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THE CRYSTALLINE PERIOD OF A HEIGHT ONE

p-ADIC DYNAMICAL SYSTEM

JOEL SPECTER

Abstract. Let f be a continuous ring endomorphism of Zp�x�/Zp of degree
p. We prove that if f acts on the tangent space at 0 by a uniformizer and
commutes with an automorphism of infinite order, then it is necessarily an

endomorphism of a formal group over Zp. The proof relies on finding a stable
embedding of Zp�x� in Fontaine’s crystalline period ring with the property that
f appears in the monoid of endomorphisms generated by the Galois group of
Qp and crystalline Frobenius. Our result verifies, over Zp, the height one case
of a conjecture by Lubin.

1. Introduction

Given a one-dimensional formal group law F/Zp, the endomorphism ring of F
provides an example of a nontrivial family of power series over Zp which commute
under composition. This paper investigates the question of the converse: under
what conditions do families (in our case pairs) of commuting power series arise as
endomorphisms of an integral formal group? Let p be a prime number, letCp be the
completion of an algebraic closure of Qp, and let mCp

⊂ Cp be the open unit disk.

Define S0(Zp) to be the set of formal power series over Zp without constant term.1

Substitution defines a composition law on S0(Zp) under which it is isomorphic to
the monoid of endomorphisms of the formal p-adic unit disk which fix 0.

Main Theorem. Let f and u be a commuting pair of elements in S0(Zp). If

• f ′(0) is prime in Zp and f has exactly p roots in mCp
, and

• u is invertible and has infinite order,

then there exists a unique formal group law F/Zp such that f, u ∈ EndZp
(F ). The

formal group law F is isomorphic to Ĝm over the ring of integers of the maximal
unramified extension of Qp.

The study of analytic endomorphisms of the p-adic disk was initiated by Lubin in
[Lub94]. There he showed that if f ∈ S0(Zp) is a noninvertible transformation which
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is nonzero modulo p and u ∈ S0(Zp) is an invertible, nontorsion transformation,
then assuming f and u commute:

(1) The number of roots of f in mCp
is a power of p (cf. [Lub94, Main Theorem

6.3, p. 343]).

(2) The reduction of f modulo p is of the form a(xph

) where a ∈ S0(Fp) is
invertible (cf. [Lub94, Corollary 6.2.1, p. 343]).2

Both (1) and (2) are well-known properties of a noninvertible endomorphism of
a formal group law over Zp. In light of this and knowing that

(3) if a power series u ∈ S0(Qp) acts on the tangent space at 0 as an au-
tomorphism with infinite order, then it is an automorphism of a unique
one-dimensional formal group law Fu/Qp. If f ∈ S0(Qp) commutes with u,
then f ∈ EndQp

(Fu) (cf. [Lub94, Theorem 1.3, p. 327]),

one might preliminarily conjecture that the formal group Fu associated to u is
defined over Zp. This is false, and counterexamples have been constructed by Lu-
bin [Lub94, pp. 344] and Li [Li02, pp. 86-87]. Instead, Lubin hypothesizes that
“for an invertible series to commute with a noninvertible series, there must be a for-
mal group somehow in the background” [Lub94, p. 341]. Interestingly, all known
counterexamples are constructed from the initial data of a formal group defined
over a finite extension of Zp and therefore conform to Lubin’s philosophy. Despite
this, the “somehow” in Lubin’s statement has yet to be made precise.

Result (2) is reminiscent of a hypothesis in the following integrality criterion of
Lubin and Tate:

(4) Let f ∈ S0(Zp). Assume f′(0) is prime in Zp and f(x) ≡ xph

mod p. Then
there is a unique formal group law Ff/Zp such that f ∈ EndZp

(F ) (cf.
[LT65, Lemma 1, pp. 381-2]).

Perhaps based on this and the counterexamples of [Li02] and [Lub94], Lubin has
offered the following conjecture as to when our preliminary intuition should hold
true:

Lubin’s Conjecture ([Sar05, p. 131]). Suppose that f and u are a noninvertible
and a nontorsion invertible series, respectively, defined over the ring of integers O
of a finite extension of Qp. Suppose further that the roots of f and all of its iterates
are simple and that f′(0) is a uniformizer in Zp. If f◦u = u◦ f, then f, u ∈ EndO(F )
for some formal group law F/O.

For each integral extension of Zp, Lubin’s conjecture is naturally divided into
cases: one for each possible height of the commuting pair f and u. This note serves
as a complete solution to the height one case of Lubin’s conjecture over Zp. Previous
results towards Lubin’s conjecture ([LMS02], [Sar10], [SS13]) have used the field of
norms equivalence to prove some special classes of height one commuting pairs over
Zp arise as endomorphisms of integral formal groups. All other cases of Lubin’s
conjecture, i.e., those over proper integral extensions of Zp or over Zp with height
greater than one, are completely open.

We call a formal group Lubin-Tate (over Zp) if it admits an integral endomor-
phism f satisfying the hypotheses of (4). All height one formal groups over Zp are
Lubin-Tate. Therefore, given the height one commuting pair (f, u), one strategy

2The analogous statements both hold when Zp is replaced by the ring of integers in a finite

extension of Qp.
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to prove that the formal group Fu is integral is to identify the Lubin-Tate endo-
morphism of Fu and appeal to result (4). This is the approach we employ in this
paper.

Before we present an outline of the proof, we remind the reader of some structures
which exist in the presence of a formal group. Let F be a height one formal group
over Zp. Then F is Lubin-Tate, so there exists a unique endomorphism f of F such
that f(x) ≡ xp mod p. Consider the f-adic Tate module TfF. The absolute Galois
group of Qp acts on TfF through a character χF : GQp

→ Z×
p .

The character χF is crystalline. We sketch a proof of this fact following [KR09].

Let OCp
be the integral closure of Zp in Cp and Ẽ+ := lim←−OCp

/p, where the limit

is taken with respect to the p-power Frobenius map. Because f(x) ≡ xp mod p,

elements of Tf are canonically identified with elements of Ẽ+. Let v be a generator of

Tf. There is a unique element v̂ ∈ Ã+ := W (Ẽ+), the Witt vectors of Ẽ+, which lifts
v and with the property that the action of GQp

and the Frobenius endomorphism
ϕ satisfy:

(A) g(v̂) = [χF (g)]F (v̂) for all g ∈ GQp
,

(B) ϕ(v̂) = f(v̂) [KR09, Lemma 1.2].

The logarithm of F evaluated at v̂ converges in Fontaine’s crystalline period ring
Bcris. The resulting period logF (v̂) spans a GQp

×〈ϕ〉-stable Qp-line on which GQp

acts through χF .
The element v̂ ∈ Bcris is transcendental over Zp, and therefore property (B)

implies that the Lubin-Tate endomorphism f can be recovered from the action of
Frobenius on v̂. Inspired by this observation, we construct in this note an appropri-
ate substitute for v̂ which is directly accessible from the commuting pair (f, u). The
argument is as follows. In section 2.1, we recall some preliminary facts concerning
the commutative height one p-adic dynamical system (f, u). In particular, we recall
the logarithm, logf , of the commuting pair. Next, in section 2.2, we attach to (f, u)

a character χf : GK → u′(0)Zp ⊆ Z×
p , where K is some particular finite extension

of Qp. The character χf is (a posteriori) a restriction of the character attached
to the Tate module of the formal group for which f and u are endomorphisms.
Then, in section 3, we show the character χf is crystalline of weight one. This

is achieved by constructing an element x0 ∈ Ã+ such that [χf (g)]f (x0) = g(x0),
where [χf (g)]f is the unique Zp-iterate of u with linear term χf (g). We show that
the logarithm converges in Acris when evaluated at x0 and the resulting period
tf := logf (x0) generates a GK-stable Qp-line Vf of exact filtration one. Multi-
plicity one guarantees that Vf is stable under crystalline Frobenius. Taking πf to
denote the crystalline Frobenius eigenvalue on Vf , we show that [πf ]f , the multipli-
cation by the πf endomorphism of Fu, converges when evaluated at x0 and satisfies
[πf ]f (x0) = ϕ(x0). The proof is concluded by showing that [πf ]f is a Lubin-Tate
endomorphism of Fu and therefore Fu is defined over Zp by (4).

Remark 1.1. There is recent work by Berger [Ber14a] which uses methods similar to
ours to study certain iterate extensions. Berger’s work is related to the phenomena
which occur when the hypotheses of Lubin and Tate’s result (4) are weakened and
one assumes merely that f is a lift of Frobenius; i.e., f′(0) is not assumed to be
prime. This paper can be seen as an orthogonal generalization of Lubin and Tate’s
hypotheses.
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2. The p-adic dynamical system

2.1. The logarithm and roots. Throughout this paper, we will assume f, u ∈
S0(Zp) are a fixed pair of power series satisfying:

Assumption 2.1. Assume that:

• f ◦ u = u ◦ f,
• u is invertible and has infinite order, and
• vp(f

′(0)) = 1 and f has exactly p roots in mCp
.

The goal of this section is to remind the reader of some of the properties of the
following two structures associated by Lubin (in [Lub94]) to the commuting pair
(f, u). The first is the set of f -preiterates of 0:

Λf := {π ∈ mCp
: f◦n(π) = 0 for some n ∈ Z+}.

The second is the logarithm of f ; this is the unique series logf ∈ S0(Qp) such that

log′f (0) = 1 and logf (f(x)) = f ′(0) logf (x).

In the context that f and u are endomorphisms of a formal group F/Zp, the set
Λf is the set of p∞-torsion points of F and logf is the logarithm of F.

One essential tool for understanding a p-adic power series and its roots is its
Newton polygon. Given a series

g(x) :=

∞∑
i=0

aix
i ∈ Cp�x�,

the Newton polygon N (g) of g is the convex hull in the (v, w)-Cartesian plane,
R2, of the set of vertical rays extending upwards from the points (i, vp(ai)). Let
pr1 : R2 → R denote the projection map to the first coordinate. The boundary
of N (g) is the image of an almost everywhere defined piecewise linear function
Bg : pr1(N (g)) → R2. The derivative of Bg is almost everywhere defined and
increasing. The points of the boundary of N (g) where the slope jumps are called
the vertices of N (g), whereas the maximal connected components of the boundary
of N (g) where the slope is constant are called the segments. The width of a segment
is the length of its image under pr1. The following data can be read off the Newton
polygon of g :

Theorem 2.2. The radius of the maximal open disk in Cp centered at 0 on which

g converges is equal to lim
v→∞

p
dBg
dv .

Theorem 2.3. The series g has a root in its maximal open disk of convergence of
valuation λ if and only if the Newton polygon of g has a segment of slope −λ of
finite, positive width. The width of this slope is equal to the number of roots of g
(counting multiplicity) of valuation λ.

Theorem 2.4 (Weierstrass Preparation Theorem). If the series g is defined over
a complete extension L/Qp contained in Cp and the Newton polygon of g has a
segment of slope −λ of finite, positive width, then g = g1g2 where g1 is a monic
polynomial over L and g2 ∈ L�x�, such that the roots of g1 are exactly the roots of
g (with equal multiplicity) of valuation λ. We call g1 the Weierstrass polynomial
corresponding to the slope −λ.
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For proofs of these statements we refer the reader to [Kob77].
In this paper, we will be concerned with roots of power series inmCp

and therefore
focus on segments of Newton polygons of negative slope.

Proposition 2.5. The endpoints of the segments of the Newton polygon of f◦n

which have negative slope are (pk, n− k) for each integer k with 0 ≤ k ≤ n.

Proof. We prove the claim by induction on n. We begin by proving the claim in
the case that n = 1. Because f(0) = 0 and f ′(0) �= 0, the Newton polygon of f
has a vertex at (1, vp(f

′(0))) = (1, 1). Since f was assumed to have p roots in mCp
,

the initial finite slope of N (f) must be negative. Furthermore, because f is defined
over Zp, the Newton polygon of f is contained in the quadrant R2

≥0 and all vertices

have integer coordinates. Therefore, the end of the initial segment of N (f) must
have a vertex on the v-axis. By the Weierstrass Preparation Theorem, the nonzero
roots of f corresponding to this segment satisfy an Eisenstein polynomial and as
such they are simple. Since f has exactly p roots in mCp

, the Newton polygon of f
has a vertex at (p, 0), and all nonzero roots in mCp

are accounted for by the initial
finite segment of N (f).

Let n ≥ 1. The base case of our inductive argument already tells us a lot about
f◦n+1. For example, because N (f) has (p, 0) as a vertex on the v-axis,

f(x) ≡ apx
p mod (p, xp+1),

where ap ∈ F×
p . It follows that

f◦n+1(x) ≡ an+1
p xpn+1

mod (p, xpn+1+1).

Therefore, N (f◦n+1) has a vertex at (pn+1, 0). Similarly, because N (f) has a vertex
at (1, 1) and f has a fixed point at 0, the Newton polygon N (f◦n+1) has a vertex
at (1, n + 1). The v coordinate of a vertex abutting any finite, negatively sloped
segment of N (f◦n+1) must occur between 1 and pn+1.

Now assume we have shown the claim for n. The roots of f◦n+1 in mCp
are either

roots of f◦n or roots of f◦n(x)− π where π is one of the p− 1 nonzero roots of f.
For any nonzero root π of f, the Newton polygon of f◦n(x)− π consists of a single
segment of slope −1/(pn+1−pn) and width pn. Thus N (f◦n+1) contains a segment
of slope −1/(pn+1 − pn). This slope is shallower than the slope of any segment of
N (f◦n), and therefore the segment of N (f◦n+1) of slope −1/(pn+1 − pn) must be
the final negatively sloped segment. For each nonzero root π of f, the Weierstrass
polynomial corresponding to this single negatively sloped segment of N (f◦n(x)−π)
is Eisenstein over Zp[π] and therefore its roots are distinct. Because the nonzero
roots of f are distinct, there are exactly pn(p − 1) roots of f◦n+1 of valuation
−1/(pn+1 − pn), and therefore N (f◦n+1) has a vertex at (1, pn).

The remaining negative segments of N (f◦n+1) must correspond to roots of
f◦n+1 which are roots of f◦n. By the inductive hypothesis, one can deduce that
the segments of N (f◦n) of finite, negative slope have width pk − pk−1 and slope
−1/(pk − pk−1) where k runs over the integers 1 ≤ k ≤ n. Hence, all Weierstrass
polynomials of f◦n are Eisenstein over Zp, and therefore all roots of f◦n in mCp

are simple. It follows, since every root of f◦n in mCp
is a root of f◦n+1, that the

Newton polygon N (f◦n+1) contains for each segment of N (f◦n) a segment of the
same slope and at minimum the same width. These segments span between the
vertices (1, n+ 1) and (1, pn). The only way for this to occur is if the boundary of
the Newton polygon of N (f◦n+1) in this range is equal to the boundary Newton
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polygon of N (f◦n) translated up by one in the positive w direction. The claim
follows by induction. �

Proposition 2.5 gives us a good understanding of the position of Λf in the p-adic
unit disc. Unpacking the data contained in the Newton polygon of f◦n for each n,
we see that Λf is the disjoint union of the sets

Cn := {π ∈ Λf : vp(π) =
1

pn − pn−1
}

for each n ≥ 1 and C0 := {0}. For n ≥ 1, the set Cn has cardinality pn − pn−1, and
its elements are the roots of a single Eisenstein polynomial over Zp. Each of these
are expected properties of the p∞-torsion of a height one formal group over Zp. In
that case, the set Cn is the set of elements of exact order pn. The same holds in
the absence of an apparent formal group. Comparing the Newton polygons of f◦n

and f◦n+1, we note that Cn for n ≥ 1 can alternatively be described as

Cn = {x ∈ mCp
: f◦n(x) = 0, but f◦n−1(x) �= 0}.

Because f and u commute, the closed subgroup of S0(Zp) topologically generated
by u acts on Λf and preserves the subsets Cn. Simultaneously, because f and u are
defined over Zp, the Galois group GQp

, the absolute Galois group of Qp, acts on

Λf , preserves the subsets Cn, and commutes with the action of u◦Zp . In the next
section, we will explore these commuting actions in more detail.

Next, we recall the definition of the logarithm of the commuting pair (f, u).
Given any series g ∈ S0(Zp) such that g′(0) is nonzero and not equal to a root of
unity, there exists a unique series logg ∈ S0(Qp) such that

(1) log′g(0) = 1, and
(2) logg(g(x)) = g′(0) logg(x) [Lub94, Proposition 1.2].

Lubin shows that two series g1, g2 ∈ S0(Zp) such that g′1(0) and g′2(0) satisfy the
above condition have equal logarithms if and only if they commute under compo-
sition [Lub94, Proposition 1.3].

Consider the sequence of series in Qp�x� whose n-th term is

f◦n(x)

f ′(0)n
.

Lubin shows that this sequence converges coefficient-wise to a series logf satisfying:

(1) log′f (0) = 1,

(2) logf (f(x)) = f ′(0) logf (x) [Lub94, Proposition 2.2].3

The limit is the logarithm of (f, u). It is the unique series over Qp with these
properties [Lub94, Proposition 1.2].

From Proposition 2.5, one obtains that the vertices of the Newton polygon of logf
are (pk,−k), where k ranges over the nonnegative integers. Therefore by Theorem
2.2, logf converges on mCp

. Furthermore, the Newton polygon of logf displays that
logf has simple roots (as each of its Weierstrass polynomials is Eisenstein over Zp)
and the root set of logf and Λf have the same number of points on any circle in

3One can place a topology on Zp�X� induced by a set of valuations arising from Newton
copolygons. This topology is strictly finer than the topology of coefficient-wise convergence.
Lubin proves that the limit defining logf converges in the closure of Zp�X� under this topology.
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mCp
. One guesses that the root set of logf (counting multiplicity) is Λf . This is

true and proved by Lubin [Lub94, Proposition 2.2].
The logarithm of f is invertible in S0(Qp). Conjugation by logf defines a continu-

ous isomorphism from the centralizer of f in S0(Qp) to EndQp
(Ĝa). This map sends

the power series e to e′(0)x. If a ∈ Zp, we denote by [a]f (X) := log−1
f (a(logf (X))).

The series [a]f (X) is the unique element of S0(Qp), which commutes with f and
acts on the tangent space at 0 by a.

Consider the subgroup u◦Zp ⊆ S0(Zp). By the previous paragraph, conjugation
by logf identifies this group with the closed subgroup u′(0)Zp of Z×

p . By Assumption
2.1, this group is infinite. Replacing u with an appropriate finite iterate, we may
assume without loss of generality that:

Assumption 2.6. The group u◦Zp is topologically isomorphic to Zp and

vp(1− u′(0)m) = vp(1− u′(0)) + vp(m)

for all m ∈ Zp.

2.2. A character arising from a commuting pair. Let F be a height one
formal group over Zp. A fundamental invariant attached to F is its Tate module,
TpF. Given that F is height one, TpF is a rank one Zp-module on which GQp

acts
through a character χF : GQp

→ Z×
p . This map is surjective.

Simultaneously, the automorphism group AutZp
(F ) acts on TpF and commutes

with the action of GQp
. This action is through the character which sends an au-

tomorphism to multiplication by its derivative at 0. Because the automorphism
group AutZp

(F ) is isomorphic to Z×
p via this character, given any g ∈ GQp

there is
a unique sg ∈ AutZp

(F ) such that for all nonzero v ∈ TpF the equality g.v = sg.v
holds. The value χF (g) can be recovered from sg as χF (g) = s′g(0).

This fact should be considered remarkable, for it allows one to recover the char-
acter χF without any explicit knowledge of the additive structure of TpF. Rather,
χF can be completely deduced from the structure of the GQp

-orbit of any nonzero
element v as a GQp

×AutZp
(G)-set.

In this section, guided by this observation, we will attach to our commuting pair
(f, u) a character χf from the Galois group of a certain finite extension K of Qp to
Z×

p . The character χf arises from the Tate module of the latent formal group for
which f and u are endomorphisms.

We begin by defining sequences of elements of mCp
which will substitute for the

rôle of elements of the Tate module of F.

Definition 2.7 ([Lub94, p. 329]). An f -consistent sequence is a sequence of ele-
ments (s1, s2, s3, . . . ) of mCp

such that f(s1) = 0 and for i > 1, f(si) = si−1.

Denote the set of all f -consistent sequences whose first entry is nonzero by T0.

Proposition 2.8. The Galois group GQp
acts transitively on T0.

Proof. The n-th coordinate of any f -consistent sequence in T0 is a root of f◦n which
is not a root of f◦n−1. It is enough to show that GQp

acts transitively on these

elements. Comparing the Newton polygons of f◦n and f◦n−1, we deduce that the
set of such elements satisfies a degree pn − pn−1 Eisenstein polynomial over Qp.
This polynomial is irreducible, and hence GQp

acts transitively on its roots. �
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Choose an f -consistent sequence Π = (π1, π2, π3, . . . ) such that π1 �= 0. The
sequence Π will be fixed throughout the remainder of this paper. Because u ∈
S0(Zp) is nontrivial, it can have only finitely many fixed points in mCp

. Let k be

the largest integer such that u(πk) = πk. As u◦Zp ∼= Zp is a p-group and there are
p − 1 nonzero roots of f, the integer k is at least 1. Let Tπk

denote the set of all
f -consistent sequences (s1, s2, s3, . . . ) such that si = πi for i ≤ k.

Proposition 2.9. Tπk
is a torsor for the closed subgroup of S0(Zp) generated by

u.

Proof. The subgroup of S0(Zp) topologically generated by u is isomorphic to Zp.
Therefore, as Tπk

is infinite, if u◦Zp acts transitively on Tπk
it must also act freely. To

prove this action is transitive, we invoke the counting powers of the orbit stabilizer
theorem.

We begin by calculating the fixed points of iterates of u. Consider the set

Λu := {π ∈ mCp
: u◦n(π) = π for some n ∈ Z+}

of u-periodic points in mCp
. Lubin proves Λu = Λf [Lub94, Proposition 4.2.1]. Let

e be a finite iterate of u. Consider the series e(x) − x. The roots of this series are
the fixed points of e, and hence each root is an element of Λu. Since e is defined
over Zp, the set of roots of e in mCp

is a finite union of GQp
-orbits in Λu = Λf .

The GQp
-orbits in Λf comprise the collection of sets

Cn = {x ∈ mCp
: f◦n(x) = 0, but f◦n−1(x) �= 0},

where n ranges over the positive integers and C0 = {0}. Evaluation under f is
an e-equivariant surjection from Cn to Cn−1. Hence the fixed points of e are con-
tained in

⋃
i≤n Ci for some n. By [Lub94, Proposition 4.5.2] and [Lub94, Proposi-

tion 4.3.1], respectively, the roots of e(x)− x are simple and e(x)− x �≡ 0 mod p.
Thus, the negative slopes of the Newton polygon of e(x) − x must span between
(1, vp(1− e′(0))) and the v-axis. Since when n ≥ 1 the set Cn is the full set of roots
of an Eisenstein polynomial Zp, each of the sets Cn accounts for a segment in the
Newton polygon of e(x)− x with a decline of one unit. We conclude that the roots
of e(x)−x and hence the fixed points of e are simple and equal to

⋃
i≤vp(1−e′(0)) Ci.

From this calculation, we deduce that vp(1 − u′(0)) = k and the pointwise sta-
bilizer of π ∈ Cn is the set

{e ∈ u◦Zp : vp(1− e′(0)) ≥ n}.
By Assumption 2.6, it follows that the stabilizer of any π ∈ Cn for n ≥ k is the

group u◦pn−kZp .
We now show that u◦Zp acts transitively on Tπk

. As in the proof of Proposition
2.8, it is enough to show that u◦Zp acts transitively on the set of possible values for
the n-th coordinate of a sequence in Tπk

. Let n ≥ k and consider the set

Wn(πk) = {π ∈ mCp
: f◦n−k(π) = πk}.

The set Wn(πk) comprises the possible values of an n-th coordinate of a sequence
in Tπk

. Because πk �= 0, the Newton polygon of f◦n−k−πk has exactly one segment
of positive slope. The length of this segment is pn−k, and its slope is 1

pn−1(p−1) .

Hence, Wn(πk) has order p
n−k and is contained in Cn. It follows that the u

◦Zp -orbit
of a point π ∈ Wn(πk) has order

|u◦Zp/u◦pn−kZp | = pn−k = |Wn(πk)|.
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We conclude the action of u◦Zp on Wn(πk) is transitive. �
Let K := Qp(πk). The transitive GQp

action on T0 restricts to a transitive GK-
action on Tπk

. The fixed field of the kernel of this action is K∞ := Qp(πi|i > 0).
Let σ ∈ GK . Because Tπk

is a torsor for u◦Zp there is a unique element uσ ∈ u◦Zp

such that uσΠ = σΠ. We set χf (σ) := u′
σ(0). The power series uσ can be recovered

from χf (σ) as uσ = [χf (σ)]f .

Proposition 2.10. The map [χf ]f : GK → u◦Zp is a surjective group homomor-
phism satisfying [χf (σ)]f (πi) = σ(πi) for all i > 0. The fixed field of the kernel of
[χf ]f is K∞.

Proof. Outside the fact that [χf ]f is a homomorphism, this proposition follows
directly from the discussion above. We show that [χf ]f is a homomorphism. Let
σ1, σ2 ∈ GK . Then

[χf (σ2)]f [χf (σ1)]f (Π) = [χf (σ1)]f [χf (σ2)]f (Π)

= [χf (σ1)]fσ2(Π)

= σ2([χf (σ1)]fΠ)

= σ2σ1(Π).

By uniqueness, it follows that [χf (σ2)]f [χf (σ1)]f = [χf (σ2σ1)]f and [χf ]f is a
homomorphism. �

The character χf comes via a ‘geometric’ construction and therefore should have
good behavior from the viewpoint of p-adic Hodge theory. In the next section we
show this is the case. Specifically, we show that χf is crystalline of weight 1.

3. The Hodge theory of χf

3.1. Fontaine’s period rings. To show that χf is crystalline, we must show that
χf occurs (by definition) as aGK-sub-representation in Fontaine’s period ringBcris.
In this section, we will recall the construction of this ring as well as several other
of Fontaine’s rings of periods (for which the original constructions can be found in
[Fon94]). We will follow the naming conventions of Berger [Ber04].

The construction of the period rings begins in characteristic p. Let

Ẽ+ := lim←−
x�→xp

OCp
/p.

The ring Ẽ+ inherits an action of the Galois group GQp
from the action of GQp

on

OCp
. Additionally, by virtue of being a ring of characteristic p, the ring Ẽ+ comes

equipped with a Frobenius endomorphism Frob
˜E+ . The map Frob

˜E+ commutes
with the action of GQp

.

The map Frob
˜E+ is an isomorphism and therefore Ẽ+ is perfect. Set Ã+ =

W (Ẽ+), the Witt vectors of Ẽ+. The formality of the Witt vectors implies that

the commuting actions of Frob
˜E+ and GQp

on Ẽ+ lift, respectively, to commuting

actions of Frob
˜E+ and GQp

on Ã+ as ring endomorphisms. The lift of Frob
˜E+ is

denoted by ϕ.

Let B̃+ := Ã+[ 1p ]. Fontaine constructs a surjective GQp
-equivariant ring homo-

morphism θ : B̃+ → Cp which can be defined as follows. The map θ is the unique

homomorphism which is continuous with respect to the p-adic topologies on B̃+
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and Cp and which maps the Teichmüller representative {x} to limn→∞ xn where

xn is any lift of x1/pn

to OCp
.

The period ring B+
dR is defined as the ker(θ)-adic completion of B̃+. The ring

B+
dR is topologized so that it inherits the topology generated by the intersection of

the ker(θ)-adic and p-adic topologies of the dense subring B̃+. The map θ extends
to a continuous GQp

-equivariant surjection θ : B+
dR → Cp and ker(θ) is principal.

The ring B+
dR is abstractly isomorphic to Cp�t�. The map θ induces an N-graded

filtration on B+
dR where FiliB+

dR := ker(θ)i. The de Rham ring of periods, BdR, is

defined as the fraction field of B+
dR. The filtration on B+

dR extends to a Z-graded
filtration on BdR.

Let V/Qp be a finite dimensional representation of the absolute Galois group
of a p-adic field E. We say V is de Rham if the E-dimension of D∗

dR(V ) :=
HomQp�GE�(V,BdR) is equal to the dimension of V. The filtration on BdR induces a
filtrationD∗

dR(V ). The nonzero graded pieces of this filtration are called the weights
of V. The weight of the cyclotomic character is 1.

The ring BdR does not admit a natural extension of the Frobenius endomor-

phism, ϕ, of Ã+. To rectify this, Fontaine defines a ring Bcris of BdR on which
the endomorphism ϕ extends. The ring Bcris is defined as follows: Let A◦

cris be

the PD-envelope of Ã+ with respect to the ideal ker(θ) ∩ Ã+. The ring A◦
cris is

a subring of B+
dR. We define Acris to be the p-adic completion of A◦

cris. One can

show that the inclusion of A◦
cris into B+

dR extends naturally to an inclusion of Acris

into B+
dR. Under this inclusion Acris is identified with the set of elements of the

form
∑∞

i=0 an
tn

n! where an ∈ Ã+ such that limn→∞ an = 0 in the p-adic topology

and t ∈ ker(θ)∩ Ã+. The ring B+
cris is defined as B+

cris := Acris[
1
p ]. The ring B+

cris

contains a unique GQp
-stable Qp-line on which GQp

acts by the cyclotomic char-

acter. The ring Bcris is defined from B+
cris by inverting any nonzero vector in this

line.
Let E0 be the maximal unramified extension of Qp contained in E. A finite

dimensional representation V/Qp of the absolute Galois group of a p-adic field E is
called crystalline if the E0-dimension of D∗

cris(V ) := HomQp�GE�(V,Bcris) is equal
to the dimension of V. The endomorphism ϕ extends uniquely to an endomorphism
of each of the rings A◦

cris,Acris,B
+
cris, and Bcris.

3.2. The universal f-consistent sequence. Let Zp�x1� be the ring of formal
power series over Zp in the indeterminate x1. In this section we will define a ring,
A∞, containing Zp�x1�, which parameterizes f -consistent sequences in certain topo-
logical rings. The initial term of such a sequence will be parameterized by x1. We

will show that one can define a continuous injection A∞ ↪→ Ã+ under which the
image of A∞ is GK-stable and satisfies σ(x1) = [χf (σ)]f (x1).

We begin by defining A∞. For each positive integer i, set Ai := Zp�xi�, the
ring of formal power series over Zp in the indeterminate xi. Denote, for each i,
the homomorphism that maps xi �→ f(xi+1) by [f ′(0)]∗f : Ai → Ai+1. We define
A◦

∞ := lim−→Ai to be the colimit of the rings Ai with respect to the transition maps

[f ′(0)]∗f . Finally, the ring A∞ is defined to be the p-adic completion of A◦
∞.

We view A∞ as a topological ring under the adic topology induced by the ideal
(p, x1). The reader should be aware that while A∞ is complete with respect to the
finer p-adic topology, it is not complete with respect to the (p, x1)-adic topology.
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Under the topology on A∞ the elements xi are topologically nilpotent and together
topologically generate A∞ as a Zp-algebra.

The ring A∞ is a natural object to consider from the viewpoint of nonarchime-
dian dynamics, for it is universal for f -consistent sequences in the following sense:
given any p-adically complete, ind-complete adic Zp-algebra S and any f -consistent
sequence s := (s1, s2, s3, . . . ) of topologically nilpotent elements in S there exists
a unique homomorphism φs : A∞ → S such that φs(xi) = si. Conversely, any
homomorphism from A∞ to S arises as φs for some sequence s. In other words, A∞
represents the functor from p-adically complete, ind-complete adic Zp-algebras to
sets which send an algebra S to the set of f -consistent sequences of topologically
nilpotent elements in S.

Alternatively, we claim that A∞ is canonically isomorphic to W (A∞/pA∞), the
Witt vectors of the residue ring A∞/pA∞, and hence A∞ is closely connected to
constructions in p-adic Hodge theory. The fact that A∞ ∼= W (A∞/pA∞) follows
from the observation that A∞ is a strict p-ring, i.e., that A∞ is complete and Haus-
dorff for the p-adic topology, that p is not a zero divisor in A∞, and that A∞/pA∞
is perfect [Haz09]. Of these three criteria only the third is not immediately obvious
for A∞. To see that A∞/pA∞ is perfect, we recall:

Theorem 3.1 ([Lub94, Corollary 6.2.1, p. 343]). Let k be a finite field, and let
u, f �= 0 be invertible and noninvertible, respectively, in S0(k), commuting with each

other. Then either u is a torsion element of S0(k) or f has the form f(x) = a(xph

)
with h ∈ Z+ and a ∈ S0(k) is invertible.

In our case, Theorem 3.1 implies that f(x) ≡ a(xp) mod p for some invertible
series a ∈ S0(Fp). It follows that

A∞/pA∞ ∼= A◦
∞/pA◦

∞
∼= lim−→Ai/pAi

∼= lim−→
xi �→a(xp

i+1)

Fp�xi�

∼= lim−→
xi �→a(xi+1)p

Fp�xi�

∼= lim−→
a◦i(xi) �→(a◦i+1(xi+1))p

Fp�a
◦i(xi)�

∼= lim−→
yi �→yp

i+1

Fp�yi�,

where yi := a◦i(xi). As this final ring is perfect the claim follows.

Our goal is to find an injection A∞ ↪→ Ã+ with particularly nice properties.

Since A∞ is a strict p-ring, any injection A∞/pA∞ ↪→ Ẽ+ lifts canonically to

an injection A∞ ↪→ Ã+. Let Π := (π1, π2, π3, . . . ) be the f -consistent sequence
of elements in mCp

fixed in section 2.2. Then, as f(x) ≡ a(xp) mod p, we ob-

serve that for each i ∈ Z+ the series π̂i := 〈a◦k−i(πk) mod p〉k≥i ∈ Ẽ+. Define

Π̂ := (π̂1, π̂2, π̂3, . . .). The sequence Π̂ is f -consistent and consists of topologically

nilpotent elements of Ẽ+. Let φΠ̂ : A∞ → Ẽ+ be the homomorphism associated to

Π̂.
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Proposition 3.2. The kernel of the map φΠ̂ : A∞ → Ẽ+ is pA∞. The induced

injection φΠ̂ : A∞/pA∞ → Ẽ+ identifies A∞/pA∞ with a GK-stable subring of Ẽ+

such that for all σ ∈ GK and positive integers i the equality

σ(φΠ̂(xi)) = φΠ̂([χf (σ)]f (xi))

holds.

Proof. The ring Ẽ+ has characteristic p, and therefore φΠ̂ factors through

A∞/pA∞ ∼= A◦
∞/pA◦

∞
∼= lim−→Ai/pAi.

To prove the proposition, we show that the restriction of the map induced by φΠ̂ to
Ai/pAi is an injection and satisfies σ(φΠ̂(xi)) = φΠ̂([χf (σ)]f (xi)) for all σ ∈ GK .

The ring Ai/pAi is isomorphic to Fp�xi�. Therefore, any homomorphism out of
Ai/pAi is either injective or has finite image. We claim that the latter is false for
the map induced by φΠ̂. To see this, consider S0(Fp) acting on φΠ̂(Ai/pAi). We
claim that the stabilizer of φΠ̂(xi) is trivial and hence φΠ̂(xi) has infinite orbit. Let
z ∈ S0(Fp) be a nontrivial element and n = deg(z(x)− x). Then

z(φΠ̂(xi))− xi = 〈z(a◦k−i(πk))− πk mod p〉k≥i.

For any positive integer k, the coordinate z(a◦k−i(πk)) − πk mod p is the image
under the reduction map OCp

→ OCp
/p of an element of p-adic valuation n

pk−pk−1 .

Hence for k � 0, we have z(a◦k−i(πk)) − πk mod p is nonzero. It follows that z
does not stabilize φΠ̂(xi).

The proof that GK acts in the desired way on φΠ̂(xi) is by direct calculation.
Let σ ∈ GK . Then

σ(φΠ̂(xi)) = σ(π̂i)

= 〈σ(a◦k−i(πk)) mod p〉k≥i

= 〈a◦k−i(σ(πk)) mod p〉k≥i

= 〈a◦k−i([χf (σ)]f (πi)) mod p〉k≥i

= 〈[χf (σ)]f (a
◦k−i(πi)) mod p〉k≥i

= [χf (σ)]f (π̂)

= φΠ̂([χf (σ)]f (xi)).

�

Because A∞ is a strict p-ring, the injection induced by φΠ̂ : A∞/pA∞ ↪→ Ẽ+ lifts

canonically to an injection W (φΠ̂) : A∞ ↪→ Ã+. Henceforth, we will identify A∞
with its image under W (φΠ̂). The GK action on A∞/pA∞ lifts functorially to a GK

action on A∞; furthermore, the map W (φΠ̂) is GK-equivariant and identifies A∞
with a GK-stable subring of Ã+. Our next goal is to precisely describe the action
of GK on A∞. The following theorem provides the rigidity needed to understand
these lifts.

Let Fq be a finite extension of Fp and consider an invertible series ω ∈ S0(Fq)
such that ω′(0) = 1. The absolute ramification index of ω is defined to be the limit

e(ω) := lim
n→∞

(p− 1)vx(ω
◦pn

(x)− x)/pn+1.
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Theorem 3.3 ([LMS02, Proposition 5.5]). Assume e(ω) < ∞. Then the separable
normalizer of ω◦Zp in S0(Fq) is a finite extension ω◦Zp by a group of order dividing
e(ω).

Lemma 3.4. There exists a positive integer m such that a◦m ∈ u◦Zp mod p.

Proof. Note that as f and u commute, so too do a and the reduction of u modulo p.
One observes, upon considering the Newton polygon u◦n(x)− x, that vx(u

◦n(x)−
x) = |1 − u′(0)n|p. By Assumption 2.6, the absolute ramification index of u is
therefore finite. The result follows by Theorem 3.3. �

Proposition 3.5. Let σ ∈ GK . Then σ(xi) = [χf (σ)]f (xi).

Proof. Consider the sequence

[χf (σ)]f (Π
univ) := ([χf (σ)]f (xi))i∈Z+

of elements in A∞. Because f and [χf (σ)]f commute, the sequence [χf (σ)]f (Π
univ)

is f -consistent. Hence, by the universal property of A∞, there exists an endomor-
phism [χf (σ)]

∗
f := φ[χf (σ)]f (Πuniv) of A∞ which maps xi to [χf (σ)]f (xi).

We wish to show that the Witt lift W (σ) is equal to [χf (σ)]
∗
f . The former map is

defined by its action mod p on Teichmüller representatives. Denote the Teichmüller
mapping by {∗} : A∞/pA∞ → A∞. For α ∈ A∞/pA∞ the element {α} can be

defined as follows: let αn be any lift of α1/pn

; then {α} := limn→∞ αpn

n . The map
{∗} is well defined as this limit converges and is independent of the choice of lifts
αn. The automorphism W (σ) is the unique map such that W (σ){α} = {σ(α)}.

We claim the set of Teichmüller lifts of xi mod p together topologically generate
A∞ (in the (p, x1)-adic topology) as a Zp-algebra. To see this, let Atm

∞ be the
subalgebra topologically generated by these elements. We show that Atm

∞ = A∞.
First note that the residue rings Atm

∞ /pAtm
∞ and A∞/pA∞ are equal. Next observe

that Atm
∞ is a strict p-ring. To see this, note that Atm

∞ is closed in the p-adic topology
on A∞ and is therefore p-adically complete and Hausdorff, Atm

∞ is a subalgebra
of A∞ and hence p is not a zero divisor in Atm

∞ , and Atm
∞ /pAtm

∞ = A∞/pA∞
and hence the residue ring Atm

∞ /pAtm
∞ is perfect. It follows that the image of

Atm
∞ /pAtm

∞ = A∞/pA∞ under the Teichmüller map lies in Atm
∞ . But A∞ (in the p-

adic topology) is topologically generated as a Zp-algebra by the image of A∞/pA∞
under the Teichmüller map. We conclude that Atm

∞ = A∞.
Therefore, to show that W (σ) = [χf (σ)]

∗
f , it is enough to show that W (σ({xi}))

:= {σ(xi)} is equal to [χf (σ)]
∗
f ({xi}) for all i ∈ Z+. Fix a positive integer i.

By Lemma 3.4, there exists an integer N > 0 and a p-adic number k such that
a◦N = u◦k. Hence, as f(x) ≡ a(xp) mod p, it follows that for every positive

integer m the element u◦−km(xNm+i) is a lift of xp1/Nm

i mod p. Similarly,

u◦−km([χf (σ)]f (xNm+i)) is a lift of (σ(xi))
p1/Nm

mod p. Using these lifts we will
compare the action of W (σ) and [χf (σ)]

∗
f on {xi}. Observe that

[χf (σ)]
∗
f ({xi}) = lim

m→∞
([χf (σ)]

∗
f (u

◦−km(xNm+i)))
pNm

= lim
m→∞

(u◦−km([χf (σ)]
∗
f (xNm+i)))

pNm

= lim
m→∞

(u◦−km([χf (σ)]f (xNm+i)))
pNm

= W (σ)({xi}). �
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Remark 3.6. The ring A∞ is not an unfamiliar object in the study of formal groups
(or more generally p-divisible groups). If f is the endomorphism of a formal group
F := Spf(Zp�x1�), the completion of A∞ is the ring of global functions on the
universal cover of F (see [SW13, section 3.1]).

3.3. The p-adic regularity of χf . In this section, we will examine the image of
the sequence 〈xi〉 under logf . To ensure convergence, we will appeal to the following
lemma of Berger:

Lemma 3.7 ([Ber14b, Lemma 3.2]). Let E be a finite extension of Qp and take
L(X) ∈ E�X�. If x ∈ B+

dR, then the series L(x) converges in B+
dR if and only if

L(θ(x)) converges in Cp.

By construction, the image of A∞ lies in Ã+ and therefore θ(xi) ∈ OCp
. The

map from A∞ to Ã+ is a lift of the map φΠ̂ : A∞ → Ẽ+ which sends xi to

π̂i := 〈a◦k−i(πk) mod p〉k≥i. Therefore, θ(xi) ≡ πi mod p and hence θ(xi) ∈ mCp
.

Now the series logf (X) converges on mCp
, and so we see from Lemma 3.7 that

logf (xi) converges in B+
dR for all i ∈ Z+.

Set x0 := f(x1). Then θ(x0) ∈ mCp
, and hence logf (x0) converges in B+

dR. We
define tf := logf (x0). We note that

(f ′(0))n+1 logf (xn) = logf (f
◦n+1(xn)) = logf (f(x1)) = tf ,

and therefore the values logf (xn) are Qp-multiples of tf . We call tf a fundamental
period of f. The reader should be warned that tf depends not only on f but also on
our choice of f -consistent sequence Π. If f is an endomorphism of a formal group
defined over Zp, then any two fundamental periods differ by a p-adic unit.

How does GK act on tf? Let σ ∈ GK . Then

σ(tf ) = σ logf (f(x1))

= logf (f(σ(x1)))

= logf (f ◦ [χf (σ)]f (x1))

= f ′(0)χf (σ) logf (x1)

= χf (σ)tf .

Therefore, assuming tf �= 0, the period tf generates a GK-stable Qp-line of B+
dR

on which GK acts through χf . From this it follows that χf is de Rham of some
positive weight. Our first proposition of this section shows that this is in fact the
case.

Proposition 3.8. χf is de Rham of weight 1.

Proof. The claim will follow if we can show that tf ∈ Fil1B+
dR \ Fil2B+

dR.

We begin by showing that tf ∈ Fil1B+
dR. Assume this is not the case. Then

χf would be Rham of weight 0. However, all such representations are potentially
unramified, and K∞, the fixed field of kerχf , is an infinitely ramified Zp-extension

of K. It follows that tf ∈ Fil1B+
dR.

Next we show that tf �∈ Fil2B+
dR. Since 0 = θ(tf ) = logf (θ(x0)), we observe that

θ(x0) is a root of logf . The quotient B+
dR/Fil

2B+
dR is a square zero extension of

B+
dR/Fil

1B+
dR

∼= Cp. Since all roots of logf in mCp
are simple, we conclude that

tf �∈ Fil2B+
dR. �
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Lemma 3.9. The derivative of the logarithm, log′f , is an element of Zp�x�.

Proof. Since the series logf converges on mCp
, so too does log′f . The Newton poly-

gon of log′f contains the point (0, 0). Hence, log′f ∈ Zp�x� if and only if log′f has no

roots in mCp
. Assume for the sake of contradiction that log′f has a root π in mCp

.
Then

(3.1) log′f (u(π))u
′(π) = (logf ◦u)′(π) = u′(0) log′f (π) = 0.

The power series u′(x) is invertible in Zp�x�, so equation (3.1) implies log′f (u(π)) =

0. Hence, u◦Zp acts on the set of roots of log′f . Since u preserves valuation and log′f
has only finitely many roots of any fixed valuation, some power of u fixes π. From
the equality Λu = Λf , we conclude that the element π is a root of logf . But this is
a contradiction, as logf has simple roots. �
Proposition 3.10. The period tf is an element of Acris, and χf is crystalline.

Proof. By Lemma 3.9,

logf (x) =

∞∑
i=1

an
n
xn,

where an ∈ Zp for all n ∈ Z+. Therefore,

tf =
∞∑
i=1

an(n− 1)!
xn
0

n!
.

It follows that if θ(x0) = 0, then tf ∈ Acris. To see θ(x0) = 0, note that θ(x0) is a
root of logf in mCp

and

θ(x0) ≡ θ(f(x1)) ≡ f(π1) ≡ 0 mod p.

As 0 is the unique root of logf of p-adic valuation greater than 1, the element
θ(x0) = 0 and the claim follows. �

4. The main theorem

4.1. Constructing the formal group. Let Vf be the Qp-line of B+
cris generated

by the period tf . In section 3.3, we deduced that Vf is a GK-subrepresentation of
B+

cris isomorphic to χf . Since K/Qp is totally ramified, any GK-representation
on a vector space V/Qp has multiplicity in B+

cris at most one. Therefore, Vf is
the unique Qp-line of B+

cris isomorphic to χf . It follows that Vf is preserved by
crystalline Frobenius. Let πf ∈ Qp be the eigenvalue of crystalline Frobenius
acting on Vf . Because Vf has weight one, the p-adic valuation of πf is equal to 1.

The next lemma is fundamental. We will show that the equality ϕ(logf (x0)) =
πf logf (x0) implies that ϕ(x0) = [πf ]f (x0). This will be enough to show that [πf ]f ∈
S0(Zp) and satisfies [πf ]f (x) ≡ xp mod p, from which we will deduce that f and
u are endomorphisms of an integral formal group by a lemma of Lubin and Tate.

Lemma 4.1. The power series [πf ]f ∈ πfx+ x2Zp�x� and satisfies [πf ]f (x) ≡ xp

mod p.

Proof. First note that by construction x0 ∈ Ã+ ⊆ B+
cris and so x0 is acted upon

by crystalline Frobenius. Consider ϕ(x0). We claim that θ(ϕ(x0)) = 0. To see this,
observe that

logf (θ(ϕ(x0))) = θ(ϕ(logf (x0))) = θ(πf tf ) = 0.



3606 JOEL SPECTER

Hence, θ(ϕ(x0)) is a root of logf (x). As x0 ∈ Ã+ and θ(x0) = 0, the image of
crystalline Frobenius satisfies θ(ϕ(x0)) ∈ pOCp

. The unique root of logf (x) in
pOCp

is 0; therefore we conclude that θ(ϕ(x0)) = 0.

Because θ(x0) = 0 and θ(ϕ(x0)) = 0, any series e(x) ∈ Qp�x� converges in B+
dR

when evaluated at x0 or ϕ(x0). From this we deduce the equality

logf (ϕ(x0)) = ϕ(tf ) = πf tf = logf ([πf ]f (x0)).

Additionally, we may apply log−1
f to both sides, obtain convergent results, and

deduce that ϕ(x0) = [πf ]f (x0).
Write

[πf ]f (x) = πfx+
∞∑

n=2

anx
n,

where an ∈ Qp. We prove by induction on n that an ∈ Zp. Let n ≥ 2 and assume
that ai ∈ Zp for all i < n. Set

[πf ]
<n
f := πfx+

n−1∑
i=2

aix
i.

Observe the equality

[πf ]
<n
f (x0) ≡ ϕ(x0) ≡ xp

0 mod FilnB+
dR ∩ Ã+ + pÃ+.

Hence, as the homomorphism Zp�x� → Ã+ given by mapping x �→ x0 is injective

and (x) is the pullback of FilnB+
dR ∩ Ã+, it must be the case that [πf ]

<n
f (x) ≡ xp

mod p. Express f(x) = f ′(0)x+ f≥2(x) where f≥2(x) ∈ x2Zp�x�. Note that

f ◦ [πf ]f (x) ≡ f([πf ]
<n
f (x)) + anf

′(0)xn mod xn+1

and

[πf ]f (f(x)) ≡ [πf ]
<n
f (f(x)) + anf

′(0)nxn mod xn+1.

As f(x) and [πf ](x) commute,

(4.1) f([πf ]
<n
f (x))− [πf ]

<n
f (f(x)) ≡ an(f

′(0)− f ′(0)n)xn mod xn+1.

The left hand side of (4.1) is a power series over Zp and reduces modulo p to

f([πf ]
<n
f (x))− [πf ]

<n
f ≡ f(xp)− f(x)p ≡ 0 mod p.

Therefore, the right hand side of (4.1) is a power series over pZp. Since

vp(f
′(0)− f ′(0)n) = 1,

it follows that an ∈ Zp. By induction we conclude that [πf ]f is an element of
πfx+x2Zp�x�. From the equality ϕ(x0) = [πf ]f (x0), we observe that [πf ]f (x) ≡ xp

mod p. �

Theorem 4.2. Let f and u be a commuting pair of elements in S0(Zp). If

• f ′(0) is prime in Zp and f has exactly p roots in mCp
, and

• u is invertible and has infinite order,

then there exists a unique formal group law F/Zp such that f, u ∈ EndZp
(F ). The

formal group law F is isomorphic to Ĝm over the ring of integers of the maximal
unramified extension of Qp.
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Proof. By [LT65, Theorem 1.1], the series [πf ]f is an endomorphism of a unique
height one formal group over F/Zp. Furthermore, f and u are endomorphisms of
F . The second half of the claim follows, as all height one formal groups over Zp are

forms of Ĝm and are trivialized over the ring of integers of the maximal unramified
extension of Qp. �
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