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TOTARO’S QUESTION FOR TORI OF LOW RANK

REED LEON GORDON-SARNEY

Abstract. Let G be a smooth connected linear algebraic group and let X be
a G-torsor. Totaro asked: if X admits a zero-cycle of degree d ≥ 1, then does
X have a closed étale point of degree dividing d? This question is entirely
unexplored in the literature for algebraic tori. We settle Totaro’s question
affirmatively for algebraic tori of rank ≤ 2.

1. Introduction

Let X be a smooth quasiprojective variety over a field k. Define its index,
denoted ind(X), to be the minimal positive degree of a zero-cycle on X. This
is nothing more than the greatest common divisor of degrees of field extensions
L/k such that X(L) �= ∅. If X has a rational point, then clearly ind(X) = 1;
but the converse is false in general. Striking counterexamples to the converse are
found among conic bundles over P1

Qp
(due to Colliot-Thélène–Coray [CTC79]), affine

homogeneous spaces under a smooth connected linear algebraic group over Qp with
finite stabilizers (due to Florence [Flo04]), and projective homogeneous spaces under
a smooth connected linear algebraic group over Qp((t)) (due to Parimala [Par05]).

Serre asked if every index 1 principal homogeneous space (or torsor) under a
smooth connected linear algebraic groupG over a field k has a rational point [Ser95].
Such spaces are classified by the pointed Galois cohomology set H1(k,G); for any
X ∈ H1(k,G) and any field extension L/k, X(L) �= ∅ if and only if XL = 1 ∈
H1(L,GL). So the index of a G-torsor X over k is exactly the greatest common
divisor of degrees of field extensions L/k such thatXL = 1 ∈ H1(L,GL). Rephrased
in the language of Galois cohomology,

Serre’s question (1995). Let G be a smooth connected linear algebraic group
over a field k, and let X ∈ H1(k,G) be a G-torsor over k. If ind(X) = 1, then is
X = 1 ∈ H1(k,G)?

No counterexamples to Serre’s question are known, and there are positive answers
in some special cases: the case of PGLn is known from the classical theory of central
simple algebras; the case of SOn is due to Springer [Spr52]; the case of unitary
groups is a result of Bayer-Fluckiger–Lenstra [BFL90]; and Sansuc proved that
Serre’s question has a positive answer for any smooth connected linear algebraic
group over a number field or a p-adic field [San81]. One should refer to Black
[Bla11a,Bla11b] for further work on this question.

However, for abelian G, a positive answer to Serre’s question is a trivial conse-
quence of the fact that the order of X in the abelian group H1(k,G), called the
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period of X and denoted per(X), divides ind(X) (cf. Lemma 3.1). Totaro general-
ized Serre’s question in a natural way that was non-obvious even for abelian G: he
asked if the existence of a zero-cycle on X of degree d ≥ 1 implies the existence of a
closed étale point on X of degree dividing d [Tot04]. Reformulating in the language
of Galois cohomology as before,

Totaro’s question (2004). Let G be a smooth connected linear algebraic group
over a field k, and let X ∈ H1(k,G) be a G-torsor over k. Is there a separable field
extension F/k of degree ind(X) such that XF = 1 ∈ H1(F,GF )?

No counterexamples to Totaro’s question are known, but affirmative proofs are
scarcer than those for Serre’s question: the case of PGLn is again a classical theorem
about central simple algebras; in the paper where he first asked the question, Totaro
answered it positively for split simply connected groups of type G2, F4, or E6 (with
a partial result for E7) [Tot04]; Garibaldi–Hoffmann improved upon this result
to give a positive answer for groups of type G2, reduced of type F4, and simply
connected of types 1E 0

6,6 or 1E 28
6,2 [GH06]; and Black–Parimala settled the question

for simply connected semisimple groups of rank ≤ 2 over fields of characteristic �= 2
[BP14]. Further exposition can be found in Black–Parimala [BP14].

Suffice it to say that Totaro’s question has a rich history but is wide open. In
particular, it is completely unexplored in the literature for tori. Our main result is
(cf. Section 5)

Theorem 1.1. Totaro’s question has a positive answer for tori of rank ≤ 2.

We remark that the theorem is true even if the ground field is not perfect. Define
the separable index of a variety X over a field, denoted inds(X), to be the minimal
positive degree of a zero-cycle of closed étale points on X. The question of equality
between ind(X) and inds(X) was raised by Lang–Tate and answered affirmatively
by recent work of Gabber–Liu–Lorenzini when X is a generically smooth and non-
empty scheme of finite type over a field [GLL13]. Since torsors under tori over fields
satisfy these hypotheses, we only need to consider separable field extensions in the
proof of Theorem 1.1.

Now, if X is regular over a field and U ⊆ X is open and dense, then ind(X) =
ind(U) by a general moving lemma for zero-cycles. So the index is a birational
invariant among regular varieties over a given field. Together with Theorem 1.1,
we obtain from this (cf. Section 6)

Corollary 1.2. Let X be a regular variety over a field containing a principal ho-
mogeneous space of a smooth torus of rank ≤ 2 as a dense open subset. If X admits
a zero-cycle of degree d ≥ 1, then X has a closed étale point of degree dividing d.

In particular, Manin proved that del Pezzo surfaces of degree 6 are toric varieties
as in Corollary 1.2 [Man72]. So as a special case of the corollary, we have

Corollary 1.3. Let X be a del Pezzo surface of degree 6. If X admits a zero-cycle
of degree d ≥ 1, then X has a closed étale point of degree dividing d.

2. Preliminaries on tori

Let k be a field and ks be its separable closure. For any étale algebra A/k,
let Gm,A (or just Gm when the base is understood) be the abelian group scheme
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SpecA[t, t−1]. A connected linear algebraic group T/k is called an algebraic torus,
k-torus, or simply a torus if

Tks := T ×k ks ∼= Gr
m,ks

for some r ≥ 1, which is called the rank of the torus. If E/k is a field extension
such that TE

∼= Gr
m,E , then E is called a splitting field of (and is said to split) T .

For any finite étale algebra A/k, let RA/k denote the Weil restriction functor
(also known as the restriction of scalars functor), which takes A-schemes to k-
schemes and, in particular, takes A-tori to k-tori. In particular, for any finite
separable field extension L/k and any L-torus T , RL/kT is a k-torus. A k-torus
T is called quasitrivial if it is isomorphic to a finite product of tori of the form
RLi/k Gm where each Li/k is a finite separable field extension. For any finite
separable field extension L/k, call

R
(1)
L/k Gm := ker[RL/k Gm

NL/k−−−→ Gm]

the norm torus associated to that extension; R
(1)
L/k Gm evidently has rank [L : k]−1.

Now, let Γ = Gal(ks/k). For any rank r k-torus T , define its character module
to be

X(T ) := Hom(Tks ,Gm,ks) [ ∼= Hom(Gr
m,ks ,Gm,ks) ∼= Zr ].

Then X(T ) is a rank r Γ-module. The association T 	→ X(T ) is an antiequivalence
between the categories of k-tori and finitely-generated Γ-modules; in fact, it is an
antiequivalence between the categories of k-tori split by a finite Galois extension
E/k and finitely-generated Gal(E/k)-modules. The Γ-action on X(T ) yields a
continuous representation

Γ → Aut(X(T )) ∼= Aut(Zr) ∼= GLr(Z)

whose kernel h � Γ corresponds to the minimal splitting field of T , a finite Galois
extension E/k. The group GLr(Z) contains the image of this representation, a copy
of Γ/h ∼= Gal(E/k). Call this the Galois group of T . On the other hand, an embed-
ding Gal(E/k) → GLr(Z) lifts to a continuous representation Γ → GLr(Z), which
determines a Γ-action on X(Gr

m), identifying the rank r k-torus Spec
(
E[X(Gr

m)]Γ
)

whose Galois group is Gal(E/k). Explicitly,

{rank r k-tori}/∼= ↔ {rank r Γ-modules}/∼=
↔ H1(k,Aut(X(Gr

m)))
↔ H1(k,Aut(Zr))
↔ H1(k,GLr(Z))
= Hom(Γ,GLr(Z))/∼

where ρ ∼ ρ′ if and only if ρ(Γ) and ρ′(Γ) are conjugate in GLr(Z).
To classify rank r tori, it is necessary to count the conjugacy classes of finite

subgroups of GLr(Z). There are 13 such classes in GL2(Z); in [Vos65], however,
Voskresenskĭı gave explicit representations of 15 finite groups in terms of matrix
generators along with their associated rank 2 tori. He later corrected this in a
short geometric proof that rank 2 tori are rational [Vos98]; here, he noted that
there are only two distinct maximal finite subgroups of GL2(Z) up to conjugacy, D4

and D6, whereas he produced two faithful representations of each of these groups
in GL2(Z) in his earlier classification paper. For the convenience of the cross-
referencing reader, the proof of Theorem 1.1 will follow his original classification.
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3. Lemmata

In order to prove Theorem 1.1, a number of key lemmas will be cited repeatedly.

Lemma 3.1. Totaro’s question for ind(X) = 1 has a positive answer for abelian
algebraic groups (e.g., tori).

Proof. Let G be an abelian algebraic group defined over a field k. By a well-
known fact from Galois cohomology, the composition of the natural restriction and
corestriction maps associated to any finite field extension L/k

H1(k,G)
res−−→ H1(L,GL)

cores−−−→ H1(k,G)

is the multiplication-by-[L : k] map. Now, fix X ∈ H1(k,G). If XL = 0 ∈
H1(L,GL) for some finite field extension L/k, then

[L : k]X = (cores ◦ res)(X) = cores(0) = 0 ∈ H1(k,G),

and so per(X) | [L : k]. Since L is arbitrary, per(X) | ind(X). But ind(X) = 1.
Then per(X) = 1, meaning that X = 0 ∈ H1(k,G). So it suffices to take F = k,
as desired. �

Lemma 3.2. Let L/k be a finite separable field extension and T = R
(1)
L/k Gm.

(a) H1(k, T ) ∼= k×/NL/k(L
×).

(b) If L/k is cyclic, then H1(k, T ) ∼= Br(L/k).
(c) H1(L, TL) = 0. In particular, ind(X) | [L : k] for all X ∈ H1(k, T ).

Proof. From the short exact sequence of k-tori

1 → R
(1)
L/k Gm → RL/k Gm

NL/k−−−→ Gm → 1,

taking Galois cohomology yields (by Hilbert 90 and the universal property of Weil
restriction) the long exact sequence of groups

L× NL/k−−−→ k× → H1(k, T ) → 1,

from which (a) is clear. Now, for any finite cyclic field extension L/k with Gal(L/k)
∼= 〈σ〉, we have a canonical isomorphism (cf. Corollary 4.4.10 from Gille–Szamuely
[GS06])

k×/NL/k(L
×) ∼= Br(L/k)

given by

γ 	→ (L/k, σ, γ)

where (L/k, σ, γ) is the cyclic algebra generated over L by u with relations ux =
σ(x)u for any x ∈ L and u[L:k] = γ. From this, (b) follows immediately. Finally, if
L ∼= k[x]/ (p(x)) and a1, . . . , am are the roots of p(x) in L, then

p(x) = q(x)

m∏
i=1

(x− ai)

for some q(x) ∈ L[x]. By the Chinese Remainder Theorem,

L⊗k L ∼= L⊗k k[x]/ (p(x))

∼= L[x]/ (q(x))×
m∏
i=1

L[x]/ (x− ai)

∼= L×A
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where A/L is a finite étale algebra. So the following diagram commutes.

L

L⊗k L L×A
∼

NL⊗kL/L id ·NA/L

In particular, NL⊗kL/L is surjective since

(id ·NA/L)(λ, 1, . . . , 1) = λ

for any λ ∈ L. Then

H1(L, TL) ∼= L×/NL⊗kL/L

(
(L⊗k L)×

)
= 0,

hence (c). �

Lemma 3.3. Let T be a k-torus with a (not necessarily minimal) splitting field E
of finite degree over k, and let X ∈ H1(k, T ).

(a) ind(X) | [E : k].
(b) If [E : k] is prime, then Totaro’s question has a positive answer for T .

Proof. Since TE is split, H1(E, TE) = 0 by Hilbert 90. Then ind(X) | [E : k]. If
[E : k] is prime, then by (a), ind(X) = 1 or [E : k], hence either F = k or E suffices,
respectively. �

For any finite extension of étale algebras A/B, let (A×)
(1)
B := {a ∈ A× :

NA/B(a) = 1}.

Lemma 3.4. Consider the following diagram of separable field extensions:

L

K1

K2

k

m
n

n
m

for some m,n > 1, and let T = RK1/k

(
R

(1)
L/K1

Gm

)
∩RK2/k

(
R

(1)
L/K2

Gm

)
.

(a) The following sequences of k-tori are exact:

1 → T → RK1/k(R
(1)
L/K1

Gm)
NL/K2−−−−→ R

(1)
K2/k

Gm → 1,

1 → T → RK2/k(R
(1)
L/K2

Gm)
NL/K1−−−−→ R

(1)
K1/k

Gm → 1.
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(b) The following sequences of abelian groups are exact:

(L×)
(1)
K1

NL/K2−−−−→ (K×
2 )

(1)
k → H1(k, T )

δ1−→ K×
1 /NL/K1

(L×),

(L×)
(1)
K2

NL/K1−−−−→ (K×
1 )

(1)
k → H1(k, T )

δ2−→ K×
2 /NL/K2

(L×).

Proof. Left exactness of both sequences is clear from the construction of T , so prov-
ing (a) amounts to showing that NL/K2

and NL/K1
are surjective after extending

scalars to ks. If Φ : (ks)mn → (ks)n and Ψ : (ks)mn → (ks)m are the maps defined
by

Φ(xij : 1 ≤ i ≤ m, 1 ≤ j ≤ n) =

(
m∏
i=1

xi1, . . . ,

m∏
i=1

xin

)

and

Ψ(xij : 1 ≤ i ≤ m, 1 ≤ j ≤ n) =

⎛
⎝ n∏

j=1

x1j , . . . ,

n∏
j=1

xmj

⎞
⎠ ,

then the following diagram commutes.

L

K1

K2

k

NL/K1
NL/K2

NK1/k
NK2/k

(ks)mn

(ks)n

(ks)m

ks

Φ
Ψ

N(ks)n/ks

N(ks)m/ks

⊗kk
s

⊗kk
s

⊗kk
s

⊗kk
s

Any a ∈ (R
(1)
K2⊗kks/ks Gm)(ks) then corresponds to an m-tuple (a1, . . . , am) ∈ (ks)m

such that
m∏
i=1

ai = 1. But Ψ is surjective: if xij = ai when j = 1 and xij = 1

otherwise, then

Ψ(xij : 1 ≤ i ≤ m, 1 ≤ j ≤ n) = Ψ(a1, 1, . . . , 1︸ ︷︷ ︸
n − 1 times

, a2, 1, . . . , 1︸ ︷︷ ︸
n − 1 times

, . . . , am, 1, . . . , 1︸ ︷︷ ︸
n − 1 times

)

= (a1, . . . , am),
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and in fact,

Φ(xij : 1 ≤ i ≤ m, 1 ≤ j ≤ n) = Φ(a1, 1, . . . , 1︸ ︷︷ ︸
n − 1 times

, a2, 1, . . . , 1︸ ︷︷ ︸
n − 1 times

, . . . , am, 1, . . . , 1︸ ︷︷ ︸
n − 1 times

)

= (1, . . . , 1︸ ︷︷ ︸
n times

).

Therefore this mn-tuple yields a ks-point of R
(1)
L⊗kks/K1⊗kks Gm mapping to a ∈

R
(1)
K2⊗kks/ks(ks). Then NL/K2

is surjective as a map of algebraic groups. By a

symmetric argument, NL/K1
is surjective too, proving (a). (b) follows by taking

Galois cohomology of these short exact sequences of k-tori and applying Lemma 3.2.
�

4. Technical results

Two technical propositions are needed for the proof of Theorem 1.1.

Proposition 4.1. Let L/K/k be a tower of separable quadratic extensions with no
intermediate fields between k and L other than K, and let

T = RK/k(R
(1)
L/K Gm).

Then Totaro’s question has a positive answer for T .

Proof. LetM be the Galois closure of L/k in ks and G = Gal(M/k). EitherM = L,
in which case G ∼= Z /4Z, or [M : L] = 2, in which case G ∼= D4. Suppose that
M = L. Then

K ⊗k L ∼= L× L

as K ⊆ L, [K : k] = 2, and K/k is separable, and

L⊗k L ∼= (L× L)× (L× L)

as [L : k] = 4 and L/k is Galois. So the following diagram commutes.

K ⊗k L L× L

L⊗k L (L× L)× (L× L)
∼

NL⊗kL/K⊗kL NL×L/L ×NL×L/L

∼

Since NL×L/L×NL×L/L is surjective, so is NL⊗kL/K⊗kL, and so by Lemma 3.2.(a),

H1(L, TL) ∼= (K ⊗k L)×/NL⊗kL/K⊗kL

(
(L⊗k L)×

)
= 0.

If [M : L] = 2, then since D4 contains three distinct subgroups of order 2, there is
another tower of separable extensions M/L′/k such that [M : L′] = 2,

K ⊗k L′ ∼= M,

and

L⊗k L′ ∼= M ×M.
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So the following diagram commutes.

K ⊗k L
′ M

L⊗k L′ M ×M
∼

NL⊗kL′/K⊗kL′ NM×M/M

∼

Since NM×M/M is surjective, so is NL⊗kL′/K⊗kL′ , and so by Lemma 3.2.(a),

H1(L′, TL′) ∼= (K ⊗k L′)×/NL⊗kL′/K⊗kL′
(
(L⊗k L

′)×
)
= 0.

So ind(X) | 4 for any X ∈ H1(k, T ), and if ind(X) = 4, then either F = L or L′

will suffice.
Suppose now that ind(X) = 2. LetX = [β] with some β ∈ K× that is not a norm

from L×. Since ind(X) = 2, it can be assumed by Theorem 9.2 from Gabber–Liu–
Lorenzini [GLL13] using standard Galois theory reductions (cf. Lemma 1.5 from
Garibaldi–Hoffmann [GH06]) that there is a tower of separable field extensions
E′/E/k such that [E′ : E] = 2, [E : k] = m for some odd m, and

β ∈ NL⊗kE′/K⊗kE′
(
(L⊗k E′)×

)
.

Write

E′ ∼=
{

E[x]/(x2 + x+ a) if char(k) = 2,
E[x]/(x2 − a) if char(k) �= 2,

for some a ∈ E×. In both cases, identify the class of x with i ∈ E′. Then there are
u0, v0 ∈ LE not both zero such that

β = NL⊗kE′/K⊗kE′(u0 + v0i)
=

(
NLE/KE(u0) + aNLE/KE(v0)

)
+ TE(u0, v0)i,

where

TK(u, v) =

{
trL/K(uv) +NL/K(v) if char(k) = 2,
trL/K(uv) if char(k) �= 2.

Since β ∈ K×, TE(u0, v0) = 0, and so

β = NLE/KE(u0) + aNLE/KE(v0).

If v0 = 0, then β = NLE/KE(u0), in which case β ∈ K× is represented by the K-
quadratic form NL/K after extending scalars to KE. But [KE : K] = [E : k] = m

is odd. Then by Springer’s Theorem [Spr52], β ∈ NL/K(L×), a contradiction. So
v0 �= 0.

Now, write

K ∼=
{

k[y]/(y2 + y + b) if char(k) = 2,
k[y]/(y2 − b) if char(k) �= 2,

for some b ∈ k×. In both cases, identify the class of y with j ∈ K. Then there are
β1, β2 ∈ k not both zero such that

β = β1 + β2j.

Let N1, N2 : L → k and Q1, Q2 : L2 → k be the k-quadratic forms defined by

NL/K = N1 +N2j,

Q1(u, v) = β1N
1(u) + bβ2N

2(u)−N1(v),
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and

Q2(u, v) =

{
(β1 + β2)N

2(u) + β2N
1(u) +N2(v) if char(k) = 2,

β1N
2(u) + β2N

1(u)−N2(v) if char(k) �= 2.

Then setting x0 = v−1
0 and y0 = u0v

−1
0 ,

a = βNLE/KE(x0)−NLE/KE(y0)
= (β1 + β2j)(N

1
LE +N2

LEj)(x0)− (N1
LE +N2

LEj)(y0)
= Q1

E(x0, y0) +Q2
E(x0, y0)j.

Since a ∈ E×, Q1
E(x0, y0) = a and Q2

E(x0, y0) = 0. Now, case by char(k).
First, suppose that char(k) �= 2. Since trLE/KE(y0) = 0, the isotropic vector for

Q2
E comes from the subspace

LE ⊕ (LE)0 ∼= (L⊕ L0)⊗k E,

where L0 = ker trL/K ⊆ L. But as [E : k] = m is odd, Q2 is isotropic by Springer’s

Theorem [Spr52]. So there is some (x1, y1) ∈ L⊕ L0 such that

Q2(x1, y1) = β1N
2(x1) + β2N

1(x1)−N2(y1) = 0.

If x1 = 0, then y1 is an isotropic vector for N2. But isotropic quadratic forms are
universal. So for any x, there is a y such that N2(y) = β1N

2(x) + β2N
1(x), i.e.,

Q2(x, y) = 0. Then we can assume that x1 �= 0. So

α = Q1(x1, y1)
= Q1(x1, y1) +Q2(x1, y1)j
= βNL/K(x1)−NL/K(y1)

means that
NL/K(x−1

1 )(NL/K(y1) + α) = β.

With F = k(
√
α), [F : k] = 2, and since y1 ∈ L0,

NL⊗kF/K⊗kF

(
y1 +

√
α

x1

)
= β.

Then XF = 0 ∈ H1(F, TF ), as desired.
Now, suppose that char(k) = 2. Let T 1, T 2 : L → k be the k-linear maps defined

by
trL/K = T 1 + T 2j.

Since

(T 1
E(y0) + 1) + T 2

E(y0)j = trLE/KE(y0) + 1
= trLE/KE(u0v

−1
0 ) + 1

= NLE/KE(v0)
(
trLE/KE(u0v0) +NLE/KE(v0)

)
= 0,

T 2
E(y0) = 0, and so the isotropic vector for Q2

E comes from the subspace

LE ⊕ (LE)# ∼= (L⊕ L#)⊗k E,

where L# = kerT 2 ⊆ L. But as [E : k] = m is odd, Q2 is isotropic by Springer’s
Theorem [Spr52]. So there is some (x1, y1) ∈ L⊕ L# such that

Q2(x1, y1) = (β1 + β2)N
2(x1) + β2N

1(x1) +N2(y1) = 0.

If x1 = 0, then y1 is an isotropic vector for N2. But the symmetric bilinear form

bN2 : L2 → k



3254 REED LEON GORDON-SARNEY

defined by

bN2(x, y) := N2(x+ y)−N2(x)−N2(y) = T 2(xy)

is non-degenerate. Then N2 is regular and isotropic, hence universal [EKM08]. So
as before, we can assume that x1 �= 0. Let γ = T 1(y1). If γ = 0, then y1 = 0 as
y1 ∈ L#. Setting α = Q1(x1, 0) and F = k[z]/(z2 + z+α) and identifying the class
of z with λ ∈ F yields that

NL⊗kF/K⊗kF

(
λ

x1

)
= β.

If γ �= 0, then

NL⊗kF/K⊗kF

(
y1 + γλ

γx1

)
= β.

In both cases, [F : k] = 2 and XF = 0 ∈ H1(F, TF ), as desired. �

Proposition 4.2. Consider the following diagram of separable field extensions:

L

K1

K2

k

m
n

n
m

for some coprime m,n > 1, and let

T = RK1/k

(
R

(1)
L/K1

Gm

)
∩RK2/k

(
R

(1)
L/K2

Gm

)
.

Then Totaro’s question has a positive answer for X ∈ H1(k, T ) of index m, n, and
mn. Furthermore, if (ind(X),m) = 1, then ind(X) | n, and if (ind(X), n) = 1,
then ind(X) | m.

Proof. By Lemma 3.4.(b), the following sequences of abelian groups are exact:

(L×)
(1)
K1

NL/K2−−−−→ (K×
2 )

(1)
k → H1(k, T )

δ1−→ K×
1 /NL/K1

(L×),

(L×)
(1)
K2

NL/K1−−−−→ (K×
1 )

(1)
k → H1(k, T )

δ2−→ K×
2 /NL/K2

(L×).

The proof will proceed according to the index.
First, suppose that ind(X) = m. Since [L : K2] = n, K×

2 /NL/K2
(L×) is n-

torsion. But (m,n) = 1, and per(X) | ind(X). So δ2(X) = 1. Then X lifts to some

β ∈ (K×
1 )

(1)
k . Now,

K2 ⊗k K2
∼= K2 ×B,

where B/K2 is an étale algebra as K2/k is separable,

K1 ⊗k K2
∼= L

as K1,K2 ⊆ L have coprime degrees and are therefore k-linearly disjoint such that

[K1 : k][K2 : k] = mn = [L : k],
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and

L⊗k K2
∼= L×A,

where A ∼= B ⊗K2
L/L is an étale algebra as K2 ⊆ L and K2/k is separable. After

identifying through the natural isomorphisms, the following diagram commutes.

L

K1

K2

k

NL/K1
NL/K2

NK1/k
NK2/k

L×A

L

K2 ×B

K2

id ·NA/L
NL/K2

×NA/B

NL/K2

id ·NB/K2

⊗kK2

⊗kK2

⊗kK2

⊗kK2

Observe that

(id ·NA/L)(β, 1) = β

and

(NL/K2
×NA/B)(β, 1) =

(
NK1/k(β), NA/B(1)

)
= (1, 1),

meaning that XK2
= 0 ∈ H1(K2, TK2

). Since ind(X) = [K2 : k] = m, it suffices
to take F = K2. But only that (ind(X), n) = 1 is needed to show that XK2

= 0.
So (ind(X), n) = 1 implies that ind(X) | m. By a symmetric argument, F = K1

suffices when ind(X) = n, and (ind(X),m) = 1 implies that ind(X) | n.
Now, suppose that ind(X) = mn. Since the sequence of k-tori

1 → T → RK1/k(R
(1)
L/K1

Gm)
NL/K2−−−−→ R

(1)
K2/k

Gm → 1

is short exact, so is the sequence of K2-tori

1 → TK2
→ RL/K2

(R
(1)
L×A/LGm)

NL×A/K2×B−−−−−−−−→ R
(1)
K2×B/K2

Gm → 1.

Since Ks
2-points of R

(1)
K2×B/K2

Gm take the form (NB⊗K2
Ks

2/K
s
2
(β−1), β) for β ∈

(B ⊗K2
Ks

2)
×,

R
(1)
K2×B/K2

Gm
∼= Gm,B .

By a similar argument,

RL/K2
(R

(1)
L×A/L Gm) ∼= RL/K2

Gm,A .

So

1 → TK2
→ RL/K2

Gm,A

NA/B−−−−→ Gm,B → 1
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is a short exact sequence ofK2-tori. Since A/L is an étale algebra, H1(L,Gm,A) = 0
by Hilbert 90. Taking Galois cohomology then yields the long exact sequence of
abelian groups

A× NA/B−−−−→ B× → H1(K2, TK2
) → 0.

So XK2
lifts to some β ∈ B×. Let C/L be the étale algebra such that

L⊗K2
L ∼= L× C.

Then since

A⊗K2
L ∼= B ⊗K2

L⊗K2
L

∼= B ⊗K2
(L× C)

∼= A× (B ⊗K2
C),

the following diagram commutes.

B ⊗K2
L A

A⊗K2
L A× (B ⊗K2

C)
∼

NA⊗K2
L/A id ·NB⊗K2

C/A

∼

But

(id ·NB⊗K2
C/A)(β, 1) = β,

meaning that XL = (XK2
)L = 0 ∈ H1(L, TL). Since [L : k] = mn, F = L

suffices. �

Corollary 4.3. Consider the following diagram of separable field extensions:

L

K1

K2

k

p
q

q
p

for some distinct primes p and q, and let

T = RK1/k

(
R

(1)
L/K1

Gm

)
∩RK2/k

(
R

(1)
L/K2

Gm

)
.

Then Totaro’s question has a positive answer for T .

Proof. The claim follows immediately from Proposition 4.2. �
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5. Proof of Theorem 1.1

The proof of Theorem 1.1 will proceed according to Gal(E/k) where E is the
minimal splitting field of the torus. Recall that for a given group, there may be
multiple isomorphism classes of tori associated to that group (over suitably general
fields) depending on how many conjugacy classes represent its isomorphism class
in GL2(Z). Finally: by Lemma 3.1 and Lemma 3.3, one can reduce ind(X) to be a
non-trivial proper divisor of [E : k].

5.1. Rank 1 tori. There are only two (conjugacy classes of) finite subgroups of
GL1(Z) ∼= Z /2Z: (1) and Z /2Z. These correspond to the two classes of rank 1
tori. For both types, a positive answer to Totaro’s question is a trivial consequence
of the previous reductions.

5.1.1 Gal(E/k) ∼= (1) and T ∼= Gm.

Proof. T is quasitrivial, and so we are done by Hilbert 90. �

5.1.2 Gal(E/k) ∼= Z/2Z and T ∼= R
(1)
E/k Gm.

Proof. [E : k] is prime, and so we are done by Lemma 3.3.(b). �

5.2. Rank 2 tori. There are 9 isomorphism classes and 15 conjugacy classes of
finite subgroups of GL2(Z).

5.2.1 Gal(E/k) ∼= (1) and T ∼= Gm×Gm.

Proof. T is quasitrivial, and so we are done by Hilbert 90. �

5.2.2 Gal(E/k) ∼= Z /2Z.

(a) T ∼= R
(1)
E/k ×R

(1)
E/k Gm.

(b) T ∼= Gm×R
(1)
E/k Gm.

(c) T ∼= RE/k Gm.

Proof. [E : k] is prime, and so we are done by Lemma 3.3.(b). �

5.2.3 Gal(E/k) ∼= Z /2Z×Z /2Z.

E

L1 L2

k

2 2

2 2

(a) T ∼= RL1/k

(
R

(1)
E/L1

Gm

)
.
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Proof. Since [E : k] = 4, we can assume that ind(X) = 2. Then

H1(k, T ) ∼= H1(L1, R
(1)
E/L1

Gm) ∼= Br(E/L1)

by Lemma 3.2.(b). Let δ : H1(k, T ) → Br(E/L1) denote the composition.
Since

δ(XL2
) ∼= δ(X)⊗k L2

∼= δ(X)⊗L1
L1 ⊗k L2

∼= δ(X)⊗L1
E

is split and [L2 : k] = 2, it suffices to take F = L2. �
(b) T ∼= R

(1)
L1/k

Gm ×R
(1)
L2/k

Gm.

Proof. Since [E : k] = 4, we can assume that ind(X) = 2. As

H1(k, T ) ∼= H1(k,R
(1)
L1/k

Gm ×R
(1)
L2/k

Gm)

∼= H1(k,R
(1)
L1/k

Gm)×H1(k,R
(1)
L2/k

Gm)
∼= Br(L1/k)× Br(L2/k)

by Lemma 3.2.(b), X can be identified with a pair of division algebras
D1 ∈ Br(L1/k) and D2 ∈ Br(L2/k). Since D1 and D2 are both split over
quadratic extensions L1 and L2, respectively, each is either a field or a
quaternion division algebra. If either of D1 or D2 is a field, then it suffices
to take either F = L2 or L1, respectively. So we can assume that both D1

and D2 are quaternion division algebras.
Let D = D1 ⊗k D2. By Albert’s Theorem [Alb72], either D is a division

algebra or D1 and D2 have a common subfield F separable over k such
that [F : k] = 2 that necessarily splits both algebras. Suppose that D is a
division algebra. Then

ind(D) = deg(D) = deg(D1) deg(D2) = 4.

But since ind(X) = 2, it can be assumed by Theorem 9.2 from Gabber–Liu–
Lorenzini [GLL13] using standard Galois theory reductions (cf. Lemma 1.5
from Garibaldi–Hoffmann [GH06]) that there is a tower of separable field
extensions K ′/K/k such that [K ′ : K] = 2, [K : k] is odd, and D1K′ and
D2K′ (hence DK′) are split. Since [K : k] is odd and ind(D) = 4, DK is a
division algebra. But as DK′ is split and [K ′ : K] = 2,

ind(D) = ind(DK) = 2,

a contradiction. So D1 and D2 have a common subfield F separable over k
such that [F : k] = 2 that necessarily splits both algebras, completing the
proof. �

5.2.4 Gal(E/k) ∼= Z /3Z and T ∼= R
(1)
E/k Gm.

Proof. [E : k] is prime, and so we are done by Lemma 3.3.(b). �

5.2.5 Gal(E/k) ∼= Z /4Z = 〈φ〉 and T ∼= REφ2/k

(
R

(1)

E/Eφ2 Gm

)
.

Proof. We are done by Proposition 4.1. �



TOTARO’S QUESTION FOR TORI OF LOW RANK 3259

5.2.6 Gal(E/k) ∼= Z /3Z×Z /2Z = 〈θ〉 × 〈τ 〉.
E

Eτ

Eθ

k

2
3

3
2

T = REτ/k

(
R

(1)
E/Eτ Gm

)
∩REθ/k

(
R

(1)

E/Eθ Gm

)
.

Proof. We are done by Corollary 4.3. �

5.2.7 Gal(E/k) ∼= S3 = 〈θ〉� 〈τ 〉.
E

EθτEτ
Eθ2τ

Eθ

k

2
3

3
2

(a) T ∼= R
(1)
Eτ/k Gm.

Proof. Since [E : k] = 6, the only cases to consider are ind(X) = 2 and 3.
But by Lemma 3.2.(c), only ind(X) = 3 is possible, and F = Eτ suffices
by Lemma 3.2.(c). �

(b) T ∼= REτ/k

(
R

(1)
E/Eτ Gm

)
∩REθ/k

(
R

(1)

E/Eθ Gm

)
.

Proof. We are done by Corollary 4.3. �

5.2.8 Gal(E/k) ∼= D4
∼= Z /4Z�Z /2Z = 〈φ〉� 〈τ 〉.

E

Eφ2
Eτ

Eφ2τ Eφ3τ Eφτ

EφEφ2,τ Eφ2,φτ

k

2 2

2 2

2 2
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(a) T ∼= REφ2,τ/k

(
R

(1)

Eτ/Eφ2,τ
Gm

)
.

Proof. We are done by Proposition 4.1. �
(b) T ∼= REφ2,φτ/k

(
R

(1)

Eφτ/Eφ2,φτ
Gm

)
.

Proof. T is isomorphic to the torus from (a). �

5.2.9 Gal(E/k) ∼= D6
∼= Z /6Z�Z /2Z = 〈σ〉� 〈τ 〉.

E

Eσ4τEσ2τEτ
Eσ3

Eσ3τ Eσ5τ Eστ

Eσ2

Eσ3,τEσ3,σ2τEσ3,σ4τ

Eσ2,στEσ2,τEσ

k

2

3

2

2

2

3

(a) T ∼= REσ2/k

(
R

(1)

E/Eσ2 Gm

)
∩REσ3/k

(
R

(1)

E/Eσ3 Gm

)
∩REτ/k Gm.

Proof. Observe that t ∈ T (A) for a k-algebra A if and only if

tσ
2

tσ
4

t = 1,

tσ
3

t = 1,
tτ = t,

which means that

T ∼= REσ2,τ/k

(
R

(1)

Eτ/Eσ2,τ
Gm

)
∩REσ3,τ/k

(
R

(1)

Eτ/Eσ3,τ
Gm

)
.

So we are done by Proposition 4.1. �
(b) T ∼= REσ2/k

(
R

(1)

E/Eσ2 Gm

)
∩REσ3/k

(
R

(1)

E/Eσ3 Gm

)
∩REτ/k

(
R

(1)
E/Eτ Gm

)
.

Proof. T is isomorphic to the torus from (a). �
This exhausts Voskresenskĭı’s classification and thus completes the proof of Theo-
rem 1.1.

6. del Pezzo surfaces

We now prove a general consequence of Theorem 1.1.

Corollary 6.1. Let X be a regular variety over a field containing a principal ho-
mogeneous space of a smooth torus of rank ≤ 2 as a dense open subset. If X admits
a zero-cycle of degree d ≥ 1, then X has a closed étale point of degree dividing d.

Proof. Write X = Y for some principal homogeneous space Y under a torus T
of rank ≤ 2. By a general moving lemma for zero-cycles (cf. Theorem 6.8 from
Gabber–Liu–Lorenzini [GLL13]), given a closed point on X of degree n, there is
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a zero-cycle on Y of degree n. So given a zero-cycle on X of degree d, there is a
zero-cycle on Y of degree d. By Theorem 1.1, Y ⊆ X has a closed étale point of
degree dividing d. �

A del Pezzo surface is a smooth projective surface X over a field k whose an-
ticanonical bundle ω−1

X is ample. Its degree is the self-intersection number D =
(KX ,KX) of its canonical divisor KX and lies between 1 and 9. If D = 8, then
Xks is isomorphic to either P2

ks blown up at a point or P1
ks × P1

ks ; otherwise, Xks

is isomorphic to P2
ks blown up at 9−D points in general position. Manin [Man86]

is a standard reference for these results; in fact, it is a theorem of Manin that
del Pezzo surfaces of degree 6 contain torsors of rank 2 tori as dense open subsets
(cf. Teorema 8.6 from [Man72], Theorem 30.3.1 from [Man86]). This gives

Corollary 6.2. Let X be a del Pezzo surface of degree 6. If X admits a zero-cycle
of degree d ≥ 1, then X has a closed étale point of degree dividing d.

Proof. This follows immediately from Corollary 6.1. �

Of independent interest are the particular rank 2 tori that arise from del Pezzo
surfaces of degree 6 within Voskresenskĭı’s classification. By the explicit algebraic
computations of Blunk [Blu10], over a non-separably-closed field k, each such torus
takes the form

T = RK2/k

(
R

(1)
L/K2

Gm

)
/R

(1)
K1/k

Gm

for some diagram of separable field extensions

L

K1

K2

k

2
3

3
2

Lemma 6.3. T ∼= RK1/k

(
R

(1)
L/K1

Gm

)
∩RK2/k

(
R

(1)
L/K2

Gm

)
.

Proof. Let Gal(L/K1) ∼= Z /2Z = 〈σ〉 and

S = RK1/k

(
R

(1)
L/K1

Gm

)
∩RK2/k

(
R

(1)
L/K2

Gm

)
.

It suffices to show that the sequence of k-tori

1 → R
(1)
K1/k

Gm
ι−→ RK2/k

(
R

(1)
L/K2

Gm

)
ϕ−→ S → 1,

where ι is the inclusion map and ϕ is defined functorially for any k-algebra A by

RK2/k

(
R

(1)
L/K2

Gm

)
(A)

ϕ(A)−−−→ S(A),

a 	→ σ(a)a−1,
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is short exact. Left exactness is clear since K1 = Lσ, so all that remains is to show
that ϕ is surjective after passing to the separable closure ks. Let β ∈ S(ks). Then

NL⊗kks/K1⊗kks(β) = 1 = NL⊗kks/K2⊗kks(β).

By Hilbert 90, β = σ(γ)γ−1 for some γ ∈ (L ⊗k ks)×. Set λ = NL⊗kks/K2⊗kks(γ).
Then

σ(λ)λ−1 = NL⊗kks/K2⊗kks(β) = 1,

i.e., λ ∈ ((K2 ⊗k ks)σ)
×

= (ks)×. Since K1/k is separable and ks is separably
closed, K1 ⊗k ks ∼= (ks)3. So there is some η ∈ (K1 ⊗k ks)× such that λ =
NK1⊗kks/ks(η). Set α = η−1γ. Then

NL⊗kks/K2⊗kks(α) = NL⊗kks/K2⊗kks

(
η−1γ

)
= λ−1NL⊗kks/K2⊗kks(γ) = 1,

i.e., α ∈ RK2/k

(
R

(1)
L/K2

Gm

)
(ks), and

ϕ(α) = ϕ
(
η−1γ

)
= σ

(
η−1γ

) (
η−1γ

)−1
= σ(γ)γ−1 = β,

completing the proof. �

7. Conclusions and an interesting open question

Theorem 7.1. Totaro’s question has a positive answer for:

I. quasitrivial tori,
II. norm tori of cyclic field extensions,
III. norm tori of prime degree field extensions,
IV. tori of rank r ≤ 2,

V. tori of the form RK1/k

(
R

(1)
L/K1

Gm

)
∩RK2/k

(
R

(1)
L/K2

Gm

)
where

L

K1

K2

k

p
q

q
p

is a diagram of field extensions for distinct primes p and q.

Now, consider the following natural question about division algebras.

Open question: Let p be an odd prime and D and D′ be non-split cyclic di-
vision algebras over k. If DK and D′

K share a subfield of degree p over K for some
finite separable field extension K/k such that p � [K : k], then do D and D′ share
a subfield of degree p over k?

A negative answer would yield the first known counterexample to Totaro’s ques-
tion.

Let k be a field, and let L and L′ be cyclic field extensions of k of degree p

such that D ∼= (L/k, σ, γ) and D′ ∼= (L′/k, σ′, γ′). If T = R
(1)
L/k Gm ×R

(1)
L′/k Gm,
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then by Lemma 3.2.(b), H1(k, T ) ∼= Br(L/k) × Br(L′/k). The pair (D,D′) then
identifies some X ∈ H1(k, T ) that has a point over LL′. If L = L′, then this is the
desired common subfield. Otherwise, [LL′ : k] = p2. The condition that DK and
D′

K have a common subfield, say E, of degree p over K means that DE and D′
E

are split, and so X has a point over E. But [E : k] = p[K : k]. So ind(X) = p
since ind(X) �= 1 (because D and D′ are non-split) and ind(X) | (p2, p[K : k]).
Since a minimal splitting field of a division algebra is isomorphic to a maximal
subfield of the algebra, the open question amounts to Totaro’s question for T in
the ind(X) = p case.

As a consequence of our much deeper understanding of quaternion algebras com-
pared to cyclic algebras of odd prime degree, we know that the question has a
positive answer when p = 2; this is just 5.2.3.(b) in the proof of Theorem 1.1. But
unlike in our proof, even having an “Albert’s Theorem” [Alb72] for odd primes
would not be strong enough to immediately settle the question because D �∼= Dop,
and so statements about the splitting fields of D⊗kD

′ seem to be of limited utility.
All this is to say that Totaro’s question for tori thinly disguises many fundamental
questions about division algebras whose answers, for now, remain elusive.
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