

4 7 9 10

8 11 12

Figure 3. A staircase path in a standard Young tableau of shape
(5, 4, 3). The left and right turns are indicated with solid and open
dots respectively.

Our basic tool in computing the number of edges is a probability distribution on
staircase paths in Young diagrams, described by the following two definitions.

Definition 2.4. Let σ be a connected skew shape with n boxes. A staircase path in
σ is a path s from the lower-left corner to the upper-right corner of σ that uses only
right-steps and up-steps. A turn in s is a consecutive sequence of steps (right,up)
or (up,right) with the property that both steps border a common box of σ. These
turns will be called left and right turns in s, respectively.

We emphasize that we do not consider a change of direction in s to be a turn
unless both of the steps in question border a common box in σ. For example, the
staircase path in Figure 3 has three left turns and one right turn, as shown. If both
steps of a turn border box (i, j) ∈ σ, we will say that the turn lies in box (i, j) for
short; and we will also say that it lies in the ith row and jth column of σ.

Now, for any T ∈ sSY T (σ) and m ∈ {1, . . . , n + 1}, the pair (T,m) naturally
defines a staircase path in σ that we will denote s(T,m). Namely, s is the unique
staircase path which divides the entries < m from the entries ≥ m. For example,
in Figure 3, the tableau T and m = 11 determine the staircase path shown. This
allows us to define the Brill-Noether probability distribution on staircase paths as
follows.

Definition 2.5. Let σ be a connected skew shape with n boxes. We let μBN denote
the probability distribution on staircase paths in σ obtained by

• picking T ∈ sSY T (σ) uniformly at random,
• picking m ∈ {1, . . . , n+ 1} uniformly at random,

and choosing the path s(T,m). We write Eσ for the expected number (i.e., average
number) of turns in a staircase path in σ chosen according to the distribution μBN .

Thus, a staircase path appears in μBN with probability proportional to the
number of standard fillings of σ with which it is compatible, i.e. with which it
divides smaller entries from larger ones. Note that μBN is completely different
from the uniform distribution on staircase paths in σ.

Definition 2.6. Let T be an almost-standard skew Young tableau of shape σ of size
n. Let m ∈ {1, . . . , n+1} be the unique label not appearing in T . The compression
of T , denoted c(T ), is the skew-standard Young tableau of shape σ obtained from
T by decrementing each entry of T greater than m.

Figure 4 shows an example. Note that compression is a map aSY T (σ) →
SY T (σ) all of whose fibers have size n+ 1.

We may now express the number of edges in BN(σ) in terms of the expected
number of turns in a staircase path chosen from μBN .
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Figure 4. The compression of the almost-standard tableau shown
on the left is the standard tableau shown on the right.

Lemma 2.7. Suppose σ is a connected skew shape with n boxes. The number of
vertices in the graph BN(σ) is

(n+ 1)fσ.

The number of edges in the graph BN(σ) is

1

2
(n+ 1) fσEσ.

Proof. First, consider the map

aSY T (σ) −→ SY T (σ)× {1,. . ., n+1}
sending T ′ ∈ aSY T (σ) to (c(T ′),m). This map is bijective: given (T,m), the
staircase path s = s(T,m) divides the boxes of σ into two parts, and incrementing
the entries of T southeast of s yields the aSYT that was sent to (T,m). Thus
BN(σ) has (n+ 1) fσ vertices, as claimed.

Now suppose T ′ is a vertex of BN(σ), i.e., an almost-standard skew Young
tableau of shape σ; we wish to compute the degree of T ′ in BN(σ). Let m ∈
{1, . . . , n + 1} be the number missing from T ′. The vertices in BN(σ) adjacent
to T ′ correspond to those aSYT which are obtained from T ′ by replacing one of
the entries of T ′ with the missing number m, so that the result is again an aSYT.
The key observation is that the entries of T ′ which may be legally replaced by m
correspond precisely to the turns in s(c(T ′),m). Specifically, a right turn (resp. left
turn) in box (k, l) indicates that the entry in (k, l) is greater than m (resp. less
than m) and may be replaced by m so that the rows and columns are still strictly
increasing. So the degree of T ′ in BN(σ) is the number of turns in the path
s(c(T ′),m), and we conclude

|E(BN(σ))| =
1

2
|V (BN(σ))| · (average degree of a vertex)

=
1

2
(n+ 1) fσEσ

as desired. �
In other words, to count edges in BN(σ), we need to compute the expected

number of turns in a staircase path in σ chosen according to μBN . We are able to
do this for any skew shape, in Theorem 2.9 below. Before stating this theorem, we
fix the following notation.

Definition 2.8. Let σ = λ \μ be a skew shape with k rows. For each i = 1, . . . , k,
we write σi for the shape obtained from σ by adding a box to row i on the right,
assuming that the result is again a skew shape (i.e., if λi < λi−1). As before, write

fσi

for the number of standard fillings of σi. By convention, we set fσi

= 0 if σi

is not a skew shape. Similarly, we write iσ for the shape obtained by adding a box

on the left in row i, and we define f
iσ analogously.
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Theorem 2.9. Let σ be any connected skew shape, with n boxes and k rows. Then
the expected number of turns in a staircase path in σ chosen according to the prob-
ability distribution μBN is

(6) Eσ = 2

(
k +

k∑
i=1

k−i

n+1
· f

iσ

fσ
−

k∑
i=1

k+1−i

n+1
· f

σi

fσ

)
.

Moreover, the number of edges in the graph BN(σ) is

(7) k(n+ 1)fσ +

k∑
i=1

(k−i) · f iσ −
k∑

i=1

(k+ 1−i) · fσi

.

The proof of Theorem 2.9 relies on two key lemmas of independent interest. We
will state and prove these lemmas, and then return to prove the theorem.

First, we show that left turns happen just as often as right turns at any given
box (i, j). The correspondence is not immediate; rather, the proof makes surprising
use of the structure of the Brill-Noether graph.

Lemma 2.10. Let σ be a connected skew shape with n boxes, and choose a staircase
path s in σ according to the distribution μBN . Let (i, j) ∈ σ be any box. Then

P(s has a right turn at box (i, j)) = P(s has a left turn at box (i, j)).

Proof. First, by a half-edge of a graph we mean a pair (v, e) ∈ V (G)× E(G) such
that e is incident to v. There is an obvious involution ι on half-edges of any graph,
sending (v, e = vw) to (w, e). Now, by the proof of Lemma 2.7, we see that the
vertices of BN(σ) are in bijection with pairs (T,m) ∈ sSY T (σ) × {1, . . . , n + 1}.
Furthermore, the half-edges at the vertex corresponding to (T,m) are in bijection
with the turns in the staircase path s(T,m). We will write (T,m, τ ) to denote the
half-edge corresponding to a turn τ in the staircase path corresponding to (T,m).

Suppose τ is a right turn in the path s(T,m) at box (i, j), and consider the half-
edge (T,m, τ ). Let (T ′,m′, τ ′) = ι(T,m, τ ). The aSYT corresponding to (T ′,m′) is
obtained from the one corresponding to (T,m) by changing the entry m′, located in
box (i, j), to m. Furthermore, the fact that τ was a right turn means precisely that
m′ > m. Now consider the half-edge (T ′,m′, τ ′). Applying the same argument, we
see that τ ′ must be a left turn in box (i, j) in the path s(T ′,m′).

Summarizing, if a half-edge corresponds to a right turn (resp. left turn) at box
(i, j), then the half-edge with which it is paired corresponds to a left turn (resp. right
turn) at box (i, j). We have thus exhibited a bijection

{(T,m, τ ) | τ is a right turn of s(T,m) at box (i, j)}
∼= {(T ′,m′, τ ′) | τ ′ is a left turn of s(T ′,m′) at box (i, j)}

and this bijection proves the lemma. �

See Figure 5 for an example of the bijection in the proof of Lemma 2.10.
The second key lemma can be stated completely independently of staircase paths

and Brill-Noether graphs. It addresses, in one case, the very natural question: what
is the expected value of a given box in a randomly chosen standard Young tableau
of fixed shape?
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Figure 5. Lemma 2.10 establishes a bijection between pairs
(T,m) such that s(T,m) has a right turn at (i, j) and pairs (T ′,m′)
such that s(T ′,m′) has a left turn at (i, j). This figure illustrates
one instance of this bijection, when (i, j) = (1, 4). Here, T and T ′

are as shown and m = 9,m′ = 5.

Lemma 2.11. Let σ be a skew shape with n boxes.

(i) The expected value of the last entry of the first row of a uniformly chosen
skew-standard Young tableau of shape σ is

n+ 1− fσ1

/fσ,

where σ1 denotes the skew shape obtained from σ by adding a box to the
first row on the right.

(ii) More generally, suppose b = (i, j) is the last box of the ith row of σ, and
suppose the box c = (i − 1, j + 1) due northeast of b also lies in σ. Then
the expected value of the maximum value in boxes b and c of a uniformly
chosen skew-standard Young tableau of shape σ is

n+ 1− fσi

/fσ,

where σi denotes the skew shape obtained from σ by adding a box to the ith

row on the right.

Remark 2.12. In the case that σ is nonskew, the quantities in Lemma 2.11 can be
calculated explicitly via the hook-length formula, using the fact that the only hook
lengths that change upon adding a box to σ are the ones in the same row or the
same column as the new box. For example, it follows that the expected value of
the upper-right corner box of a uniformly chosen standard Young tableau of shape
σ is

(8) (n+ 1)

⎛
⎝1−

σ1∏
j=1

σ1 + σ∗
j − j

σ1 + σ∗
j − j + 1

⎞
⎠ .

We also remark that by rotating 180-degrees and replacing each number i with
n+1−i, we immediately obtain the analogous result on the left border of σ. Namely,
if b is the leftmost box of the ith row if σ and c ∈ σ is the box due southwest of it,
then we have

E (min(T (b), T (c))) = f
iσ/fσ,

for a uniformly chosen T ∈ sSY T (σ).

Proof of Lemma 2.11. Part (i) is simply a degenerate special case of part (ii), which
we now prove. Consider the shape σi obtained by adding a box on the right of the
ith row of σ. Note σi is again a skew shape, by the assumption that the box
(i− 1, j + 1) also lies in σ.
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Consider the map
Φ: sSY T (σi) → sSY T (σ)

defined as follows: given T ′ ∈ sSY T (σi), erase the last box in the ith row of T ′,
and take the compression of the resulting almost-standard skew Young tableau.

For example, if σ = (5, 2) \ (1) and i = 2, then Φ sends each of

1 2 6 7
3 4 5

1 2 5 7
3 4 6

1 2 5 6
3 4 7

to the following tableau:

1 2 5 6
3 4 .

Now given T ∈ sSY T (σ), we have

|Φ−1(T )| = n+ 1−max(T (b), T (c)),

since an element in Φ−1(T ) is obtained from T by picking any

α ∈ {max(T (b), T (c))+1, . . . , n+ 1},
incrementing all entries of T that are at least α, and then writing α in the extra
box. This is illustrated in the example above.

Now double-counting the size of the domain, we have

fσi

=
∑

T∈sSY T (σ)

(n+ 1−max(T (b), T (c))) = fσ · (n+ 1− E(max(T (b), T (c)))).

We conclude
E (max(T (b), T (c))) = n+ 1− fσi

/fσ.

�

Lemma 2.11 is new as far as we know. In general, it is very natural to ask for
an explicit formula, given a partition λ of n, for the expected value of any given
box of a uniformly chosen standard tableau of shape λ. This is likely to be difficult
to achieve in general. A formula for the expected value of box (2, 1) for any Young
diagram was given recently in [23]. Apart from their result, our Lemma 2.11(i),
and trivial cases like the box (1, 1), we do not know of any other results along these
lines.

Now we turn to the proof of Theorem 2.9.

Proof of Theorem 2.9. Let σ have n boxes and k rows. If s is a staircase path in σ,
we will say that s has a right turn (respectively left turn) in row i if it has a right
turn (respectively left turn) in box (i, j) for some j. For i = 1, . . . , k, write Ri and
Li for the event that s has a right turn in row i, respectively a left turn in row i.
Clearly, any staircase path has either 0 or 1 right turns (respectively, left turns) in
a given row, so

(9)
Eσ = P(R1) + · · ·+ P(Rk) + P(L1) + · · ·+ P(Lk)

= 2(P(R1) + · · ·+ P(Rk)),

where the latter equality follows from Lemma 2.10. So we wish to calculate P(Ri)
for each i. We will do this by expressing P(Ri+1) in terms of P(Ri) and then
summing up; we’ll take advantage of the fact that P(Ri) = P(Li) throughout the
argument.
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c

b Xi+1

Figure 6. Illustration for the proof of Claim 2.13. In this example
σ = (6, 4, 3) and i = 1. Note that there is a left turn in row i but
no right turn in row i+1, because the path uses the outward corner
marked Xi+1.

First, we note

(10) P(Ri+1) + P(Li and not Ri+1) = P(Ri+1 and not Li) + P(Li),

since both are equal to P(Ri+1 or Li). Using P(Li) = P(Ri), we get

(11) P(Ri+1) = P(Ri) + P(Ri+1 and not Li) − P(Li and not Ri+1).

The next claim is then the key step to relating P(Ri) and P(Ri+1).

Claim 2.13. For each i, we have

P(Li and not Ri+1) =
1

n+1

fσi+1

fσ
(12)

P(Ri+1 and not Li) =
1

n+1

f
iσ

fσ
.(13)

In particular,

(14) P(not R1) =
1

n+1

fσ1

fσ
and P(not Lk) =

1

n+1

f
kσ

fσ
.

Proof of Claim 2.13. The statements in (14) are degenerate special cases of (12)
and (13). Furthermore (13) is obtained directly from (12) by applying a 180-degree
rotation of σ. So it remains to prove (12).

Suppose s is a staircase path in σ that has a left turn in row i. As usual, regard s
as a path starting from the lower-left corner and ending at the upper-right corner.
Now, immediately prior to the left turn in row i, it must be the case that s is
traveling to the right along a horizontal segment lying between rows i and i + 1.
Immediately before that horizontal segment, s must of course be traveling up.

Now, if this up-step occurs anywhere but the right border of row i, then s has a
right turn in row i + 1. In particular, if the ith row of σ extends to the right only
as far as the (i+1)st row, then any staircase path with a left turn in row i also has
a right turn in row i + 1. Then the quantity on the left in (12) is zero; but so is

fσi+1

on the right, by our convention, which proves (12) in this case.
So we may assume that the ith row of σ extends further to the right than the

(i+1)st row. In this case, s fails to have a right turn in row i+1 if and only if the
up-step traversing row i+1 occurs on the right border of row i+1. Let us call this
up-step, followed by the next right-step, the outward corner Xi+1. See Figure 6.

Then we have shown

P(Li and not Ri+1) = P(Xi+1 is used).
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Now, pick T ∈ sSY T (σ) uniformly at random, and consider the n + 1 staircase
paths

s(T, 1), . . . , s(T, n+ 1).

Let b and c denote the boxes of σ immediately to the left of Xi+1 and immediately
above Xi+1, respectively. Notice that a staircase path s(T,m) uses the outward
corner Xi+1 precisely when the tableau lying above that path contains both b and
c. In other words, exactly n + 1 − max(T (b), T (c)) of the n + 1 staircase paths
defined by T use the outward corner Xi+1. Thus, by linearity, it follows that

P(Xi+1 is used) = 1− E(max(T (b), T (c)))

n+ 1

=
1

n+1

fσi+1

fσ
,

where the last equality is by Lemma 2.11. This proves Claim 2.13. �

Returning to the proof of Theorem 2.9, it follows from equation (11) and
Claim 2.13 that

(15) P(Ri+1) = P(Ri) +
1

n+1

f
iσ

fσ
− 1

n+1

fσi+1

fσ
.

Furthermore, by Claim 2.13, we have

P(R1) = 1− 1

n+1

fσ1

fσ
.

Applying (15) repeatedly to the expression Eσ = 2(P(R1)+· · ·+P(Rk)) from (9),
we get exactly the quantity in the first part of the theorem statement. Note in

particular that each term − 1
n+1

fσi

fσ appears a total of k + 1 − i times in the sum,

and each term 1
n+1

f
iσ

fσ appears a total of k − i times. This proves the first part of

Theorem 2.9, and the second part follows from Lemma 2.7. �

Remark 2.14. There is an implicit symmetry in the expression (6) which, when
unraveled, gives a nice combinatorial identity. Replace σ by a 180-degree rotation
of σ and apply the same expression. Equating the two expressions so obtained and
simplifying gives the following very simple identity:

Corollary 2.15. For any skew shape σ with k rows, we have

(16)

k∑
i=1

f
iσ =

k∑
i=1

fσi

.

This is a curious identity on counts of skew tableaux, derived from our analysis
of turns in staircase paths, that is a new result as far as we know.

Applying (6) to the conjugate of σ, interchanging rows and columns, gives an-
other identity on counts of standard fillings of skew shapes, but this is presumably
more complicated.

Theorem 2.9 computes the expected number of turns of a staircase path in σ
chosen from μBN in any shape σ. For reference, we will work out two useful exam-
ples.
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Corollary 2.16. Let a and b be two positive integers. Let λ = (b, . . . , b), where b
occurs a times, i.e., the Young diagram of λ is an a× b rectangle. Then

Eλ =
2ab

a+ b
,

the harmonic mean of a and b. Moreover, the number of edges in the graph BN(λ)
is

ab

a+ b
· (ab+ 1)!

b−1∏
j=0

j!

(a+ j)!
.

Proof. The expression (6) simplifies to

Eλ = 2

(
a− a

ab+1

fλ1

fλ

)
.

By the hook-length formula applied to λ1 and λ, and noting the telescoping can-
cellation, we have

fλ1

fλ
=

a(ab+ 1)

a+ b
,

and we derive

Eλ =
2ab

a+ b
,

which proves the first statement. To prove the second statement, we use the first
statement and the formula in Lemma 2.7. By the hook-length formula, we have

fλ = (ab)!
(b− 1)!(b− 2)! · · · 0!

(a+ b− 1)!(a+ b− 2)! · · · a!

= (ab)! ·
b−1∏
j=0

j!

(a+ j)!
.

Therefore, the number of edges in BN(λ) is

ab

a+ b
· (ab+ 1)!

b−1∏
j=0

j!

(a+ j)!
.

�

Remark 2.17. It is remarkable that the expected number of turns in Corollary 2.16
is exactly the same as the expected number of turns of a uniformly chosen staircase
path in an a × b box, as the following easy calculation shows. Regard a staircase
path s as a sequence of a entries U and b entries R, corresponding to the a steps up
and b steps to the right in s. Then each of the a+ b− 1 pairs of consecutive entries
in this sequence determine a turn if they are (U,R) or (R,U), and the probability
of each of these events is a

a+b ·
b

a+b−1 . Summing, the expected number of turns in

s, chosen uniformly from the set of staircase paths, is 2ab/(a + b). Of course, the
two probability distributions themselves are completely different.

We now present a more general case in which (6) still has a simple expression.
This corollary computes the genera of Brill-Noether curves in a wide variety of new
cases. For example, it pertains to the case of arbitrary g, r, and d and one point of
simple ramification.
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Corollary 2.18. Let σ be any skew shape obtained from some two-row shape by
repeating the first row k1 times and the second row k2 times, for any k1 and k2.
Let k = k1 + k2. Then

Eσ = 2k1(1−
1

n+1

fσ1

fσ
) + 2k2(1−

1

n+1

f
kσ

fσ
),

and the number of edges in the graph BN(σ) is

k(n+ 1)fσ − fσ1

+ f
kσ.

Proof. This follows directly from Theorem 2.9 and the identity (16). Alternatively,
it can be calculated using the method in the proof of Theorem 2.9 twice, working
down from the first row to calculate the number of turns in the first k1 rows,
and working up from the last row to calculate the number of turns in the last k2
rows. �

3. Pontableaux and valid sequences

In this section we introduce two combinatorial notions: pontableaux and valid
sequences. Each notion depends on a choice of data g, r, d, α, β, and is used to

enumerate the components of Gr,α,β
d (X, p, q) when X is a chain of elliptic curves.

Both notions encode exactly the same information in the case that the adjusted
Brill-Noether number ρ(g, r, d, α, β), defined in (2), is equal to 1.

We remark that our definition of pontableaux will be made only in the case
ρ(g, r, d, α, β) = 1. This is merely to keep the notation as simple as possible and to
focus on the intended application. Our definition of valid sequences works for all
values of ρ.

We start by defining pontableaux (by way of an intermediate definition of
pretableaux). We also define an adjacency relation on pontableaux. We have chosen
the word “pontableau” because these objects include tableaux as well as new ob-
jects which form bridges (in French, ponts) between them in an augmented version
of the Brill-Noether graph (see Figure 7).

Recall that given two partitions λ and μ such that μi ≤λi for all i, the shape
resulting from removing μ from λ is called a skew Young diagram or skew shape
(see Definition 2.1). We note that beginning in this section, we will refer to the
topmost row of a skew shape as row 0 instead of row 1, and so on, in order to agree
with the notational conventions on vanishing orders in subsequent sections.

Definition 3.1. Given g, r, d nonnegative integers with g − d + r ≥ 0, α =
(α0, . . . , αr) a nondecreasing and β = (β0, . . . , βr) a nonincreasing (r + 1)-tuple
of integers, construct a skew shape σ(g, r, d, α, β) as follows: given the rectangular
Young diagram associated to the partition (g − d + r, g − d + r, . . . , g − d + r) of
(r + 1)(g − d + r), lengthen the ith row by attaching αi boxes to the left and βi

boxes to the right, for each i = 0, . . . , r (see Figure 1).

We will use the following convention to refer to the boxes in the shape σ: the
upper-leftmost box of the (g − d + r) × (r + 1) rectangle will be (0, 0) and the x
and y coordinates will increase to the right and down, respectively. In particular,
the box (0, 0) of σ may not be the upper-leftmost box of σ, if α0 > 0.
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For any skew shape σ, recall the definitions of σa, aσ, fσa

, and f
aσ from Defini-

tion 2.8.

Definition 3.2. Fix a skew shape σ with n boxes. A pretableau is a filling of the
boxes in σ, σa, or aσ (for some integer a) with the symbols 1, . . . , n+ 1 (each used
exactly once) and −j, for one value j ∈ {1, . . . , n+ 1}, such that:

(1) Counting each symbol 1, . . . , n+1 with weight +1 and the symbol −j with
weight −1, every box in σ has total weight 1, while every box outside σ has
total weight 0.

(2) Choosing one positive symbol from every box produces a filling in which
all rows and columns are strictly increasing.

(3) Let b be the box containing the negative symbol −j. Then:
• If b lies in or to the right of σ, then there is some symbol i in b with
i ≤ j.

• If b lies in or to the left of σ, then there is some symbol i in b with
i ≥ j.

Definition 3.3. We say that two pretableaux are adjacent if they are identical
except for replacing a single symbol −j with −(j+1) or −(j−1).

Definition 3.4. Fix a skew shape σ. A pontableau is an equivalence class of
pretableaux of shape σ under the relation of moving a pair of opposite labels j,−j
that occupy the same box to any other (allowable) single box.

In this definition, we allow the shape of the pretableau to change under the
operation of moving the pair j,−j, as long as the new shape is still of the form σ,
σa or aσ for some a.

Note that if j and −j occupy the same box of a pretableau T , then deleting
j,−j entirely produces an almost-standard Young tableau of shape σ. Thus we
may regard the set of pontableaux as the union of the set of almost-standard Young
tableaux on σ together with the set of pretableaux in which −j and j appear in
distinct boxes.

Example 3.5. The four pretableaux on shape σ = (2, 2) below form an equivalence
class

1 2 −3,3
4 5

1 2

−3,3 4 5

1 2,−3,3
4 5

1 2

−3,3,4 5

This equivalence class is indexed by the almost-standard tableau

1 2

4 5

As another example, the 20 pontableaux on a 2×2 square are shown in Figure 7.

Definition 3.6. We define the augmented Brill-Noether graph BN ′(σ) as the graph
whose vertices are pontableaux of shape σ, and where two pontableaux are adjacent
in BN ′(σ) if they have pretableau representatives that are adjacent (see Figures 7
and 8).
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1 2 3,−5
4 5

1 3

−1,2 4 5

1 2 3,−4
4 5

1 2 4,−5
3 5

2 3

4 5

1 3

4 5

1 2

4 5

1 2

3 5

1 2

3 4

1 2

−2,3 4 5

1 3

2,−3,4 5

1 2

−1,3 4 5

1 2,−3,4
3 5

1 3

2 4

1 3

2 5

1 4

2 5

1 4

3 5

2 4

3 5

1 3 4,−5
2 5

1 4

−1,2 3 5

Figure 7. The augmented Brill-Noether graph BN ′((2, 2)).

Proposition 3.7. Let σ be any skew shape with n boxes. The augmented Brill-
Noether graph BN ′(σ) is obtained from the Brill-Noether graph BN(σ) in Defini-
tion 2.3 by:

(i) replacing each edge of BN(σ), between two aSYTs say T and T ′, by a path
of m edges, where m is the difference between the two nonconcordant entries
of T and T ′, and

(ii) attaching a path of length 	 to each vertex T for each way to add the number
i missing from T to create a standard filling of σa or aσ for some a. The
length 	 of the path is determined as follows:

• if the new shape is of the form σa, then 	 = n+ 1− i;
• if the new shape is of the form aσ, then 	 = i− 1.

Proof. We begin by describing a set of paths in BN ′(σ). We will show that the
interiors of these paths are all disjoint, and that the union of the paths is the entire
graph BN ′(σ). Let T be an aSYT of shape σ, and let b be a box that is either
in σ or in some aσ or σa. Let i be a label from {1, 2, · · · , n + 1} such that box b
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1 2 3,−4
4 5

1 2 3,−4
4 5

1 2

3,−3,4 5

1 2 3,−3
4 5

1 2

4 5

1 2

3,−4,4 5

1 2

3 5

∼

Figure 8. On the left, four pretableaux in two adjacent pairs.
The two in the middle row are equivalent. This induces the length
2 path on the three pontableaux shown on the right.

can be labeled with i (erasing the existing label if b is in σ) and the result is an
aSYT of shape σ or an SYT of shape σa or aσ. Let k be an integer, obeying the
following constraint: if b lies in σ, then k is the existing label of b; if b lies in aσ
but not σ, then k must be 1; if b lies in σa but not σ, then k must be n + 1. Let
J consist of all integers between i and k inclusive, and for all j ∈ J let Tj denote
the pretableau defined by adding the labels −j and k to box b. The pretableaux Tj

are all nonequivalent, hence they give distinct pontableaux. Also, when arranged
in order by j, they form a path in BN ′(σ). The length (number of edges) in this
path is |i− k|. Each set of data T, b, i, k defines such a path.

By Definition 3.2, every pretableau occurs in such a path. Furthermore, ob-
serve that the interiors of any two distinct paths are pairwise disjoint, because
a pretableau in which the negative label does not match a positive label in the
same box is not equivalent to any other pretableau. Therefore the graph BN ′(σ)
is formed by taking all the endpoints of these paths and adding paths of edges
between them. These paths fall into three classes according to whether b lies in σ,
left of σ, or right of σ. If b lies in σ, then the two endpoints Ti and Tk are equivalent
to two aSYT which are adjacent in BN(σ), and which differ by replacing the label
i by the label k. The length of this path is |i−k|. In the second case, if b lies to the
left of σ, then the path has the aSYT T on one end, the other end is not an aSYT,
and the length of the path is i− 1. In the third case, if b lies to the right of σ, then
the path has T on one end, the other end is not an aSYT, and the length of the
path is n+ 1− i. Therefore the structure of the graph BN ′(σ) is as claimed. �

The data encoded in a pontableau with r+ 1 rows is equivalent to the data of a
particular type of lattice path in Z

r+1, which we will call a valid sequence. We now
describe these objects and the correspondence between them and pontableaux.

We will write e0, . . . , er for the standard basis vectors of Zr+1, and for any a ∈ Z,
we will let a = (a, . . . , a) ∈ Z

r+1. Write |v| for the sum of the coordinates of a vector
v, and write v ≥ w for vectors v and w if the inequality holds in each entry.
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Definition 3.8. Fix integers g, r, d, a nondecreasing tuple α ∈ Z
r+1
≥0 , and a non-

increasing tuple β ∈ Z
r+1
≥0 . A valid sequence for the data g, r, d, α, and β is a

sequence
α = (α1, . . . , αg+1)

of nondecreasing tuples αi ∈ Z
r+1
≥0 , satisfying

(i) α1 = α,
(ii) αg+1 = d− r − β, and
(iii) for each i = 1, . . . , g, there exists some index a = 0, . . . , r such that

αi+1 − αi ≥ 1− ea.

Denote by VS(g, r, d, α, β) the set of all valid sequences for the data g, r, d, α, β.

We can regard α as a lattice walk in the region of Z
r+1 whose points have

nondecreasing coordinates. Then we will call the g differences αi+1 − αi the steps
of the walk α. We define the progress of a step to be

|αi+1 − αi| − r.

Note that this is a nonnegative number since αi+1 − αi is bounded below by
some 1− ea and |1− ea| = r.

Lemma 3.9. Suppose α ∈ VS(g, r, d, α, β). Then the total progress of α is ρ =
ρ(g, r, d, α, β).

Proof. By definition, for each i = 1, . . . , g, there exists an index ai, depending on
i, and a nonnegative vector si such that

αi+1 − αi = 1− eai
+ si.

So, the progress of the ith step is |si|. Then

αg+1 − α1 =

g∑
i=1

(1− eai
+ si),

whereas by Definition 3.8(i) and (ii), we have

αg+1 − α1 = d− r − β − α.

Therefore
g∑

i=1

(1− eai
+ si) = d− r − β − α,

and we get

g(r + 1)− g +
∑

|si| = (r + 1)(d− r)− |α| − |β|.
Solving and using the definition of ρ, we conclude

∑
|si| = ρ as was claimed. �

Then the following corollary is immediate in the case ρ = 1.

Corollary 3.10. Suppose ρ(g, r, d, α, β) = 1 and suppose α ∈ VS(g, r, d, α, β).
Then

(1) There is exactly one index j = 1, . . . , g for which

αj+1 − αj = 1 + ea − eb,

for some indices a, b ∈ {0, . . . , r}. If a = b, then we call the step a stalling
step. If a 	= b, then we call the step a swapping step.
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(2) For every other index i 	= j, we have

αi+1 − αi = 1− eb

for some b ∈ {0, . . . , r}. In this case we call the step a plodding step.

The following construction shows that we can conveniently enumerate valid se-
quences using pontableaux. Intuitively, a pontableau T encodes a sequence of skew
shapes. When T is equivalent to an aSYT, this sequence consists of adding boxes
one at a time, at the times encoded by their labels. In the case of pontableaux
that are not aSYT, there is one step where one box is added while another is re-
moved. To such a sequence of additions and removals of blocks, we associate a valid
sequence, as follows. We will show that this construction gives a bijection.

Definition 3.11. Fix g, r, d, α, β and let T be a pretableau on σ(g, r, d, α, β). Recall
that we label the boxes of σ with coordinates (x, y) such that (0, 0) is the upper-left
corner of the (g − d + r)× (r + 1) rectangle (so that all boxes corresponding to α
have negative x coordinate). Let b be any box in the same row as some box of σ,
not necessarily contained in σ. We will say that T contains box b after i steps if

• the box b lies to the left of σ, and the total weight (see Definition 3.2(1))
of its labels of absolute value at most i is 0, or

• the box b lies in σ or to the right of it, and the total weight of its labels of
absolute value at most i is 1.

For each i = 1, . . . , g + 1, let αi be the following (r + 1)-tuple of integers:

αi = (αi
0, α

i
1, · · · , αi

r),

where αi
j = i− 1−min{x : T does not contain the box (x, j) after i− 1 steps}.

Call α = (α1, α2, · · · , αg+1) the sequence associated to T .

Example 3.12. We will describe how a valid sequence α can be constructed from
the following pretableau of shape σ = (3, 2) \ (1):

1 3

2,−3,4 5
.

Then the following sequence of six pictures (read the first row from left to right
and then the second row from left to right) show which boxes are present after i
steps, for each i from 0 to 5. The boxes that are present are shaded gray. (In
principle, each shaded region would extend infinitely to the left.)

1 3

2,−3,4 5

1 3

2,−3,4 5

1 3

2,−3,4 5

1 3

2,−3,4 5

1 3

2,−3,4 5

1 3

2,−3,4 5

Note that the fourth of these pictures illustrates the origin of our use of the word
“swap”: the previous shaded box (−1, 1) is swapped for the box (1, 0) during this
step.

From these, we can read the following valid sequence by examining the x coor-
dinate of the unshaded box that is furthest to the left in each row. This gives the
following six pairs of integers:

(0,−1), (1,−1), (1, 0),
(2,−1), (2, 0), (2, 1).
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Now subtracting these pairs (as vectors) from (0, 0), (1, 1), . . . , (5, 5), we obtain
the valid sequence α

α1 = (0, 1), α2 = (0, 2), α3 = (1, 2),
α4 = (1, 4), α5 = (2, 4), α6 = (3, 4).

The next definition allows us to describe when a pair of valid sequences corre-
spond to adjacent pontableaux.

Definition 3.13. Let us say that two valid sequences α and α′ are off by 1 if

α−α′ = (0, . . . , 0,±ea, 0, . . . , 0)

for some index a ∈ {0, . . . , r}. In other words, all but one of the pairs of corre-
sponding entries agree, and the two that disagree do so in a single coordinate with
magnitude 1.

Lemma 3.14. Let σ be the skew shape associated to g, r, d, α, β, where ρ(g, r, d, α, β)
= 1.

(1) The sequence associated to any pretableau T is a valid sequence.
(2) Every valid sequence arises from some pretableau.
(3) Two pretableaux have the same associated sequence if and only if they are

equivalent.
(4) Two pontableaux are adjacent if and only if their corresponding valid se-

quences are off by 1.

Proof. Let T be a pretableau on σ with associated sequence α, and let i be any
element of {1, 2, · · · , g}. Let Si and Si+1 be the sets of boxes contained in T after
i steps and i + 1 steps, respectively. Then Si+1 is obtained from Si by removing
any boxes with the label −(i+1) and then adding any boxes with the label (i+1).
It follows from this that αi+1 − αi can be computed by beginning with 1, adding a
standard basis vector ea if the label −(i+1) occurs in row a, and then subtracting
the standard basis vector eb if the label (i+ 1) occurs in row b. This shows that α
meets criterion (iii) in the definition of a valid sequence. Criteria (i) and (ii) of the
definition are easy to verify. This establishes part 1 of the lemma.

Now, suppose that α is a valid sequence. Then we can construct a pretableau
T from it by examining each vector 1 − αi+1 + αi in turn and using it to place
the label (i+ 1) and possibly the label −(i+ 1). Assume inductively that we have
already placed the labels of absolute value at most i in T .

By Corollary 3.10, the vector 1 − αi+1 + αi is equal to either eb for some b, or
eb − ea for some a and b. In the first case, place label (i+1) in the leftmost box of
row b that is not yet contained in T (as in Definition 3.11). In the second case, we
do the following two operations, in either order:

• Place label (i+ 1) in the leftmost box of row b that is not yet contained in
T .

• Place label −(i+1) in the first box of row a that is not yet contained in T .

Again, the notion of containment is exactly as in Definition 3.11. Because each
vector αi is nondecreasing, this placement of labels is guaranteed to produce a
pretableau. This establishes part 2 of the lemma. Note that the two operations
above commute unless a = b.

For part 3 of the lemma, observe that the only case in which the valid sequence
does not uniquely define the pretableau is when there is a step where αi+1−αi = 1,
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so that the indices a and b (as used above) must be equal to each other, but are
not uniquely determined (and the order of placing (i+ 1) and −(i+ 1) matters as
well). In this case, observe that choosing different values of a = b, and choosing the
order to place (i+1) and −(i+1), corresponds to placing both of the labels (i+1)
and −(i+ 1) together in various boxes of T , which give equivalent pretableaux by
definition.

For part 4 of the lemma, observe that two pretableaux are adjacent (hence their
corresponding pontableaux are adjacent) if and only if one is obtained from the
other by changing (in place) a label −i to −(i + 1). For any index j 	= i, the
set of boxes contained after j steps is the same for both pretableaux; these sets
differ only after i steps. The only difference is that, after i steps, one row of one of
the pretableaux has one more box than the other. This means precisely that the
corresponding valid sequence of one is obtained by subtracting a unit basis vector
from one element of the valid sequence of the other; hence the two valid sequences
are adjacent. The same reasoning in reverse shows that two valid sequences that
differ by 1 arise from adjacent pretableaux, as desired. �

Combining all of the statements of Lemma 3.14, we have:

Corollary 3.15. When ρ(g, r, d, α, β) = 1, the set of pontableaux is in bijection
with VS(g, r, d, α, β), via the construction in Definition 3.11, and two pontableaux
are adjacent in BN ′(σ) if and only if their valid sequences are off by 1.

Finally, it will be useful to record the following observation, which is a corollary
of the proof of Lemma 3.14:

Corollary 3.16. Pontableaux that are almost-standard Young tableaux missing a
given index i correspond to valid sequences in which the ith step is a stall and the
other steps are plods. Pontableaux with labels i and −i in different boxes correspond
to valid sequences in which the ith step is a swap and the other steps are plods.

4. The scheme structure of Gr,α,β
d (E, p, q) on an elliptic curve

In this section, we recall some definitions and results on the scheme of linear

series Gr
d(C) on a smooth curve C, and on Gr,α,β

d (C, p, q), the twice-pointed version
of this scheme. We will then fix a single elliptic curve E, with two marked points p, q

such that the divisor p−q is not a torsion point of Pic0(E), and study Gr,α,β
d (E, p, q)

when ρ(1, r, d, α, β) ∈ {0, 1}. We will prove that Gr,α,β
d (E, p, q) is isomorphic as a

scheme to either a (reduced) point, a P
1, or E itself.

Let C be a smooth, proper, connected curve of genus g and let r and d be positive
integers with g−d+r ≥ 0. The Brill-Noether locus W r

d (C) is a closed subset of the

Picard variety Picd(C) consisting of line bundles L with at least r+1 independent
global sections. Its natural desingularization Gr

d(C) parametrizes linear series on
C, that is, pairs (L, V ), such that L is a degree d line bundle on C and V ⊆ H0(C,L)
is an (r + 1)-dimensional vector subspace of global sections of L. A linear series
of degree d and (projective) dimension r is usually called a grd. We recall that
the space of linear series on a curve can be given a natural scheme structure as a
determinantal variety (see [2, IV.3]).

One can extend this definition to allow for fixed ramification profiles. Given a
point p ∈ C and a linear series (L, V ), the vanishing sequence of L = (L, V ) at p is
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the strictly increasing sequence

a0(L, p) < · · · < ar(L, p)

of the r + 1 distinct orders of vanishing at p achieved by the sections of V . The
ramification sequence α = (α0, . . . , αr) is the nondecreasing sequence defined as
αi = ai − i. We will also use the letters b and β to denote vanishing orders (resp.
ramification orders) listed in decreasing (resp. nonincreasing) order, at a second
point q. That is, the numbers

b0(L, q) > b1(L, q) > · · · > br(L, q)

will denote the vanishing orders at q, and β = (β0, β1, · · · , βr) will be the ramifi-
cation orders in nonincreasing order: βi = bi + i − r. Our reason for listing these
numbers in different orders at the two different points is that it will substantially
declutter several definitions, such as the compatibility condition for limit linear
series in the following section.

Definition 4.1. Let C be a nonsingular projective curve of genus g, and let p, q be
distinct points of C. Let r, d be nonnegative integers. Let α be a nondecreasing and

β a nonincreasing sequence of r+1 nonnegative integers. We writeGr,α,β
d (C, p, q) for

the space of grds with ramification sequence at least α (respectively β) at the point
p (respectively q), with their natural scheme structure, as explained in [2, IV.3].

We will refer to Gr,α,β
d (C, p, q) as the Brill-Noether scheme. From the construc-

tion of Gr,α,β
d (C, p, q) as a determinantal variety, together with the dimensions of

Schubert cycles corresponding to α, β in a suitable Grassmannian, its expected
dimension is the adjusted Brill-Noether number

ρ = ρ(g, r, d, α, β) = g − (r + 1)(g − d+ r)−
∑
i

αi −
∑
i

βi.

Moreover, every component has at least this expected dimension.
Another way to define the Brill Noether scheme is via the functor of families of grds

with specified ramification that it represents. In the case of an elliptic curve E, by
which we always mean a smooth proper curve of genus 1, and p, q geometric points
of E such that p−q is not torsion in Pic0(E), we now describe the functor of points

of Gr,α,β
d (E, p, q). Observe that the scheme Picd(E) has a degree d vector bundle

H, whose fiber over a closed point [L] ∈ Picd(E) is naturally identified with the
vector space of sections of L. The scheme Gr

d(E) (with no imposed ramification)
is isomorphic to the Grassmannian bundle of (r + 1)-planes in H. To impose
ramification, consider two flags in H:

H = P0 ⊃ P1 ⊃ · · · ⊃ Pd−1,

H = Q0 ⊃ Q1 ⊃ · · · ⊃ Qd−1,

where the fibers of Pi over [L] correspond to global sections of L vanishing to order
at least i at p, and the fibers of Qi correspond to sections vanishing to order at
least i at q.

Definition 4.2. Let S be any scheme. Then a family over S of grds on E with

ramification at least α at p and β at q consists of data (	,V), where 	 : S → Picd(E)
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is a morphism, and V is a locally free rank r + 1 subsheaf of 	∗H such that for all
i ∈ {0, 1, · · · , r}, the induced bundle maps

V → 	∗(H/Pi+αi
),

V → 	∗(H/Qi+βr−i
),

each have rank less than or equal to i.

The scheme structure of Gr,α,β
d (E, p, q) is characterized by the following universal

property: its functor of points is the functor associating to any scheme S the set
of isomorphism classes of families of grds on E with ramification at least α at p and
β at q. See [20, Theorem 4.1.3] for further details, and a proof that this functor is
indeed representable.

Our basic tool in analyzing Gr,α,β
d (E, p, q) as a scheme is the following lemma,

which makes it possible to reduce the analysis to a few simple cases. In the state-
ment below, we use the notation ai = αi + i and bi = βi + r − i (these are the
vanishing orders corresponding to the given ramification order) in order to make
the statements more concise.

Lemma 4.3. Suppose that k is an index such that one of the following two condi-
tions holds:

• ak+1 + bk ≥ d+ 1, or

• ak+1 + bk = d, and the fiber of the map Gr,α,β
d (E, p, q) → Picd(E) over the

point corresponding to the line bundle OE (ak+1p+ bkq) is empty.

Then the scheme Gr,α,β
d is isomorphic to the fiber product

Gr′,α′,β′

d ×Picd Gr′′,α′′,β′′

d ,

where the superscripts in this expression are defined as follows:

r′ = k, r′′ = r − k − 1,
α′
i = αi, α′′

i = αk+1+i + (k + 1),
β′
i = βi + (r − k), β′′

i = βk+1+i.

In addition, for each closed point (L, V ) in Gr,α,β
d , the corresponding closed points

(L, V ′), (L, V ′′) have disjoint sets of vanishing orders at p (resp., q), whose union
is the set of vanishing orders of (L, V ) at p (resp., q).

The ramification sequences α′, β′ are determined by the vanishing sequences
shown in the following table. Informally, the sequences α′, β′ are chosen so that
both vanishing sequences can be split into two noninteracting halves.

Gr′,α′,β′

d Gr′′,α′′,β′′

d

vanishing orders at p {a0, a1, . . . , ak} {ak+1, ak+2, . . . , ar}
vanishing orders at q {b0, b1, . . . , bk} {bk+1, bk+2, . . . , br}

(reverse order)

Proof of Lemma 4.3. We first informally summarize the argument. Given a closed

point (L, V ) of Gr,α,β
d (E, p, q), the conditions of the lemma guarantee that the two

subspaces V (−ak+1p) and V (−bkq) of the vector space V intersect trivially. Since
their dimensions add up to at least r + 1, it follows that V is the direct sum of
these two subspaces. These two subspaces constitute the corresponding points of

Gr′,α′,β′

d′ (E, p, q) and Gr′′,α′′,β′′

d′ (E, p, q). Notice that these two linear series uniquely
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determine the original, by taking the sum of the two vector spaces. We prove the
lemma by showing that this decomposition can be carried out in families.

Let V be the tautological subbundle on Gr,α,β
d (this corresponds, under the above

functorial description, to the bundle on Gr,α,β
d given by the identity map on Gr,α,β

d ),

and 	 : Gr,α,β
d → Picd(E) the forgetful map. Let k be the index mentioned in the

statement of the lemma. Consider the induced morphisms of vector bundles

f1 : V → 	∗(H/Pak+1
),

f2 : V → 	∗(H/Qbk).

We claim that the kernel of f1 is a vector bundle of rank r − k, and the kernel
of f2 is a vector bundle of rank k + 1. To see this, notice that over any closed

point (L, V ) of Gr,α,β
d , the kernel of f1 can be identified with V (−ak+1p), which is

a vector space of dimension at least r − k, and the kernel of f2 can be identified
with V (−bkq), of dimension at least k + 1. These two spaces intersect trivially, so
their dimensions must be exactly r − k and k + 1, respectively. Therefore f1 has
rank k+1 at all closed points, and in a local trivialization all of its (k+2)× (k+2)
minors vanish; this shows that the kernel of f1 is indeed a vector bundle of rank
r − k. Similarly, the kernel of f2 is a vector bundle of rank k + 1.

The map 	 together with the vector bundle ker f1 constitutes a family of gr
′

d′s

with ramification at least α′, β′ at p and q, hence we obtain a map Gr,α,β
d (E, p, q) →

Gr′,α′,β′

d′ (E, p, q). We obtain a similar map from ker f2, hence taking these together
gives a map

F : Gr,α,β
d → Gr′,α′,β′

d ×Picd G
r′′,α′′,β′′

d .

It remains to show that F is an isomorphism. To do this, it suffices to check
that it satisfies the universal property of fiber products. Suppose that S is any

scheme, with two maps 	′ : S → Gr′,α′,β′

d and 	′′ : S → Gr′′,α′′,β′′

d such that the

two composition maps to Picd(E) are the same; call this map 	 : S → Picd(E).
The two maps 	′, 	′′ define two subbundles V ′,V ′′ of 	∗U . These two subbundles
intersect trivially, because otherwise there would be a closed point [L] of Picd(E)
and two linear series (L, V ′), (L, V ′′) such that V ′ ∩ V ′′ contains a nonzero section
of L vanishing along the divisor ak+1p+ br−kq, contradicting the hypothesis of the
lemma. Therefore their sum V = V ′ + V ′′ is a rank r + 1 subbundle of 	∗H. Now,
the bundle map

V → 	∗(H/Pai
)

has rank at most the sum of the ranks of the maps from V ′ and V ′′ to 	∗(H/Pai
),

which is at most r+1−i. Similar remarks hold for the map to 	∗(H/Qbi). Therefore

V defines a morphism S → Gr,α,β
d . This is the unique map that factors the two maps

from S to Gr′,α′,β′

d and Gr′′,α′′,β′′

d . Therefore F satisfies the necessary universal
property, and must be an isomorphism. �

The next well-known result gives the conditions on α and β for which

Gr,α,β
d (E, p, q) is nonempty. A general form of this lemma is also included in

[18, Lemma 2.1]. We continue to suppose that E is an elliptic curve; p, q ∈ E
are points such that [p − q] is not torsion in Pic0(E); r and d are nonnegative
integers; and α = (α0, . . . , αr) ∈ Z

r+1
≥0 , respectively β = (β0, . . . , βr) ∈ Z

r+1
≥0 , is a

nondecreasing, respectively nonincreasing, sequence.
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Lemma 4.4. The scheme Gr,α,β
d (E, p, q) is nonempty if and only if there exists

some t ∈ {0, . . . , r} such that

α+ β ≤ d− r − 1 + et.

Proof. Suppose (L, V ) is a point in Gr,α,β
d (E, p, q). For each t ∈ {0, . . . , r}, the

space of sections in V with ramification at least αt at p has dimension at least
r− t+1, and the space of sections with ramification at least βt at q has dimension
at least t+1. Since dimV = r+1, there exists some section in V satisfying the two
ramification conditions. The orders of vanishing at these points of such a section
are at least αt+t and βt+r−t. As the degree of L is d, this implies αt+βt+r ≤ d.
Furthermore, the genericity of the points p and q implies that equality is obtained
at most for one value of t. The conditions on α and β can thus be written

α+ β ≤ d− r − 1 + et.

Conversely, suppose t ∈ {0, . . . , r} is such that α+β ≤ d− r− 1+ et. Increasing
the numbers in α and β, we may as well assume that α + β = d − r − 1 + et,
since if the new conditions give a nonempty scheme, then the original conditions
did too. Recall that we write ai = αi+ i and bi = βi+r− i for the vanishing orders
corresponding to α and β. So at + bt = d and aj + bj = d− 1 for all j ∈ {0, . . . , r}
with j 	= t.

Let L ∼= O(atp + btq); then for each j = 0, . . . , r including j = t, there exists
a unique, up to scaling, nonzero section sj ∈ H0(L) with vanishing order exactly
aj at p and exactly bj at q, since there exists a unique, up to scaling, nonzero
section of L(−ajp − bjq) ∼= O((at−aj)p + (bt−bj)q)) and there are no sections of
L(−(aj + 1)p− bjq), L(−ajp− (bj + 1)q) for each j = 0, . . . , t. Furthermore all the
sections sj are clearly independent, since they have distinct orders of vanishing at

p and q, so we have exhibited a point (L, V = 〈s0, . . . , sr〉) in Gr,α,β
d (E, p, q). �

We will require the following simple case for our next argument.

Lemma 4.5. Suppose that a, b, d are such that d− a− b ≥ 0. Then

G
0,(a),(b)
d (E, p, q) ∼= G0

d−a−b(E) ∼= Symd−a−b(E).

In particular,

• if d− a− b ≥ 1, then G
0,(a),(b)
d (E, p, q) is a P

d−a−b−1-bundle over Picd(E),
and

• if d − a − b = 0, then G
0,(a),(b)
d (E, p, q) is a single reduced point, mapping

to [OE(ap+ bq)] ∈ Picd(E).

Proof. The first isomorphism follows from the definition of a family of grds with ram-
ification. The second isomorphism is standard; see for example [2, VII, Proposition
2.1]. �

We now prove our desired results on Gr,α,β
d (E, p, q) when ρ = 0 or 1 in the

following proposition.
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Proposition 4.6. Suppose d, r, α, β are chosen so that Gr,α,β
d (E, p, q) is nonempty.

(1) If ρ(g, r, d, α, β) = 1, then:
(a) either there exists k ∈ {0, . . . , r} such that αk + βk = d− r, in which

case Gr,α,β
d (E, p, q) ∼= P

1, or

(b) for every j ∈ {0, . . . , r}, αj+βj = d−r−1, in which case Gr,α,β
d (E, p, q)

∼= E.
(2) If ρ(g, r, d, α, β) = 0, then Gr,α,β

d (E, p, q) is a reduced point.

Proof. As before, we will use the notation ai = αi + i, bi = βi + r− i to denote the
vanishing orders corresponding to the given ramification orders. Note that

ρ(1, r, d, α, β) = 1 +
r∑

i=0

(d− r − 1− αi − βi).

By assumption, Gr,α,β
d (E, p, q) is nonempty, so from Lemma 4.4 it follows that each

of the r + 1 terms

(17) d− r − 1− αi − βi, i = 0, . . . , r

is nonnegative, except possibly for one term which may be −1.
Now suppose ρ = 1. Our analysis implies that we have the following two cases:

Case (a). One of the r + 1 terms is −1, one of them is 1, and the rest are 0. In
other words, there exist distinct indices j, k ∈ {0, . . . , r} such that

(18) αi + βi =

⎧⎪⎨
⎪⎩
d− r if i = k,

d− r − 2 if i = j,

d− r − 1 otherwise.

We claim that the hypotheses of Lemma 4.3 hold for every index i ∈ {0, 1, · · · , r−1}.
First observe that for all such i, ai+1+bi is greater than both ai+bi and ai+1+bi+1.
By (18), at least one of these two quantities is greater than or equal to d − 1. So
ai+1 + bi ≥ d for all i ∈ {0, . . . , r − 1}. Furthermore, when equality holds we

necessarily have i 	= k, so (ai+1p+ biq) 	= (akp+ bkq), so the fiber of Gr,α,β
d (E, p, q)

over [OE(ai+1p + biq)] is empty. Therefore we apply Lemma 4.3 repeatedly to
obtain

Gr,α,β
d

∼= G
0,(a0),(b0)
d ×Picd · · · ×Picd G

0,(ar),(br)
d .

It now follows from Lemma 4.5 that the jth factor in this fiber product is a P
1-

bundle over Picd(E), the kth factor is a reduced point mapping to [OE(akp+bkq)] ∈
Picd(E), and all other factors map isomorphically to Picd(E). It follows that Gr,α,β

d

is isomorphic to P
1 as a scheme.

Case (b). Each of the r+1 terms in (17) are 0. In other words, αi+βi = d−r−1 for

all i. In this case we claim that Gr,α,β
d (E, p, q) ∼= Picd(E) scheme-theoretically. We

argue by induction on r; the base case r = 0 is trivial. For larger r, we consider two
cases. First, suppose that ai+1 > ai +1 for some i ∈ {0, 1, · · · , r− 1}. Then in this

case we can apply Lemma 4.3 to express Gr,α,β
d (E, p, q) as a fiber product of Picd(E)

of two schemes, which (by the inductive hypothesis) both map isomorphically to

Picd(E), and the result follows.
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In the other case, ai+1 = ai+1 for all i. In this case, it follows that Gr,α,β
d (E, p, q)

∼= Gr
d−a0−br

(E), and a short calculation shows that d− a0 − br = r+1. The result

now follows from the fact that Gr
r+1(E) ∼= Picr+1(E).

Now for part (2) of the proposition, suppose ρ = 0. Then it must be the case
that one of the terms in (17) is −1 and the rest are 0. In other words, there exists
k ∈ {0, . . . , r} such that

(19) αi + βi =

{
d− r if i = k,

d− r − 1 otherwise.

Then the same reasoning from Case (a) above applies: we deduce that the hypothe-
ses of Lemma 4.3 hold for each i ∈ {0, . . . , r − 1}, so we again apply that lemma
repeatedly to obtain

Gr,α,β
d

∼= G
0,(a0),(b0)
d ×Picd · · · ×Picd G

0,(ar),(br)
d .

From here, using Lemma 4.5 it follows again that the kth factor of this fiber product
is a reduced point mapping to [OE(akp+ bkq)] ∈ Picd(E), while every other factor

maps to Picd isomorphically. We conclude that Gr,α,β
d (E, p, q) is a reduced point

mapping to [OE(akp+ bkq)] ∈ Picd(E). �

5. Limit linear series on an elliptic chain

Having studied linear series on twice-pointed elliptic curves in the previous sec-
tion, in this section we study limit linear series on chains of elliptic curves of genus
g, and relate the scheme of such limit linear series to our earlier combinatorial con-
structions. After defining limit linear series on chains of elliptic curves, we will give
a construction that associates to each valid sequence α (and therefore, when ρ = 1,
to each pontableau) a set C(α) of limit linear series, and prove (Corollary 5.6) that

Gr,α,β
d (X, p, q) =

⋃
α∈VS(g,r,d,α,β)

C(α).

We then specialize to the case ρ = 1, and obtain specific information about the
geometry of each C(α) and show that their incidence relations are encoded by the
augmented Brill-Noether graph of Section 3.

First we introduce limit linear series and the Eisenbud-Harris scheme structure
on them. A proper, connected nodal curve is said to be of compact type if its
Jacobian is compact or equivalently, if its dual graph has no loops. The right
notion of linear series for compact type curves is the concept of limit linear series
(see [5]):

Definition 5.1. Let C be a curve of compact type with irreducible components
{Ci}. A limit linear series of degree d and rank r on C, also called a limit grd on
C, is the data of a linear series Li = (Li, Vi) of degree d and rank r on each Ci,
subject to the following condition. Given a node of C obtained by gluing points
pi ∈ Ci and pj ∈ Cj , denote by at(Li, pi) the orders of vanishing at pi of the linear
series (Li, Vi) written in increasing order and by bt(Lj , pj) the orders of vanishing
at pj of (Lj , Vj) written in decreasing order, for each t = 0, . . . , r. Then

at(Li, pi) + bt(Lj , pj) ≥ d for each t = 0, . . . , r.
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A limit grd is called refined if at each node, each of the r + 1 inequalities above are
equalities. Otherwise it is called coarse. The pair (Li, Vi) is called the aspect of the
series on the component Ci.

We again write Gr
d(C) for the limit grds on the compact type curve C and

Gr,α,β
d (C, p, q) for the limit grds on a twice-marked (C, p, q), where p, q are smooth

points of C, with ramification profiles α, β.
Now we define generic chains of elliptic curves, which will be the degeneration

that we use in the rest of our arguments.

Definition 5.2. Let E1, . . . , Eg be elliptic curves, with pi and qi distinct points on
Ei for each i. Glue qi to pi+1 for i = 1, . . . , g − 1, to form a nodal curve that we
call a chain of elliptic curves X of genus g. If pi − qi is not a torsion element in
Pic0(Ei) for any i, we say that X is a generic elliptic chain.

Throughout, we shall also consider X as a point of Mg,2, with two marked points
p = p1 and q = qg; we will refer to such an (X, p, q) as a twice-marked generic elliptic

chain. We specify once and for all a scheme structure on Gr,α,β
d (X, p, q) that we

will henceforth refer to as the Eisenbud-Harris scheme structure. (It can be defined
for the limit linear series on any compact type curve, as in [5]; we restrict our
definition to this case purely to ease the notation.)

Definition 5.3. Let (X, p, q) be a twice-marked elliptic chain as in 5.2. Choose
g, r, d, α, β as in the setup of Definition 4.1. The Eisenbud-Harris scheme

Gr,α,β
d (X, p, q) is the scheme obtained as the union

(20)
⋃ g∏

i=1

Gr,αi,βi

d (Ei, pi, qi) ⊆
g∏

i=1

Gr
d(Ei),

where the union is over all choices of ramification profiles (α1, β1, . . . , αg, βg) with
the property that

• α1 = α and βg = β, and
• for each i = 1, . . . , g − 1 and each t = 0, . . . , r, we have

βi
t + αi+1

t = d− r.

In other words, we take the union over all possible refined ramification profiles on
X that have ramification exactly α at p = p1 and β at q = qg. All limit linear series
are present in the locus defined by at least one of these ramification profiles. For
coarse series, one may construct profiles αi, βi containing that series by decreasing
the required ramification of the linear series at the nodes arbitrarily so that the
inequalities become equalities.

Our next goal is to describe Gr,α,β
d (X, p, q) when ρ = 1 (see Definition 5.3). We

shall show that its components have the structure of elliptic and rational curves,
and that they intersect according to the augmented Brill-Noether graph defined in
Definition 3.6.

Recall from Definition 3.8 the definition of a valid sequence α ∈ VS(g, r, d, α, β)
associated to g, r, d, α, and β. Furthermore, recall Corollary 3.10 and the termi-
nology therein: when ρ = 1, in a valid sequence α exactly one of the g steps of α
is either a stalling step or a swapping step, and all of the other steps are plodding
steps.

We show how for any ρ, the components of the Eisenbud-Harris schemeGr
d(X, p, q)

are in bijection with valid sequences.
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Definition 5.4. Fix g ≥ 1, let r and d be nonnegative integers, α a nondecreas-
ing and β a nonincreasing (r + 1)-sequence of nonnegative integers. Let α =
(α1, . . . , αg+1) consist of g + 1 sequences of nondecreasing (r+1)-tuples with 0 ≤
αi ≤ d− r, and α1 = α. Define the complementary sequence β = (β0, . . . , βg) by

βi = d− r − αi+1,

and assume that βg = β. Then we define the scheme

C(α) =

g∏
i=1

Gr,αi,βi

d (Ei, pi, qi) ⊆
∏

Gr
d(Ei).

Note that the condition for α to be a valid sequence, namely αi+1−αi ≥ 1−ea(i)
for each i, is equivalent to αi + βi ≤ d− r − 1 + ea(i) for each i. So, from Lemma
4.4, we have

Corollary 5.5. With the notation in Definition 5.4, the scheme C(α) is nonempty
if and only if α is a valid sequence for the data g, r, d, α, β.

We thus obtain the following description of Gr,α,β
d (X, p, q), valid for all values of

ρ(g, r, d, α, β).

Corollary 5.6. If (X, p, q) is a generic twice-pointed chain of elliptic curve of

genus g, the Eisenbud-Harris scheme Gr,α,β
d (X, p, q) as in Definition 5.3 is⋃

α∈VS(g,r,d,α,β)

C(α).

Furthermore, the refined limit linear series are precisely those points which lie in
only one of the loci C(α).

Proof. Given a limit linear series L with aspect Li on Ei, observe that L ∈ C(α)
for a valid sequence α = (α1, . . . , αg+1) if and only if the following inequalities hold
for all i, j = 1, . . . , g:

d− r − βi(Li, qi) ≤ αi+1 and αj ≤ αj(Lj , pj).

Setting j = i + 1 and combining the inequalities shows that such a valid sequence
α can always be found, and that the choice of α is unique if and only if L is
refined. �

We now focus on the case relevant to our present purpose: when ρ(g, r, d, α, β) =
1. In this case, we can also give a specific classification of the geometry of all of the
loci C(α).

Corollary 5.7. Let α = (α1, . . . , αg+1) be a valid sequence for the data g, r, d, α, β.

(1) If ρ(g, r, d, α, β) = 1, then C(α) is isomorphic to the elliptic curve Ei via

the projection to Picd(Ei) ∼= Ei if the i
th step of α is a stall, and isomorphic

to P
1 if the ith step of α is a swap. (The projection to Picd(Ei) in this case

is a point.)
(2) If ρ(g, r, d, α, β) = 0, then C(α) is a single reduced point.

Proof. Let (β0, . . . , βg) be the complementary sequence to α. The Brill-Noether
number for refined limit linear series is additive over the components of the curve.
If ρ(g, r, d, α, β) = 1, then the Brill-Noether numbers

ρ1 = ρ(1, r, d, α1, β1), . . . , ρg = ρ(1, r, d, αg, βg)
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for the components are all zero except for one of them, say ρi, which is one. Then
the result follows from Proposition 4.6.

If ρ(g, r, d, α, β) = 0, each of the Brill-Noether numbers ρ1, . . . , ρg for the indi-
vidual components Ei are all zero and part (2) of Proposition 4.6 applies. �

Lemma 5.8. Fix g, r, d, α, and β such that ρ(g, r, d, α, β) = 1. Let (X, p, q) be a
generic twice-pointed elliptic chain of genus g.

(1) If L ∈ Gr,α,β
d (X, p, q) is a coarse limit linear series, then there exist exactly

two valid sequences α and α′ such that L ∈ C(α)∩C(α′). Furthermore α
and α′ are off by 1.

(2) Suppose that α and α′ are valid sequences that are off by 1. Then there
exists a unique coarse limit linear series L ∈ C(α) ∩ C(α′).

(3) If C(α) is rational, then it intersects one other component if it projects
nontrivially (to more than a point) to Gr

d(Ei) for i = 1 or i = g, and two
other components if it projects nontrivially to Gr

d(Ei) for i ∈ {2, . . . , g−1}.

Proof. We will use the classification in Proposition 4.6 repeatedly on the aspects of
various limit linear series. Suppose α is a valid sequence. From Corollary 3.10 and
Proposition 4.6, the aspects of a linear series in C(α) are completely determined
on all but one of the elliptic components. On that remaining component, say Ei,
one has αi+1−αi = 1+ea(i)−eb(i) or equivalently αi+βi = d−r−1+eb(i)−ea(i),
for indices a(i), b(i) ∈ {0, . . . , r}. If a series in C(α) is not refined, then the strict
inequality can only occur at either pi or at qi, where the ramification of L must be
increased either from the given αi at pi or β

i = d−r−αi+1 by ea(i). Furthermore, by
Proposition 4.6(2), there is only one such coarse series L with these ramifications. If
a(i) 	= b(i), then a(i) is uniquely determined, so the only choice is either pi or qi for
i 	= 1, g and q1, pg respectively for i = 1, g. The condition a(i) 	= b(i) corresponds
to C(α) being a P

1. Therefore, a rational component of the Brill-Noether curve
contains one coarse limit linear series if the rational component lies above E1 or Eg

and two otherwise. This will show (3), once we show (1). This also shows that for
a coarse series, the strict inequality for the gluing orders occurs at a single node
and it is off by one.

Assume now L is a coarse series and the strict inequality occurs at the node
obtained from gluing qi−1 and pi for the index a. For j = 2, . . . , g, denote by α̂j the

ramification orders of L at pj , and for j = 1, . . . , g−1, denote by β̂j the ramification
orders of L at qj . Our assumption is

β̂j−1 =

{
d− r − αj , j 	= i,

β̂j−1 = d− r − αj + ea, j = i.

Then L belongs to exactly two components C(α), C(α′) where α is given by αj =

α̂j for all j, while α′ is given by α
′j = α̂j if j 	= i and α

′i = α̂i−ea. By construction,
α,α′ are off by one. This proves (1).

Conversely, assume that α and α′ are valid sequences that are off by 1. Let
k ∈ {1, . . . , g} be the index such that αi = α

′k − ea, and αj = α
′j for all j 	= k.

Write β′ for the complementary sequence to α′. Then a limit linear series lies in
C(α)∩C(α′) if it has ramification at least α at the points pi and β′ at the points
qi. As ρ = 1 and both α,α′ are valid sequences, Corollary 3.10 implies that α has
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a stall or swap in the (k − 1)st step, α′ has a stall or swap in the kth step, and for
all j = 1, . . . , g, we have

αj + β′j =

{
d− r − 1 + ea if j = k,

d− r − 1 + eb(j) if j 	= k,

for indices b(j) depending on j. Then, from Proposition 4.6, there exists a unique
limit linear series with ramifications α′ at the points pi and β at the points qi, and
by Corollary 5.6 it is necessarily coarse. This proves (2). �
Theorem 5.9. Fix g, r, d, α, β with ρ(g, r, d, α, β) = 1. Let σ = σ(g, r, d, α, β) be
the skew shape as in Definition 3.1.

The scheme Gr,α,β
d (X, p, q) is a reduced nodal curve whose dual graph is BN ′(σ).

Moreover,

• A vertex of BN ′(σ) that is an aSYT missing the number i, say, corresponds
to a component C(α) which is isomorphic as a scheme to the elliptic curve
Ei.

• The remaining vertices of BN ′(σ) correspond to components C(α) that are
isomorphic as a scheme to P

1.

Proof. This follows by combining Corollaries 3.15, 3.16, 5.6, 5.7(1), and Lemma
5.8(1) and (2). The only thing we need to verify is that the components intersect
nodally. But this follows by observing that whenever two components C(α) and
C(α′) meet, they each vary in only one of the g factors of

∏
Gr

d(Ei), and these two
factors are different. Indeed, it was shown in the proof of Lemma 5.8(2) that if α
and α′ differ in index k, then C(α) varies only in the (k − 1)st factor while C(α′)
varies only in the kth factor. �

Corollary 5.10. The projection W r,α,β
d (X, p, q) to the Jacobian is a nodal curve

with all components elliptic, whose dual graph is the Brill-Noether graph
BN(σ(g, r, d, α, β)) in Definition 2.3. A vertex in BN(σ) corresponding to a tableau
missing the entry i corresponds to a component isomorphic to Ei.

Proof. The image W r,α,β
d (X, p, q) of Gr,α,β

d (X, p, q) in the Jacobian is obtained by
contracting the rational components, by Corollary 5.7. Now the result follows from
Theorem 5.9. �

We conclude this section by observing that the proof of Theorem 5.9 applies, with
very slight modifications, to give the following description in the case ρ(g, r, d, α, β)
= 0. Note that the number of limit linear series on a generic curve with given
ramification at two given points was previously computed by Tarasca (see [25,
Section 3.1]).

Proposition 5.11. Let g, d, r, α, β, and Gr,α,β
d (X, p1, qg) be as above, but now as-

sume that ρ(g, d, r, α, β) = 0. Then Gr,α,β
d (X, p1, qg) consists of a collection of

reduced points, each given by a refined limit linear series. These points correspond
bijectively to the standard fillings of the skew shape σ(g, d, r, α, β).

Proof. Corollaries 5.6 and 5.7 show that, as a scheme, Gr,α,β
d (X, p, q) is a finite set

of points in bijection with the valid sequences α corresponding to α, β. When ρ = 0,
the argument of Lemma 3.14 can be adapted to show that these valid sequences are
in bijection with the standard Young tableaux on σ(g, r, d, α, β); the only difference
is that there are no swaps or stalls at all. �
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6. Proofs of the main theorems

We now combine our results to describe the scheme of Eisenbud-Harris limit
linear series with specified ramification, in the case where the adjusted Brill-Noether
number

g − (r + 1)(g − d+ r)− |α| − |β|
is equal to 1.

Proposition 6.1. Fix g, r, and d, and let α = (α0, . . . , αr) be nondecreasing
and β = (β0, . . . , βr) be a nonincreasing sequence of nonnegative integers. Let
σ = σ(g, r, d, α, β) be the skew shape defined by (g, r, d, α, β) as in Definition 3.1.
Suppose that the adjusted Brill Noether number is

ρ(g, r, d, α, β) = g − (r + 1)(g − d+ r)− |α| − |β| = 1.

Then for a twice-marked elliptic chain of genus g that is generic in the sense of

Definition 5.2, the scheme Gr,α,β
d (X, p, q) is a reduced nodal curve of arithmetic

genus

1 + (r+1)(n+1)fσ +

r+1∑
i=1

(r+1−i)·f iσ −
r+1∑
i=1

(r+ 2−i)·fσi

.

Proof. The scheme Gr,αi,βi

d (Ei, pi, qi) was shown to be a nodal curve whose dual
graph is the augmented Brill-Noether graph BN ′(g, r, d, α, β); that it is reduced is
shown in Proposition 4.6.

The genus of Gr,α,β
d (X, p, q) is unchanged by the operation of contracting chains

of P
1s. The nodal curve thus obtained has elliptic components only. Then, by

Corollary 5.10 its dual graph is precisely the Brill Noether graph BN(σ(g, r, d, α, β))
(see Definitions 2.3, 3.1).

Combining these facts, the arithmetic genus of Gr,α,β
d (X, p, q) is

|V (BN(σ))|+ (|E(BN(σ))| − |V (BN(σ))|+ 1)

= 1 + |E(BN(σ))|

= 1 + (r+1)(n+1)fσ +

r+1∑
i=1

(r+1−i)·f iσ −
r+1∑
i=1

(r+ 2−i)·fσi

,

where the last equality follows directly from the computation of the number of
edges of BN(σ) in Theorem 2.9. �
Theorem 6.2. Fix g, r, d, α, β as in Proposition 6.1, so that ρ(g, r, d, α, β) = 1.
Then for a general twice-pointed smooth curve (X, p, q) of genus g, the scheme

Gr,α,β
d (X, p, q) is an at-worst-nodal curve of arithmetic genus

(21) 1 + (r+1)(n+1)fσ +
r+1∑
i=1

(r+1−i)·f iσ −
r+1∑
i=1

(r+ 2−i)·fσi

.

The following enumerative result (previously found by Tarasca [25] without ex-
plicit reference to skew tableaux) will follow from the same proof.

Theorem 6.3. Fix g, r, d, α, β, and assume that

ρ(g, r, d, α, β) = 0.

Then for a general twice-pointed smooth curve (X, p, q) of genus g, the scheme

Gr,α,β
d (X, p, q) consists of fσ points.
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Proof of Theorems 6.2 and 6.3. Consider a family of curves parameterized by the
spectrum of a discrete valuation ring whose special fiber X0 is a generic chain of
elliptic curves and whose generic fiber Xη is a nonsingular curve. The dimension of

Gr,α,β
d (X, p, q) is the expected number ρ, the space of refined limit linear series is

dense, and the Eisenbud-Harris scheme structure is reduced. Then, from Corollary
3.4 in [15], the family of Eisenbud-Harris limit linear series is flat and proper over B.
Note that while [15] does not explicitly consider specified ramification, the methods
in that paper can be extended to cover also the case of ramification points (compare
with [17] Def 4.5). The special fiber of the family is the Eisenbud-Harris space of
limit linear series on X0, while the generic fiber is the classical space of linear series
on the nonsingular curve Xη. In our situation, the fibers of the family are curves,
and the arithmetic genus of the curves in a flat proper family is constant. Hence
the result follows from Proposition 6.1. �

Now the Eisenbud-Harris and Pirola genus formula is a special case of our results:

Corollary 6.4. Suppose ρ(g, r, d) = 1. For a general smooth curve X of genus g,
the genus of the curve Gr

d(X) is

1 +
(r + 1)(g − d+ r)

g − d+ 2r + 1
· g! ·

r∏
i=0

i!

(g − d+ r + i)!
.

Proof. This follows from combining Corollary 2.16 and Theorem 6.2. �
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