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KLESHCHEV’S DECOMPOSITION NUMBERS

FOR DIAGRAMMATIC CHEREDNIK ALGEBRAS

C. BOWMAN AND L. SPEYER

Abstract. We construct a family of graded isomorphisms between certain
subquotients of diagrammatic Cherednik algebras as the quantum characteris-
tic, multicharge, level, degree, and weighting are allowed to vary; this provides

new structural information even in the case of the classical q-Schur algebra.
This also allows us to prove some of the first results concerning the (graded)
decomposition numbers of these algebras over fields of arbitrary characteristic.

Introduction

Fix k an algebraically closed field of characteristic p � 0. Given a complex reflec-
tion group of type G(l, 1, n), a quantum characteristic e ∈ {2, 3, . . .}∪ {∞}, and an
e-multicharge κ ∈ (Z/eZ)l we have an associated cyclotomic Hecke algebra, Hn(κ).
In the semisimple case, the simple modules of Hn(κ) are labelled by the set of l-
multipartitions, P l

n. In the non-semisimple case, Ariki’s categorification theorem,
[Ari96], implies that for each possible weighting θ ∈ Rl we have a corresponding
parameterising set, Θ ⊂ P l

n, of the simple modules of Hn(κ).

We wish to study these Hecke algebras via an analogue of classical Schur–Weyl
duality. The appropriate language for this is provided by Rouquier’s formalism
of quasi-hereditary covers [Rou08]. In [Webb, Section 3], it is shown that the
diagrammatic Cherednik algebra, A(n, θ, κ), is a quasi-hereditary cover of Hn(κ)
and that the simple modules of A(n, θ, κ) which survive under the Schur functor
are precisely those which are labelled by Θ ⊂ P l

n. In particular the decomposition
matrix of Hn(κ) appears as a submatrix of that of A(n, θ, κ).

Over the complex field, the graded decomposition numbers of A(n, θ, κ) are re-
lated to Uglov’s canonical bases of higher level Fock spaces [Los16,RSVV16,Webb].
By using Uglov’s construction [Ugl00], one can in principle give an algorithm for
computing the decomposition matrix over C. However, in practice this algorithm
is extremely slow. Moreover, the picture deteriorates drastically when we consider
fields of prime characteristic, where almost nothing is known.

In the case that l = 1 the above specialises to the study of the symmetric
group and the Schur algebra of the general linear group (and their quantisations).
Some of the most interesting results here have sprung from generalising Kleshchev’s
description of the decomposition numbers labelled by pairs of partitions which differ
only by adding and removing a single node [Kle97]. This was graded and generalised
to the Hecke algebra of the symmetric group by Chuang, Miyachi, Tan, and Teo
(see [CMT08,TT13]) as follows. Fix γ a (multi)partition with no removable i-nodes
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and let Γ denote the set of all partitions which may be obtained by adding a total
of m i-nodes to γ. Given λ, μ ∈ Γ, the graded decomposition number dλμ(t) is
given in terms of nested sign sequences. As well as being one of the few results
which holds in positive characteristic, this result is of interest over C as it provides
a closed formula for dλμ(t), and so is computationally more efficient than the LLT
algorithm.

In the main numerical result of this paper, we generalise the above to arbitrary
diagrammatic Cherednik algebras. Over C, we show that the graded decomposition
numbers dλμ(t) for λ, μ ∈ Γ of A(n, θ, κ) can be calculated in terms of nested
sign sequences; see Theorem 4.12. We then show, under a mild restriction on κ,
that the corresponding (submatrices of the) adjustment matrices for A(n, θ, κ) are
trivial, thereby calculating the graded decomposition numbers dλμ(t) of A(n, θ, κ),
for λ, μ ∈ Γ, over fields of arbitrary characteristic; see Theorem 4.30.

This is done by proving a stronger, structural result over fields of arbitrary
characteristic. Given γ a multipartition, the set Γ is closed under the dominance
order and so there is a strong relationship between the diagrammatic Cherednik
algebra, A, and a certain subquotient AΓ; in particular the graded decomposition
numbers and certain higher extension groups are preserved. We define a sequence
χ(γ) associated to a multipartition γ, and show that if γ and γ are arbitrary
multipartitions (which need not have the same level or degree) with χ(γ) equivalent
to χ(γ), then the corresponding subquotients AΓ and AΓ are isomorphic as graded
k-algebras. This allows us to compare diagrammatic Cherednik algebras as the
quantum characteristic, multicharge, level, degree, and weighting are all allowed to
vary. This provides new structural information even in the case of the classical Schur
algebras of type G(1, 1, n) (see Example 4.33) and their higher level counterparts,
the cyclotomic (q-)Schur algebras of Dipper, James and Mathas [DJM98].

In [CT16] it is shown that the results of [CMT08,TT13] actually hold in more
generality. As long as we never add or remove nodes whose residues differ by 1, then
the graded decomposition numbers (over C) can be written as the product of the
decomposition numbers for the individual residues. In this paper, we lift this result
to the structural level and prove that it holds over fields of arbitrary characteris-
tic (and generalise it to arbitrary diagrammatic Cherednik algebras) by showing
that the algebras involved decompose as tensor products according to residue; see
Theorem 5.4.

The paper is structured as follows. In Section 1 we recall the definition of the
diagrammatic Cherednik algebra defined by Webster in [Webb] and the combina-
torics underlying its representation theory. In Section 2 we recall the combinatorics
of nested sign sequences from [TT13]. In Section 3 we define the subquotient al-
gebras in which we are interested and construct cellular bases of these algebras.
In Section 4 we construct a family of graded isomorphisms between the subquo-
tient algebras. We first illustrate how one can deduce the decomposition numbers
of these algebras over C using only the isomorphism on the level of graded vec-
tor spaces. We then lift this to an isomorphism of graded k-algebras and hence
calculate the decomposition numbers over an arbitrary field k. In Section 5, we
then construct the isomorphism which decomposes the adjacency-free subquotient
algebras as tensor products of the smaller algebras corresponding to the individual
residues.
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1. The diagrammatic Cherednik algebra

In this section we define the diagrammatic Cherednik algebras and recall the
combinatorics underlying their representation theory.

1.1. Graded cellular algebras with highest weight theories. We shall study
the diagrammatic Cherednik algebras through the following framework.

Definition 1.1. Suppose that A is a Z-graded k-algebra which is of finite rank
over k. We say that A is a graded cellular algebra with a highest weight theory if
the following conditions hold.

The algebra is equipped with a cell datum (Λ, T , C, deg), where (Λ,�) is the
weight poset. For each λ, μ ∈ Λ such that λ � μ, we have a finite set, denoted
T (λ, μ), and we let T (λ) =

⋃
μ T (λ, μ). There exist maps

C :
∐
λ∈Λ

T (λ)× T (λ) → A and deg :
∐
λ∈Λ

T (λ) → Z

such that C is injective. We denote C(S,T) = cλST for S,T ∈ T (λ). We require that
A satisfies properties (1)–(6), below.

(1) Each element cλS,T is homogeneous of degree

deg(cλS,T) = deg(S) + deg(T),

for λ ∈ Λ and S,T ∈ T (λ).
(2) The set {cλS,T | S,T ∈ T (λ), λ ∈ Λ} is a k-basis of A.

(3) If S,T ∈ T (λ), for some λ ∈ Λ, and a ∈ A, then there exist scalars rS,U(a),
which do not depend on T, such that

acλS,T =
∑

U∈T (λ)

rS,U(a)c
λ
U,T (mod A�λ),

where A�λ is the k-submodule of A spanned by

{cμQ,R | μ � λ and Q,R ∈ T (μ)}.

(4) The C-linear map ∗ : A → A determined by (cλS,T)
∗ = cλT,S, for all λ ∈ Λ

and all S,T ∈ T (λ), is an anti-isomorphism of A.
(5) The identity 1A of A has a decomposition 1A =

∑
λ∈Λ 1λ into pairwise

orthogonal idempotents 1λ.
(6) For S ∈ T (λ, μ), T ∈ T (λ, ν), we have that 1μc

λ
S,T1ν = cλS,T. There exists a

unique element Tλ ∈ T (λ, λ), and cλTλ,Tλ = 1λ.

All results in this section follow from [HM10]. Suppose that A is a graded cellular
algebra with a highest weight theory. Given any λ ∈ Λ, the graded standard module
Δ(λ) is the graded left A-module

Δ(λ) =
⊕
μ∈Λ
z∈Z

Δμ(λ)z,

where Δμ(λ)z is the C vector-space with basis {cλS | S ∈ T (λ, μ) and deg(S) = z}.
The action of A on Δ(λ) is given by

acλS =
∑

U∈T (λ)

rS,U(a)c
λ
U,
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where the scalars rS,U(a) are the scalars appearing in condition (3) of Definition
1.1.

Suppose that λ ∈ Λ. There is a bilinear form 〈 , 〉λ on Δ(λ) which is determined
by

cλU,Sc
λ
T,V ≡ 〈cλS , cλT〉λcλU,V (mod A�λ),

for any S,T,U,V ∈ T (λ). Let t be an indeterminate over Z�0. If M =
⊕

z∈Z
Mz is

a free graded C-module, then its graded dimension is the Laurent polynomial

Dimt(M) =
∑
k∈Z

(dimC Mk)t
k.

If M is a graded A-module and k ∈ Z, define M〈k〉 to be the same module with
(M〈k〉)i = Mi−k for all i ∈ Z. We call this a degree shift by k. If M is a graded
A-module and L is a graded simple module let [M : L〈k〉] be the multiplicity of
L〈k〉 as a graded composition factor of M , for k ∈ Z.

Suppose that A is a graded cellular algebra with a highest weight theory. For
every λ ∈ Λ, define L(λ) to be the quotient of the corresponding standard module
Δ(λ) by the radical of the bilinear form 〈 , 〉λ. This module is simple, and every
simple module is of the form L(λ)〈k〉 for some k ∈ Z, λ ∈ Λ. We let Lμ(λ) denote
the μ-weight space 1μL(λ). The graded decomposition matrix of A is the matrix
DA(t) = (dλμ(t)), where

dλμ(t) =
∑
k∈Z

[Δ(λ) : L(μ)〈k〉] tk,

for λ, μ ∈ Λ.

Proposition 1.2 ([HM10], Proposition 2.18). If λ, μ ∈ Λ, then Dimt(Lμ(λ)) ∈
Z�0[t+ t−1].

1.2. Combinatorial preliminaries. Fix integers l, n ∈ Z�0, g ∈ R>0 and e ∈
{3, 4, . . . } ∪ {∞}. We define a weighting θ = (θ1, . . . , θl) ∈ Rl to be any l-tuple
such that θi − θj is not an integer multiple of g for 1 � i < j � l. Let κ denote an
e-multicharge κ = (κ1, . . . , κl) ∈ (Z/eZ)l.

Remark 1.3. We say that a weighting θ ∈ Rl is well-separated for A(n, θ, κ) if
|θi − θj | > ng for all 1 � i < j � l. We say that a weighting θ ∈ Rl is a FLOTW
weighting for A(n, θ, κ) if 0 < |θi − θj | < g for all 1 � i < j � l.

Definition 1.4. An l-multipartition λ = (λ(1), . . . , λ(l)) of n is an l-tuple of parti-
tions such that |λ(1)|+ · · ·+ |λ(l)| = n. We will denote the set of l-multiparititons
of n by P l

n.

We define the Russian array as follows. For each 1 � k � l, we place a point on
the real line at θk and consider the region bounded by half-lines starting at θk at
angles 3π/4 and π/4. We tile the resulting quadrant with a lattice of squares, each
with diagonal of length 2g.

Let λ = (λ(1), λ(2), . . . , λ(l)) ∈ P l
n. The Young diagram [λ] is defined to be the

set
{(r, c, k) ∈ N× N× {1, . . . , l} | c � λ(k)

r }.
We refer to elements of [λ] as nodes (of [λ] or λ). We define the residue of a node
(r, c, k) ∈ [λ] to be κk + c − r (mod e), and refer to (r, c, k) as an i-node if it has
residue i.
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We define an addable (respectively removable) node of λ to be any node which
can be added to (respectively removed from) the diagram [λ] to obtain the Young di-
agram of a multipartition. Given S ⊂ Z/eZ we let RemS(λ) (respectively AddS(λ))
denote the set of removable (respectively addable) i-nodes of λ for all i ∈ S.

For each node of [λ] we draw a box in the plane; we shall draw our Young
diagrams in a mirrored-Russian convention. We place the first node of component
m at θm on the real line, with rows going northwest from this node, and columns
going northeast. The diagram is tilted ever-so-slightly in the clockwise direction
so that the top vertex of the box (r, c, k) (that is, the box in the rth row and cth
column of the kth component of [λ]) has x-coordinate θk + g(r − c) + (r + c)ε.

Here the tilt ε is chosen so that nε is absolutely small with respect to g (so that
ε � g/n) and with respect to the weighting (so that g does not divide any number
in the interval |θi − θj |+ (−nε,+nε) for 1 � i < j � l).

We define a loading, i, to be an element of (R × (Z/eZ))n such that no real
number occurs with multiplicity greater than one. Given a multipartition λ ∈ P l

n

we have an associated loading, iθλ (or simply iλ when θ is clear from the context)
given by the projection of the top vertex of each box (r, c, k) ∈ [λ] to its x-coordinate
i(r,c,k) ∈ R, and attaching to each point the residue κk+c−r (mod e) of this node.
Note that the above conditions on ε are designed to ensure that no two nodes have
the same x-coordinate, so that iλ is really a loading.

We let Dλ denote the underlying ordered subset of R given by the points of the
loading. Given a ∈ Dλ, we abuse notation and let a denote the corresponding node
of λ (that is, the node whose top vertex projects onto x-coordinate a ∈ R). The
residue sequence of λ is given by reading the residues of the nodes of λ according
to the ordering given by Dλ.

Example 1.5. Let l = 2, g = 1, ε = 1/100, and θ = (0, 0.5). The bipartition
((2, 1), (13)) has Young diagram and corresponding loading iλ given in Figure 1.
The residue sequence of λ is (κ1 + 1, κ1, κ2, κ1 − 1, κ2 − 1, κ2 − 2), and the ordered
set Dλ is {−0.97, 0.02, 0.52, 1.03, 1.53, 2.54}. The node x = −0.97 in λ can be
identified with the node in the first row and second column of λ(1).

Figure 1. The diagram and loading of the bipartition ((2, 1), (13)) for
l = 2, g = 1, θ = (0, 0.5).

Definition 1.6. Let λ, μ ∈ P l
n. A λ-tableau of weight μ is a bijective map T :

[λ] → Dμ which respects residues. In other words, we fill a given node (r, c, k)
of the diagram [λ] with a real number d from Dμ (without multiplicities) so that
the residue attached to the real number d in the loading iμ is equal to κk + c − r
(mod e).
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Definition 1.7. A λ-tableau, T, of shape λ and weight μ is said to be semistandard
if

◦ T(1, 1, k) > θk,
◦ T(r, c, k) > T(r − 1, c, k) + g,
◦ T(r, c, k) > T(r, c− 1, k)− g.

We denote the set of all semistandard tableaux of shape λ and weight μ by
SStd(λ, μ). Given T ∈ SStd(λ, μ), we write Shape(T) = λ.

Example 1.8. Fix κ = (0), θ = (0) and g = 1 and let ε → 0. For e = 4,
there is a unique S ∈ SStd((3, 1), (2, 12)). This tableau is the leftmost depicted in
Figure 2. The diagram depicts a partition of shape (3, 1) whose boxes are filled
with integers. These integers are obtained from the x-coordinates of the nodes of
the Young diagram (2, 12). To see this, note that

i(1,2,1) = −1 + 3ε, i(1,1,1) = 0 + 2ε, i(2,1,1) = 1 + 3ε, i(3,1,1) = 2 + 4ε,

and by letting ε → 0 we obtain the entries of the tableau. One can check that
this is the only tableau which satisfies the conditions in Definition 1.7. Simi-
larly, for e = 5, there is a unique T ∈ SStd((6, 14), (5, 15)) and a unique U ∈
SStd((6, 22, 12), (5, 32, 13)). These semistandard tableaux are depicted in Figure 2.

In all cases we let ε → 0 to make the loadings easier to read.
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Figure 2. Three semistandard tableaux S ∈ SStd((3, 1), (2, 12))
and T ∈ SStd((6, 14), (5, 15)) and U ∈ SStd((6, 22, 12), (5, 22, 13)).

Remark 1.9. For many more examples of the combinatorics of loadings and table-
aux, we refer the reader to [BCS, Section 2].

Definition 1.10. Let i and j denote two loadings of size n and let r ∈ Z/eZ. We
say that i r-dominates j if for every real number a ∈ R, we have that

|{(x, r) ∈ i | x < a}| � |{(x, r) ∈ j | x < a}|.
We say that i dominates j if i r-dominates j for every r ∈ Z/eZ. Given λ, μ ∈ P l

n

and θ ∈ Rl, we say that λ θ-dominates μ (and write μ �θ λ) if iθλ-dominates iθμ.

Remark 1.11. We note that for l > 1, the loading of the partitions (and therefore
the resulting θ-dominance order) is heavily dependent on the weighting θ ∈ Rl.

Definition 1.12. We refer to an unordered multiset R of n elements from (Z/eZ)
as a residue set of cardinality n. We let P l

n(R) denote the subset of P l
n whose

residue set is equal to R.
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Remark 1.13. We have that P l
n =

⋃
R P l

n(R) is a disjoint decomposition of the

set P l
n; notice that all of the above combinatorics respects this decomposition.

Remark 1.14. The above combinatorics can be generalised to multicompositions in
the obvious manner.

1.3. The diagrammatic Cherednik algebra. Recall that we have fixed l, n ∈
Z>0, g ∈ R>0 and e ∈ {3, 4, . . . } ∪ {∞}. Given any weighting θ = (θ1, . . . , θl) and
κ = (κ1, . . . , κl) an e-multicharge, we will define what we refer to as the diagram-
matic Cherednik algebra, A(n, θ, κ).

This is an example of one of many finite dimensional algebras (reduced stead-
ied quotients of weighted KLR algebras in Webster’s terminology) constructed in
[Webb], whose module categories are equivalent, over the complex field, to cate-
gory O for a rational cyclotomic Cherednik algebra [Webb, Theorems 2.3 and 3.9].
Over fields of arbitrary characteristic and θ a well-separated weighting, the alge-
bra A(n, θ, κ) is Morita equivalent to the corresponding cyclotomic q-Schur algebra
of [DJM98] with the same level, rank, quantum characteristic and e-multicharge
[Weba, Theorem 3.9].

Definition 1.15. We define a θ-diagram of type G(l, 1, n) to be a frame R× [0, 1]
with distinguished black points on the northern and southern boundaries given by
the loadings iμ and iλ for some λ, μ ∈ P l

n(R) and a collection of curves each of
which starts at a northern point and ends at a southern point of the same residue,
i say (we refer to this as a black i-strand). We further require that each curve has
a mapping diffeomorphically to [0, 1] via the projection to the y-axis. Each curve
is allowed to carry any number of dots. We draw

◦ a dashed line g units to the left of each strand, which we call a ghost i-strand
or i-ghost ;

◦ vertical red lines at θk ∈ R each of which carries a residue κk for 1 � k � l
which we call a red κk-strand.

We now require that there are no triple points or tangencies involving any combina-
tion of strands, ghosts or red lines and no dots lie on crossings. We consider these
diagrams equivalent if they are related by an isotopy that avoids these tangencies,
double points and dots on crossings.

Remark 1.16. Note that our diagrams do not distinguish between ‘over’ and ‘under’
crossings.

Definition 1.17 ([Webb]). The diagrammatic Cherednik algebra, A(n, θ, κ), is the
span of all θ-diagrams modulo the following local relations (here a local relation
means one that can be applied on a small region of the diagram).

(1.1) Any diagram may be deformed isotopically; that is, by a continuous de-
formation of the diagram which at no point introduces or removes any
crossings of strands (black, ghost, or red).

(1.2) For i 
= j we have that dots pass through crossings.

i j

=

i j
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(1.3) For two like-labelled strands we get an error term.

i i

=

i i

+

i i i i

=

i i

+

i i

(1.4) For double crossings of black strands, we have the following.

i i

= 0

i j

=

ji

(1.5) If j 
= i− 1, then we can pass ghosts through black strands.

i j

=

i j i j

=

i j

(1.6) On the other hand, in the case where j = i− 1, we have the following.

i i−1

=

i i−1

−

i i−1

(1.7) We also have the relation below, obtained by symmetry.

i i−1

=

i i−1

−

i i−1

(1.8) Strands can move through crossings of black strands freely.

ki j

=

ki j

Similarly, this holds for triple points involving ghosts, except for the following
relations when j = i− 1.
(1.9)

jji

=

jji

−

jji

(1.10)

ii j

=

ii j

+

ii j

In the diagrams with crossings in (1.9) and (1.10), we say that the black (re-
spectively ghost) strand bypasses the crossing of ghost strands (respectively black
strands). The ghost strands may pass through red strands freely. For i 
= j, the
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black i-strands may pass through red j-strands freely. If the red and black strands
have the same label, a dot is added to the black strand when straightening
(1.11)

i i

=

ii ji

=

i j

and their mirror images. All black crossings and dots can pass through red strands,
with a correction term.
(1.12)

ij k

=

ij k

+

ij k

δi,j,k

(1.13)

= =

(1.14)

= =

Finally, we have the following non-local idempotent relation.

(1.15) Any idempotent where the strands can be broken into two groups separated
by a blank space of size > g (so no ghost from the right-hand group can be
left of a strand in the left group and vice versa) with all red strands in the
right-hand group is referred to as unsteady and set to be equal to zero.

1.4. The grading on the diagrammatic Cherednik algebra. This algebra is
graded as follows:

◦ dots have degree 2;
◦ the crossing of two strands has degree 0, unless they have the same label,
in which case it has degree −2;

◦ the crossing of a black strand with label i and a ghost has degree 1 if the
ghost has label i− 1 and 0 otherwise;

◦ the crossing of a black strand with a red strand has degree 0, unless they
have the same label, in which case it has degree 1.

In other words,

deg

i

= 2 deg

i j

= −2δi,j deg

i j

= δj,i+1 deg

i j

= δj,i−1

deg

i j

= δi,j deg

i j

= δj,i.

1.5. Representation theory of the diagrammatic Cherednik algebra. Let d
be any θ-diagram and y ∈ [0, 1] be any fixed value such that there are no crossings
in d at any point in R × {y}. Then the positions of the various strands in this
horizontal slice give a loading iy. We say that the diagram d ∈ A(n, θ, κ) factors
through the loading iy.
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The following lemma is proven in [Bow, Theorem 4.1].

Lemma 1.18. If a θ-diagram, d, factors through a loading i such that i � iμ for
some μ ∈ P l

n, with i and iμ not isotopic, then d factors through some iλ such that
iλ � i, for some λ ∈ P l

n.

Given T ∈ SStd(λ, μ), we have a θ-diagram BT consisting of a frame in which
the n black strands each connecting a northern and southern distinguished point
are drawn so that they trace out the bijection determined by T in such a way that
we use the minimal number of crossings without creating any bigons between pairs
of strands or strands and ghosts. This diagram is not unique up to isotopy (since
we have not specified how to resolve triple points), but we can choose one such
diagram arbitrarily.

Given a pair of semistandard tableaux of the same shape (S,T) ∈ SStd(λ, μ)×
SStd(λ, ν), we have a diagram CS,T = BSB

∗
T where B∗

T is the diagram obtained from
BT by flipping it through the horizontal axis. Notice that there is a unique element
Tλ ∈ SStd(λ, λ) and the corresponding basis element CTλ,Tλ is the idempotent in
which all black strands are vertical. A degree function on tableaux is defined in
[Webb, Defintion 2.13]; for our purposes it is enough to note that deg(T) = deg(BT)
as we shall always work with the θ-diagrams directly.

Theorem 1.19 ([Webb, Section 2.6]). The algebra A(n, θ, κ) is a graded cellular
algebra with a theory of highest weights. The cellular basis is given by

C = {CS,T | S ∈ SStd(λ, μ),T ∈ SStd(λ, ν), λ, μ, ν ∈ P l
n}

with respect to the θ-dominance order on the set P l
n and the anti-isomorphism

given by flipping a diagram through the horizontal axis.

Theorem 1.20 ([Webb], Theorem 6.2). Over C, the (basic algebra of the) dia-
grammatic Cherednik algebra A(n, θ, κ) is Koszul. Over C, we therefore have that
the graded decomposition numbers dλμ(t) ∈ tN0(t) for λ 
= μ ∈ Λ.

Remark 1.21. Notice that the basis of A(n, θ, κ) also respects the decomposition of
P l

n by residue sets. Given a residue set R, we let AR(n, θ, κ) denote the subalgebra
of A(n, θ, κ) with basis given by all θ-diagrams indexed by multipartitions λ, μ, ν ∈
P l

n(R).

2. Nested sign sequences

In this section we recall the combinatorics of [TT13] for calculating graded de-
composition numbers. We include several illustrative examples. We fix i ∈ (Z/eZ)
throughout. Given μ ∈ P l

n, κ ∈ (Z/eZ)l and θ ∈ Rl, we read the loading iμ from
left to right and record any addable and removable i-nodes in order and associate
the following path: {

� for each removable i-node of [μ];

� for each addable i-node of [μ].

Connect these line segments in order, to obtain the path P(μ), which we refer to
as the terrain of μ. We place a vertex at each point where two line segments meet.
If the jth edge of P(μ) is of the form � and the (j + 1)th edge is of the form �,
then we refer to the jth and (j + 1)th edges as a ridge in the terrain of μ. If the
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jth edge of P(μ) is of the form � and the (j +1)th edge is of the form �, then we
refer to the jth and (j + 1)th edges as a valley in the terrain of μ.

Example 2.1. Let l = 6 and n = 3 and let ν denote the l-multipartition ((1), (1),∅,
∅,∅, (1)) for κ = (1, 1, 1, 1, 1, 1) and some well-separated weighting θ ∈ R6. The
terrain of μ is given by the leftmost diagram in Figure 3. There is a ridge between
the second and third edges and a valley between the fifth and sixth edges.

Let l = 10 and n = 6 and let μ denote the l-multipartition ((1), (1),∅,∅, (1),∅,
(1),∅, (1), (1)) κ = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) and some well-separated weighting
θ ∈ R10. The terrain of μ is given by the rightmost diagram in Figure 3.

1

2 3

4

5 6

Figure 3. Examples of the terrain of a multipartition.

Let μ, λ ∈ P l
n and suppose the μ �θ λ. We shall add a λ-decoration to the

terrain of μ (denoted P(μ, λ)) as follows. Let A (respectively R) denote the set
of nodes in λ \ (μ ∩ λ) (respectively μ \ (μ ∩ λ)); in other words the set of nodes
added to and removed from μ to obtain the multipartition λ. Associate to each
edge in A an opening parenthesis and to each edge in R a closing parenthesis. This
defines a natural pairing on the sets A and R according to the system of nested
parentheses (that these parentheses form a nesting follows from the definition of
the θ-dominance order).

We identify a pair of parentheses with the edges at which they open and close.
Given P = (j1, j2), Q = (k1, k2) ∈ P(μ, λ), we write P ⊂ Q if k1 < j1 and j2 < k2
and refer to this order as inclusion. We let Q(μ, λ) denote the partially ordered set
of pairs of parentheses on P(μ, λ) under inclusion.

Example 2.2. Let l = 10 and n=6 and let μ=((1), (1),∅,∅, (1),∅, (1),∅, (1), (1))
λ = ((1), (1), (1), (1),∅, (1), (1),∅,∅,∅). The λ-decorated μ-terrain is given by the
diagram in Figure 4.

(

( ) ( )

)

Figure 4. The terrain of μ decorated with multipartition λ.

We shall now consider paths which may be obtained from P(μ) by replacing up
and down edges with horizontal line segments. This requires us to slightly generalise
the definition of a ridge, as follows. If the jth edge of P(μ) is of the form � and
the kth edge of P(μ) is of the form � and the edges strictly between j and k are
all horizontal line segments, then we refer to this pair of edges as a flattened ridge.
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Definition 2.3. Given μ, λ ∈ P l
n, fix a pair of parentheses P ∈ Q(μ, λ); the set of

latticed paths of shape μ and decoration λ with respect to the pair P is the set of all
possible ways of replacing some number of ridges formed of edges strictly between
the parentheses to obtain flattened ridges.

We place an ordering on such paths by writing ρ � ρ′ if the y-coordinate of every
vertex in ρ is less than or equal to the y-coordinate of the corresponding vertex in
ρ′.

Given P ∈ Q(μ, λ) and ρ a latticed path of shape μ and decoration λ, we say
that ρ has norm, ‖ρ‖, given by the number of non-flattened steps strictly between
the fixed pair of brackets plus 1. We refer to the unique path of maximal norm (in
which no ridges are flattened) as the generic latticed path.

Example 2.4. Suppose that P(μ, λ) is as in Figure 4. There are no ridges strictly
between the pairs of parentheses (4, 5) and so the set of latticed paths consists only
of the generic path. There is a single ridge strictly between (6, 9). Therefore there
are two distinct latticed paths ρ with respect to (6, 9). Namely, the generic path
P(μ, λ) in Figure 4 and the path in which we flatten the ridge between (6, 9); these
are depicted in Figure 5. These paths have norms 3 and 1, respectively.

(

( ) ( )

) (

( ) ( )

)

Figure 5. The latticed paths of shape μ and decoration λ with
respect to the pair of parentheses (6, 9). These have norms 3 and
1 respectively.

Definition 2.5. A well-nested latticed path for P(μ, λ) is a collection {ρP | P ∈
Q(μ, λ)} of latticed paths such that if P,Q ∈ Q(μ, λ) and P ⊂ Q, then ρP � ρQ.
We let Ω(μ, λ) denote the set of all well-nested latticed paths. The norm of a
well-nested latticed path is given by the sum of the norms of the constituent paths.

Example 2.6. Now consider P(μ, λ) and the pair of parentheses given by (3, 10).
There are three ridges between the pair of parentheses (3, 10). The set of all latticed
paths with respect to the pair (3, 10) which are well-nested with respect to the
rightmost latticed path in Figure 5 is depicted in Figure 6. The paths in Figure 6
are also well-nested with respect to the leftmost latticed path in Figure 5; we also
obtain a further two additional paths with respect to the pair (3, 10), which are
well-nested with respect to the leftmost diagram – these are depicted in Figure 7.

( ) ( )

Figure 6. The set of all latticed paths with respect to the pair
(3, 10) which are well-nested with respect to the rightmost path in
Figure 5. These paths have norms 5 and 3 respectively.
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( ) ( )

Figure 7. The additional latticed paths with respect to the pair
(3, 10) which are well-nested with respect to the leftmost path in
Figure 5. These paths have norms 7 and 5, respectively.

We have that there are a total of eight triples of latticed paths (corresponding
to the three distinct pairs of parentheses), six of which are well-nested. We have
that ∑

ω∈Ω(μ,λ)

t‖w‖ = t11 + 2t9 + 2t7 + t5.

3. Cherednik algebras and their subquotients

In this section, we shall define the subquotients of the diagrammatic Cherednik
algebras in which we shall be interested for the remainder of the paper.

Definition 3.1. A set of residues S ⊂ Z/eZ, is said to be adjacency-free if i ∈ S
implies i± 1 
∈ S.

Definition 3.2. We say that γ ∈ P l
n(R) is S-admissible if RemS(γ) = ∅. For

an S-admissible γ ∈ P l
n(R) and M a multiset of S-residues of size m, we let

Γ = Γ(M) denote the set of all multipartitions which may be obtained from γ by
adding a set of nodes whose residue multiset is M.

Example 3.3. Let e = 4, g = 0.99, κ = (0, 3), and θ = (0, 7). Let γ =
((3, 2, 13), (4, 22, 1)); this bipartition has residue set R = {05, 14, 25, 33}, as depicted
in Figure 8.

Given S = {1, 3} and γ as above, we have that RemS(γ) = ∅ and therefore
γ is S-admissible. Given M = {1, 33}, the set Γ = Γ(M) consists of the 20
bipartitions which may be obtained by adding a single 1-node and three 3-nodes
to the bipartition γ. For example, we have that α = ((4, 3, 14), (5, 22, 1)) and
β = ((3, 2, 14), (5, 23, 1)) both belong to Γ.

We wish to consider the subalgebra AR∪M(n+m, θ, κ). In particular, we wish to
consider the subquotient of AR∪M(n+m, θ, κ) whose representations are indexed
by the subset of multipartitions Γ ⊂ P l

n+m(R∪M).

The set Γ has unique maximal and minimal elements under the θ-dominance
order which we shall now describe. We let γ+ denote the �θ-maximal multipartition
in Γ; that is, the multipartition obtained from γ by adding all nodes as far left as
possible. Similarly, denote by γ− the �θ-minimal multipartition in Γ, obtained
from γ by adding nodes as far to the right as possible. It is clear that we can
characterise Γ as follows:

Γ = {λ ∈ P l
n+m(R∪M) | γ+ �θ λ �θ γ−}.

Example 3.4. In the example above, γ+ = ((4, 3, 2, 12), (5, 22, 1)) and γ− =
((3, 2, 14), (5, 23, 1)).
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3
2
1
0

0
3
2

1
2

0

0
1

2
3
2
1
0

Figure 8. The bipartition γ = ((3, 2, 13), (4, 22, 1)) for e = 4,
κ = (0, 3), g = 0.99, and θ = (0, 7).

Definition 3.5. Given γ ∈ P l
n, we define idempotents

e =
∑

μ�γ−

1μ and f =
∑
μ�γ+

1μ

in AR∪M(n+m, θ, κ). We let AΓ = AΓ(M, θ) denote the subquotient of AR∪M =
AR∪M(n+m, θ, κ) given by

f(AR∪M/(AR∪MfAR∪M))e.

Proposition 3.6. The algebra AΓ is a graded cellular algebra with a theory of
highest weights. The cellular basis is given by

{CS,T | S ∈ SStd(λ, μ), T ∈ SStd(λ, ν), λ, μ, ν ∈ Γ},

with respect to the θ-dominance order on Γ. In particular, for λ, μ ∈ Γ, we have
that the graded decomposition number dλμ(t) for the algebras A(n+m, θ, κ) and AΓ

are identical, and moreover, if λ 
= μ, then dλμ(t) ∈ tN0[t].

Proof. By definition, the sets E = {μ | μ � γ−} and F = {μ | μ � γ+} are both
cosaturated (in the sense of [Don98, Appendix]) in the θ-dominance ordering. We
claim that

AR∪MfAR∪M = 〈CST | S ∈ SStd(λ, μ), T ∈ SStd(λ, ν), λ ∈ F, μ, ν ∈ P l
n〉C.

To see that the right-hand side is contained in the left-hand side, we note that
if S and T are semistandard tableaux of shape λ ∈ F , then CST = BS1λB

∗
T by

definition. The reverse containment follows from axiom (3) of Definition 1.1 because
each element 1λ = CTλTλ is itself an element of the cellular basis.

The resulting quotient algebra has basis indexed by S∈SStd(λ, μ), T∈SStd(λ, ν),
λ, μ, ν 
∈ F (by conditions (2) and (3) of Definition 1.1 and Theorem 1.19). Applying
the idempotent truncation to this basis (and using (6) of Definition 1.1) we obtain
the required basis of AΓ. The graded decomposition numbers (as well as dimensions
of higher extension groups) are preserved under both the quotient and truncation
maps; see for example [Don98, Appendix] for the ungraded case. Applying Theorem
1.20 will thus prove the claim about graded decomposition numbers. �
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4. An isomorphism theorem

Let m, e, e ∈ Z>0 and let i ∈ Z/eZ, i ∈ Z/ēZ. Suppose γ and γ are i-admissible
and i-admissible multipartitions, respectively. We let M (respectively M) be a set
of m i-nodes (respectively i-nodes), and let Γ = Γ(M) and Γ = Γ(M), i.e., Γ is
the set of multipartitions obtained from γ by adding m i-nodes, and similarly for
Γ. We shall associate a sequence χ(γ) to γ (respectively χ(γ) to γ) which records
the series of i-diagonals in γ (respectively i-diagonals in γ).

If χ(γ) = χ(γ), then we shall show that AΓ and AΓ are isomorphic as graded
k-algebras. These isomorphisms are independent of the quantum characteristic,
e-multicharge, weighting, level, and degree of the corresponding diagrammatic
Cherednik algebras. This provides new structural information even for the clas-
sical Schur algebras in level 1.

4.1. Building i-diagonals from bricks. The combinatorics needed to state and
prove our isomorphism theorem is that of diagonals in the Young diagram of γ,
which we now describe.

Definition 4.1. Let 1 � k � l and let (r, c) ∈ [γ(k)]∪Add(γ(k)) be an i-node. We
refer to the set of nodes

D = {(a, b) ∈ [γ(k)] | a− b ∈ {r − c− 1, r − c, r − c+ 1}}
as the associated i-diagonal. If a− b is greater than, less than, or equal to zero, we
say that the i-diagonal is to the left of, right of, or centred on θk, respectively.

We say that an i-diagonal in [γ] is visible (respectively invisible) if the diagonal
has (respectively does not have) an addable i-node.

Example 4.2. Let e = 5, γ = (10, 92, 6, 42, 3, 2, 12), and suppose κ = (0), θ = (0)
and g = 1. This partition contains five 0-diagonals (see Figure 9).
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Figure 9. The partition γ = (10, 92, 6, 42, 3, 2, 12) with κ = (0)
and e = 5 with the diagonals of interest for i = 0. The diagram
features two i-diagonals to the left of θ1, one centred on θ1 and
two to the right of θ1.

Since the multipartitions λ, μ ∈ Γ differ only by moving a set of i-nodes, we are
only interested in neighbourhoods (of a diagram) in which an i-strand, A, crosses
a strand labelled by an i-, (i + 1)-, or (i − 1)- node in γ. We shall now describe
all ways in which this can happen. We shall build these i-diagonals from the set of
bricks Bk for k = 1, . . . , 5 depicted in Figure 10 and the empty brick, B6.
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Figure 10. The bricks B1, B2, B3, B4, B5 respectively. The B6

brick is a single red i-strand (in other words it corresponds to an
empty partition with charge i).

Case 1 (Visible i-diagonals). Fix some component 1 � k � l. There are three types
of i-diagonal which can occur (in this component) which have an addable i-node
at the top. Namely, those which occur to the left or right of the node (1, 1, k) and
those which occur on the node (1, 1, k). It’s not difficult to see that all three of
these cases can be built out of the bricks B1 and a single B4, B5, or B6 brick
respectively. Namely, we place a B4, B5, or B6 at the base (for i-diagonals to the
left, right, or centred on θk, respectively) and then put some number (possibly zero)
of B1 bricks on top. Examples of how to construct such an i-diagonal are depicted
in Figure 11.

Figure 11. Examples of visible i-diagonals to the left, right, and
centred on (1, 1, k).

Case 2 (Invisible i-diagonals). Recall that we say an i-diagonal is invisible if it
does not have an addable i-node at the top. Since γ is i-admissible, it has no
removable i-nodes, and there are thus six possible invisible i-diagonals; these are
obtained by adding either a B2 or B3 brick to the top of one of the three types of
visible i-diagonal. Examples of how to construct such i-diagonals are depicted in
Figure 12.

Let D be any i-diagonal. We define x(D) to be the x-coordinate of the top
vertex of the top i-node in D or the left vertex of the top (i− 1)-node in D or the
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Figure 12. Examples of invisible i-diagonals. The former (respec-
tively latter) is obtained by adding a B2 (respectively B3) brick to
the leftmost (respectively rightmost) diagram in Figure 11.

right vertex of the top (i+1)-node in D if such a node exists (if they all exist, then
the definitions clearly agree).

Example 4.3. Continuing from Example 4.2; the ordered set of x-coordinates of
the diagonals is equal to {−10 + 10ε,−5 + 11ε, 8ε, 5 + 9ε, 10 + 11ε}.

4.2. Strands passing through i-diagonals. We shall let A denote an i-node of
T ∈ SStd(λ, μ) and identify the node with the strand it labels in the diagram BT.

Definition 4.4. We say that an i-strand, A, passes through an i-diagonal, D, if
there is a neighbourhood of the diagram in which A is at least 2ε to the left of all
ghost (i− 1)-strands in D and a neighbourhood of the diagram in which the ghost
of A is at least 2ε to the right of all the black (i+ 1)-strands in D.

Remark 4.5. If A satisfies Definition 4.4, then it also has the property that the
ghost of A is to the left of all black (i + 1)-strands in some neighbourhood (the
first in the definition) and that A is strictly to the right of all black i-strands and
ghost (i− 1)-strands in some neighbourhood (the second in the definition). In this
way, A passing through an i-diagonal means that A and its ghost cross all strands
corresponding to the i-diagonal which may contribute to the degree or give rise to
relations.

In fact, suppose that A passes through an i-diagonal D and that B and B′ are
two bricks in D such that B is above B′ in the [γ]. Then the (i−1)-ghost, i-strand,
and (i+1)-strand in B each occur strictly to the right of the corresponding strand
in B′. Therefore all non-trivial interactions between A and B happen before those
between A and B′ (reading from right to left).

Example 4.6. Consider the diagrams BT and BU for T and U as in Figure 2.
These are depicted in Figures 13 and 14.

Consider the diagram BT. This diagram has a total of three 0-diagonals; A
passes through the two rightmost 0-diagonals. The first of these two crossings is
with a 0-diagonal consisting of a 1-strand, a 0-strand, and a 4-strand, centred at
θ1. The other 0-diagonal consists only of a single 4-strand (a B5 brick) and is at
the far right of the diagram. The total degree of the diagram is 2; the crossing of
A with the centred diagonal has degree 1 (as before); the crossing of A with the
rightmost diagonal also has degree 1.
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Now consider the diagram BU. This diagram has a total of three 0-diagonals;
A passes through the two rightmost 0-diagonals. The first of these two crossings
is with a 0-diagonal built from a B7 brick a B1 brick and a B2 brick. The second
diagonal consists of a B5 brick, as before.

1

0 4 3 2 1 0 0 4 3 2 1

Figure 13. The diagram BT for T as in Figure 2.

1

0 4 3 2 1 0 4 44 4 3 2 1

Figure 14. The diagram BU for U as in Figure 2.

4.3. A vector space isomorphism over k and decomposition numbers over
C. The purpose of this section is to establish the graded vector space isomorphisms
between our subquotient algebras. We proceed in two steps. First, we show that for
an adjacency-free residue set, we can construct a graded vector space isomorphism
which allows us to address this question one-residue-at-a-time. We then construct
the graded vector space isomorphisms between subquotients corresponding to a
single residue. This allows us to immediately deduce the decomposition numbers
of these algebras over the complex field.

Given γ an i-admissible multipartition, we denote the addable i-nodes of γ by
A1, A2, . . . , Aa so that iAj

� iAk
if and only if j < k. Given λ ∈ Γ and 1 � k � m

we let σk(λ) denote the minimal number such that

|{A1, . . . , Aσk(λ)} ∩ [λ]| = k.

We define a length function on Γ as follows. Given λ, μ ∈ Γ such that λ � μ, we
define

�(λ, μ) =
∑

1�k�m

σk(μ)− σk(λ).

Example 4.7. Let e = 4 and γ, κ, and θ be as in Example 3.3. Let i = 3,
λ = ((4, 22, 12), (5, 22, 1)) and μ = ((4, 2, 14), (4, 22, 12)). We have σ1(μ) = 1,
σ2(μ) = 4, σ3(μ) = 5 and σ1(λ) = 1, σ2(λ) = 2, σ3(λ) = 3 and therefore �(λ, μ) = 4.

Definition 4.8. Let T ∈ SStd(λ, μ) for λ, μ ∈ Γ. We define the component word
R(T) of T by

R(T) = (T(Aσ1(λ)),T(Aσ2(λ)), . . . ,T(Aσ(λ))).
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Proposition 4.9. Given λ, μ ∈ Γ, a tableau T ∈ SStd(λ, μ) is uniquely determined
by its component word R(T).

Proof. Any node belonging to γ is simply mapped to itself under T. Therefore a
tableau T ∈ SStd(λ, μ) is an identification of m pairs of nodes ((r, c, k), (r′, c′, k′))
for (r, c, k) ∈ [λ \ γ] and (r′, c′, k′) ∈ [μ \ γ] such that i(r′,c′,k′) � i(r,c,k). It is clear
that R(T) uniquely determines this identification of nodes in [λ\γ] and [μ\γ] (and
vice versa) and so the result follows. �

Let i ∈ Z/eZ and i ∈ Z/ēZ. Suppose γ and γ are i-admissible and i-admissible
multipartitions, respectively, such that |Addi(γ)| = |Addi(γ)|. (Note that we do

not assume that γ and γ have the same level or degree.) Given λ ∈ Γ, we let λ ∈ Γ
denote the multipartition such that Aσk(λ) = Aσk(λ)

for all 1 � k � m. We define

a bijection φ : SStd(λ, μ) → SStd(λ, μ) which takes T to the unique T such that
R(T) = R(T). We let Φ : AΓ �→ AΓ denote the lift of φ to the cellular bases of
these algebras.

Example 4.10. Let e = 5, κ = (0), g = 0.99, θ = (0), and i = 0. The partition
γ = (5, 14) is 0-admissible and Γ = {(6, 14), (5, 2, 13), (5, 15)}. Recall that there is
a unique T ∈ SStd((6, 14), (5, 15)) of degree 2, as depicted in Figure 2.

Let e = 11, κ = (1, 1, 1), θ = (−5, 0, 4), and i = 1. The multipartition γ =
(∅, (2, 1),∅) is 1-admissible and Γ = {(6, 14), (5, 2, 13), (5, 15)}. There is a unique
T ∈ SStd(((1), (2, 1),∅), (∅, (2, 1), (1))) of degree 2.

The image under the map Φ : AΓ → AΓ of the element BT in Figure 13 is given
in Figure 15.

1211 1 4 1

Figure 15. Image of the diagram in Figure 13 under Φ, as in
Example 4.10.

Proposition 4.11. We have that AΓ and AΓ are isomorphic as graded vector
spaces over k; the isomorphism is given by Φ(CS,T) = CS,T. This isomorphism
preserves both the length function and the graded characters of standard modules.
In other words

�(λ, μ) = �(λ, μ), Dimt(Δμ(λ)) = Dimt(Δμ(λ)),

for all λ, μ ∈ Γ.

Proof. We begin by explicitly describing the effect of Φ on basis elements. Given
(S,T) ∈ SStd(λ, μ)×SStd(λ, ν), the diagram of CS,T may be obtained from that of
CS,T as follows.
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(1) Take the diagram corresponding to T ∈ SStd(λ, μ) and simply “forget” all
black strands (and their ghosts) corresponding to nodes of [γ], as well as
all red strands (which are at x-coordinates given by θ). What remains is a
diagram involving m i-strands whose northern and southern points belong
to the set {x | Dx is visible}.

(2) Isotopically deform the i-strands (along with their ghosts) and their north-
ern and southern end points (which are initially given by the loadings iλ
and iμ respectively) until the northern and southern end points are given
by the corresponding loadings iλ and iμ respectively. Now change the label

of all of these strands from i to i.
(3) Finally, add the black vertical strands (and their ghosts) corresponding to

nodes of [γ], as well as all red strands (which are at x-coordinates given by
θ).

That the map Φ is an isomorphism of vector-spaces is clear from the fact that the
corresponding semistandard tableaux are in bijection.

We now wish to show that Φ is degree preserving. Let (S,T) ∈ SStd(λ, μ) ×
SStd(λ, ν) and let A denote any strand in the diagram CS,T which corresponds to
a removable i-node of λ for λ ∈ Γ. By assumption (and the definition of Φ), the
strand A is common to the diagrams of both CS,T and CS,T; we wish to count the
degree contribution of A in each case. Degree contributions are made whenever
the strand A passes through an i-diagonal in γ (respectively i-diagonal in γ) or
an i-strand (respectively i-strand) corresponding to a node in λ \ γ (respectively
λ \ γ). The strands labelled by nodes in λ \ γ and λ \ γ are common to both CS,T

and CS,T (with appropriate relabelling of residues), so we need only consider the
degree contributions arising from A and its ghost crossing the i-diagonals in γ or
the i-diagonals in γ.

If A passes through a B1 brick, then the degree contribution of this crossing is
0. If A passes through a brick Bk for k = 4, 5, 6, then the degree contribution of
this crossing is +1. If A passes through a brick Bk for k = 2, 3, then the degree
contribution of this crossing is −1.

Let D be a diagonal in the diagram BT and suppose that A passes through D. A
visible diagonal is built out of a single Bk brick for k ∈ {4, 5, 6} and some number
(possibly zero) of B1 bricks. An invisible diagonal has an extra single Bk brick for
k ∈ {2, 3}. Summing over the degrees, we conclude that the crossing of A with a
visible (respectively invisible) i-diagonal has degree +1 (respectively 0). Similarly
for the crossing of A with a i-diagonal in CS,T.

That AΓ and AΓ are isomorphic as graded vector spaces now follows as Φ
maps visible (respectively invisible) i-diagonals to visible (respectively invisible)
i-diagonals. That the length function is preserved is clear. That the graded di-
mensions of standard modules are preserved is clear from the definition of Φ on the
level of semistandard tableaux of a given shape and weight. �

We now momentarily focus our attention on the representation theory of these
algebras over C. In this case the diagrammatic Cherednik algebas are Koszul, and
so graded decomposition numbers are particularly easy to calculate. In particular,
we have the following theorem.
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Theorem 4.12. Let γ be an i-admissible multipartition. The graded decomposition
numbers of A(n, θ, κ) over C can be given in terms of nested sign sequences as
follows:

dλμ(t) =
∑

ω∈Ω(λ,μ)

t‖ω‖

for λ, μ ∈ Γ such that μ �θ λ.

Proof. For λ, μ ∈ Γ, recall that Dimt(Δμ(λ)) ∈ Z�0[t, t
−1] (by the definition of

the grading on basis elements), Dimt(Lμ(λ)) ∈ Z�0[t + t−1] (see Proposition 1.2),
and for λ 
= μ we have that dλμ(t) ∈ tZ�0[t] (see Theorem 1.20). It is clear that
a necessary condition for the multiplicity of L(μ) in Δ(λ) to be non-zero is that
SStd(λ, μ) 
= ∅. It is also clear that Dimt(Δλ(λ)) = 1 = Dimt(Lλ(λ)). Therefore
the first five conditions of [KN10, Theorem 3.8] are satisfied, and so

Dimt(Δμ(λ)) =
∑
ν �=μ

SStd(ν,μ) �=∅
SStd(λ,ν) �=∅

dλν(t)Dimt(Lμ(ν)) + dλμ(t).

Therefore, one can calculate the graded characters of simple modules and the de-
composition numbers of AΓ by induction on the distance, �(λ, μ), for λ, μ ∈ Γ ex-
actly as in [KN10, Main Algorithm] and [BCS, Theorem 1.18]. By Proposition 4.11,
if we do this for λ, μ ∈ Γ or λ, μ ∈ Γ we get exactly the same answer! Therefore
the decomposition numbers of these algebras and the graded characters of simple
modules are the same regardless of the weighting, e-multicharge, rank and level.
In particular, we can run this algorithm for γ a level 1 partition with m addable
i-nodes. The result now follows by [TT13, Theorem 4.4] and Proposition 3.6. �

4.4. Some useful results on moving i-strands through diagonals. There are
several sequences of relations which we will often apply in particular order during
the course of the proof. For brevity, we shall now define these as Moves 1, 1∗, and
2.

Move 1. Suppose we have a diagram in which two j-ghosts are not separated by a
black (j + 1)-strand, and the corresponding two black j-strands are separated by a
(j−1)-ghost. We apply relation (1.10) to write this diagram as the difference of two
diagrams in which the j-strands cross and the (j − 1)strand bypasses the crossing
to the left or right; see Figure 16 for an example.

Move 1∗. Suppose we have a diagram in which two black j-strands are not separated
by a (j − 1)-ghost, and the corresponding two j-ghosts are separated by a black
(j + 1)-strand. One can repeat the above using relation (1.9) in place of (1.10).

Move 2. Suppose we have a diagram with a pair of crossing j-strands. We may
use relations (1.3) and (1.4) to rewrite the single crossing as a double crossing with
a dot on the leftmost strand located between the two crossings; see the first equality
in each of Figures 17 and 18 for an example.

Example 4.13. Let e = 3, κ = (2, 0), g = 0.99 and θ = (0, 1). The leftmost
diagram in Figure 16 is the idempotent corresponding to the loading of the bicom-
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position (∅, (1, 2)). Applying Move 1 to the two adjacent 0-ghosts, we obtain the
difference of two diagrams depicted in Figure 16.

00 22 0

=

00 22 0

−

00 22 0

Figure 16. Rewriting the idempotent corresponding to the load-
ing of (∅, (1, 2)) using relation (1.10).

In Figures 17 and 18 we first rewrite the right-hand side of the equality in
Figure 16 using Move 2. We then use relation (1.6) (whose error term is zero
by relation (1.4)) in each case to obtain an element which factors through the
idempotent ((12), (1)) or an unsteady idempotent, respectively.

00 22 0

=

00 22 0

=

00 22 0

Figure 17. Rewriting one of the diagrams in Figure 16 as an ele-
ment which factors through the idempotent labelled by ((12), (1)).

00 22 0

=

00 22 0

=

00 22 0

Figure 18. Rewriting the other diagram in Figure 16 as an ele-
ment which factors through an unsteady idempotent.

The following lemmas shall also be useful in what follows.

Lemma 4.14. If d ∈ A(n, θ, κ) factors through some loading i such that i � iγ+ ,
then d = 0 in AΓ. In particular, if d factors through 1λ with λ �(θ,j) γ

+ for some
j 
= i, then d = 0 in AΓ.

Proof. The result is immediate by the definition of AΓ, the definition of the domi-
nance order, and Lemma 1.18. �
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Lemma 4.15. Let A ∈ [γ] be at point x ∈ R and suppose A 
∈ Rem(γ). We let
d ∈ A(n, θ, κ) and suppose that there is a neighbourhood (x− nε, x+ nε)× [0, 1] in
which

d ∩ ((x− nε, x+ nε)× [0, 1]) = (1λ\A) ∩ ((x− nε, x+ nε)× [0, 1]),

for some λ ∈ Γ. Then d = 0 in AΓ.

Proof. Suppose A = (r, c, k) is a j-node. All the relations we shall apply only
involve moving strands a distance less than nε to the left or right. Such relations
applied to one component do not affect any other components, due to the fact that
ε is very small compared to the θa − θb for 1 � a, b � l. We therefore need only
focus on the interaction within the kth component.

First note that as (r, c, k) is not a removable node, there exists a node (r+1, c, k)
or (r, c+ 1, k) in [γ]. We shall argue for the former case, but the latter is similar.

If c = 1 and there is no node (r, 2, k), then the result follows as we need only
move the nodes (r + a, 1, k) for a � 1 to the left to obtain a loading that (θ, h)-
dominates iγ+ for some h 
= i; the result then follows by Lemma 1.18. For c > 1, we
now provide an algorithm for showing that d = 0 in AΓ. This involves procedures
on strands which we describe by the corresponding nodes in the Young diagram.
If at any point in the algorithm the node to which we refer does not exist, then we
have reached the first row or column of our partition; in which case terminate the
algorithm and proceed to the end of the proof.

Step 1. The (j − 1)-ghosts corresponding to (j − 1)-nodes (r + 1, c, k) and (r, c −
1, k) are not separated by a black j-strand; we can apply Move 1 to (the strands
corresponding to) this pair of nodes and the (j−2)-node (r+1, c−1, k). The result
is the difference of two distinct diagrams, in which the (j − 2)-strand (labelled by
node (r+1, c−1, k)) bypasses the (j−1)-crossing to the left and right. Now proceed
to Step 2.

Step 2.

(a) Consider the diagram in which the (j − 2)-strand bypasses to the left.
Observe that the (j−2)-ghosts labelled by nodes (r+1, c−1, k) and (r, c−
2, k) have no black strand separating them. The black (j − 2)-strands
labelled by nodes (r + 1, c − 1, k) and (r, c − 2, k) are separated by the
(j − 3)-ghost strand labelled by the node (r + 1, c − 2, k). We now set
j̄ := j − 1 and (r̄, c̄, k) := (r, c − 1, k) and (using the barred residues and
node labels as the input) proceed to Step 1.

(b) Consider the diagram in which the (j − 2)-strand bypasses to the right.
Apply Move 2 to the crossing (j − 1)-strands. Transpose the labels of the
(j− 1)-strands corresponding to nodes (r, c− 1, k) and (r+1, c, k) (as their
order when read from left to right has switched); this results in the dotted
strand being labelled by (r, c− 1, k). Push the ghost of the dotted (j − 1)-
strand through the black j-strand immediately to its left by relation (1.6)
(observe that the error term in (1.6) is zero by relation (1.4)). Observe
that the (j − 1)-ghosts labelled by nodes (r, c − 1, k) and (r − 1, c − 2, k)
have no black strand separating them. The black strands labelled by nodes
(r, c− 1, k) and (r− 1, c− 2, k) are separated by a (j− 2)-ghost labelled by
the node (r, c − 2, k). Therefore we relabel (r̄, c̄, k̄) := (r − 1, c − 1, k) and
j̄ := j and proceed to Step 1.
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The algorithm terminates if at the end of Step 2 case (a) we set c̄ = 0 and in case (b)
we set r̄ = 0 or c̄ = 0. If we terminate in case (a), then our diagram has a crossing
pair of black (j̄ − 1)-nodes labelled by (r̄, 1) and (r̄ + 1, 2) bypassed by a ghost
(j̄ − 2)-strand to the left. We can pull the (j̄ − 2)-strand at least nε units to the
left; we then apply Move 2 to the crossing (j̄−1)-strands and pull the ghost dotted
(j̄ − 1)-strand through the black j̄-strand immediately to its left. The loading at
y = 1/2 in the resulting diagram (θ, h)-dominates iγ+ for h = j̄ − 1, j̄ − 2. The
result follows from Lemma 4.14. Case (b) is similar. �
Lemma 4.16. Given λ ∈ Γ, if we add a dot to any of the strands in 1λ corre-
sponding to a node in γ, then the resulting diagram is zero in AΓ.

Proof. Let A = (r, c, k) denote a j-node in γ with a dot on the corresponding
strand. We proceed by induction on r + c; in the case (r, c, k) = (1, 1, k), A can
pass through the red j-strand immediately to its left using relation (1.11). If j 
= i,
then the diagram is zero by Lemma 4.14. If j = i, then our assumption that
(r, c, k) ∈ γ for γ i-admissible implies that there is either an (i − 1)-node (2, 1, k)
or an (i+ 1)-node (1, 2, k). In either case, the diagram is zero by Lemma 4.14.

We now assume that r + c � 2. We can pull A through the (j + 1)-ghost to its
left, labelled by (r − 1, c, k), at the expense of losing the dot (we also obtain an
error term 1λ with a dot on the (j+1)-strand labelled by (r−1, c, k), which is zero
by induction). We now apply Move 1 to the j-ghosts labelled by nodes (r, c, k) and
(r− 1, c− 1, k) and the (j +1)-strand labelled by (r− 1, c, k), to obtain two terms.
The term in which the (j + 1)-strand bypasses the crossing of j-ghosts to the left
is zero by Lemma 4.15.

Now consider the remaining term in which the (j+1)-strand bypasses the crossing
of j-ghosts to the right. If j 
= i, the result follows by Lemma 4.14. If j = i, we
continue by applying Move 2 and pulling the dotted strand to the left. Repeating
this argument we can pull A through all the i-strands and onwards outside of the
region in Lemma 4.15 and the result follows. �

We denote the i-diagonals in γ byDx1
,Dx2

, . . . so that xa = x(Dxa
) and xa < xb

whenever a < b. We let ba := ba(D) denote the total number of Ba bricks in the
i-diagonal D for a = 1, . . . , 6.

Proposition 4.17. We can pull an i-crossing through an i-diagonal D at the ex-
pense of an error term, as illustrated in Figure 19.

i iD

=

i iD

+ (−1)b1+b5

i iD

Figure 19. Pulling an i-crossing through an i-diagonalD. Recall,
bk := bk(D) is the total number of Bk bricks in D.

We shall prove the proposition via a series of small lemmas representing easy
cases. Recalling Remark 4.5, we proceed from right-to-left through the possible
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bricks that form an i-diagonal, and check what happens as the i-crossing passes
each successive brick.

If the i-diagonal is invisible, we first must pass the i-crossing through either a
B3 or B2 brick. We shall show that the i-crossing passes through this brick without
cost.

Lemma 4.18. We can pull an i-crossing through a B2 or B3 brick without cost.

Proof. In the former (respectively latter) case, we first apply relation (1.9) (re-
spectively (1.10)) to the ghost i-crossing and the black (i+ 1)-strand (respectively
i-crossing and the (i − 1)-ghost) to push the i-crossing through to the left at the
expense of an error term. In both cases, the error term is zero by relation (1.4).
The B2 case is illustrated in Figure 20. We may now pull the i-crossing through the
black i-strand without cost (by relation (1.8)). We therefore obtain the required
diagram. �

i i−1 ii

=

i i−1i i

−

ii i−1i

Figure 20. Pulling an i-crossing through a B2 brick. On the
right-hand side of the equality the first diagram can now be pulled
to the left through the i-strand at no cost. The second diagram is
zero by relation (1.4).

We have seen that we can pull an i-crossing pair through a B2 or B3 brick
without cost. Therefore, we now consider what happens when we pull an i-crossing
through some number (possibly zero) of B1 bricks. We first deal with the case that
b1 = 0.

Lemma 4.19. Let D be an i-diagonal with b1 = 0. We can pull an i-crossing
through D at the expense of an error term, as illustrated in Figure 19.

Proof. By Lemma 4.18 we need only consider pulling an i-crossing through a B4,
B5, or B6 brick. This can be done at the expense of an error term as in relations
(1.9), (1.10) and (1.12), giving the required form. �

Lemma 4.20. Let D be an i-diagonal with b1 = 1. We can pull an i-crossing
through D at the expense of an error term, as illustrated in Figure 19.

Proof. As in Lemma 4.19, we need only consider pulling an i-crossing through a B1

brick followed by a B4, B5, or B6 brick. We shall prove this via a series of steps.

Step 1. We first pull the i-crossing through the (i− 1)-ghost at the expense of an
error term (in which we undo the crossing) using relation (1.10). The error term is
the leftmost diagram depicted in Figure 21.
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Step 2. We can now apply relation (1.9) to pass the ghost i-crossing through the
(i+ 1)-strand and obtain a further error term. This error term is easily seen to be
zero by applying relation (1.4). This gives us the first term after the equality in
Figure 22.

Step 3. We now turn our attention to the error term from Step 1. We pull the
non-vertical i-ghost through the vertical black (i + 1)-strand immediately to its
left. The result is a diagram with a double crossing of black i-strands with a dot
on the rightmost of the two; this is depicted in Figure 21. We also obtain an error
term with a dot on the (i + 1)-strand; however this error term is zero by relation
(1.4) and so is not depicted in Figure 21.

Step 4. Continuing from Step 3, we can apply relations (1.3) and (1.4) to rewrite
the dotted double i-crossing as a single crossing without decoration at the expense
of multiplication by the scalar −1. This diagram can then be deformed isotopically
to obtain the rightmost diagram in Figure 22.

i i−1ii + 1

=

ii i−1ii + 1

Figure 21. The diagram on the left-hand side of the equality is
the error term from Step 1. The diagram on the right-hand side
is obtained by applying relation (1.7); the resulting error term is
then zero by relation (1.4).

Applying Steps 1–4 pulls the i-crossing through the B1 brick as depicted in
Figure 22. Finally, we may pull the i-crossing through the B4, B5 or B6 brick.
Doing so for the first term after the equality in Figure 22 yields the first term in
Figure 19 and an error term which is zero by relation (1.4). Doing so for the second
term after the equality in Figure 22 yields a term which is zero by Lemma 4.15 and
an error term which is the second term in Figure 19. �

ii i−1i ii + 1

=

i i−1ii + 1

−

ii i−1ii + 1

Figure 22. Pulling an i-crossing through a single B1 brick. We
have pulled the i-crossing as far to the left as possible in order to
illustrate that it has passed through the brick; however, in practice
it will have to pass through other bricks.
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We now turn our attention to proving Proposition 4.17 in full generality. We
refer to the rightmost diagram in Figure 22 as having an i-crossing attached to the
i-node in the B1 brick.

Proof of Proposition 4.17. By Lemmas 4.18 to 4.20 we may assume that we start
by passing the i-crossing through b1 B1 bricks for b1 � 2.

Repeating the first step in the argument in Lemma 4.20 yields a leading term and
an error term. By repeatedly applying relations (1.9) and (1.10), we can push the
i-crossing in the leading term through all b1 B1 bricks; each error term along the
way is zero by relation (1.4). We can then proceed to push the i-crossing through
the B4, B5 or B6 brick, yielding the first term in Figure 19 and an error term which
is again zero by relation (1.4); see Figure 23.

We now deal with the error term from our first step. As in Steps 3 and 4 of the
proof of Lemma 4.20, we can rewrite this as −1 multiplied by the diagram with a
crossing attached to the i-node (say (r, c, k)) in the top B1 brick.

We now diverge from the proof of Lemma 4.20, as we need to consider what
happens when we pull the i-crossing attached to (r, c, k) to the left. First, we must
pull this i-crossing through the next B1 brick. We pull the i-crossing through the
(i−1)-ghost labelled by the node (r, c−1, k) yielding two terms: the leading term d
and an error term d′. The term d is zero, as we can now push this i-crossing through
all remaining B1 bricks and the B4, B5, or B6 brick and apply Lemma 4.15, with
all error terms along the way being zero by relation (1.4). Now, observe that the
diagram d′ has a double crossing of i-strands. We can apply relation (1.6) to d′,
followed by relations (1.3) and (1.4) to rewrite the double crossing as an i-crossing
attached to the node (r− 1, c− 1, k), at the expense of scalar multiplication by −1
again.

We repeat the above procedure until we end up with a diagram with an i-crossing
attached to node (r′, c′, k) with r′ = 1 or c′ = 1 (that is, attached to the i-node of
the bottom B1 brick) and coefficient (−1)b1 . Finally, we pull this i-crossing through
the B4, B5 or B6 brick to yield a leading term which is zero by Lemma 4.15 and
an error term which is the second term in Figure 19. �

i−1ii + 1i i

−

ii i−1ii + 1

Figure 23. Pulling the i-crossing in the rightmost diagram in Fig-
ure 22 through a second B1 brick. The leftmost diagram becomes
zero once we push the i-crossing through all bricks, by Lemma 4.15.

Proposition 4.21. We can pull a dot through an i-diagonal, D, without cost, as
illustrated in Figure 24.

Proof. The result is clear for bricks of the form B4,B5 or B6 by applying relations
(1.2) and (1.14). Now assume that D has more than one brick. Each brick of
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i D

=

i D

Figure 24. Pulling a dot through an i-diagonal.

the form B1,B2,B3 contains a single i-strand. This strand is intersected by the
i-strand in Figure 24. We can pull the dot through the brick (using relation (1.3))
at the expense of an error term in which we undo the aforementioned i-crossing.
The resulting diagram factors through an idempotent which is zero by Lemma 4.15.
See Figure 25 for the case of a single B1 brick. �

i i−1ii + 1

=

i i−1ii + 1

−

i i−1ii + 1

Figure 25. Pulling a dot through a B1 brick. The rightmost
diagram is zero modulo in AΓ by Lemma 4.15.

Proposition 4.22. Suppose we have a double crossing of an i-strand, A, with an
invisible i-diagonal, D. We can pull A through D at the expense of multiplication
by the scalar (−1)b1+b3+b5 . This is depicted in Figure 26.

i D

= (−1)b1+b3+b5

i D

Figure 26. Resolving a diagram as in Proposition 4.22 for D an
invisible i-diagonal.

Proof. We first consider the double crossing with a B2 brick (the B3 brick case is
similar and left as an exercise for the reader). First apply relation (1.6) to pull A
through the (i− 1)-ghost to obtain two terms; one with a dot on the i-strand and
one with a dot on the (i− 1)-strand. The diagram with a dot on the (i− 1)-strand
is zero by relation (1.4). We apply relations (1.3) and (1.4) to the other diagram
and obtain a diagram with a single crossing as depicted in Figure 27.
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i B2

=

ii i−1i

= (−1)

ii i−1i

=

ii i−1i

Figure 27. The first equality follows by definition. The second
equality follows from relation (1.6) where the error term is zero by
relation (1.4). The third equality follows from relations (1.3) and
(1.4).

Observe that the i-crossing is attached to the i-node in the B2 (respectively
B3) brick in γ. Repeating arguments from the proof of Proposition 4.17 yields the
result. �
Proposition 4.23. Suppose we have a double crossing of an i-strand, A, with a vis-
ible i-diagonal, D. We can pull A through D at the expense of scalar multiplication
by (−1)b1+b4 and acquiring a dot. This is depicted in Figure 28.

i D

= (−1)b1+b4

i D

Figure 28. Resolving a diagram as in Proposition 4.23 for D a
visible i-diagonal.

Proof. We claim that we can pull such a strand through a B1 at the cost of scalar
multiplication by (−1). To see this, note that we can pull the i-strand through the
(i − 1)-ghost at the expense of acquiring a dot; we can pull the i-ghost through
the black (i+ 1)-strand at the expense of acquiring another dot (both error terms
are zero by Lemma 4.16). We thus obtain the diagram on the left-hand side of the
equality in Figure 29. Applying relations (1.3) and (1.4) several times, we obtain
the diagram in which A passed through B1 at the expense of scalar multiplication
by (−1) (the leftmost diagram after the equality in Figure 29) along with two error
terms, which are both zero by Lemma 4.16; see Figure 29.

Thus we can pull A through all the B1 bricks at the expense of multiplication
by (−1)b1 . We now wish to consider what happens when we pull A through a B4,
B5, or B6 brick.
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i i−1ii + 1

= (−1)

i i−1ii + 1

−

i i−1ii + 1

−

i i−1ii + 1

Figure 29. The effect of pulling a double crossing i-strand
through a B1 brick.

We can pull A through a B6 brick at the expense of acquiring a single dot on A
(by relation (1.11)), as required. We can pull A through a B5 or B4 brick at the
expense of scalar multiplication by (−1)b4 and an error term in which there is a dot
on the (i+1)-strand (respectively (i−1)-strand) in the B5 (respectively B4) brick.
This error term is zero by Lemma 4.16. We thus obtain the required result. �
Proposition 4.24. Suppose we have an i-strand A (respectively a dotted i-strand
A′) next to an invisible (respectively visible) i-diagonal D (respectively D′). We
can pull A (respectively A′) through D (respectively D′) at the expense of scalar
multiplication by (−1)b1+b4 . This is depicted in Figure 30.

iD

= (−1)b1+b2+b4

iD

iD′

= (−1)b1+b4

iD′

Figure 30. Pulling a dotted i-strand through an invisible i-
diagonal D (respectively visible i-diagonal D′).

Proof. We shall first show that A can pass through a B2 brick at the expense of
multiplication by −1 (respectively +1) and acquiring a dot. The B3 case is similar.

We can pull A through the (i− 1)-ghost in B2 and then apply Move 1 to yield
two diagrams each with an i-crossing. In the case that the i-crossing is bypassed
to the left by the (i − 1)-ghost, we can push the crossing to the right and apply
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Lemma 4.15 to see that this diagram is zero. It remains to consider the diagram
with an i-crossing attached to the i-node in B2 bypassed to the right by the (i−1)-
ghost multiplied by the scalar −1. By Move 2 we obtain the required result.

We have seen that pulling A through a B2 or B3 adds a dot to the strand.
Therefore it will suffice to show that the result holds for A′ and D′ as in the
rightmost diagram of Figure 30. First, we show that we can pull A′ through a B1

brick at the expense of multiplication by the scalar (−1).

By relation (1.7) we can pull A′ through the (i − 1)-ghost at the expense of
multiplication by −1 and losing the dot (the error term is zero by Lemma 4.16).
We now apply Move 1, followed by Lemma 4.15, followed by Move 2 as above, to
obtain the result.

Finally, we can pull the dotted A′ through a B4, B5, or B6 brick using relation
(1.7), (1.6) or (1.11) at the expense of multiplication by (−1)b4 (note that the error
term in (1.6) and (1.7) is zero by Lemma 4.16). The result follows. �

4.5. The algebra isomorphism for two subquotients each with a single
residue. We now associate a sequence χ(γ) to the multipartition γ. This sequence
records the occurrences of visible and invisible i-diagonals, and the bricks from
which the diagonals are built. We define

χ(Dx) = (−1)b1dj
k,

where k = 4, 5, or 6 if the bottom brick of Dx is B4,B5 or B6, respectively and
where j = 2 or 3 if Dx is invisible with top brick B2 or B3, respectively, and j = 0
if Dx is visible. We then define χ(γ) to be the sequence (χ(Dx1

), χ(Dx2
), . . . ).

Example 4.25. Continuing with Example 4.2, we have that

χ(γ) = (d0
4,d

3
4,d

0
6,d

0
5,d

0
5).

Let −∅ and ∅ denote two formal symbols in what follows.

Definition 4.26. We say that two sequences χ and χ are equivalent, and write
χ ∼ χ, if one can be obtained from the other by applying the following local
identifications within the sequence (i.e., to individual elements or adjacent pairs of
elements in the sequence):

(i) (+dj
4) = (−dj

5) and (−dj
4) = (+dj

5) for j = 0, 2, 3;
(ii) (−∅) = (+d2

k,+d3
k) = (−d2

k,−d3
k) = (+d3

k,+d2
k) = (−d3

k,−d2
k) for k =

4, 5;
(iii) (+dj

k,−dj
k) = (−dj

k,+dj
k) for j = 2, 3 and k = 4, 5;

(iv) (∅) = (+dj
6,+dj

6) = (−dj
6,−dj

6) for j = 2, 3;
(v) (−∅,−∅) = (∅) and we may delete any ∅ from our sequence χ without cost.

Example 4.27. Let e = e = 5, i = i = 0, κ = κ = (0) and θ = θ = (0). The
partition

γ = (306, 28, 20, 192, 15, 11, 9, 7, 36) ∈ P1
326

has four addable 0-nodes and

χ(γ) = (+d0
4,+d2

4,+d3
4︸ ︷︷ ︸,+d3

4,+d2
4︸ ︷︷ ︸,+d0

4,−d0
6,−d3

5,−d3
5,+d2

5,+d0
5),
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where we have indicated the pairs of adjacent elements to which we can apply the
local identification (ii). The partition

γ = (104, 9, 54, 33, 18) ∈ P1
86

also has four addable 0-nodes and

χ(γ) = (+d0
4,+d0

4,−d0
6,−d3

5,−d3
5,+d2

5,+d0
5).

These two sequences are easily seen to be equivalent using (ii) and (v) above.

Theorem 4.28. If γ and γ are two multipartitions which are i- and i-admissible,
respectively, with χ(γ) ∼ χ(γ), then AΓ

∼= AΓ as graded k-algebras; the isomorphism
is given by Φ from Proposition 4.11.

Proof. By Proposition 4.11 we need only check that Φ(CS,TCU,V)=Φ(CS,T)Φ(CU,V).
We suppose that our product diagram D = CS,TCU,V contains a neighbourhood in
which some i-strand, A, passes through an i-diagonal, D. We shall show that
resolving the crossing and then applying Φ, we obtain the same result as if we
resolve the crossing in Φ(D). There are five possible cases that we need to check
for each diagonal. The five cases are: (a) moving a dot through a crossing of A
with D (b&c) an i-crossing passes through D (d&e) a double crossing of A with D.
These are the same cases as those considered in Figure 31.

i D i i D i iD

i D iD

Figure 31. The five possible diagrams we need to consider, for
D an arbitrary i-diagonal.

First note that cases (a) and (b) are trivial for all identifications (i)–(v) in Defini-
tion 4.26, from Proposition 4.21 and the defining relations of A(n, θ, κ), respectively.

For the identification (i), we now look at cases (c), (d) and (e). In case (c),
the result follows by Proposition 4.17 and the fact that (i) preserves the parity of
b1+ b5; in case (d), the result follows by Proposition 4.22, Proposition 4.24 and the
fact that (i) preserves the parity of b1 + b4 and b1 + b3 + b5; in case (e), the result
follows by Proposition 4.23 and the fact that (i) preserves the parity of b1 + b4 and
b1+ b2+ b4 – these all follow as our equivalence is defined so that these parities are
all preserved by Φ.

We now address the identifications in (ii). We aim to show that we can resolve a
diagram with a pair of (consecutive) i-diagonals Dx1

and Dx2
, with χ(Dx1

) = ±d2
k

and χ(Dx2
) = ±d3

k (or vice versa), for k = 4 or 5, and an i-crossing as in case (c)
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without cost or a double crossing as in cases (d&e) at the expense of multiplication
by scalar −1.

First, consider what happens when we resolve an i-crossing as in case (c). We
first pull the i-crossing through Dx2

, to obtain an error term in which the crossing
is undone, and then through Dx1

to obtain another error term in which the crossing
is undone, applying Proposition 4.17 twice. The resulting sum of three diagrams is
depicted in Figure 32 in the case that (χ(Dx1

), χ(Dx2
)) = (d2

4,d
3
4).

Resolving the two error terms using Proposition 4.22 and Proposition 4.24, we
get the diagram with both i-strands vertical, with coefficient

(†) (−1)b1(x1)+b5(x1)+b1(x2)+b3(x1)+b5(x2) + (−1)b1(x1)+b5(x1)+b1(x2)+b2(x2)+b4(x2),

where bk(xj) denotes the number of bricks Bk in the i-diagonal Dxj
. It is simple

to check that this coefficient is zero in all cases covered in (ii), and therefore we
can pass an i-crossing through the pair (Dx1

,Dx2
) without cost.

x1 x2i i

=

x1 x2i i

+

x1 x2i i

+

x1 x2i i

Figure 32. The result of pulling an i-crossing through a pair of
i-diagonals Dx1

and Dx2
with χ(Dx1

) = d2
4, χ(Dx2

) = d3
4.

Next, consider what happens when we pull a double i-crossing as in case (d)
(respectively (e)) through the pair of (consecutive) i-diagonals Dx1

, Dx2
with

χ(Dx1
) = ±d2

k and χ(Dx2
) = ±d3

k (or vice versa), for k = 4 or 5.

We can pull the i-strand through both diagonals, applying Proposition 4.22
(respectively Proposition 4.24) twice, at the expense of multiplication by

(††) (−1)b1(x1+x2)+b3(x1+x2)+b5(x1+x2) or (−1)b1(x1+x2)+b2(x1+x2)+b4(x1+x2)

respectively, where bk(x1 + x2) := bk(x1) + bk(x2). In all cases covered in (ii), we
have that b1(x1) = b1(x2), b3(x1) = b3(x2) ± 1 (respectively b2(x1) = b2(x2) ± 1)
and b5(x1) = b5(x2) (respectively b4(x1) = b4(x2)), and so the scalar is −1 for both
(d) and (e), as claimed.

We have shown that we can pull an i-crossing through any pair of consecutive
invisible i-diagonals as in case (ii) without cost. We have also shown that we can
pull a single i-strand through at the cost of multiplication by −1; and therefore Φ
respects the identifications in (ii). Moreover, we can clearly pull an i-crossing or a
single i-strand through two such pairs without cost (as (−1)2 = 1), and therefore
Φ also respects the identifications in (v).
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In case (iii) one can argue as above independently of k, and obtain coefficient
+2 or −2 in (†) for j = 3 or j = 2, respectively. The coefficients in (††) are easily
seen to both be −1 for j = 2 or 3. The identifications in (iv) follow similarly to
those in (ii), but with scalars in (††) both being equal to +1. The result follows as
Φ respects these coefficients. �

Corollary 4.29. Let A(n, θ, κ) and A(n, θ, κ) be two diagrammatic Cherednik alge-
bras. Let γ be an i-admissible multipartition and γ an i-admissible multipartition,
with χ(γ) ∼ χ(γ). We have that

dλμ(t) = dλμ(t)

for all λ, μ ∈ Γ and λ, μ ∈ Γ. We also have that

ExtjA(n,θ,κ)(Δ(λ),Δ(μ)) ∼= Extj
A(n,θ,κ)

(Δ(λ),Δ(μ))

for all λ, μ ∈ Γ, λ, μ ∈ Γ and j � 0.

Proof. The graded decomposition numbers and higher extension groups are pre-
served under the isomorphisms in the proof of Theorem 4.28 and by (graded ana-
logues of) the results for (co-)saturated idempotent sub- and quotient algebras in
[Don98, Appendix]. �

Theorem 4.30. Let γ be an i-admissible multipartition and suppose that the e-
multicharge κ ∈ (Z/eZ)l contains i ∈ Z/eZ as a constituent with multiplicity 0 or
1. The graded decomposition numbers of A(n, θ, κ) over k can be given in terms of
nested sign sequences as follows:

dλμ(t) =
∑

ω∈Ω(λ,μ)

t‖ω‖

for λ, μ ∈ Γ such that μ �θ λ.

Proof. Suppose that χ(γ) can be broken into 3 parts (i) a sequence of ±dj
4 for

j = 0, 2, 3 (ii) either one or zero ±dj
6 for j = 0, 2, 3 (iii) a sequence of ±dj

5

for j = 0, 2, 3 in order. Then there clearly exists a level 1 partition γ such that
χ(γ) ∼ χ(γ) and the result follows from Theorem 4.28 and [TT13, Theorem 4.4].

By assumption, χ(γ) is a sequence which has a maximum of one entry ±dj
6 for

j = 0, 2, 3. Therefore one can apply the identification (i) of Definition 4.26 to swap

all the subscripts of entries dj
k for j = 0, 2, 3, k = 4, 5 to obtain some χ ∼ χ(γ)

which has the above form. Thus, the result follows. �

Example 4.31. Let e = 3 and κ = (0) and i = 2. We want to calculate dλμ(t) for
μ = (102, 92, 8, 72, 63, 5, 43, 3, 23, 12) and λ = (102, 92, 82, 72, 6, 53, 42, 3, 22, 12). By
Example 2.6, we have that

dλμ(t) = t11 + 2t9 + 2t7 + t5.

Example 4.32. Let e = 3, κ = (2, 1), i = 0, and let θ = (0, 1), g = 2 (note that θ
is a FLOTW weighting). The bipartition

γ = ((7, 5, 3, 12), (52, 4, 22, 12))
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is 0-admissible. We have that χ(γ) = (+d0
4,+d0

4,−d0
4,+d0

4,+d0
4,+d0

5,−d0
5,−d0

5,
+d0

5,+d0
5). Let e = 4, κ = (1), θ = (0) and i = 0. The partition

γ = (19, 18, 173, 16, 13, 12, 11, 83, 7, 6, 5, 22)

is 0-admissible with χ(γ) = χ(γ).

The algebras AΓ and AΓ are isomorphic (as graded k-algebras) and the graded
decomposition numbers of the latter may be calculated using [TT13, Theorem
4.4] in terms of nested sequences. Given λ = ((8, 5, 3, 13), (6, 52, 3, 2, 13)), μ =
((7, 5, 4, 2, 12), (53, 23, 12)) ∈ Γ we leave it as an exercise for the reader to show that
the unique well-nested path in this case is the generic latticed path with norm 11.
Therefore,

d((8,5,3,13),(6,52,3,2,13)),((7,5,4,2,12),(53,23,12))(t) = t11

for A(43, (0, 1), (2, 1)).

Example 4.33. Continuing with Example 4.27, we let γ = (306, 28, 20, 192, 15, 11,
9, 7, 36) ∈ P1

326 and γ = (104, 9, 54, 33, 18) ∈ P1
86. By Example 4.27, we have that

χ(γ) ∼ χ(γ). The partially ordered sets Γ and Γ each consist of six partitions and
define natural subquotients of the corresponding Schur algebras (as in [Don98]). By
[Webb, Corollary 3.11] these algebras are Morita equivalent to the corresponding
subquotients AΓ and AΓ of the diagrammatic Cherednik algebras.

Therefore by Theorem 4.28, the subquotients of the classical Schur algebras of
degrees 328 and 88 labelled by the sets Γ and Γ are Morita equivalent (to each
other).

Remark 4.34. By Theorem 4.28, one can calculate decomposition numbers for more
general κ if one puts restrictions on θ; see Example 4.35, below.

Example 4.35. Let e = 5, κ = (0, 0), and θ ∈ R2 denote a FLOTW weighting.
The bipartition γ = ((10, 8, 7, 53, 33), (5, 4, 35, 2, 12)) is 0-admissible with

χ(γ) = (+d0
4,+d0

4,+d0
4,+d2

6,+d2
6,+d2

5,+d0
5,+d0

5).

Now let e = 5, κ = (1) and θ = (0). If γ = (14, 12, 11, 9, 8, 52, 3, 2, 12), then

χ(γ) = (+d0
4,+d0

4,+d0
4,+d2

5,+d0
5,+d0

5)

and χ(γ) ∼ χ(γ), by identifications (iv) and (v) in Definition 4.26. Thus, we can still
use Theorem 4.28 to calculate dλμ(t) for λ, μ ∈ Γ. For instance, by Corollary 4.29,

d((11,82,53,33),(5,4,36,12))((10,8,7,53,33),(6,4,36,13))(t)

= d(15,122,9,8,52,32,12),(14,12,11,92,52,32,13)(t),

where the decomposition numbers are taken in the relevant algebra. We can now
use Theorem 4.30 to find that

d(15,122,9,8,52,32,12)(14,12,11,92,52,32,13)(t) = t5.

5. Tensor product factorisation for non-adjacent residues

Throughout this paper, we have constructed isomorphisms between subquotient
algebras corresponding to subsets of P l

n consisting of multipartitions which differ
by moving nodes of a single, fixed residue. In this section, we generalise these results
to subsets of multipartitions which differ by moving nodes of many distinct residues,
as long as these residues are non-adjacent. We prove that one can factorise these



3586 C. BOWMAN AND L. SPEYER

algebras as a tensor product of the smaller, single residue subalgebras. This lifts
results of [CT16] to an isomorphism of algebras which holds over fields of arbitrary
characteristic. In particular, we obtain the graded decomposition numbers of these
algebras as products of the graded decomposition numbers of the smaller algebras
(over arbitrary fields).

We suppose that M is a multiset of residues from an adjacency-free residue set
S ⊂ I as in Section 3, and let M = M0 ∪ M1 ∪ · · · ∪ Me−1 denote the disjoint
decomposition of the multiset M into distinct residues; we let mr = |Mr| for
0 � r � e − 1. Note that since S is adjacency-free, some of these multisets are
empty. We let Γ = Γ(M) and Γr := Γ(Mr) for 0 � r � e− 1.

Lemma 5.1. For an adjacency-free set M, we have a bijection

ψ : Γ −→ Γ0 × Γ1 × · · · × Γe−1

which is given by ψ(λ) = ψ0(λ) × ψ1(λ) × · · · × ψe−1(λ) where ψi(λ) is obtained
from λ by deleting all nodes of λ \ γ whose residue is not equal to i ∈ Z/eZ.

Proof. The adjacency-free condition ensures that no two nodes in λ \ γ appear in
the same row or column for any λ ∈ Γ. The result follows. �

Proposition 5.2. For an adjacency-free set M, we have a bijection

ψ : SStd(λ, μ) −→
e−1∏
r=0

SStd(ψr(λ), ψr(μ))

for λ, μ ∈ Γ. This is given by setting ψ(T) = ψ0(T)× ψ1(T)× · · · × ψe−1(T) where
ψi(T) is simply obtained by restriction of the domain, ψi(T) = T↓ψi(λ). This lifts
to a graded vector space isomorphism over k, given by

Ψ : AΓ(M, θ) → AΓ0
(M0, θ)⊗k · · · ⊗k AΓe−1

(Me−1, θ),

where

Ψ(CST) = Cψ0(S)ψ0(T) ⊗ Cψ1(S)ψ1(T) ⊗ · · · ⊗ Cψe−1(S)ψe−1(T).

Proof. Given λ, μ ∈ Γm, the set SStd(λ, μ) is particularly simple to describe.
Namely, SStd(λ, μ) consists of the bijective residue-preserving maps such that

◦ T(r, c, k) = i(r,c,k) for (r, c, k) ∈ [γ];
◦ T(r, c, k) = i(r′,c′,k′) for (r, c, k) ∈ [λ \ γ], (r′, c′, k′) ∈ [μ \ γ] such that
i(r′,c′,k′) � i(r,c,k).

The adjacency-free condition ensures that no two nodes in λ \ γ (or μ \ γ) for any
λ, μ ∈ Γ appear in the same row or column. It follows from Definition 1.7 that the
map Ψ is a bijection.

As the bases are in bijection, the map Ψ is clearly a vector space isomorphism.
The non-adjacency condition ensures that for distinct residues i, j ∈ S, the crossings
of i-strands (or their ghosts) with j-strands (or their ghosts) do not provide any
non-zero contributions to the grading and so the grading is preserved. �

Example 5.3. Let e = 4, γ = (∅, . . . ,∅) ∈ P7
0 , κ = (3, 1, 3, 3, 3, 1, 3), M =

{11, 33}, g = 0.99 and θ = (−3,−1, 1, 3, 5, 9, 11). There are 2×
(
5
3

)
= 20 simple mod-

ules for this algebra. Consider the space Δμ(λ) for λ = ((1), (1),∅, (1), (1),∅,∅)
and μ = (∅,∅,∅, (1), (1), (1), (1)). We have that SStd(λ, μ) has two elements, S
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and T, of degrees 2 and 4, respectively. Therefore Dimt(Δμ(λ)) = t4 + t2. The
element BS of degree 2 is pictured in Figure 33.

1 14 44 4 4

Figure 33. The basis element BS in Example 5.3.

Under the graded vector space isomorphism in Proposition 5.2, BS maps to the
tensor product of diagrams depicted in Figure 34.

1

1

14 44 4 4

⊗

1

1 14 44 4 4

Figure 34. Decomposing the diagram in Figure 33 as a tensor product.

Theorem 5.4. If M is adjacency-free, then

AΓ(M, θ) ∼= AΓ0
(M0, θ)⊗k · · · ⊗k AΓe−1

(Me−1, θ)

as graded k-algebras. This isomorphism is given by Ψ from Proposition 5.2.

Proof. By Proposition 5.2 we need only check that

Ψ(CSTCUV) = Ψ
(∑
W,X

rW,XCW,X

)
=

∑
W,X

rW,X(Cψ0(W)ψ0(X) ⊗ · · · ⊗ Cψe−1(W)⊗ψe−1(X))

=
∑
W,X

(r0W,XCψ0(W)ψ0(X))⊗ · · · ⊗ (re−1
W,XCψe−1(W)ψe−1(X))

= Ψ(CST)Ψ(CUV),

where rW,X =
∏

0�i�e−1 r
i
W,X ∈ k and the sum is over tableaux W,X whose shape

and weight are multipartitions belonging to Γ.
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Given a strand A in a diagram D, we say that the strand is left-justifiable if,
upon applying one of the relations (1.1) to (1.15) to a local neighbourhood of A, we
can move the strand A further to the left. Otherwise, we say that the strand A is
left-justified. By [Bow, Theorems 4.1 and 4.10], the process of left-justifying every
strand in D eventually terminates, and that the result is a linear combination of
the basis elements from C.

Therefore, by left-justifying every strand in the diagram CSTCUV we can rewrite
this product as a linear combination of basis elements of AΓ(M, θ). Similarly,
by left-justifying every strand in each of the diagrams Cψi(S)ψi(T)Cψi(U)ψi(V) for
0 � i � e−1 we shall obtain a linear combination of basis elements of AΓ0

(M0, θ)⊗k

· · · ⊗k AΓe−1
(Me−1, θ).

We shall proceed one tensor component at a time. Given a strand, A, of residue
i ∈ Z/eZ in CSTCUV, there is a corresponding strand, Ψi(A), of residue i ∈ Z/eZ
in Cψi(S)ψi(T)Cψi(U)ψr(V) which has the same northern and southern terminating
points. We shall say that these strands are paired. Similarly, for any fixed 0 � i �
e−1 and any given node of γ, we have corresponding vertical strands in each of the
diagrams CSTCUV and Cψi(S)ψi(T)Cψi(U)ψi(V). We shall say that these strands are
paired, and denote them by A and Ψi(A) as before. We shall proceed one tensor
component at a time. When considering the ith component, we shall proceed by
applying local relations in unison to a neighbourhood of A and the corresponding
neighbourhood of Ψi(A). Of course, there are strands in CSTCUV (of residue not
equal to i ∈ Z/eZ) which do not have counterparts in Cψi(S)ψi(T)Cψi(U)ψi(V). We
shall address this problem separately below.

If i ∈ Z/eZ is such that mi = 0, then we have that riWX = 1 if Tγ = ψi(S) =
ψi(T) = ψi(U) = ψi(V) = W = X, and 0 otherwise. This is simply because
Cψi(S)ψi(T)Cψi(U)ψi(V) = 1γ1γ , and all strands in the diagram are already left-
justified (in particular 1γ is itself a basis element). Now, pick any i ∈ Z/eZ such
that mi 
= 0. Pick a left-justifiable i-strand, A, in the diagram CSTCUV; then
the paired strand Ψi(A) in the diagram Cψi(S)ψi(T)Cψi(U)ψi(V) is also left-justifiable
(because the only non-trivial relations are between strands of adjacent residues,
which are common to both diagrams). We pull these strands to the left in unison.
Along the way we shall deal with

(i) neighbourhoods in which A encounters a strand in CSTCUV which is not
paired with any strand in Cψi(S)ψi(T)Cψi(U)ψi(V);

(ii) j-diagonals of γ which are common to both diagrams for j 
= i, i± 1;
(iii) i-diagonals common to both diagrams.

(Note that the multipartition γ is a union of the nodes in its i-diagonals and its
j-diagonals for j 
= i, i± 1, so this list is exhaustive.)

In case (i), we note that these strands are all of residue not equal to i− 1, i, or
i+1. Therefore, we apply relations (1.5) and (1.8) to pull A through the j-strand of
the diagram in AΓ(M, θ) or simply apply relation (1.1) to pull Ψi(A) through the
corresponding empty neighbourhood of the diagram in AΓi

(Mi, θ), without cost.

Now, for (ii) and (iii) it is clear that pulling A through the neighbourhood of
the diagram in AΓ(M, θ) and Ψi(A) through the corresponding neighbourhood of
the diagram in AΓi

(Mi, θ)we obtain the same linear combination of diagrams in
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both cases. This is simply because the diagrams are locally identical! However, we
must also note the following extra information:

◦ in case (ii), we can apply relations (1.5) and (1.8) to pull A through the j-
diagonal in the diagram in AΓ(M, θ) and Ψi(A) through the corresponding
j-diagonal in the diagram in AΓi

(Mi, θ), without cost;
◦ in case (iii), we can apply Propositions 4.17, 4.21, 4.22, 4.23, and 4.24 to
pull A through the i-diagonal of AΓ(M, θ) (respectively Ψi(A) through the
corresponding i-diagonal in the diagram in AΓi

(Mi, θ)) to obtain a linear
combination of diagrams which differ from the original diagram only in the
position and decorations of strands which do not correspond to nodes in γ.

In particular, in both cases all the strands labelled by nodes of γ remain exactly
as before. The up-shot of this is that we can left-justify every single i-strand in
AΓ(M, θ) and its paired i-strand in AΓi

(Mi, θ) to obtain identical linear combi-
nations of diagrams and we can do this without affecting any strands labelled by
nodes of γ. Therefore the strands labelled by nodes of γ continue to be vertical
lines in the configuration of a multipartition and so are left-justified. Therefore,
the above process terminates with an element∑

W,X

riW,XCψi(W)ψi(X) ∈ AΓi
(Mi, θ)

and a corresponding element of AΓ(M, θ) (with the same coefficients, but with
diagrams which are not yet basis elements, as we must still consider the other
residues j 
= i for j ∈ Z/eZ). We remark that at this point we know only that W,X
must exist (simply because we can rewrite any product as a linear combination of
basis elements) but we have only determined the semistandard tableaux ψi(W) and
ψi(X).

Continuing in this fashion through all the residues i ∈ Z/eZ we obtain,

Ψ
(∑
W,X

(r0W,X × · · · × re−1
W,X)CW,X

)
=

∑
W,X

(r0W,XCψ0(W)ψ0(X))⊗ · · · ⊗ (re−1
W,XCψe−1(W)ψe−1(X))

and setting rW,X = r0W,X × · · · × re−1
W,X we obtain the required result. �
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