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THE SHAPE OF THE LEVEL SETS OF THE FIRST

EIGENFUNCTION OF A CLASS OF TWO-DIMENSIONAL

SCHRÖDINGER OPERATORS

THOMAS BECK

Abstract. We study the first Dirichlet eigenfunction of a class of Schrödinger
operators with a convex, non-negative, potential V on a convex, planar domain
Ω. In the case where the diameter of Ω is large and the potential V varies
on different length scales in orthogonal directions, we find two length scales
L1 and L2 and an orientation of the domain Ω which determine the shape of
the level sets of the eigenfunction. As an intermediate step, we also establish
bounds on the first eigenvalue in terms of the first eigenvalue of an associated
ordinary differential operator.

1. Introduction

We are interested in studying a class of Schrödinger operators

L = −Δx,y + V (x, y).

This operator acts on functions defined on the bounded, convex domain Ω ⊂ R
2,

and V (x, y) is a convex potential.
The operator L has an increasing sequence of Dirichlet eigenvalues

λ1 < λ2 ≤ · · · ≤ λj ↗ ∞,

with corresponding eigenfunctions uj(x, y) satisfying{
(−Δx,y + V (x, y))uj(x, y) = λjuj(x, y) in Ω,

uj(x, y) = 0 on ∂Ω.

Our main focus will be to study the first eigenvalue λ = λ1 and eigenfunction
u(x, y) = u1(x, y). The first eigenfunction u(x, y) does not change sign inside Ω,
and so we normalise u(x, y) so that it is positive inside Ω and attains a maximum
of 1. In Definitions 1.1 and 1.3 below, we will define the class of convex domains Ω
and potentials V (x, y) that we are interested in. Our results will become non-trivial
in the case that the diameter of Ω is large and the potential V (x, y) varies on very
different length-scales in directions along and perpendicular to a diameter. We will
see that one consequence of the assumptions on Ω and V (x, y) is that it ensures
that the superlevel sets of u(x, y),

Wc = {(x, y) ∈ Ω : u(x, y) ≥ c},
are convex subsets of Ω for all 0 ≤ c ≤ 1.

A theorem of John, [18], therefore implies that for each c we can find an ellipse Ec

contained within this superlevel set Wc, such that a dilate of Ec, with scaling factor
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bounded by an absolute constant contains Wc. We are interested in determining
the shape of the level sets of u(x, y), and to do this we will study the lengths and
orientation of the axes of the ellipse Ec. One of the main steps in establishing the
shape of the level sets of u(x, y) will be to prove sufficiently precise bounds on the
first eigenvalue λ.

We know that the level set {(x, y) ∈ Ω : u(x, y) = 0} is equal to the boundary,
∂Ω, and so in particular the shape of this level set is determined solely by the
geometry of Ω. However, we will see that, in general, for the intermediate level
sets, for example {(x, y) ∈ Ω : u(x, y) = 1

2}, it is not solely the shape of ∂Ω that
governs its shape, but instead the two length scales L1 and L2. These length scales
L1 and L2 will be given in Definitions 1.5 and 1.8, but the key feature of their
definitions is the following: The length scale L1 will be defined purely in terms of
the geometry of Ω and properties of the potential V (x, y), but the length scale L2

will also depend on a family of associated one-dimensional Schrödinger operators.
Moreover, the definition of L2 will also describe the orientation of these level sets
of u(x, y).

Our motivation for studying this problem is as follows: First, λ and Ψ(t, x, y) =
e−iλtu(x, y) are the lowest energy and ground state eigenfunction of the quantum
system governed by the Schrödinger operator

i∂tΨ(t, x, y) + LΨ(t, x, y) = 0.

The main motivation comes from the series of papers [17], [15], [16]. There, the
authors study the first two Dirichlet eigenfunctions on two-dimensional convex do-
mains Ω, normalised so that the inner radius is comparable to 1 and the diameter
is equal to the large parameter N . We will describe their results and techniques in
more detail below, but for now we will briefly describe one of the techniques used
that is most relevant for us: Using their normalisation of the domain Ω, they write
it as

Ω = {(x, y) : f1(x) < y < f2(x), a < x < b},
for functions f1(x) and f2(x), which are convex and concave respectively, and they
consider the concave height function h(x),

h(x) = f2(x)− f1(x),

with maxx∈[a,b] h(x) = 1. This allows us to define a large parameter L, purely
in terms of the function h(x) (and hence just depending on the geometry of the
domain). This number L is the largest value such that

h(x) ≥ 1− L−2(1.1)

on an interval I of length at least L. Rather than the length of the diameter N ,
this parameter L is the relevant length scale to study the low energy eigenfunctions.
Since the inner radius of their domain is comparable to 1, while the projection of
the domain onto the x-axis is large compared to 1, it is natural to study the two-
dimensional problem via an approximate separation of variables. For each fixed x,
the domain Ω consists of the interval [f1(x), f2(x)] of length h(x), which has first
eigenvalue π2h(x)−2. Thus, the ordinary differential operator on the interval [a, b],
which is naturally associated with this separation of variables, is

− d2

dx2
+

π2

h(x)2
,(1.2)
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with zero boundary conditions. In [17] the eigenvalues and eigenfunctions of this
operator are used to generate appropriate test functions to provide bounds on the
first eigenvalue in terms of L and to estimate the location and width of the nodal line
of the second eigenfunction. In [15], they give a sharper estimate on the nodal line,
and in [16] they study the location of the maximum of the first eigenfunction of Ω
and its behaviour near this maximum, where they use this approximate separation
of variables to relate it to the first eigenfunction of the one-dimensional operator. As
a straightforward consequence of their work, it is this length scale L and orientation
of the domain Ω given above which determine the shape of the level sets of the
eigenfunction u(x, y) in this special case.

The papers [17], [15], [16] also provide more motivation for studying the operators
L. In the same way that the one-dimensional Schrödinger operator in (1.2) is used
in a crucial way to study the eigenfunctions of two-dimensional convex domains,
it will be important to understand the properties of the eigenfunctions of L when
considering the eigenfunctions of three- (and higher-)dimensional convex domains.

Before stating our results, let us define precisely the class of domains Ω and
potentials V (x, y) that we will be considering here.

Definition 1.1 (The domain Ω). The domain Ω is a bounded, convex two-
dimensional domain with inner radius N1 and diameter N2. We assume that the di-
ameter is large compared to an absolute constant, while the inner radius is bounded
below by an absolute constant.

Remark 1.2. Throughout, the constants that appear will depend on these absolute
constants, but the dependence of any bounds on the diameter and inner radius
themselves (and the other parameters introduced below) will be explicitly stated.

We now state the class of potentials of interest.

Definition 1.3 (The potential V (x, y)). The potential V (x, y) on the domain Ω
satisfies

V (x, y) =
1

h(x, y)2
,

where h(x, y) is a concave function with 0 ≤ h(x, y) ≤ 1 and maxΩ h(x, y) = 1. In
other words, V (x, y)−1/2 is concave on Ω and

min
Ω

V (x, y) = 1.

In particular, this also ensures that V (x, y) is convex.

We see that this ensures that the first derivatives of V are bounded almost
everywhere and that the second derivatives of V are positive measures. However,
we do not impose any further regularity assumptions on the potential. Before
continuing, let us briefly discuss the motivation behind Definition 1.3.

(1) One allowed potential is the constant potential V (x, y) = 1. In this case,
our operator is analogous to the purely two-dimensional operator studied
in [17]. In particular, we can renormalise our domain Ω to ensure that the
inner radius is comparable to 1. Note in general, our potential V (x, y) is
not scale invariant, and so this is not as useful a normalisation for us.

(2) The assumption that V (x, y)−1/2 is concave is a natural one when we recall
the motivation for studying this class of Schrödinger operators. In the same
way that the operator in (1.2) has been used to study the eigenfunctions
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of two-dimensional domains, the potential V (x, y) that we are considering
is naturally related to the three-dimensional domain with height function
proportional to h(x, y). This assumption that V (x, y)−1/2 is concave also
appears in the work of Borell, [4], [5], when studying the concavity proper-
ties of the Green’s functions associated to these Schrödinger operators.

(3) We do not claim that this is the only class of potentials for which the results
below will be valid. In fact, many of the results can be restated to hold
for a more general class of convex potentials (including those related to the
harmonic oscillator). However, at times we will see that it is convenient to
restrict to those potentials given in Definition 1.3, and so we will only state
the results for this class of potentials.

Remark 1.4. The potential V (x, y) may be unbounded, but can only tend to ∞ as
(x, y) approaches the boundary of Ω. This means that our operator L can be written
as a self-adjoint operator, with domain DL containing all functions in C∞

0 (Ω). The
domain DL is then equal to

{ψ ∈ L2(Ω) :

∫
Ω

(Lf).ψ =

∫
Ω

fφψ, f ∈ C∞
0 (Ω), some φψ ∈ L2(Ω)}.

In particular, this allows us to consider the variational formulation of the first
eigenvalue

λ = inf
ψ∈C∞

0 (Ω),ψ �=0

∫
Ω
|∇ψ|2 + V ψ2∫

Ω
ψ2

.

We can now introduce the crucial parameters L1 and L2 that will appear as
important length scales in our study of the first eigenfunction u(x, y). For each
c ≥ 0, let us define the sublevel sets of V (x, y) by

Ωc = {(x, y) ∈ Ω : V (x, y) ≤ 1 + c}.

Since V (x, y) is convex, these sublevel sets Ωc are convex subsets of Ω.

Definition 1.5 (The parameter L1). Let L1 be the largest value such that the
sublevel set ΩL−2

1
has inner radius at least equal to L1.

Remark 1.6. This definition is analogous to the definition of the parameter L from
[17] described above and roughly speaking is equal to the largest length scale L1

on which the potential increases by at most L−2
1 from its minimum.

With L1 fixed, we let L̃1 be the diameter of the set ΩL−2
1
. If L1 and L̃1 are

comparable in size, then we define L2 to be equal to L1, but if

L̃1 	 L1,

then we now describe how to find L2.

Remark 1.7. Throughout, the notation A 	 B denotes A ≥ C̃B, for some large
fixed absolute constant C̃ > 0, and if this and the converse B 	 A do not hold,
then we say that A and B are comparable. In particular, we are not interested in
the exact values of L1 and L2, but instead are interested in knowing whether any
length scale is, or is not, comparable to L1 and L2. We will use the notation C
to represent an absolute constant that is small compared to C̃, which may change
from line to line.
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To obtain a value for L2, we first rotate our domain Ω, so that the projection of
ΩL−2

1
onto the y-axis is of the smallest length amongst the projections onto any line.

In particular, this means that the projection of ΩL−2
1

onto the x-axis is comparable

to L̃1, while the projection of ΩL−2
1

onto the y-axis is comparable to L1. This also

fixes the orientation of Ω.
For each fixed x, let the interval Ω(x) be the cross-section of Ω at x, and consider

the ordinary differential operator

L(x) = − d2

dy2
+ V (x, y),(1.3)

with zero boundary conditions on Ω(x). We let μ(x) be the first eigenvalue of L(x)
and define the minimum of these eigenvalues,

μ∗ = min
x

μ(x).

We can now define the parameter L2.

Definition 1.8 (The parameter L2). We define L2 to be the largest value such
that

μ∗ ≤ μ(x) ≤ μ∗ + L−2
2 ,

for all x in an interval I of length at least L2.

Remark 1.9. Note that in this definition of L2, we have used the orientation of
ΩL−2

1
fixed above. Therefore, from now on, whenever we consider any property of

the eigenvalue or eigenfunction that depends on the value of L2, we will have to
use this orientation of ΩL−2

1
. In contrast, the definition of L1 does not depend on

the orientation of ΩL−2
1
.

Our main aim in the study of the first eigenfunction is to give precise information
about the shape of the level sets {(x, y) ∈ Ω : u(x, y) = c} which are near the
point where u(x, y) attains its maximum of 1. Since the potential V (x, y) is a
convex function and Ω is a convex set, Theorem 6.1 in [8] tells us that u(x, y)
is log concave. Alternative proofs of this result have also been given in [9], [19],
[20]. In particular, this tells us that the superlevel sets are all convex. Since
{(x, y) ∈ Ω : u(x, y) ≥ 0} = Ω, one way of viewing this result is that

{(x, y) ∈ Ω : u(x, y) ≥ 0} convex ⇒ {(x, y) ∈ Ω : u(x, y) ≥ c} convex

for all 0 ≤ c ≤ 1.
We will use the convexity of the superlevel sets of u(x, y) in a crucial way to

describe their shape near its maximum.

Theorem 1.10. Let Ω and V (x, y) be a domain and potential from Definitions 1.1
and 1.3. Fix a small absolute constant c1 > 0, and let L1 and L2 be as in Definitions
1.5 and 1.8. In particular, this means that we have fixed the orientation of the set
ΩL−2

1
. Then, for any fixed absolute constant c, with c1 < c < 1 − c1, the level

set {(x, y) ∈ Ω : u(x, y) = c} has the following shape: There exists an ellipse E
with minor axis in the y-direction of length comparable to L1 and major axis in the
x-direction of length comparable to L2, such that E is contained inside this level set
and a dilate of E, with a scaling factor bounded by an absolute constant, contains
this level set.
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Remark 1.11. The level set {(x, y) ∈ Ω : u(x, y) = 0} is equal to ∂Ω, the boundary
of Ω. We will see that in general the parameters L1 and L2 are not comparable
to the inner radius and diameter of the original domain Ω. Thus, the result of
Theorem 1.10 does not remain valid when c becomes close to 0.

Corollary 1.12. For a convex set W , we define the eccentricity of W , ecc(W ), in
the usual way:

ecc(W ) =
diam(W )

inradius(W )
.

For c = 0, the eccentricity of the superlevel set {(x, y) ∈ Ω : u(x, y) ≥ c} is equal
to the eccentricity of Ω, but as c increases (while bounded above by 1 − c1), the
eccentricity of the superlevel set becomes comparable to L2/L1.

The log concavity of the eigenfunction and resulting convexity of its superlevel
sets have been used previously in various situations. For example, in [2] moduli of
convexity and concavity are introduced. Under certain conditions on the potential
V , it is then possible to strengthen the log concavity of the first eigenfunction by
finding an appropriate modulus of concavity. This allows the spectral gap for a
class of Schrödinger operators to be compared to the case where the potential is
identically zero and allows them to prove the Fundamental Gap Conjecture. In [14]
the convexity of the superlevel sets of the Green’s function are used in a crucial
way to prove third derivative estimates on the eigenfunction which are valid up to
the boundary of the convex domain.

As well as the convexity of the superlevel sets of u(x, y), a very important part of
the proof of Theorem 1.10 will be to obtain sufficiently precise eigenvalue bounds
for the first eigenvalue λ. For μ(x) equal to the first eigenvalue of the operator
L(x), we consider the ordinary differential operator

A = − d2

dx2
+ μ(x)(1.4)

and let μ be the first eigenvalue of this operator. Our eigenvalue bounds relate the
value of λ to this eigenvalue μ.

Theorem 1.13. Let Ω and V (x, y) be a domain and potential from Definitions 1.1
and 1.3. If L2 is defined as in Definition 1.8 and μ is the first eigenvalue of the
operator A in (1.4), then the first eigenvalue λ of the operator L satisfies

μ ≤ λ ≤ μ+ CL−2
2 ,

for an absolute constant C.

Remark 1.14. Theorems 1.10 and 1.13 are valid for all domains and potentials
satisfying the assumptions of Definitions 1.1 and 1.3, and the bounds are uniform
for domains Ω and potentials V leading to the same values for L1 and L2.

While it is much more straightforward to locate the eigenvalue λ to an interval
of length comparable to L−2

1 , we will see that the more precise bound obtained in
Theorem 1.13 is necessary to obtain sharp information about the length scale on
which the eigenfunction u(x, y) decays in the x-direction and hence prove Theorem
1.10.

Theorem 1.13 locates the first eigenvalue λ to an interval of length comparable
to L−2

2 , provided we know the value of μ. However, μ is also an eigenvalue of
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a differential operator, and so it may seem like we have only been able to locate
the unknown λ in terms of another unknown μ. Another reason why this theorem
still has value is that whereas λ is the first eigenvalue of a two-dimensional partial
differential operator (with a potential), μ is the first eigenvalue of an ordinary
differential operator A. Thus, from a computational standpoint, it is much easier
to accurately approximate the value of μ compared to λ. Also, we notice that the
parameter L2 depends on the geometric properties of the domain Ω and potential
V (x, y), together with the eigenvalues of the differential operator L(x) given in (1.3).
In other words, L2 also only depends on knowledge of ordinary differential operators.
Thus, the bound given in Theorem 1.13 gives information about the eigenvalue of a
two-dimensional partial differential operator purely in terms of ordinary differential
operators.

The idea of relating the eigenfunctions and eigenvalues of a two-dimensional
problem to an associated ordinary differential operator has also been used exten-
sively by Friedlander and Solomyak in [11], [12], [13]. In these papers, they use this
approximate separation of variables to obtain asymptotics for the eigenvalues and
the resolvent of the Dirichlet Laplacian. They use a semiclassical method by send-
ing a small parameter ε to 0 in order to give a one-parameter of ‘narrow’ domains,
and then write asymptotics in terms of this small parameter. In Borisov-Freitas [6],
they use similar techniques to study the asymptotics of eigenfunctions and eigen-
values for a class of planar, not necessarily convex, domains in the singular limit
around a line segment. In Freitas and Krejčǐŕık [10] they also relate the study of
eigenfunctions and eigenvalues of a class of ‘thin’ two-dimensional (not necessarily
convex) domains to an associated ordinary differential operator, and in particular
use this to deduce properties of the nodal line of the second eigenfunction.

Let us now describe how we will proceed in the sections below.
In Section 2 we study the parameters L1 and L2 from Definitions 1.5 and 1.8

in more detail. In particular, we will obtain bounds on L1 and L2 in terms of the
diameter and inner radius of the domain and the potential and construct domains
Ω and potentials V (x, y) to show to what extent these estimates are sharp. We
will also give a straightforward bound on λ in terms of L1 by using the variational
formulation for the first eigenvalue.

In Section 3 we will prove the eigenvalue bounds in Theorem 1.13. For each fixed
x, u(x, y) is an admissible test function for the operator L(x) from (1.3), and the
lower bound on λ will follow straightforwardly from this. The proof of the upper
bound on λ in Theorem 1.13 is more involved. The starting point of the proof is
to use the first eigenfunction, ψ(x)(y), of the operator L(x) to construct a suitable
test function in the variational formulation for the first eigenvalue. To obtain the
required upper bound on λ it will be necessary to study the first variation of ψ(x)(y)
in the cross-sectional variable x. To do this, we will derive the ordinary differential
equation that this first variation satisfies for each fixed x. The bounds then follow
from using the method of variation of parameters. It will be particularly important
to have estimates on the relative size of the first derivative of the potential V (x, y)
and the size of ψ(x)(y).

Once we have established the bounds on λ in Theorem 1.13, in Section 4 we use
them to study the first eigenfunction u(x, y) itself. Our first aim is to prove an
L2(Ω)-bound on u(x, y) which is consistent with the shape of the level sets required
in Theorem 1.10. We begin by using Theorem 1.13 to prove a Carleman-type
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estimate to show how the L2(Ω(x))-norm of the cross-sections of u(x, y),

H(x) =

∫
Ω(x)

u(x, y)2 dy,

decays from its maximum exponentially on a length scale comparable to L2. To
find the required bound on the L2(Ω)-norm of u(x, y), we then need to estimate
the size of the maximum of H(x). We will do this by proving L2(Ω)-bounds on
the first derivatives of u(x, y), which are again consistent with Theorem 1.10. We
finish Section 4 by proving an Agmon-type estimate to give an indication of the
behaviour of u(x, y) at points at a large distance from its maximum.

In Section 5 we study the shape of the level sets of u(x, y) and complete the proof
of Theorem 1.10. To do this we will use the results of Section 4 on the L2(Ω)-norms
of u(x, y) itself, and also its first derivatives. We will also use the log-concavity of
the eigenfunction u(x, y) in a crucial way, since it is this that ensures that the
superlevel sets are convex.

Theorem 1.10 gives information about the level sets {(x, y) ∈ Ω : u(x, y) = c}
whenever c is bounded away from 0 and 1. In Section 6, we briefly discuss what
is known and what is conjectured about the behaviour of the eigenfunction u(x, y)
near its maximum. Studying this in more detail will be a subject of future work.

2. The parameters L1 and L2

Before proving Theorems 1.13 and 1.10, we first give some more properties of
the parameters L1 and L2 defined in Definitions 1.5 and 1.8.

We first want to give upper and lower bounds for L1, where we recall that L1

is the largest value for which the sublevel set {(x, y) ∈ Ω : V (x, y) ≤ 1 + L−2
1 } has

inner radius at least L1. We can think of this as being analogous to the parameter
L from [17], which we described earlier in (1.1). In [17], it was shown that this
parameter L satisfies

N1/3 ≤ L ≤ N,

where N is the diameter of the two-dimensional domain. The upper bound on L is
attained by an exactly rectangular domain, [0, N ] × [0, 1], and the lower bound is
attained by a right triangle of height 1 and length N . Moreover, any intermediate
value for L can be attained by interpolating between these two extreme cases and
forming the appropriate trapezoidal shape.

We now give an analogous description for the possible values of L1. Rather than
the potential V (x, y), it will be more convenient to work with the height function

h(x, y) = V (x, y)−1/2,(2.1)

which, by the assumptions on the potential, is a concave function, satisfying

0 ≤ h(x, y) ≤ 1

and attaining its maximum of 1 at the minimum of V (x, y).

Proposition 2.1. Recalling that N1 is the inner radius of the domain Ω, we have
the bounds

cN
1/5
1 ≤ L1 ≤ N1,

for some absolute constant c > 0.
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Remark 2.2. We will see in the proof of the proposition that we are using the
stronger assumption that h(x, y) = V (x, y)−1/2 is concave, instead of just the con-
vexity of V (x, y).

Proof of Proposition 2.1. The proposition follows easily when the inner radius N1

is comparable to a constant, and so throughout we will assume that N1 	 1.
The upper bound follows trivially from the definition of L1 and is attained, for

example, when V (x, y) (and hence h(x, y)) is identically equal to 1.
Before proving the lower bound, we recall the following theorem of John, [18]:

Theorem 2.3. Let K ⊂ R
m be a convex domain. Then, there exists an ellipsoid

E such that if c∗ ∈ R
m is the centre of E, then we have

E ⊂ K ⊂ c∗ +m(E − c∗).

That is, the ellipsoid E is contained within the convex set K, but if it is dilated by
a constant depending only on the dimension, then it contains K.

We will also need the following simple property of concave functions:

Lemma 2.4. Suppose g(x) is a concave function on an interval of length M , with
0 ≤ g(x) ≤ 1, and g(0) = 1. Let 0 < β < 1 and suppose that g(z) = 1− β at some
point z ∈ (0,M). Then, we have the bound

M ≤ β−1z.

Proof of Lemma 2.4. By the assumptions on the function g(x), it decreases by at
most 1 over an interval of length M . Thus, since it is a concave function, it must
satisfy

g(x) ≥ 1− x

M
.

Since g(z) = 1− β, this gives

1− β ≥ 1− z

M
, or equivalently M ≤ β−1z,

as required. �

Figure 1. The domain Ω and other sets appearing in the proof
of Proposition 2.1.

We can now prove Proposition 2.1. Let E be the ellipse coming from Theorem
2.3 for our two-dimensional domain Ω, and let (x∗, y∗) be a point where h(x, y)
attains its maximum of 1. Consider the ray J which is the intersection of our
domain Ω, and the line containing the point (x∗, y∗) and the centre of the ellipse
E (see Figure 1).



3206 THOMAS BECK

Since Ω has inner radius equal to N1, by the properties of the ellipse E, we know
that the ray J has length M with

M ≥ c1N1,(2.2)

for some small absolute constant c1 > 0. Now consider the intersection of J with
the interior of the sublevel set

ΩL−2
1

= {(x, y) ∈ Ω : V (x, y) ≤ 1 + L−2
1 }.

Let J1 be this interval. If V (x, y) = 1 + L−2
1 , then 1− h(x, y) = 1− V (x, y)−2 will

be comparable to L−2
1 , and so applying Lemma 2.4 with β = L−2

1 , we see that J1
will be of length A, where

M ≤ C1L
2
1A,(2.3)

for a large absolute constant C1.
Combining (2.2) and (2.3) gives us

c1N1 ≤ M ≤ C1L
2
1A.(2.4)

Thus, the lower bound of the proposition is established unless

A ≥ C2L
3
1,(2.5)

for a large constant C2 > 0.
Therefore, we will assume that (2.5) holds, and so in particular, A is large

compared to L1. Let EL−2
1

be the ellipse from Theorem 2.3 for the set ΩL−2
1
, and

rotate so that the minor axis of EL−2
1

lies in the y-direction. Then, by the definition

of L1, the minor axis of EL−2
1

has length comparable to L1.

This means that the ray of length A must approximately lie in the x-direction.
Ω is a convex set with inner radius N1, and the original ray, J , through Ω is of
length M . Therefore, if we pick a point (x1, y1) in the interval J1, which is at a
distance of at least A/4 from the ends of J1, then the height of Ω in the y-direction
at x = x1 must be at least

c2AN1/M,(2.6)

for a constant c2 > 0. In contrast, the height of ΩL−2
1

at x = x1 must be bounded

above by C3L1, since the minor axis of EL−2
1

lies in the y-direction and has length

comparable to L1.
Moreover, the concave function h(x, y) varies from 1 to 1 − L−2

1 in the interval
J1 of length A. Thus, using Lemma 2.4 again, we have

h(x1, y1) ≥ 1− 3

4L2
1

(2.7)

at this point on the ray.
Thus, combining (2.6) and (2.7), we see that, for x = x1 fixed, h(x1, y) is a

concave function of y, which decreases by at most 1 on an interval of length com-
parable to AN1/M and decreases by 1

4L
−2
1 on an interval of length comparable to

L1. Thus, using Lemma 2.4 one more time, we see that

AN1

M
≤ C4L

2
1L1 = C4L

3
1,(2.8)
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for a constant C4. Combining (2.4) and (2.8) we see that

M ≤ C1L
2
1A ≤ C1L

2
1C4L

3
1

M

N1
= C5L

5
1

M

N1
,

for a constant C5 > 0. Rearranging this inequality gives the desired lower bound
on L1. �

We noted in the proof of Proposition 2.1 that it is straightforward to give an
example showing that the upper bound on L1 is sharp. We now want to construct
an example showing that the lower bound on L1 is also optimal.

Lemma 2.5. We can find a domain Ω and potential V (x, y) satisfying the assump-
tions of Definitions 1.1 and 1.3 such that

L1 ≤ c̃N
1/5
1 ,

for some absolute constant c̃ > 0.

Figure 2. The domain in Lemma 2.5.

Proof of Lemma 2.5. We first construct the domain Ω. We have remarked earlier
that for the two-dimensional domain case in [17], a right triangle gives the smallest
possible value for L. Motivated by this, we let Ω be a right triangle of side lengths
N1 in the y-direction and side length N2 in the x-direction (see Figure 2). We note
that while the inner radius of this domain is not identical to N1, it is comparable
to N1 (independently of the size of N2), and this is all we need.

We now define the potential V (x, y), via the function h(x, y) = V (x, y)−2. We
let h(x, y) = 1 at the point where the hypotenuse joins the side of length N2, and
set h(x, y) = 0 at the midpoint of the side of length N1. We then require h(x, y) to
decay linearly on the interval connecting these two points. Finally, h(x, y) decays
linearly to 0 in the y-direction as we move away from this interval. This defines
h(x, y) everywhere on Ω and also ensures that h(x, y) is a concave function. Thus
the potential V (x, y) satisfies the required properties.

We define L1 as usual from Definition 1.5 for this domain Ω and potential V (x, y).
Consider the line segment J joining the vertex where h(x, y) = 1 to the midpoint
of the opposite side, and let M be the length of the line segment J1 ⊂ J on which
h(x, y) ≥ 1−L−2

1 . Then, since h(x, y) decays linearly and the whole of J has length
comparable to N2, it is easy to see that

M = c1L
−2
1 N2,(2.9)

for a constant c1 > 0.
By the definition of L1, the set {(x, y) ∈ Ω : h(x, y) = 1−L−2

1 } has inner radius
comparable to L1. Thus, at the point (x1, y1) on the line segment J with

h(x1, y1) = 1− 1
2L

−2
1 ,(2.10)
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this set has height comparable to L1 in the y-direction for x = x1 fixed. Moreover,
the point (x1, y1) is at a distance comparable to M from the vertex where h(x, y) =
1, and so the height of Ω at this point is equal to

c2M
N1

N2
,(2.11)

for c2 > 0. Thus, for x = x1 fixed, h(x1, y) decays linearly to 0 on an interval of
length comparable to L1N2/N1, and by (2.10) decreases linearly by 1

2L
−2
1 on an

interval of length comparable to L1. This tells us that

L3
1 = c3M

N1

N2
.(2.12)

Combining (2.9) and (2.12) gives

L3
1 = c3c1L

−2
1 N2

N1

N2
= c3c1L

−2
1 N1,

and rearranging gives the desired estimate for L1. �

Remark 2.6. By combining the two examples which show that the upper and lower
bounds on L1 from Proposition 2.1 are sharp, it is easy to construct examples where
L1 attains any intermediate length scale.

We now want to consider the parameter L2 introduced in Definition 1.8. Before
describing the bounds that L2 must satisfy, we first give a simple bound on the
eigenvalue λ.

Proposition 2.7. The first eigenvalue λ satisfies

1 ≤ λ ≤ 1 + C1L
−2
1 ,

for an absolute constant C1 > 0.

Remark 2.8. The proof of this proposition will in fact establish the lower bound
λ ≥ 1 + λ(Ω), where λ(Ω) is the first Dirichlet eigenvalue of Ω.

Proof of Proposition 2.7. We will establish these bounds by using the variational
formulation of the first eigenvalue, λ. That is,

λ = inf

{∫
Ω
|∇ψ(x, y)|2 + V (x, y)ψ(x, y)2 dx dy∫

Ω
ψ(x, y)2 dx dy

∣∣∣∣ψ ∈ W 1,2(Ω), ψ|∂Ω = 0, ψ �≡ 0

}
.

(2.13)

Since V (x, y) ≥ 1 for all (x, y) ∈ Ω, the lower bound, λ ≥ 1, follows immediately.
To prove the upper bound, we need to construct a suitable test function ψ(x, y)

to use in (2.13). By the definition of L1, we know that the sublevel set

ΩL−2
1

= {(x, y) : V (x, y) ≤ 1 + L−2
1 }

has inner radius equal to L1. Thus, we can choose a point (x0, y0) and a constant
c > 0 such that the set

R = {(x, y) : |x− x0| ≤ cL1, |y − y0| ≤ cL1}
is contained in the interior of ΩL−2

1
. We then define ψ(x, y) as

ψ(x, y) = cos

(
π(x− x0)

2cL1

)
cos

(
π(y − y0)

2cL1

)
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inside the square R, and set ψ(x, y) = 0 for all other (x, y) ∈ Ω. It is then clear
that ∫

Ω
|∇ψ(x, y)|2 dx dy∫
Ω
ψ(x, y)2 dx dy

≤ C2L
−2
1 ,

and since V (x, y) ≤ 1 + L−2
1 on the support of the test function ψ(x, y), we also

have ∫
Ω
V (x, y)ψ(x, y)2 dx dy∫

Ω
ψ(x, y)2 dx dy

≤ 1 + C3L
−2
1 .

Using these inequalities in (2.13) gives the desired upper bound on λ. �

We now consider the parameter L2 from Definition 1.8. We recall that the
sublevel set ΩL−2

1
has inner radius L1 and diameter L̃1 and that we set L2 to be

equal to L1 unless L̃1 	 L1. The upper and lower bounds for L2 from Definition
1.8 that we want to establish are the following.

Proposition 2.9. The parameter L2 satisfies

c1L̃
1/3
1 L

2/3
1 ≤ L2 ≤ 1

c1
L̃1,

for some absolute constant c1 > 0.

Remark 2.10. In particular, the lower bound shows us that if we have L̃1 	 L1,
then also L2 	 L1.

Proof of Proposition 2.9. The value of L2 depends on the function μ(x), where μ(x)
is the first eigenvalue of the operator L(x) in (1.3). L2 is the largest value such
that μ(x) increases by L−2

2 from its minimum value, μ∗, on an interval of length at
least L2. Therefore, before proving the bounds on L2, we first want to study the
properties of the function μ(x).

We have rotated Ω so that the projection of the set ΩL−2
1

onto the y-axis is of the

smallest length amongst the projections onto any line. One immediate consequence
of this is that if we set J to be the interval which is the projection of ΩL−2

1
onto

the x-axis, then the length of J is comparable to L̃1, the diameter of ΩL−2
1
.

We now give a bound on the eigenvalues μ(x) for x ∈ J .

Lemma 2.11. For x in the middle half of the interval J , there exists an absolute
constant C1 > 0 such that

1 +
1

C1L2
1

≤ μ(x) ≤ 1 +
C1

L2
1

.

Proof of Lemma 2.11. Since μ(x) is the first eigenvalue in the ordinary differential
operator in (1.3), we want to apply Lemma 2.4(a) in [17]. This lemma implies that

1 +
1

C1L(x)2
≤ μ(x) ≤ 1 +

C1

L(x)2
,(2.14)

where L(x) is the length scale associated to V (x, y). In other words, for each fixed
x, L(x) is the largest value such that V (x, y) varies from its minimum by L(x)−2 on
an interval of length at least L(x). Thus, to prove the lemma it is enough to show
that L(x) is comparable to L1 whenever x is in the middle half of the interval J .
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The projections of ΩL−2
1

onto the x- and y-axes have lengths comparable to L̃1

and L1 respectively. It follows from Theorem 2.3 that, for those x in the middle
half of J , the height of ΩL−2

1
in the y-direction is comparable to L1. Since the

potential V (x, y) is convex, attains its minimum of 1, and is equal to 1 + L−2
1 on

the boundary of ΩL−2
1
, we know that for all x in the middle half of J , we must have

V (x, y) ≤ 1 + 1
2L

−2
1 for some y.

As a result, for all x fixed in the middle half of J , the potential V (x, y) varies
by an amount comparable to L−2

1 for y in an interval of length comparable to L1.
Therefore, for each x fixed the length scale L(x) is comparable to L1, and hence
using (2.14) we have the required bound. �

Remark 2.12. Since Lemma 2.4(a) in [17] played a key role in the above, let us say
a few words about its proof. The upper bound in (2.14) follows easily by choosing
the appropriate test function, just as in the proof of Proposition 2.7. The proof of
the lower bound is slightly more complicated and makes use of the convexity of the
potential to ensure that it grows at a sufficiently fast rate once we move away from
its minimum.

Before completing the proof of Proposition 2.9, we need one more property of
the function μ(x).

Lemma 2.13. The first eigenvalue μ(x) is a convex function of x.

Proof of Lemma 2.13. This convexity property follows from Corollary 1.15 in [7].
The convexity of the eigenvalue is deduced from the log concavity of the fundamen-
tal solution of the associated diffusion operator. �

Remark 2.14. Although in the assumptions of Corollary 1.15 in [7], the potential
does not depend on the x-variable, the proof of the log concavity of the fundamental
solution (and hence the convexity of the first eigenvalue) follows in the same way
if V (x, y) is allowed to depend on x, provided it remains a convex function.

We can now combine Lemmas 2.11 and 2.13 to complete the proof of Proposition
2.9: Since the interval J is of length comparable to L̃1, Lemma 2.11 tells us that
μ(x) varies by an amount at most comparable to L−2

1 for x in an interval of length

comparable to L̃1. Thus, since μ(x) is a convex function, applying the same logic
as in Lemma 2.4, we immediately obtain the lower bound

L2 ≥ c1L̃
1/3
1 L

2/3
1 .(2.15)

By the convexity of V (x, y), given C2 > 0, we can find C3 > 0 to ensure that

V (x, y) ≥ 1 + C2L
−2
1

whenever the point (x, y) is at least C3L̃1 from ΩL−2
1
. This means that μ(x) cer-

tainly must increase by an amount comparable to L−2
1 when x is a distance com-

parable to L̃1 from J , and this gives us the upper bound

L2 ≤ 1

c1
L̃1.(2.16)

Combining the inequalities in (2.15) and (2.16) completes the proof of the proposi-
tion. �
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3. The bound on the first eigenvalue λ

We recall from Proposition 2.7 that the first eigenvalue λ satisfies

1 ≤ λ ≤ 1 + C1L
−2
1 .

In this section we will assume that we have L̃1 	 L1 (and hence L2 	 L1 also),
and then prove the improved upper and lower bounds on the eigenvalue λ from
Theorem 1.13. That is, we will show that λ satisfies

μ ≤ λ ≤ μ+ CL−2
2 ,(3.1)

where μ is the first eigenvalue of the ordinary differential operator A in (1.4). The
lower bound in (3.1) is more straightforward, and so we establish this bound first.

Proposition 3.1 (Lower bound on λ). The first eigenvalue λ satisfies

λ ≥ μ.

Proof of Proposition 3.1. As before, for each x fixed, let Ω(x) be the cross-section of
Ω at x. Then, the first Dirichlet eigenfunction u(x, y) satisfies u(x, y) = 0 whenever
y is at the endpoints of the interval Ω(x). In particular, for each fixed x, the
function u(x, ·) is an admissible test function for the variational formulation of the
first eigenvalue of the operator L(x). Thus,∫

Ω(x)

(∂yu(x, y))
2 + V (x, y)u(x, y)2 dy ≥ μ(x)

∫
Ω(x)

u(x, y)2 dy.

Integrating this over x and using{
(−Δx,y + V (x, y))u(x, y) = λu(x, y) in Ω,

u(x, y) = 0 on ∂Ω,

we see that

λ

∫
Ω

u(x, y)2 dx dy =

∫
Ω

(∂xu(x, y))
2 + (∂yu(x, y))

2 + V (x, y)u(x, y)2 dx dy

≥
∫
Ω

(∂xu(x, y))
2 + μ(x)u(x, y)2 dx dy

≥ μ

∫
Ω

u(x, y)2 dx dy.

To get the final inequality, we have defined u(x, y) = 0 outside Ω, used Fubini to
calculate the interval in x first, and then used the variational formulation for the
first eigenvalue μ of the operator A in (1.4). This gives us the bound λ ≥ μ, as
required. �

We now turn to the upper bound and prove the following.

Proposition 3.2 (Upper bound on λ). We have an upper bound on the first eigen-
value λ of the form

λ ≤ μ+ CL−2
2 ,

for an absolute constant C > 0.

Remark 3.3. From Lemma 4.2(e) in [17], the operator A has spectral gap bounded
from below by a multiple of L−2

2 . Therefore, obtaining bounds on λ up to a precision
of CL−2

2 is important if we want this separation of variables in the x and y variables
to be of use to us.
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Proof of Proposition 3.2. As in the proof of the simple bound on λ in Proposition
2.7, we will again make use of the variational formulation for λ given in (2.13). To
do this we need to construct an appropriate test function, and our motivation will
come from performing an approximate change of variables in the x- and y-directions.
Before stating our test function, we need some definitions.

Definition 3.4. For each fixed x, we define ψ
(x)
1 (y) to be the L2-normalised first

eigenfunction of the ordinary differential operator L(x). That is, ψ
(x)
1 (y) is L2-

normalised on the cross-section Ω(x) and satisfies{ (
− d2

dy2 + V (x, y)
)
ψ
(x)
1 (y) = μ(x)ψ

(x)
1 (y) in Ω(x),

ψ
(x)
1 (y) = 0 on ∂Ω(x).

Definition 3.5. Let I be the interval of length L2 from Definition 1.8. We de-
fine the cut-off function χ(x) to be a positive function which is comparable to its
maximum in the middle half of the interval I and is supported in the middle three
quarters of I, such that it decays smoothly to zero from its maximum. We also
require that χ(x) be L2-normalised on the interval I. In particular, this allows us
to ensure that

|χ′(x)| ≤ C1L
−3/2
2 ,

for some absolute constant C1.

We will use the test function f(x, y) = χ(x)ψ
(x)
1 (y) in (2.13) to prove the follow-

ing intermediate step.

Proposition 3.6. We have an upper bound for λ of the form

λ ≤ μ+

∫
Ω

χ(x)2(∂xψ
(x)
1 (y))2 dx dy + C1L

−2
2 ,

for a constant C1.

Proof of Proposition 3.6. To obtain an upper bound on the first eigenvalue λ, we
will calculate the quotient from (2.13) with ψ(x, y) = f(x, y) as above. Since ψ(x)(y)
is L2(Ω(x))-normalised in y for any fixed x, and χ(x) is L2(I)-normalised in x, first
computing the integral in y and then the integral in x, we see that the denominator
in (2.13) is equal to 1. Thus, we have the bound

λ ≤
∫
Ω

|∇x,y

(
χ(x)ψ

(x)
1 (y)

)
|2 dx dy +

∫
Ω

V (x, y)χ(x)2ψ
(x)
1 (y)2 dx dy.(3.2)

For each x, the function ψ(x)(y) satisfies∫
Ω(x)

ψ
(x)
1 (y)2 dy = 1,(3.3)

and it is equal to 0 at the endpoints of the interval Ω(x). Therefore, differentiating
(3.3) with respect to x, we obtain the orthogonality relation∫

Ω(x)

∂xψ
(x)
1 (y)ψ

(x)
1 (y) dy = 0.
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Thus, calculating the derivatives in the first integral in (3.2) and using this
orthogonality relation, we see that (3.2) becomes

λ ≤
∫
Ω

χ′(x)2ψ
(x)
1 (y)2 dx dy +

∫
Ω

χ(x)2(∂xψ
(x)
1 (y))2 dx dy

+

∫
Ω

χ(x)2(∂yψ
(x)
1 (y))2 dx dy +

∫
Ω

V (x, y)χ(x)2ψ
(x)
1 (y)2 dx dy.

The eigenfunction ψ
(x)
1 (y) of L(x) has eigenvalue μ(x), and so we have the inequality

λ ≤
∫
I

χ′(x)2 dx+

∫
Ω

χ(x)2(∂xψ
(x)
1 (y))2 dx dy +

∫
I

χ(x)2μ(x) dx.

From Definition 1.8 we know that

|μ(x)− μ| ≤ L−2
2 .

Therefore, combining this with the bound on χ′(x) given in Definition 3.5, we obtain
the desired upper bound on λ. �

As a result of Proposition 3.6, to obtain an upper bound on λ, we need to

consider the derivative with respect to x of the eigenfunction ψ
(x)
1 (y). We will

prove the following proposition:

Proposition 3.7. Let x be fixed in the support of the cut-off function χ(x). Then,∫
Ω(x)

(∂xψ
(x)
1 (y))2 dy ≤ C1L

−2
2 ,

with the constant C1 independent of x.

Remark 3.8. Combining Proposition 3.6 with Proposition 3.7 establishes

λ ≤ μ+ C1L
−2
2

and finishes the proof of Proposition 3.2.

Proof of Proposition 3.7. Throughout the proof of this proposition, x ∈ I will be
fixed in the support of the cut-off function x, and all bounds that appear will be
uniform in x. We will also suppress the dependence of certain functions on x where
this simplifies the notation.

Since (
− d2

dy2
+ V (x, y)

)
ψ
(x)
1 (y) = μ(x)ψ

(x)
1 (y),

differentiating with respect to x we find that for y ∈ Ω(x), we have(
− d2

dy2
+ V (x, y)− μ(x)

)
∂xψ

(x)
1 (y) = μ′(x)ψ

(x)
1 (y)− ∂xV (x, y)ψ

(x)
1 (y),(3.4)

where the notation ′ denotes differentiation with respect to x. Although, for each

fixed x, ψ
(x)
1 (y) is equal to zero at the endpoints on Ω(x), the function ∂xψ

(x)
1 (y)

will not in general be zero here.
Therefore, we will also need to take into account its boundary values. For those

x in the support of the cut-off function χ(x), we can write the two parts of ∂Ω
below and above in the y-direction as {y = g1(x)} and {y = g2(x)}, where g1(x)
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and g2(x) are convex and concave functions respectively. We set α = ∂xψ
(x)
1 (g2(x))

and define

g(y) = ∂xψ
(x)
1 (y)− α.(3.5)

Our aim is to find an expression for the function g(y) using (3.4). To do this
we need to make the following definitions (again suppressing the dependence on x
throughout).

Definition 3.9. We define the function F (y) by

F (y) = V (x, y)− μ(x).

We know that μ(x) ≤ 1 + C1L
−2
1 and that miny V (x, y) ≤ μ(x) for all x in the

support of χ(x). This allows us to define the three points y1, y2 and y3.

Figure 3. The points y1, y2 and y3 from Definition 3.10.

Definition 3.10. We fix an absolute constant C. We define y1 to be the mid-
dle point of the ‘centre’, where the centre is the interval on which V (x, y) ≤
miny V (x, y) + CL−2

1 . We then choose y2 ≥ y1 to be the largest value such that
[y1, y2] is contained in the middle half of the centre. Finally, we define y3 ≥ y2 to
be the value of y for which F (y3) = V (x, y3)− μ(x) = 0. (See Figure 3.)

Definition 3.11. We set φ(y) to be the first eigenfunction of L(x), but this time
normalised to be positive with a maximum of 1. Note that this function is equal

to a multiple of ψ
(x)
1 (y) (where the multiple depends on the fixed value of x).

For y ≥ y1, we define the function φ̃(y) by

φ̃(y) = φ(y)

∫ y

y1

φ(t)−2 dt.

We can now write an expression for the function g(y).

Lemma 3.12. Let c0(x) be the value such that

g(y)− c0(x)ψ
(x)
1 (y) = 0

at y = y1. Then, for y ≥ y1, the function g(y) satisfies

g(y)− c0(x)ψ
(x)
1 (y) = φ(y)

∫ y

y1

φ̃(t)G(x, t) dt+ φ̃(y)

∫ g2(x)

y

φ(t)G(x, t) dt,(3.6)

where G(x, y) is equal to

G(x, y) = μ′(x)ψ
(x)
1 (y)− ∂xV (x, y)ψ

(x)
1 (y) + (V (x, y)− μ(x))α.(3.7)
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Proof of Lemma 3.12. We see from the definition of g(y) from (3.5) and the equa-

tion that ∂xψ
(x)
1 (y) satisfies in (3.4) that we have(

− d2

dy2
+ V (x, y)− μ(x)

)
g(y) = μ′(x)ψ

(x)
1 (y)− ∂xV (x, y)ψ

(x)
1 (y)

+ (V (x, y)− μ(x))α.

The right-hand side of the above equation is equal to G(x, y), so that

(L(x)− μ(x))(g(y)− c0(x)φ(y)) = G(x, y).(3.8)

Since L(x) is a second order ordinary differential operator, to find an expression for
g(y) we will apply the method of variation of parameters to (3.8). From Definition
3.11, we know that

(L(x)− μ(x))φ(y) = 0,

with φ(g2(x)) = 0. It is straightforward to check that the function φ̃(y) from
Definition 3.11 also satisfies

(L(x)− μ(x))φ̃(y) = 0,

for y ≥ y1, and is equal to 0 at y = y1. Thus, since the function g(y) − c0(x)φ(y)
is equal to 0 at y = y1 and y = g2(x), using (3.8) and variation of parameters, we
have the desired expression. �

Looking at this expression for g(y), we see that we will need to study how

the magnitude of the functions φ(y) and φ̃(y) depends on the size of the poten-
tial V (x, y) and its derivative with respect to x, ∂xV (x, y). Also, since g(y) =

∂xψ
(x)
1 (y) − α, where α = ∂xψ

(x)
1 (g2(x)), we will also need to estimate the size of

∂xψ
(x)
1 (y) at the endpoints of the interval Ω(x).

3.1. Properties of φ(y). We first study the function φ(y). For x fixed in the
support of I, let us set L(x) to be the largest value such that V (x, y) varies from
its minimum value by L(x)−2 on an interval in y of length at least L(x). Then,
as we remarked in the proof of Lemma 2.11, L(x) is comparable to L1. Thus,
from Lemma 2.4(b), (d) in [17], we immediately get the following estimates on φ(y)
(uniformly in x).

Lemma 3.13. There exists an absolute constant C1 such that the eigenfunction
φ(y) (which we recall will depend on x) satisfies

|φ′(y)| ≤ C1/L1 for all y ∈ Ω(x)

and

φ(y) ≤ C1e
−c|y−y1|/L1 ,

where y1 is the point in the ‘centre’ given in Definition 3.10.

This second inequality gives an L∞ exponential decay estimate for φ(y) as we
move away from the minimum of V (x, y) on a length scale comparable to L1.
In particular, this means that the L2(Ω(x)) norm of φ(y) is bounded above by a

multiple of L
1/2
1 . (In fact, it follows from Lemma 2.4 in [17] that the L2(Ω(x))-norm

also has a lower bound that is comparable to L
1/2
1 .)

We now want to sharpen this L∞ exponential decay estimate for φ(y) as V (x, y)
increases from its minimum.
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Proposition 3.14. Define the interval Jk by

Jk = [tk, tk+1] = {t ≥ y3 : ∂tV (x, t) ∈ [2−k, 2−k+1]}.(3.9)

Then, for all tk ≤ t ≤ g2(x),

φ(t) ≤ φ(tk) exp(−(t− tk)2
−k/3/10),

for all y3 ≤ t ≤ tk+1,

φ(tk+1) ≤ φ(t) exp(−(tk+1 − t)2−k/3/10),

and, for all t ∈ Jk,

φ(t) ≤ |φ′(t)|2k/3.

For the interval J̃k defined by

J̃k = [t̃k, t̃k+1] = {t ≥ y3 : V (x, t)−min
t

V (x, t) ∈ [2−2k/3, 2−2(k−1)/3]},(3.10)

we have the analogous bounds on φ(t).

Remark 3.15. We have the analogous decay estimates for φ(y) as we move away
from the region where V (x, y) ≤ miny V (x, y) + L−2

1 in the other direction.

Remark 3.16. We recall that y = y3 is the point where V (x, y) − μ(x) = 0. Since

miny V (x, y)−μ(x) ≤ −cL−2
1 , by convexity, Jk and J̃k are only non-empty for those

k satisfying 2k ≤ CL3
1, for some absolute constant C > 0.

Proof of Proposition 3.14. The proposition follows from the key inequality given in
the proof of Theorem A in [17],∣∣(log φ(t))′∣∣ = |φ′(t)|/φ(t) ≥ 2−k/3/10 for all t ∈ Jk.

Integrating this inequality from both t = tk and t = tk+1 gives all of the desired
estimates involving the intervals Jk.

By the definition of the intervals J̃k, we have V (x, t)−μ(x) ≥ 2−2k/3 for t ∈ J̃k.
Therefore, it is straightforward to obtain the same bounds for (log φ(t))

′
, and hence

φ(t) itself on J̃k, as for the intervals Jk. �

We now show to what extent φ′(y) inherits this exponential decay as we move
away from the centre.

Proposition 3.17. Let the intervals Jk be defined as in Proposition 3.14. Then,
for all t ≥ tk,

|φ′(t)| ≤ C|φ′(tk)| exp(−c|t− tk|2−k/3),

for some absolute constants c and C > 0.

Proof of Proposition 3.17. The function φ(t) satisfies the equation

φ′′(t) = F (t)φ(t),

with the function F (t) = V (x, t) − μ(x) as before. On the intervals Jk, we know
that t ≥ y3, and so certainly F (t) ≥ 0. Also, φ′(t) ≤ 0, and so this means that
|φ′(t)| is decreasing. Thus, for t ≥ tk, we have

|φ′(t)| ≤ |φ′(tk)|.

If |t− tk| ≤ 2k/3, then this is enough to establish the required bound.
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Now suppose that |t − tk| ∈ [N2k/3, (N + 1)2k/3] for some N ≥ 1. Then, by
Proposition 3.14, we know that φ(t) satisfies

φ(t) ≤ C2k/3|φ′(tk)| exp(−cN2−k/3).

In particular, φ(t) changes by at most C2k/3|φ′(tk)| exp(−cN2−k/3), as t ranges
over this interval of length 2k/3. Since φ′(t) is negative here, this gives us a bound
on the integral of |φ′(t)| over this interval.

Moreover, as we noted above, by convexity, |φ′(t)| decreases as t increases. In
particular, since the interval [N2k/3, (N + 1)2k/3] has length 2k/3, this means that

|φ′(t)| ≤ C2k/3|φ′(tk)| exp(−cN2−k/3).2−k/3 = C|φ′(tk)| exp(−cN2−k/3),

for t at the right endpoint of the interval. This concludes the proof of the proposi-
tion. �

It will often be important to measure the distance of a point (x, y) from the level
sets {(x, y) ∈ Ω : V (x, y) = 1 + L−2

1 }.

Definition 3.18. Fix a large absolute constant C∗. Then, suppressing the depen-
dence on x, let y∗ ≥ y1 be the first point where V (x, y) ≥ 1 + C∗L−2

1 .

We can now write an immediate corollary of Proposition 3.17.

Corollary 3.19. For any t ≥ tk, we have the first derivative estimate

|φ′(t)| ≤ CL−1
1 exp(−c|t− tk|2−k/3) exp(−c|tk − y∗|/L1).

Proof of Corollary 3.17. We can apply Proposition 3.17 with t replaced by tk and
tk replaced by y∗ to obtain a bound on |φ′(tk)| of the form

|φ′(tk)| ≤ CL−1
1 exp(−c|tk − y∗|/L1).

We then use this bound in the right-hand side of the estimate for |φ′(t)| in Propo-
sition 3.17 to get the desired result. �

3.2. Properties of φ̃(y). From Lemma 3.12, we see that as well as φ(y), it will

also be important to study the properties of φ̃(y) from Definition 3.11. We recall
from Definition 3.10 that y2 ≥ y1 is the largest value of y2 such that [y1, y2] is
contained in the middle half of the ‘centre’, where V (x, y) ≤ mint V (x, t) + CL−2

1

and that y3 ≥ y2 is the value of y for which F (y3) = V (x, y3)− μ(x) = 0. We now
prove:

Lemma 3.20. The function φ̃(y) satisfies

φ̃(y) ≤ C1L1,

for y1 ≤ y ≤ y3, and

φ̃(y) ≤ C1L1 + C1|φ′(y)|−1,

for y3 ≤ y ≤ g2(x).

Proof of Lemma 3.20. We first consider the interval [y1, y2]. By the definition of
the point y2, Lemma 2.4 in [17] implies that we have an absolute lower bound on
φ(t) for t ∈ [y1, y2], and we know that this interval is of length comparable to L1.
Thus, for y ∈ [y1, y2], we have

φ̃(y) ≤ C1L1φ(y).
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Before considering y ∈ [y2, y3], we first assume that y ≥ y3. Here F (y) ≥ 0, and so
|φ′(y)| is decreasing (φ′(y) is becoming less negative). Therefore, for t ∈ [y3, y], we
have the lower bound

φ(t) ≥ φ(y) + |φ′(y)|(y − t).

This gives us the bound∫ y

y3

φ(t)−2 dt ≤ C1φ(y)
−1|φ′(y)|−1.(3.11)

We now want to bound ∫ y3

y2

φ(t)−2 dt.

Since φ′′(y) = F (y)φ(y), we have

φ′(y) =

∫ y

ỹ

F (t)φ(t) dt,

where φ(y) attains its maximum of 1 at y = ỹ. For t ∈ [y2, y3], F (t) ≤ 0, and
so |φ′(t)| is increasing from 0, φ(t) is decreasing from 1, and |y3 − y2| ≤ C1L1.
Therefore, either φ(t) is bounded below by an absolute constant or else |φ′(y)| ≥
C1L

−1
1 . This gives us the bound∫ y3

y2

φ(t)−2 dt ≤ C1L1.(3.12)

Combining the bounds in (3.11) and (3.12) shows that

φ̃(y) ≤ C1L1,

for y ∈ [y2, y3], and

φ̃(y) ≤ C1L1 + C|φ′(y)|−1,

for y ≥ y3, as required. �

3.3. An estimate for ∂xψ
(x)
1 (y) at the boundary. We can now bound ∂xψ

(x)
1 (y)

at the endpoints of the interval Ω(x). For each fixed x, ψ
(x)
1 (y) has zero boundary

conditions on Ω(x). However, since the interval Ω(x) will in general depend on x,

∂xψ
(x)
1 (y) will not necessarily be zero when y is at the endpoints of Ω(x).
We recall from Definition 3.18 that y∗ ≥ y1 is the first point where V (x, y) ≥

1 +C∗L−2
1 , for a fixed large constant C∗. The upper endpoint of the interval Ω(x)

is equal to g2(x), and we set

M = g2(x)− y∗,(3.13)

which is the distance between the endpoint of Ω(x) and the region where the po-

tential V (x, y) is less than 1 + C∗L−2
1 . We can prove a bound on ∂xψ

(x)
1 (g2(x)) in

terms of M .

Proposition 3.21. For y = g2(x) equal to the upper endpoint of the interval Ω(x),
we have the bound

|α| =
∣∣∣∂xψ(x)

1 (g2(x))
∣∣∣ ≤ CL−1

2 L
−3/2
1 (L1 +M) exp(−cML−1

1 ).

We also have an analogous bound for y equal to the lower endpoint of Ω(x).
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Proof of Proposition 3.21. We can view ψ
(x)
1 (y) as a function of two variables on

the domain Ω, with ψ
(x)
1 (y) identically equal to 0 on ∂Ω. In particular, for those x

in the support of the cut-off function χ(x), we have written the upper boundary of

Ω as the graph of the function y = g2(x), and so ψ
(x)
1 (g2(x)) is identically zero as

a function of x. Differentiating this with respect to x gives

∂xψ
(x)
1 (g2(x)) = −g′2(x)∂yψ

(x)
1 (g2(x)).(3.14)

Thus, to obtain a bound on ∂xψ
(x)
1 (g2(x)), it is enough to consider ∂yψ

(x)
1 (y) and

the slope of ∂Ω at (x, g2(x)).
We remarked in the definition of φ(y) in Definition 3.11 that the eigenfunction

ψ
(x)
1 (y) is equal to a multiple of φ(y). Since φ(y) has L2(Ω(x))-norm comparable to

L
1/2
1 , whereas ψ

(x)
1 (y) is L2(Ω(x))-normalised, this multiple is comparable to L

−1/2
1 .

Thus, by the bound on φ′(y) from Proposition 3.17, with 2k comparable to L3
1, we

have the bound ∣∣∣∂yψ(x)
1 (g2(x))

∣∣∣ ≤ CL
−3/2
1 exp

(
−cML−1

1

)
.

Therefore, by (3.14), to conclude the proof of the proposition it is enough to show
that

|g′2(x)| ≤ C(L1 +M)L−1
2 ,(3.15)

for an absolute constant C > 0. Recall the set ΩL−2
1

= {(x, y) ∈ Ω : V (x, y) ≤
1 + L−2

1 }. This is a convex subset of Ω with height comparable to L1 in the y-

direction and length comparable to L̃1 in the x-direction. Moreover, for x fixed in
the support of χ(x), we are at a distance at least comparable to L2 from the left
and right ends of ΩL−2

1
. Therefore, if we write the upper boundary of ΩL−2

1
of this

set as the graph of a function y = v(x), then certainly we have the derivative bound

|v′(x)| ≤ CL1L
−1
2 .

In particular, if the distance M is bounded above by a multiple of L1, then by
convexity, the part of ∂Ω for x contained in the support of χ(x) has slope bounded
by a multiple of L1L

−1
2 . This gives the desired bound for g′2(x) in (3.15),

|g′2(x)| ≤ CL1L
−1
2 .

If the distance M is large compared to L1, then the domain Ω is convex and
contains an ellipse of height comparable to M in the y-direction and length compa-
rable to L2 in the x-direction. Thus, the part of ∂Ω with x in the support of χ(x)
has slope bounded by a multiple of ML−1

2 . Again we get a bound for g′2(x),

|g′2(x)| ≤ CML−1
2 ,

which implies the bound in (3.15).
This establishes the estimate in (3.15) in all cases and completes the proof of the

proposition. �

We have now established the properties of the functions φ(y) and φ̃(y) together

with the bound required on α = ∂xψ
(x)
1 (g2(x)). Thus, we return to the expression

for g(y) = ∂xψ
(x)
1 (y)−α that we derived in Lemma 3.12 to obtain the desired bound

on ∂xψ
(x)
1 (y).
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Proposition 3.22. We have the pointwise bound∣∣∣∂xψ(x)
1 (y)− c0(x)ψ

(x)
1 (y)

∣∣∣ ≤ F1(y) + F2(y)

for all y ∈ Ω(x) with y ≥ y1. Here F1(y) is a positive function on Ω(x), with

a maximum comparable to L−1
2 L

−1/2
1 and decaying exponentially from this maxi-

mum on a length scale comparable to L1 as y moves away from the interval where
V (x, y) ≤ 1 + L−2

1 . The function F2(y) is also a positive function on Ω(x), with

a maximum comparable to L−1
2 L

−1/2
1 , but it decays exponentially from this maxi-

mum within each interval Jk from (3.9) on a length scale comparable to 2k/3. We
also have the analogous exponential decay estimate on the corresponding intervals
as we move away from the ‘centre’ region where V (x, y) ≤ 1 + L−2

1 in the opposite
direction with y ≤ y1.

Before we prove this proposition, let us show how it implies the L2(Ω(x))-bound

on ∂xψ
(x)
1 (y) given in Proposition 3.7: Since ψ

(x)
1 (y) is L2(Ω(x))-normalised, the

orthogonality of ψ
(x)
1 (y) and its derivative in x implies

c0(x) =

∫
Ω(x)

(
c0(x)ψ

(x)
1 (y)− ∂xψ

(x)
1 (y)

)
ψ
(x)
1 (y) dy.

Using the bound on c0(x)ψ
(x)
1 (y)− ∂xψ

(x)
1 (y) in Proposition 3.22 we obtain

|c0(x)| ≤ C1L
−1
2 L

−1/2
1

∫
Ω(x)

ψ
(x)
1 (y) dy ≤ C1L

−1
2 ,(3.16)

where the final inequality holds since ψ
(x)
1 (y) has L2(Ω(x))-norm equal to 1, and

decays exponentially away from its maximum on a length scale comparable to L1.
Combining this bound on c0(x) in (3.16) with Proposition 3.22, we see that

∂xψ
(x)
1 (y) can be bounded by functions F1(y) + F2(y) with the same properties as

in the statement of Proposition 3.22. This gives us an L2(Ω(x))-bound on ∂xψ
(x)
1 (y)

of the form∫
Ω(x)

(
∂xψ

(x)
1 (y)

)2

dy ≤ C1L
−2
2 +

∑
2k≤CL3

1

2k/3L−2
2 L−1

1 ≤ C1L
−2
2 .

This completes the proof of Proposition 3.7. �

Since Proposition 3.7 implies the desired upper bound on the eigenvalue λ in
Proposition 3.2, we just need to prove Proposition 3.22.

Proof of Proposition 3.22. From Proposition 3.21 we know that

|∂xψ(x)
1 (y)− g(y)| = |∂xψ(x)

1 (g2(x))| = |α| ≤ CL−1
2 L

−3/2
1 (L1 +M) exp

(
−cML−1

1

)
,

and this bound has the same properties as the function F1(y) in the statement of
the proposition. Therefore, to prove Proposition 3.22, it is enough to show that

g(y)− c0(x)ψ
(x)
1 (y)

has the desired bounds.
To do this, we want to bound the right-hand side of (3.6), which contains the

functions φ(y), φ̃(y) together with G(x, y). The two remaining functions which
we have not discussed above are the functions μ′(x) and ∂xV (x, y) appearing in
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G(x, y). Therefore, let us prove two simple lemmas concerning these functions, and
then we will be in a position to bound (3.6).

Lemma 3.23. Let x be in the support of the cut-off function χ(x). Then, we have
the bound

|μ′(x)| ≤ C1L
−3
2 ,

for an absolute constant C1 > 0.

Proof of Lemma 3.23. We recall from Lemma 2.13 that the function μ(x) is a con-
vex function of x. Moreover, by the definition of the parameter L2, we know that
μ(x) varies by L−2

2 for x in an interval of length at least L2. Since the support of
χ(x) is contained within the middle half of this interval, we immediately obtain the
required bound by convexity. �

Lemma 3.24. Let x be in the support of χ(x), and as in Definition 3.18 let y = y∗

be the first point where V (x, y) ≥ 1 + C∗L−2
1 . Then, for y ≥ y∗,

|∂xV (x, y)| ≤ C1(|y − y∗|+ L1)L
−1
2 |∂yV (x, y)|,

and for y1 ≤ y ≤ y∗,

|∂xV (x, y)| ≤ C1L
−2
1 L−1

2 + C1L1L
−1
2 |∂yV (x, y)|.

Proof of Lemma 3.24. Given c, let y = f(x) be a parameterisation of the upper
part of the level set {(x, y) ∈ Ω : V (x, y) = c}. Differentiating this with respect to
x, we see that

∂xV (x, f(x)) = −f ′(x)∂yV (x, f(x)).(3.17)

Assume first that y = f(x) ≥ y∗. The sublevel set {(x, y) ∈ Ω : V (x, y) ≤ 1 +
C∗L−2

1 } is convex with height comparable to L1 in the y-direction and length

comparable to L̃1 in the x-direction, and x is at distance comparable to L2 from
the ends of this set. Thus, by the convexity of the sublevel sets, we certainly have
a bound on the slope of

|f ′(x)| ≤ C1(|y − y∗|+ L1)L
−1
2 .

Using this bound in the right-hand side of (3.17) gives the desired bound for y ≥ y∗.
We now suppose that y1 ≤ y = f(x) ≤ y∗. If y is in the middle half of the

interval {t : V (x, t) ≤ 1 + L−2
1 }, then we certainly have the bound

|∂xV (x, f(x))| ≤ C1L
−2
1 L−1

2 ,

by the convexity of the potential V (x, y). For the remaining points (x, f(x)) of
interest, we can again use the shape of the level set to obtain the desired bound

|∂xV (x, f(x))| ≤ C1L
−2
1 L−1

2 + C1L1L
−1
2 |∂yV (x, f(x))|.

This is because for these points we can find a direction e such that the directional
derivative of V at (x, f(x)) is bounded by L−2

1 L−1
2 , and this direction makes an

angle comparable to L1L
−1
2 with the x-axis. �
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Combining Lemmas 3.23 and 3.24, we see from (3.7) that

|G(x, t)| ≤ C1L
−2
1 L−1

2 ψ
(x)
1 (t) + C1(|t− y∗|+ L1)L

−1
2 |∂tV (x, t)|ψ(x)

1 (t)

+ |V (x, t)− μ(x)|α

≤ C1L
−5/2
1 L−1

2 φ(t) + C1(|t− y∗|+ L1)L
−1/2
1 L−1

2 |∂tV (x, t)|φ(t)(3.18)

+ |V (x, t)− μ(x)|α.
The final inequality comes from

ψ
(x)
1 (t) ≤ C1L

−1/2
1 φ(t),

which holds since ψ
(x)
1 (t) is L2(Ω(x))-normalised, whereas φ(t) has L2(Ω(x))-norm

comparable to L
1/2
1 .

Everything is now set up to show that the two integrals in (3.6) have the bounds
required in the statement of Proposition 3.22.

3.4. A bound on φ(y)
∫ y

y1
φ̃(t)G(x, t) dt. We start by considering the first integral

in (3.6). Using (3.18), it is enough to bound

φ(y)

∫ y

y1

φ̃(t)

(
C1L

−5/2
1 L−1

2 φ(t) + C1(|t− y∗|+ L1)L
−1/2
1 L−1

2 |∂tV (x, t)|φ(t)

+ |V (x, t)− μ(x)|α
)
dt.(3.19)

We now bound the three terms in equation (3.19).

Lemma 3.25. We have a bound on the first term in (3.19),

φ(y)

∫ y

y1

φ̃(t)L
−5/2
1 L−1

2 φ(t) dt ≤ C1L
−1/2
1 L−1

2 .

Remark 3.26. We will see in the proof of the lemma that the function decays
exponentially from its maximum away from the region where V (x, y) ≤ 1+L−2

1 on
a length scale comparable to L1. Therefore we can include this term in the function
F1(y) in the statement of Proposition 3.22.

Proof of Lemma 3.25. By Lemma 3.20, we can bound the left-hand side by

φ(y)

∫ y3

y1

C1L1L
−5/2
1 L−1

2 φ(t) dt+ φ(y)

∫ y

y3

(C1L1 + C1|φ′(t)|−1)L
−5/2
1 L−1

2 φ(t) dt.

Using Proposition 3.14 we have the bound φ(t) ≤ 2k/3|φ′(t)| ≤ C1L1|φ′(t)| for
t ∈ Jk, and so these integrals can be bounded by

C1φ(y)

∫ y

y1

L−1
2 L

−3/2
1 dt.(3.20)

The eigenfunction φ(y) has a maximum of 1 and decays exponentially away from
this maximum on a length scale comparable to L1. Thus, we can bound (3.20)

by C1L
−1/2
1 L−1

2 as required, and it also has the decay properties of the function
F1(y). �

Lemma 3.27. We have a bound on the second term in (3.19),

φ(y)

∫ y

y1

φ̃(t)(|t− y∗|+ L1)L
−1/2
1 L−1

2 |∂tV (x, t)|φ(t) dt ≤ C1L
−1/2
1 L−1

2 .
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Remark 3.28. We will again see in the proof of the lemma that the function de-
cays exponentially from its maximum on a length scale comparable to 2k/3 within
each interval Jk. Therefore we can include this term in the function F2(y) in the
statement of Proposition 3.22.

Proof of Lemma 3.27. We first consider the part of this integral over [y1, y3]. Here,

φ̃(t) ≤ C1L1, and by the convexity of the potential∫ y3

y1

|∂tV (x, t)| dt ≤ 2C1L
−2
1 .

Therefore, we immediately obtain a bound of C1L
−1/2
1 L−1

2 φ(y). This is certainly

at most C1L
−1/2
1 L−1

2 , and by the properties of φ(y) it also has the decay properties
of the function F2(y).

We now consider the part of the integral over [y3, y]. Let y be in the interval
Jk∗ for some k∗, where as usual the intervals Jk are as in (3.9). We decompose
the integral between y3 and y as an integral over the relevant intervals Jk where
k ≥ k∗.

By Proposition 3.14,

φ(t) ≤ |φ′(t)|2k/3,

and so using the bound on φ̃(t) from Lemma 3.20, to estimate the contribution to
the integral from Jk, we have to bound

(3.21) φ(y)

∫
Jk

φ(t)(L1 + |φ′(t)|−1)(|t− y∗|+ L1)L
−1/2
1 L−1

2 |∂tV (x, t)| dt

≤ C1φ(y)

∫
Jk

2k/3|φ′(t)|(L1 + |φ′(t)|−1)(|t− y∗|+ L1)L
−1/2
1 L−1

2 2−k dt

≤ C12
−2k/3φ(y)

∫
Jk

(|t− y∗|+ L1)L
−1/2
1 L−1

2 dt.

Using Proposition 3.14 again, we find that for any k ≥ k∗,

φ(y) ≤ φ(tk∗) exp(−(y − tk∗)2−k∗/3/10) ≤ 2k
∗/3|φ′(tk∗)| exp(−(y − tk∗)2−k∗/3/10).

By Corollary 3.19, we can bound the factor of |φ′(tk∗)| as
|φ′(tk∗)| ≤ CL−1

1 exp(−c|t− tk|/2k/3) exp(−c|tk − y∗|/L1).

Inserting these estimates into the integral in (3.21) and integrating over the interval
Jk, we have the bound

C exp(−(y − tk∗)2−k∗/3/10)2k
∗/32−k/3L

−1/2
1 L−1

2 .

Summing over k ≥ k∗ gives a bound for the integral over y3 ≤ t ≤ y of the form

C1L
−1/2
1 L−1

2 exp(−(y − tk∗)2−k∗/3/10).

Note that this quantity is bounded by a multiple of L
−1/2
1 L−1

2 and has the required
decay properties that we can include it in the function F2(y). �

Lemma 3.29. We have a bound on the final term in (3.19),

φ(y)

∫ y

y1

φ̃(t)|V (x, t)− μ(x)||α| dt ≤ C1L
−1/2
1 L−1

2 .(3.22)
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Remark 3.30. We will see that the function decays exponentially from its maximum
away from the region where V (x, y) ≤ 1 + L−2

1 on a length scale comparable to
L1. Therefore we can include this term in the function F1(y) in the statement of
Proposition 3.22.

Proof of Lemma 3.29. For the part of the integral in (3.22) over [y1, y3], we know

that |V (x, t)− μ(x)| ≤ C1L
−2
1 , |y3 − y1| ≤ C1L1 and φ̃(t) ≤ C1L1. Combining this

with the bound on α from Proposition 3.21 immediately gives us the desired bound

of L−1
2 L

−1/2
1 exp(−cML−1

1 ) for this part of the integral in (3.22).

For t ≥ y3, we decompose [y3, y] into the intervals J̃k given in (3.10). Since

μ(x) ≥ mint V (x, t) on J̃k we know that

|V (x, t)− μ(x)| ≤ 2−2k/3.

So, for the part of the integral in (3.22) over J̃k, combining this with the bound on

α and the usual bound on φ̃(t) from Lemma 3.20, we have

φ(y)

∫
J̃k

φ̃(t)|V (x, t)− μ(x)||α| dt

≤ C1L
−1
2 L

−3/2
1 φ(y)

∫
J̃k

(L1 + |φ′(t)|−1)2−2k/3(L1 +M) exp(−cML−1
1 ) dt.(3.23)

Similarly to the proof of Lemma 3.27, let us assume that y ∈ J̃k∗ for some k∗.
Then, using Proposition 3.14 and then Proposition 3.17 twice, we obtain

φ(y) ≤ C12
k∗/3|φ′(y)| ≤ C12

k∗/3|φ′(tk∗)| exp
(
−c|y − tk∗ |2−k∗/3

)
≤ C12

k∗/3|φ′(t)| exp
(
−c|y − tk∗ |2−k∗/3

)
exp

(
−c|tk∗ − t|2−k/3

)
.

Inserting this bound for φ(y) into the right-hand side of (3.23) and integrating over

J̃k gives us the bound for the part of the integral over J̃k of

C12
k∗/32−k/3L−1

2 L
−1/2
1 exp(−cML−1

1 /2).

We finally sum over those k with k ≥ k∗ to get the desired bound on the part of
the integral (3.22) with y3 ≤ t ≤ y. �

Combining Lemmas 3.25, 3.27 and 3.29, we see that the part of g(y)−c0(x)ψ
(x)
1 (y)

coming from the first term in (3.6) has the bounds required in Proposition 3.22.
Therefore to finish the proof of Proposition 3.22 we need to establish the analo-

gous estimates for the second integral in (3.6).

3.5. A bound on φ̃(y)
∫ g2(x)

y
φ(t)G(x, t) dt. The estimates for the various parts of

this integral will be similar to the estimates we used above. However, there will be
places where we have to use different methods to obtain the desired bounds. We
again use (3.18) to bound the integral by

φ̃(y)

∫ g2(x)

y

φ(t)

(
C1L

−5/2
1 L−1

2 φ(t) + C1(|t− y∗|+ L1)L
−1/2
1 L−1

2 |∂tV (x, t)|φ(t)

+ |V (x, t)− μ(x)|α
)
dt,(3.24)

and we split this into three terms that we need to estimate.
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Lemma 3.31. We have a bound on the first term in (3.24),

φ̃(y)

∫ g2(x)

y

φ(t)L
−5/2
1 L−1

2 φ(t) dt ≤ C1L
−1/2
1 L−1

2 .

Remark 3.32. The function also decays exponentially from its maximum away from
the region where V (x, y) ≤ 1 +L−2

1 on a length scale comparable to L1. Therefore
we can include this term in the function F1(y) in the statement of Proposition 3.22.

Proof of Lemma 3.31. We know that φ̃(y) ≤ φ̃(t) and φ(t) decays exponentially on
a length scale comparable to L1 as we move away from y∗. Therefore, this bound
follows in a very straightforward manner. �

Before bounding the second term in (3.24), we first want to establish the following
lemma.

Lemma 3.33. For any ỹ ≥ y3, we have the bound∫ g2(x)

ỹ

φ(t)2∂tV (x, t) dt ≤ (φ′(ỹ))1/2.

Proof of Lemma 3.33. To prove this lemma, we will consider the ‘energy’

E(t) = (φ′(t))2 − F (x, t)φ(t)2.(3.25)

Differentiating E(t) we find that

E ′(t) = 2φ′(t)(φ′′(t)− F (x, t)φ(t))− ∂tF (x, t)φ(t)2 = −∂tF (x, t)φ(t)2,

where the final equality holds because φ′′(t) = F (x, t)φ(t). Since F (x, t) = V (x, t)−
μ(x), we have

∂tF (x, t) = ∂tV (x, t),

and so ∫ g2(x)

ỹ

∂tV (x, t)φ(t)2 dt = −
∫ g2(x)

ỹ

E ′(t) dt = E(ỹ)− E(g2(x)).

Since F (x, t) ≥ 0 for t ≥ y3, we know that

E(ỹ) = (φ′(ỹ))2 − F (x, ỹ)φ(ỹ)2 ≤ (φ′(ỹ))2.

Thus, to finish the proof of the lemma we need to show that E(g2(x)) ≥ 0. We
know that

E(g2(x)) ≥ −F (x, g2(x))φ(g2(x))
2

and that φ(g2(x)) = 0. However, we are not assuming that the potential V (x, y)
remains bounded as y approaches g2(x), and so we cannot immediately deduce that

F (x, g2(x))φ(g2(x))
2 = 0.

Instead we argue as follows. The function φ′(t) is in L∞(Ω(x)), and this has
two consequences. First, the eigenfunction φ(y) decays at least linearly to 0 at
y = g2(x). It also means that φ′′(y) is in L1(Ω(x)), and hence F (x, y)φ(y) is in
L1(Ω(x)). This means that F (x, y)φ(y) cannot grow as fast as (y− g2(x))

−1 as we
approach the boundary and so

lim inf
y→g2(x)

φ(y)F (x, y)φ(y) = 0.

This implies that E(g2(x)) ≥ 0 and concludes the proof of the lemma. �
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Remark 3.34. This energy E(t) has also been used in [16] in their proof of Theorem
2.1(B). There they obtain a pointwise estimate comparing the first eigenfunction of
the two-dimensional domain with the first eigenfunction of the associated ordinary
differential operator.

We can now bound the contribution from the second term in G(x, t).

Lemma 3.35. We have a bound on the second term in (3.24),

φ̃(y)

∫ g2(x)

y

φ(t)2(|t− y∗|+ L1)L
−1/2
1 L−1

2 |∂tV (x, t)| dt ≤ C1L
−1/2
1 L−1

2 .

Remark 3.36. We will see in the proof that the function also decays exponentially
from its maximum away from the region where V (x, y) ≤ 1+L−2

1 on a length scale
comparable to L1. Therefore we can include this term in the function F1(y) in the
statement of Proposition 3.22.

Proof of Lemma 3.35. If y ≤ y3, we first consider the part of the integral where
t lies in the interval [y, y3] of length at most C1L1. In this case, we know that

φ̃(y) ≤ C1L1, and the estimates follow easily.
For t ≥ y3, we first consider the integral between ỹ and ỹ + L1, where ỹ is some

point with ỹ ≥ y3 and ỹ ≥ y. Since ∂tV (x, t) ≥ 0 here, we have

φ̃(y)

∫ ỹ+L1

ỹ

φ(t)2(|t− y∗|+ L1)L
−1
2 |∂tV (x, t)|L−1/2

1 dt

≤ C1φ̃(y)(|ỹ − y∗|+ L1)L
−1
2 L

−1/2
1

∫ g2(x)

ỹ

φ(t)2∂tV (x, t) dt.(3.26)

Applying Lemma 3.33, we can bound the right-hand side of (3.26) by

C1φ̃(y)(|ỹ − y∗|+ L1)L
−1
2 L

−1/2
1 (φ′(ỹ))2.

Lemma 3.20 shows that

φ̃(ỹ)|φ′(ỹ)| ≤ C1,

and using Proposition 3.17 with 2k comparable to L3
1, we have the derivative bound

|φ′(ỹ)| ≤ C1L
−1
1 exp (−c|ỹ − y∗|/L1) .

Thus the right-hand side of (3.26) has the bound

C1L
−1
2 L

−1/2
1 exp (−c|ỹ − y∗|/L1) .

Summing over ỹ between y and g2(x) at intervals of length comparable to L1 then
gives the desired bound. �

We finally have to bound the contribution from the third term in G(x, t).

Lemma 3.37. We have a bound on the third term in (3.24),

φ̃(y)

∫ g2(x)

y

φ(t)|V (x, t)− μ(x)||α| dt ≤ C1L
−1/2
1 L−1

2 .(3.27)

Remark 3.38. As for the previous two lemmas, we will see in the proof that the
function also decays exponentially from its maximum away from the region where
V (x, y) ≤ 1 + L−2

1 on a length scale comparable to L1. Therefore we can include
this term in the function F1(y) in the statement of Proposition 3.22.
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Proof of Lemma 3.37. From Proposition 3.21 we have the estimate on α of the form

|α| = |∂xψ(x)
1 (g2(x))| ≤ CL−1

2 L
−3/2
1 (L1 +M) exp(−cML−1

1 ).(3.28)

For the part of the integral in (3.19) for t between y and y3, we know that |V (x, t)−
μ(x)| is at most C1L

−2
1 and φ̃(y) ≤ C1L1. Thus, we immediately get a bound of

C1L
−1/2
1 L−1

2 exp(−cML−1
1 )

for this part.
For t ≥ y3, we know that F (x, t) = V (x, t)−μ(x) ≥ 0. Thus, we can bound this

part of the integral in (3.19) by

C1φ̃(y)L
−1
2 L

−3/2
1 (L1 +M) exp(−cML−1

1 )

∫ g2(x)

max{y3,y}
φ(t)(V (x, t)− μ(x)) dt.

(3.29)

Since

φ′′(t) = (V (x, t)− μ(x))φ(t)

and |φ′(t)| is decreasing for t ≥ y3, we find that (3.29) can be bounded by

C1φ̃(y)L
−1
2 L

−3/2
1 (L1 +M) exp(−cML−1

1 )|φ′(y)| ≤ C1L
−1/2
1 L−1

2 exp(−cML−1
1 /2),

where the last inequality comes from Lemma 3.20 as usual. This concludes the
proof of the lemma. �

By the bounds on the right-hand side in Lemmas 3.25, 3.27, 3.29 and Lemmas
3.31, 3.35, 3.37, we have shown that∣∣∣g(y)− c0(x)ψ

(x)
1 (y)

∣∣∣ ≤ F1(y) + F2(y).(3.30)

Here the functions F1(y) and F2(y) have the desired properties from the statement
of Proposition 3.22. As we remarked at the beginning of the proof, by the bound
on α that we obtained in Proposition 3.21, the estimate in (3.30) is sufficient to
conclude the proof of Proposition 3.22. �

After the statement of Proposition 3.22, we showed that this implied Proposition
3.7 and the bound ∫

Ω(x)

(
∂xψ

(x)
1 (y)

)2

dy ≤ C1L
−2
2 .

Combining this with the estimate on the first eigenvalue λ from Proposition 3.6,

λ ≤ μ+

∫
Ω

χ(x)2
(
∂xψ

(x)
1 (y)

)2

dx dy + C1L
−2
2 ,

gives

λ ≤ μ+ CL−2
2 .

This completes the proof of the upper bound on λ in Proposition 3.2. �

By Propositions 3.1 and 3.2, we see that the first eigenvalue λ satisfies

μ ≤ λ ≤ μ+ CL−2
2 ,

and so we have established Theorem 1.13.
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4. L2(Ω) bounds for the first eigenfunction u(x, y)

Now that we have established the improved eigenvalue bound on λ in Theorem
1.13, we want to use it to study the corresponding eigenfunction u(x, y). We recall
that u(x, y) is normalised to be positive inside Ω with a maximum of 1. Our main
aim is to prove Theorem 1.10 and show that the level sets {(x, y) ∈ Ω : u(x, y) = c}
have lengths comparable to L2 and L1 in the x- and y-directions, respectively,
whenever c is bounded away from 0 and 1.

Before we prove this theorem, in this section we will first establish an L2(Ω)-
bound for u(x, y). More precisely, we will prove the following proposition.

Proposition 4.1. There exists an absolute constant C > 0 such that∫
Ω

u(x, y)2 dx dy ≤ CL1L2.

Remark 4.2. Note that this L2(Ω) bound is consistent with the shape of the level
sets described in Theorem 1.10. We will use the eigenvalue bound on λ from
Theorem 1.13 in a critical way in the proof.

Proof of Proposition 4.1. The function H(x) is given by H(x) =
∫
Ω(x)

u(x, y)2 dy.

We first study the rate at which the function H(x) decays from its maximum, and
we will then prove an estimate for the maximum of H(x).

To study the decay ofH(x), we prove a Carleman-type inequality. For the convex
function μ(x) let x∗ be a point where it achieves its minimum of μ∗. We now prove:

Proposition 4.3. For any x we have the differential inequality

H ′′(x) ≥ 2(μ(x)− λ)H(x).

In particular, for |x− x∗| ≥ CL2, with C a sufficiently large absolute constant, we
have

H ′′(x) ≥ 1

L2
2

H(x).

Remark 4.4. This type of Carleman inequality has been used frequently in the
study of the ground state Dirichlet eigenfunction of Schrödinger operators. For
example, in Lemma 3.9 [16] it has been used to establish the exponential decay
of the first Fourier mode of the ground state eigenfunction of the two-dimensional
convex domain. This first Fourier mode comes from a Fourier decomposition of the
cross-section of the domain at each fixed x. A similar argument has also been used
in Section 3 of [11] to study the decay of the L2-norm of the cross-section at x of
the eigenfunction for a two-dimensional domain which is periodic in the x-direction
and with height in the y-direction depending on a small parameter ε > 0.

Proof of Proposition 4.3. The eigenfunction u(x, y) is equal to 0 when y is at the
endpoints of the interval Ω(x). This allows us to differentiate H(x) twice and pass
the derivative inside the integral to obtain

H ′′(x) = 2

∫
Ω(x)

u(x, y)∂2
xu(x, y) + (∂xu(x, y))

2 dy

= 2

∫
Ω(x)

(V (x, y)− λ)u(x, y)2 − u(x, y)∂2
yu(x, y) + (∂xu(x, y))

2 dy.
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Integrating by parts one time in y in the term containing a factor of ∂2
yu(x, y), we

can rewrite this as

H ′′(x) = 2

∫
Ω(x)

(V (x, y)− λ)u(x, y)2 + (∂yu(x, y))
2 + (∂xu(x, y))

2 dy

≥ 2

∫
Ω(x)

(V (x, y)− λ)u(x, y)2 + (∂yu(x, y))
2 dy.(4.1)

Since μ(x) is the first eigenvalue of the operator L(x) = − d2

dy2 + V (x, y) and u(x, ·)
vanishes at the endpoints of Ω(x), (4.1) gives us the lower bound

H ′′(x) ≥ 2(μ(x)− λ)

∫
Ω(x)

u(x, y)2 dy = 2(μ(x)− λ)H(x).(4.2)

Since μ(x∗) = μ∗ is the minimum value of the function μ(x), by the definition of
the length scale L2, we know that |μ(x∗) − μ| ≤ C1L

−2
2 . Thus, applying Theorem

1.13, we have the bound

|λ− μ(x∗)| ≤ C1L
−2
2 .(4.3)

The function μ(x) increases from its minimum by L−2
2 as x varies in an interval of

length comparable to L2 from x∗. Moreover, μ(x) is a convex function. Therefore,
provided we choose C > 0 sufficiently large, we have

μ(x)− μ(x∗) ≥ (C1 + 1)L−2
2(4.4)

whenever x satisfies |x− x∗| ≥ CL2. Combining the inequalities in (4.3) and (4.4)
shows that μ(x)−λ ≥ L−2

2 , and using this bound in (4.2) gives H ′′(x) ≥ 2L−2
2 H(x)

as required. �

Before giving a corollary of this proposition, we recall the generalised maximum
principle.

Proposition 4.5. Suppose that the functions v1 and v2 satisfy

Δv1 + c(x)v1 = 0, Δv2 + c(x)v2 ≤ 0

in a bounded domain D, where c(x) is a continuous function. If in addition v1 and
v2 are continuous in D̄, v1 > 0 in D and v2 > 0 in D̄, then

max
D̄

v1/v2 ≤ max
∂D

v1/v2.

This is proven in [21], Theorem 10, page 73, and follows from applying the usual
maximum principle to the function v1/v2. We now prove a corollary of Proposition
4.3.

Corollary 4.6. Let A = maxx H(x). Then, the function H(x) satisfies the upper
bound

H(x) ≤ C1A exp (−c|x− x∗|/L2).

Proof of Corollary 4.6. With C > 0 as in the statement of Proposition 4.3, let
x1 = x∗ + CL2. We also define the function R(x) for x > x1 by

R(x) = Ae−(x−x1)/L2 .
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Then, R(x) satisfies R′′(x) = L−2
2 R(x), and H(x1) ≤ A = R(x1). By Proposition

4.3 we know that

H ′′(x) ≥ L−2
2 H(x)

for all x ≥ x1. Therefore, setting D to be the interval {x ≥ x1}, the conditions of
the generalised maximum principle are satisfied and hence

H(x) ≤ R(x)

for all x ≥ x1. There is also an analogous bound for x ≤ x∗ − CL2, and this
completes the proof. �

Remark 4.7. In fact, we see from the proof that we can replace A by H(x1) and
conclude that for any x1 ≥ x∗ + CL2 we have the bound

H(x) ≤ H(x1)e
−(x−x1)/L2(4.5)

for all x > x1.

In particular, as a result of this corollary, we see that H(x) decays exponentially
from its value at x = x∗ at least at a length scale comparable to L2.

Our next aim is to obtain an upper bound for

A = max
x

H(x) = max
x

∫
Ω(x)

u(x, y)2 dy.(4.6)

If we can show that A satisfies A ≤ C1L1, then by Proposition 4.3 we have

H(x) ≤ C1L1e
−c|x−x∗|/L2 ,

and so integrating over x gives∫
Ω

u(x, y)2 dx dy =

∫
H(x) dx ≤ CL1L2.

Therefore to complete the proof of Proposition 4.1, it is sufficient to prove this
upper bound on A. To do this we first define a cut-off function χ1(x) as follows.

Definition 4.8. We define χ1(x) to be a smooth cut-off function which satisfies

0 ≤ χ1(x) ≤ 1

and is equal to 1 on the interval [x∗ − 2CL2, x
∗ +2CL2] of length 4CL2, with C as

in the statement of Proposition 4.3. Moreover, the function χ1(x) is supported on
the interval [x∗ − 3CL2, x

∗ + 3CL2] and has the derivative estimate∣∣∂kχ1(x)
∣∣ ≤ (CL2)

−k,

for k = 1, 2.

We now prove the following.

Proposition 4.9. Let χ1(x) be the cut-off function above in Definition 4.8. Then,∫
Ω

χ1(x)u(x, y)
2 dx dy ≤ C1L1L2,

for an absolute constant C1 > 0. Note that this is consistent with u(x, y) decaying
on a length scale comparable to L1 in the y-direction.
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Proof of Proposition 4.9. Integrating the eigenfunction equation against the func-
tion χ1(x)u(x, y) we obtain∫

Ω

−χ1(x)u(x, y)Δx,yu(x, y) + χ1(x)(V (x, y)− λ)u(x, y)2 dx dy = 0,

and integrating by parts one time in x and y gives∫
Ω

χ1(x)|∇x,yu(x, y)|2 dx dy +
∫
Ω

χ′
1(x)∂xu(x, y)u(x, y) dx dy

+

∫
Ω

χ1(x)(V (x, y)− λ)u(x, y)2 dx dy = 0.(4.7)

In the second integral in (4.7) we can write

χ′
1(x)∂xu(x, y)u(x, y) =

1
2χ

′
1(x)∂x(u(x, y)

2)

and integrate by parts in x again to rewrite this integral as

−1

2

∫
Ω

χ′′
1(x)u(x, y)

2 dx dy.

Thus, from (4.7) we have∫
Ω

χ1(x)|∇x,yu(x, y)|2 dx dy +

∫
Ω

χ1(x)(V (x, y)− λ)+u(x, y)
2 dx dy

=
1

2

∫
Ω

χ′′
1(x)u(x, y)

2 dx dy +

∫
Ω

χ1(x)(V (x, y)− λ)−u(x, y)
2 dx dy,(4.8)

where we have decomposed V (x, y)− λ into its positive and negative parts via

V (x, y)− λ = (V (x, y)− λ)+ − (V (x, y)− λ)−.

By the simple eigenvalue bound for λ from Proposition 2.7, we know that

(V (x, y)− λ)− ≤ C1L
−2
1 .

This also means that for any fixed x, we can only have V (x, y) − λ ≤ 0 for y
in an interval of length at most comparable to L1. Since the eigenfunction is
normalised to have a maximum of 1, and χ1(x) is only non-zero in an interval of
length comparable to L2, this gives us a bound on the final term in the right-hand
side of (4.8) of∫

Ω

χ1(x)(V (x, y)− λ)−u(x, y)
2 dx dy ≤ C1L

−2
1 L1L2 = C1L

−1
1 L2.(4.9)

We now turn to the second integral on the left-hand side of (4.8),∫
Ω

χ1(x)(V (x, y)− λ)+u(x, y)
2 dx dy.

Fix a large constant C2 > 0. For each fixed x, V (x, y)−λ is only bounded above by
C2L

−2
1 on an interval in y of length comparable to L1. Therefore, again combining

this with the bound u(x, y) ≤ 1, we can write

C2L
−2
1

∫
Ω

χ1(x)u(x, y)
2 dx dy − C1L

−1
1 L2 ≤

∫
Ω

χ1(x)(V (x, y)− λ)+u(x, y)
2 dx dy.

(4.10)
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Inserting the estimates in (4.9) and (4.10) back into (4.8) we see that∫
Ω

χ1(x)|∇x,yu(x, y)|2 dx dy + C2L
−2
1

∫
Ω

χ1(x)u(x, y)
2 dx dy

≤ 1

2

∫
Ω

χ′′
1(x)u(x, y)

2 dx dy + C1L
−1
1 L2.(4.11)

The first integral in (4.11) is positive, and so we can drop it from the estimate.
Therefore, dividing by C2L

−2
1 gives us∫

Ω

χ1(x)u(x, y)
2 dx dy ≤ 1

2
C−1

2 L2
1

∫
Ω

χ′′
1(x)u(x, y)

2 dx dy + C1L1L2.(4.12)

To conclude the proof of the proposition, we will use Corollary 4.6 and the remark
following it. By (4.5), for any x1 ≥ x∗ + CL2 and any x ≥ x1, we have∫

Ω(x)

u(x, y)2 dy ≤ e−(x−x1)/L2

∫
Ω(x1)

u(x1, y)
2 dy.

Therefore, we certainly have the estimate∫ x∗+3CL2

x∗+2CL2

∫
Ω(x)

u(x, y)2 dx dy ≤
∫ x∗+2CL2

x∗+CL2

∫
Ω(x)

u(x, y)2 dx dy,(4.13)

and an analogous estimate for x1 ≤ x∗ − CL2 and x ≤ x1. By the definition of
the cut-off function χ1(x), the second derivative χ′′

1(x) is supported on the intervals
[x∗− 3CL2, x

∗− 2CL2] and [x∗+2CL2, x
∗+3CL2] and is of order L−2

2 here. Also,
χ1(x) is equal to 1 on the intervals [x∗−2CL2, x

∗−CL2] and [x∗+CL2, x
∗+2CL2].

Therefore, using the estimate in (4.13) the integral on the right-hand side of (4.12)
is certainly at most 1

2 the size of the integral on the left-hand side. This means that
in (4.12) we can bring over the integral to the left-hand side and get the bound∫

Ω

χ1(x)u(x, y)
2 dx dy ≤ C1L1L2,

as required. �

Corollary 4.10. We have the derivative bound∫
Ω

χ1(x)|∇x,yu(x, y)|2 dx dy ≤ C1L
−1
1 L2.

Proof of Corollary 4.10. In the proof of Proposition 4.9 in (4.11) we established
the estimate ∫

Ω

χ1(x)|∇x,yu(x, y)|2 dx dy + C2L
−2
1

∫
Ω

χ1(x)u(x, y)
2 dx dy

≤ 1

2

∫
Ω

χ′′
1(x)u(x, y)

2 dx dy + C1L
−1
1 L2.(4.14)

We also showed that

L2
1

∫
Ω

χ′′
1(x)u(x, y)

2 dx dy

is bounded by
∫
Ω
χ1(x)u(x, y)

2 dx dy, and hence by Proposition 4.9 is bounded by

C1L
−1
1 L2. Using this estimate in (4.14) gives the desired result. �
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The derivative bound∫
Ω

χ1(x)|∇x,yu(x, y)|2 dx dy ≤ C1L
−1
1 L2

is of order L−2
1 smaller than the bound we obtained for the eigenfunction u(x, y)

itself in Proposition 4.9. For the y-derivative ∂yu(x, y), this bound is consistent
with our eventual aim to show that u(x, y) decays away from its maximum on a
length scale comparable to L1. However, in the x-direction, our aim is to show
that u(x, y) decays away from its maximum on a length scale comparable to L2.
Therefore, we want to improve the bound on ∂xu(x, y) given in Corollary 4.10.

Proposition 4.11. Let χ1(x) be as in Definition 4.8. Then, there exists an absolute
constant C1 > 0 such that∫

Ω

χ1(x)(∂xu(x, y))
2 dx dy ≤ CL1L

−1
2 .

Note that for L2 	 L1 this is an improvement on the bound in Corollary 4.10.

Proof of Proposition 4.11. We begin by proceeding as in the proof of Proposition
4.9 to obtain the equality in (4.8):∫

Ω

χ1(x)|∇x,yu(x, y)|2 dx dy +
∫
Ω

χ1(x)(V (x, y)− λ)u(x, y)2 dx dy

− 1

2

∫
Ω

χ′′
1(x)u(x, y)

2 dx dy = 0.(4.15)

We know that the integral of χ1(x)u(x, y)
2 is at most C1L1L2. Since |χ′′

1(x)| ≤
C1L

−2
2 this means that

1

2

∫
Ω

|χ′′
1(x)|u(x, y)2 dx dy ≤ C1L1L

−1
2 ,

and so from (4.15) we have∫
Ω

χ1(x)(∂xu(x, y))
2 dx dy +

∫
Ω

χ1(x)(∂yu(x, y))
2 dx dy

+

∫
Ω

χ1(x)(V (x, y)− λ)u(x, y)2 dx dy ≤ C1L1L
−1
2 .(4.16)

For each fixed x, the eigenfunction u(x, y) is an admissible test function for our
usual ordinary differential operator L(x). Since this operator has first eigenvalue
equal to μ(x), we obtain the lower bound∫

Ω(x)

(∂yu(x, y))
2 + (V (x, y)− λ)u(x, y)2 dy ≥ (μ(x)− λ)

∫
Ω(x)

u(x, y)2 dy.(4.17)

Multiplying the inequality in (4.17) by χ1(x) and integrating over x, (4.16) becomes

∫
Ω

χ1(x)(∂xu(x, y))
2 dx dy +

∫
Ω

χ1(x)(μ(x)− λ)u(x, y)2 dx dy ≤ C1L1L
−1
2 .

(4.18)
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By the definition of L2, we have μ(x)−μ ≥ −C1L
−2
2 , and by the eigenvalue bounds

in Theorem 1.13, we know that μ− λ ≥ −C1L
−2
2 . Therefore, (4.18) tells us that∫

Ω

χ1(x)(∂xu(x, y))
2 dx dy ≤ C1L

−2
2

∫
Ω

χ1(x)u(x, y)
2 dx dy + C1L1L

−1
2 .

Applying Proposition 4.9 then gives the desired bound. �

Now that we have established L2-bounds for the first derivative ∇x,yu(x, y) in
Propositions 4.9 and 4.11, we can return to establishing the required upper bound
for

A = max
x

H(x) = max
x

∫
Ω(x)

u(x, y)2 dy.

Proposition 4.12. A is bounded by L1 multiplied by an absolute constant.

Proof of Proposition 4.12. Suppose that we have

max
x

H(x) = H(x∗) =

∫
Ω(x∗)

u(x∗, y)2 dy ≥ C∗L1,(4.19)

where C∗ > 0 is a large absolute constant that we will specify later. Then, for any
(x, y), extending u(x, y) to be 0 outside Ω, we can write

u(x, y) = u(x∗, y) +

∫ x

x∗
∂tu(t, y) dt,

and so

u(x, y)2 ≥ 1
2u(x

∗, y)2 − C1|x− x∗|
∫ x

x∗
(∂tu(t, y))

2 dt,(4.20)

for a fixed constant C1. Integrating the inequality in (4.20) over y we find that

H(x) ≥ 1
2H(x∗)− C1|x− x∗|

∫ x

x∗

∫
Ω(t)

(∂tu(t, y))
2 dy dt,

and so by the assumption on H(x∗) in (4.19), this gives

H(x) ≥ 1
2C

∗L1 − C1|x− x∗|
∫ x

x∗

∫
Ω(t)

(∂tu(t, y))
2 dy dt.(4.21)

Let us restrict to those values of x with |x−x∗| ≤ c1L2 for a small constant c1 > 0.
Then by the derivative bound on ∂tu(t, y) in Proposition 4.11, we can ensure that
the second term in (4.21) is small compared to 1

4C
∗L1. Moreover, this constant c1

can be chosen to be independent of C∗. Therefore, this tells us that for all x in an
interval of length 2c1L2, we have the lower bound H(x) ≥ 1

4C
∗L1. In particular,

this shows that∫
Ω

χ1(x)u(x, y)
2 dx dy ≥

∫ x∗+c1L2

x∗−c1L2

H(x) dx ≥ 1
2c1C

∗L1L2.

Since c1 is independent of C∗, we can contradict the L2(Ω)-bound from Proposition
4.9 by choosing C∗ sufficiently large. �

By the discussion after the proof of Corollary 4.6, this upper bound on A from
Proposition 4.12 implies the L2(Ω)-bound

∫
Ω
u(x, y)2 dx dy ≤ CL1L2. This com-

pletes the proof of Proposition 4.1. �
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In Proposition 4.1 we derived an L2(Ω)-bound for the first eigenfunction u(x, y).
For our purposes of studying the shape of the level sets of u(x, y) near its maximum
this will be sufficient. However, another interesting question is to study the rate
at which u(x, y) decays from its maximum. Therefore, before continuing with our
study of the level sets, let us give some indication about the decay of u(x, y) as we
move away from its maximum.

We will do this by using an Agmon-type estimate, but first we need some defi-
nitions.

Definition 4.13. Fix a large absolute constant C > 0, and let Ω1 be the subset of
Ω given by

Ω1 = {(x, y) ∈ Ω : V (x, y) ≥ 1 + CL−2
1 }.

Note that the boundary of Ω1 consists of parts of the two convex curves coming
from ∂Ω and the level set {(x, y) ∈ Ω : V (x, y) = 1 + CL−2

1 }.
Definition 4.14. With Ω1 ⊂ Ω as above, we also define the distance function

h∗ : Ω1 → [0,∞)

as follows. We first define the function ν∗(x, y) to be equal to V (x, y) − λ. For
(x, y) in Ω1 we then define h∗(x, y) by

h∗(x, y) = inf
γ

1

2

∫ 1

0

ν∗(γ(t))1/2|γ′(t)| dt,

where the infimum is taken over all paths γ : [0, 1] → Ω1 between the inner boundary
of Ω1 and (x, y).

We are now in a position to state our Agmon-type estimate.

Proposition 4.15. For Ω1 and h∗(x, y) defined as above, we have∫
Ω1

u(x, y)2e2h
∗(x,y) dx dy ≤ C2L1L2,

for some absolute constant C2 > 0.

Remark 4.16. Since we certainly have the lower bound V (x, y) − λ ≥ C1L
−2
1 on

Ω1, roughly speaking this proposition shows that, in an L2(Ω)-sense, the function
u(x, y) decays at least on a length scale comparable to L1 as we move away from
the region where V (x, y) ≤ 1 + CL−2

1 . However, as V (x, y)− λ grows, this rate of
exponential decay also increases.

Proof of Proposition 4.15. This proposition will follow from a classical Agmon esti-
mate in [1]. Let us restate Theorem 1.5 from [1] (using slightly different notation).

Theorem 4.17 (Theorem 1.5 in [1]). Let D be a bounded connected open set in
R

2. Let q(x, y) be a real valued function on D, and suppose that ν(x, y) is a positive
continuous function on D such that∫

D

|∇x,yψ(x, y)|2 + q(x, y)ψ(x, y)2 dx dy ≥
∫
D

ν(x, y)ψ(x, y)2 dx dy(4.22)

for all ψ ∈ C∞
0 (D).

Fix a point (x0, y0) ∈ D, and define the distance ρν(x, y) by

ρν(x, y) = inf
γ

∫ 1

0

ν(γ(t))1/2|γ′(t)| dt,(4.23)
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where the infimum is taken over all continuous paths γ : [0, 1] → D in D between
(x0, y0) and (x, y). We also define ρν((x, y), {∞}) to be the distance from the point
(x, y) to ∂D under the distance function ρν(x, y) and define Ds by

Ds = {(x, y) ∈ D : ρν((x, y), {∞}) > s}.

Finally, suppose that

−Δx,yW (x, y) + q(x, y)W (x, y) = 0

and that the function g(x, y) satisfies

|∇x,yg(x, y)|2 < ν(x, y)(4.24)

in D. Then, we have the estimate∫
Ds

W (x, y)2(ν(x, y)− |∇x,yg(x, y)|2)e2g(x,y) dx dy

≤ 2(1 + 2s)

s2

∫
D\Ds

W (x, y)2ν(x, y)e2g(x,y) dx dy.(4.25)

We will now apply this theorem withW (x, y) = u(x, y) and q(x, y) = V (x, y)−λ.
We will choose the set D as follows: We recall that Ω1 consists of those points (x, y)
with V (x, y)− λ ≥ 1 +CL−2

1 . We then define D to be all points in R
2 outside the

inner boundary of Ω1.
Since u(x, y) = 0 on ∂Ω, we can extend u(x, y) to D by setting it to be 0 for

D\Ω1, and we extend the potential V (x, y) to D arbitrarily.
We clearly have the estimate∫
D

|∇x,yψ(x, y)|2 + (V (x, y)− λ)ψ(x, y)2 dx dy ≥
∫
D

(V (x, y)− λ)ψ(x, y)2 dx dy

for all ψ ∈ C∞
0 (D). Also, V (x, y)− λ ≥ C1L

−2
1 for (x, y) ∈ D. As a result of this,

from (4.22) we see that we can set ν∗(x, y) to be equal to the function described in
the definition of h∗(x, y) in Definition 4.14.

In Theorem 4.17 we are free to choose the value for s, and we will choose s = 1.
Then, we see that

D\D1 = {(x, y) ∈ D : ρν((x, y), {∞}) ≤ 1}

consists of the region near the inner boundary of D with width comparable to at
most L1. This is because we have ensured that ν(x, y) ≥ cL−2

1 when the point
(x, y) is within a distance L1 of the boundary of D.

We finally need to choose g(x, y) to ensure that (4.24) holds, and so we need

|∇x,yg(x, y)|2 < ν∗(x, y) = V (x, y)− λ.

We can achieve this by setting g(x, y) to be equal to the function h∗(x, y) as in
Definition 4.14. This certainly satisfies the required derivative bound.

Thus, we can apply Theorem 4.17 to get∫
D1

u(x, y)2(ν(x, y)− |∇x,yh
∗(x, y)|2)e2h∗(x,y) dx dy

≤ 6

∫
D\D1

u(x, y)2ν(x, y)e2h
∗(x,y) dx dy.(4.26)
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On D\D1, we know that ν(x, y) ≤ L−2
1 , and h∗(x, y) ≤ 1. Therefore, by the L2

bound on u(x, y) from Proposition 4.1, the right-hand side of (4.26) is bounded by

C1L
−2
1 L1L2 = C1L

−1
1 L2.

Since for (x, y) ∈ D, we have ν(x, y) − |∇x,yh
∗(x, y)|2 ≥ c1L

−2
1 , we can therefore

conclude from (4.26) that∫
Ω2

u(x, y)2e2h
∗(x,y) dx dy ≤ C1L1L2

as required. �

5. The shape of the level sets of u(x, y)

We now return to the problem of studying the shape of the level sets of the
first eigenfunction u(x, y). As we mentioned earlier, since the potential V (x, y) is
convex, a theorem of Brascamp and Lieb [8] tells us that u(x, y) is log concave. In
particular, this means that the superlevel sets of u(x, y) are convex subsets of Ω.

We will use the results of the previous section to estimate the lengths of the
projections of these level sets onto the x- and y-axis. In particular, in this section
we will establish Theorem 1.10 about the shape of the level sets. Throughout this
section we let c1 > 0 be a small absolute constant as in the statement of Theorem
1.10. The constant c > 0 which appears in the propositions below is bounded away
from 0 and 1 by satisfying

c1 < c < 1− c1,

and all other constants will depend on the choice of c1.
We first use the bound on A from Proposition 4.12 to find an upper bound on

the behaviour of the level sets of u(x, y) in the y-direction.

Proposition 5.1. Let 0 < c < 1 be a fixed absolute constant. Then, for any fixed
x, the cross-section of the superlevel set {(x, y) ∈ Ω : u(x, y) ≥ c} at x consists of
an interval of length at most L1 multiplied by an absolute constant.

Proof of Proposition 5.1. By Proposition 4.12 we know that A = maxx H(x) ≤
C1L1. If u(x, y) ≥ c for y in an interval of length CL1 for C sufficiently large, this
immediately gives a contradiction. �

We can also prove an upper bound on the length of the projection of the level
sets of u(x, y) in the y-direction.

Proposition 5.2. For sufficiently small δ > 0 fixed, there exists an η > 0 such that
if the point (x, y) is within a distance ηL1 of the level set {(x, y) ∈ Ω : V (x, y) =
1 + η−1L−2

1 }, then
u(x, y) ≤ δ.

In particular, the level sets {(x, y) ∈ Ω : u(x, y) = c} are at a distance comparable
to L1 away from the level set {(x, y) ∈ Ω : V (x, y) = 1 +CL−2

1 }, for some absolute
constant C > 0.

Remark 5.3. The proof of this proposition follows closely the proof of Lemma 3.17
in [16], where an analogous property has been established for the first eigenfunction
of a two-dimensional convex domain.
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Before proving this proposition, let us show the following corollary.

Corollary 5.4. Let 0 < c < 1 be a fixed absolute constant. Then, the projection
of the level set {(x, y) ∈ Ω : u(x, y) = c} onto the y-axis has length bounded from
above by an absolute constant multiplied by L1.

Proof of Corollary 5.4. By the definition of the length scale L1 and the orientation
of the level set ΩL−2

1
= {(x, y) ∈ Ω : V (x, y) = 1 + L−2

1 } we used when defining

L2, we know that the projection of the level set ΩL−2
1

onto the y-axis has length

comparable to L1. Moreover, by the convexity of the potential V (x, y), this is true
for any level set

{(x, y) ∈ Ω : V (x, y) = 1 + CL−2
1 },

for any absolute constant C > 0. Therefore, the upper bound on the length of the
projection of the level sets {(x, y) ∈ Ω : u(x, y) = c} onto the y-axis follows from
Proposition 5.2. �

Proof of Proposition 5.2. Let (x′, y′) be a point which is within a distance ηL1 of
the level set {(x, y) ∈ Ω : V (x, y) = 1+ η−1L−2

1 }. After a rotation, we may assume
that the nearest point of {(x, y) ∈ Ω : V (x, y) = 1 + η−1L−2

1 } to (x′, y′) is equal to
(x′, y1), with y1 < y′ and y′ − y1 < ηL1.

We will need to use two properties of the potential V (x, y). Firstly, by the simple
eigenvalue bounds on λ in Proposition 2.7 we have seen before that

Δx,yu(x, y) = (V (x, y)− λ)u(x, y) ≥ −C2
1

L2
1

u(x, y)(5.1)

for all values of (x, y), for some absolute constant C1. Moreover, V (x, y) has convex
sublevel sets, and by the rotation we made above we have V (x, y1) = 1 + η−1L−2

1 .
Therefore,

Δx,yu(x, y) = (V (x, y)− λ)u(x, y) ≥ 1

2ηL2
1

u(x, y)(5.2)

whenever y ≤ y′ − ηL1 < y1.
We define the comparison function v1(x, y) by

v1(x, y) = sin

(
C1(y − y′)

2L1
+

C1η

2
+ C1δ

)
(5.3)

for y ≥ y′ − ηL1, and by

v1(x, y) = (sin(C1δ)) exp

(
δ

2
+

(y − y′)

2δL1

)
(5.4)

for y < y′ − ηL1. We make the choice η = δ2, and this ensures that v1(x, y) is
continuous at y = y′ − ηL1 for all values of x.

For δ>0 sufficiently small, using sin(C1δ)>C1δ cos(C1δ), we find that ∂2
yv1(x, y)

has a negative delta function along y = y′ − ηL1. Everywhere else, calculating
Δx,yv1(x, y) from its definition in (5.3) and (5.4) and using the inequalities for
Δx,yu(x, y) in (5.1) and (5.2), we see that

Δx,yv1(x, y)

v1(x, y)
≤ Δx,yu(x, y)

u(x, y)
.
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Moreover, for those (x, y) ∈ ∂Ω, with y ≤ y′ +
(

π
C1

− η − 2δ
)
L1, we have

v1(x, y) > 0 = u(x, y)|∂Ω,

and for (x, y) ∈ Ω with y = y′ +
(

π
C1

− η − 2δ
)
L1, we have

v1 (x, y
′ + (π/C1 − η − 2δ)L1) = 1 ≥ u (x, y′ + (π/C1 − η − 2δ)L1) .

Thus, applying the generalised maximum principle in Proposition 4.5 to those (x, y)

in Ω with y ≤ y′ +
(

π
C1

− η − 2δ
)
L1, v1(x, y) is a positive supersolution, and in

particular

u(x′, y′) ≤ v1(x
′, y′) = sin

(
C1η

2
+ C1δ

)
≤ C2δ.

Thus, repeating the argument with a suitable multiple of δ gives the desired result.
�

We now want to obtain a lower bound on the height of the level sets in the
y-direction.

Proposition 5.5. Let 0 < c < 1 be a fixed absolute constant. Then, the superlevel
set {(x, y) ∈ Ω : u(x, y) ≥ c} has inner radius bounded below by an absolute constant
multiplied by L1. In particular, the projection of the level set {(x, y) ∈ Ω : u(x, y) =
c} onto the y-axis has length bounded from below by an absolute constant multiplied
by L1.

Remark 5.6. The proof of this proposition only considers the parameter L1 and
does not use any properties of the eigenvalue or eigenfunction that depend on L2.
In particular, this means that we do not need to fix the orientation of the level set

ΩL−2
1

= {(x, y) ∈ Ω : V (x, y) = 1 + L−2
1 },

and we are free to rotate Ω in the course of the proof.

Proof of Proposition 5.5. Let us consider the case c = 1/4 and study the level set

{(x, y) ∈ Ω : u(x, y) = 1
4}.

Suppose that the shortest projection of the set onto any direction is of length α.
By the convexity of the superlevel sets of u(x, y), after a rotation and a translation,
we may then assume that this level set lies between the two lines y = 0 and y = α.

We will use the comparison function

W (x, y) =
1

2
sin

(
π

6
+

2π

3α
y

)
.

This function is equal to 1/4 when y = 0 or y = α and satisfies

(Δx,y − V (x, y) + λ)W (x, y) = −
(
2π

3α

)2

W (x, y) + (λ− V (x, y))W (x, y).(5.5)

Since V (x, y) ≥ 1, by the straightforward eigenvalue bound on λ from Proposition
2.7 we have

λ− V (x, y) ≤ C2L−2
1 ,
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for an absolute constant C > 0. Therefore, from (5.5) we obtain

(Δx,y − V (x, y) + λ)W (x, y) ≤
(
−
(
2π

3α

)2

+ C2L−2
1

)
W (x, y).(5.6)

Let us assume that

α <
2πL1

3C
.(5.7)

Then, from (5.6) we see that

(Δx,y − V (x, y) + λ)W (x, y) < 0,

while (Δx,y − V (x, y) + λ)u(x, y)=0 in Ω. Also, for all points (x, y) with y=0, α
we have u(x, y) ≤ W (x, y) = 1

4 , and u(x, y) = 0 < W (x, y) for (x, y) ∈ ∂Ω, with
0 ≤ y ≤ α. Therefore, by the generalised maximum principle in Proposition 4.5 we
find that

u(x, y) ≤ W (x, y) for (x, y) ∈ D with 0 ≤ y ≤ α.

However, W (x, y) ≤ 1
2 , while u(x, y) attains its maximum of 1 at some point (x, y)

with 0 ≤ y ≤ α. This gives a contradiction, and so from (5.7) we must have

α >
2πL1

3C
.

Therefore the projection of the superlevel set {(x, y) ∈ Ω : u(x, y) ≥ 1
4} onto any

direction has length at least comparable to L1, and this gives us the required lower
bound on the inner radius of this superlevel set. We can also repeat the argument
above for the superlevel set {(x, y) ∈ Ω : u(x, y) ≥ c} for any fixed absolute constant
c with c1 < c < 1− c1 to obtain the same result. �

Corollary 5.7. As an immediate consequence of Proposition 5.5, we see that

A = max
x

∫
Ω(x)

u(x, y)2 dy ≥ c̃L1,

for an absolute constant c̃ > 0.

Combining Propositions 5.1 and 5.5, the height of the level set {(x, y) ∈ Ω :
u(x, y) = c} in the y-direction is comparable to L1. We now turn to studying the
length of the level sets of u(x, y) in the x-direction. We first use Corollary 4.6 to
obtain an upper bound on the length of the level sets.

Proposition 5.8. Let 0 < c < 1 be a fixed absolute constant. Then, the projection
of the level set {(x, y) ∈ Ω : u(x, y) = c} onto the x-axis has length bounded by an
absolute constant multiplied by L2.

Proof of Proposition 5.8. Suppose that the length of the projection of {(x, y) ∈ Ω :
u(x, y) = c} onto the x-axis is bounded below by 2CL2, where C > 0 is a large
absolute constant that we will specify later in the proof. For each fixed x, the cross-
section of the superlevel set {(x, y) ∈ Ω : u(x, y) ≥ c} at x consists of an interval.
Since the superlevel set is convex, the length of this interval is greater than half of
its maximum length for x lying in an interval of length CL2.

By Proposition 5.5, this maximum length is bounded below by 2C1L1 for an
absolute constant C1 > 0. In other words, u(x, y) ≥ c for all (x, y) in a rectangle
of height C1L1 and width CL2.
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As a result of this, we have

H(x) =

∫
Ω(x)

u(x, y)2 dy ≥ c2C1L1,(5.8)

for all x in an interval of length CL2. By Proposition 4.12, A is bounded by an
absolute constant multiplied by L1, and by Corollary 4.6 we have the bound

H(x) ≤ Ae−c|x−x∗|/L2 .(5.9)

Therefore, combining (5.8) and (5.9), we obtain a contradiction if we choose C to
be sufficiently large. This completes the proof of the proposition. �

To complete the proof of Theorem 1.10 we finally want to obtain a comparable
lower bound on the length of the level set of u(x, y) in the x-direction. To do this
we will use the L2-bound on the first derivative ∂xu(x, y) from Proposition 4.11.

Proposition 5.9. Let 0 < c < 1 be a fixed absolute constant. Then, the projection
of the level set {(x, y) ∈ Ω : u(x, y) = c} onto the x-axis has length bounded from
below by an absolute constant multiplied by L2.

Proof of Proposition 5.9. We first prove the proposition for c = 1/4. By applying
Proposition 5.5 with c = 1

2 , there exists a point x = x0 and an interval J of length

equal to 2c∗L1 for a constant c
∗ > 0, such that u(x0, y) ≥ 1

2 for all y in J . Therefore,∫
J

u(x0, y)
2 dy ≥ 1

4c
∗L1.(5.10)

Extending u(x, y) to be zero outside Ω, for any other x, we can write

u(x, y) = u(x0, y) +

∫ x

x0

∂tu(t, y) dt,

and so

u(x, y)2 ≥ 3
4u(x0, y)

2 − C1|x− x0|
∫
I(x)

(∂tu(t, y))
2 dt,

where I(x) consists of those points between x0 and x. Integrating this over y ∈ J ,
we find that∫

J

u(x, y)2 dy ≥ 3
4

∫
J

u(x0, y)
2 dy − C1|x− x0|

∫
J

∫
I(x)

(∂tu(t, y))
2 dt dy.(5.11)

By (5.10), the first term on the right-hand side of (5.11) is bounded from below
by 3

8c
∗L1. Provided |x − x0| ≤ c2L2 for c2 > 0 sufficiently small, we can use

Proposition 4.11 to show that the second term on the right-hand side of (5.11) is
bounded above by

C1|x− x0|L1L
−1
2 ,

for an absolute constant C1 > 0. Thus, if |x − x0| ≤ c3L2 for c3 > 0 sufficiently
small, we can ensure that∫

J

u(x, y)2 dy ≥ 3
16c

∗L1 − 1
16c

∗L1 = 1
8c

∗L1.
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Since the interval J has length equal to c∗L1, this means that for each x with
|x− x0| ≤ c3L2, u(x, y) must be at least 1

4 at some point y ∈ J . In particular, the
level set

{(x, y) ∈ Ω : u(x, y) = 1/4}
must have length in the x-direction of at least c3L2 as required. A lower bound on
the length in the x-direction of the other level sets of u(x, y) follows in an analogous
way. �

Combining Corollary 5.4 and Proposition 5.5 concerning the height of the level
sets in the y-direction with Propositions 5.8 and 5.9 concerning the length of the
level sets in the x-direction we have established the following: For any c with
c1 < c < 1− c1, the projections of the level sets {(x, y) ∈ Ω : u(x, y) = c} onto the
y- and x-axes are of lengths comparable to L1 and L2, respectively, and, moreover,
the inner radius of the corresponding superlevel set is comparable to L1 while the
diameter is comparable to L2. This implies that the level sets have the desired
shape and completes the proof of Theorem 1.10.

6. The behaviour of u(x, y) near its maximum

In Theorem 1.10 we described the shape of the level sets {(x, y) ∈ Ω : u(x, y) =
c}, where c is bounded away from 0 and 1 by c1 < c < 1− c1. In Proposition 4.15,
we gave an indication of the behaviour of u(x, y) as c becomes small. It is natural
to ask what happens when c becomes close to 1 and we approach the maximum of
the eigenfunction. Two interesting questions that one can ask in this case are the
following:

Where is the maximum of u(x, y) located relative

to the minimum of the potential V (x, y)?

What happens to the shape of the level sets of u(x, y) as c approaches 1?

In the author’s thesis [3], the first question has been partially studied, and this
proposition has been established.

Proposition 6.1. Suppose that the eigenfunction u(x, y) attains its maximum at
the point (x∗, y∗). Then, there exists an absolute constant c∗ > 0 such that

V (x∗, y∗)− λ ≤ −c∗L−2
1 .

Regarding the second question, there is the following conjecture.

Conjecture 6.2. For c = 1 − ε, with 0 < ε ≤ 1
2 , the level set {(x, y) ∈ Ω :

u(x, y) = c} has the following shape: There exists an ellipse E with minor axis
in the y-direction of length comparable to

√
εL1 and major axis in the x-direction

of length comparable to
√
εL2, such that E is contained inside this level set and

a dilate of E, with a scaling factor bounded by an absolute constant, contains this
level set. Here all constants are independent of ε.

A way of viewing this conjecture is that near the maximum of u(x, y) at (0, 0),
say, the eigenfunction resembles the polynomial

P (x, y) = 1− x2

L2
2

− y2

L2
1
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in a suitable sense. This conjecture holds for all cases where the eigenfunction is
explicitly known, but is still open even for the case of the Dirichlet Laplacian on a
two-dimensional convex domain with constant potential V . In the author’s thesis
[3], a first step towards this conjecture is established by showing that the inner
radius of the level sets is indeed comparable to

√
εL1. Studying the behaviour of

the eigenfunction near its maximum in more detail is a subject of future work.
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Prékopa-Leindler theorems, including inequalities for log concave functions, and with an
application to the diffusion equation, J. Functional Analysis 22 (1976), no. 4, 366–389.
MR0450480

[9] Luis A. Caffarelli and Avner Friedman, Convexity of solutions of semilinear elliptic equations,
Duke Math. J. 52 (1985), no. 2, 431–456, DOI 10.1215/S0012-7094-85-05221-4. MR792181
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