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FINITE 2-GROUPS WITH ODD NUMBER

OF CONJUGACY CLASSES

ANDREI JAIKIN-ZAPIRAIN AND JOAN TENT

Abstract. In this paper we consider finite 2-groups with odd number of real
conjugacy classes. On one hand we show that if k is an odd natural number
less than 24, then there are only finitely many finite 2-groups with exactly
k real conjugacy classes. On the other hand we construct infinitely many
finite 2-groups with exactly 25 real conjugacy classes. Both resuls are proven
using pro-p techniques, and, in particular, we use the Kneser classification of
semi-simple p-adic algebraic groups.

1. Introduction

We recall that an element in a group G is real if it is conjugate in G to its inverse,
and a conjugacy class of G is real if it consists of real elements. It is well known
that certain conditions on the set of real conjugacy classes of a finite group may
strongly influence the structure of the group, the first example of this possibly being
that a finite group contains no non-trivial real conjugacy classes if and only if it
has odd order. In the present paper we study finite 2-groups satisfying a particular
condition of this nature, namely, that its number of real conjugacy classes is an odd
natural number.

A theorem by M. Isaacs, G. Navarro, and J. Sangroniz [6] characterizes the finite
2-groups of maximal class as those possessing precisely 5 rational-valued irreducible
characters. It is easy to see that if a 2-group has 5 real irreducible characters,
then all of them are rational-valued, and thus the group has maximal class. As a
consequence of this, it is deduced in [6] that there are (up to isomorphism) only
3 finite 2-groups with 5 real conjugacy classes, all of them having maximal class.
Now, a considerably easier fact is that there are no 2-groups with 3 real conjugacy
classes. As a continuation of these results, it is proved in [12] that a finite 2-group
with 7 real classes has order at most 128.

Indeed, it is a relevant observation that most 2-groups of small order appear to
have an even number of conjugacy classes. Since the real classes in a (finite) group
are those classes fixed by the action induced by inversion of elements, it is clear
that the parity of the number of conjugacy classes of a finite group coincides with
the parity of the number of its real classes. Then most small 2-groups have an
even number of real conjugacy classes. In order to explain this phenomenon, Josu
Sangroniz proposed the following conjecture [12], which motivates our work.
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Conjecture. If r is an odd natural number, then there are only finitely many finite
2-groups with exactly r real conjugacy classes.

Our purpose in this paper is to give an answer to this problem. More precisely,
we shall confirm the conjecture for r ≤ 23 and show that it is false when r = 25.

Theorem A. Let r ≤ 23 be an odd natural number. Then there are only finitely
many finite 2-groups with exactly r real conjugacy classes.

Theorem B. There are infinitely many finite 2-groups with exactly 25 real conju-
gacy classes.

In contrast to the previous results for 2-groups with an odd number r ≤ 7 of
real conjugacy classes, which are obtained by methods of finite group theory and
its representation theory, both Theorem A and Theorem B are proven using pro-p
techniques, as we next briefly sketch.

It turns out that the existence of infinitely many finite 2-groups with exactly k
real classes is equivalent to the existence of an infinite pro-2 group such that almost
all its finite quotients have exactly k real classes. Consequently, the problem is
reduced to the study of such pro-2 groups. As we shall prove, these groups have
finite rank, and so they are 2-adic analytic. These key steps in our reduction of the
problem require us to use a basic property of the real classes in a finite group, which
is that its number coincides with the number of real-valued irreducible characters of
the group. In fact, one advantage of passing from conjugacy classes to characters is
that the latter behave better with respect to quotient groups, and this is exploited
in the construction of a pro-2 group with k real classes. On the other hand, we
shall need to look at the real conjugacy classes again in order to control the rank
of this pro-2 group.

When the number of real conjugacy classes k is odd, we shall show that our
analysis should be focused on a Sylow pro-2 group of the automorphism group
of a semi-simple Lie Q2-algebra. These groups are well understood because of
the classification of semi-simple p-adic algebraic groups by M. Kneser [9], which
therefore plays an essential role in the proof of Theorem A. It is certainly remarkable
that the proof of our result on real classes of finite 2-groups needs an appeal to
this deep result from the theory of algebraic groups. It is ultimately M. Kneser’s
classification which indicates to us where to look for a minimal counterexample to
the conjecture, and as a matter of fact the groups in Theorem B are finite quotients
of a Sylow pro-2 group of PGL1(D), where D is a division Q2-algebra of dimension
9 (we recall that up to isomorphism there are only two such algebras, both of them
having isomorphic multiplicative groups).

We note that the fact that the equality between the number of real classes and
the number of real characters in a finite group in general has no analogue in the
case of rational values seems to be an obstruction to applying our arguments in a
rather direct way to related questions on rational classes and characters in finite 2-
groups. On the contrary, by this same reason our methods may be valid for similar
problems concerning fields of values in 2-groups in which equality holds, as it is in
the case of the field Q(i), being the fixed field of a cyclic Galois group acting on
the classes of a finite 2-group.
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2. Finite group preliminaries

In this section we include some preliminary results about real classes of finite
groups which we shall need later on.

Let a group H act on a group G as automorphisms. We will usually consider
the action of a subgroup H of G on G by conjugation and the induced action
on quotients of G. By a slight abuse of language, we may call the orbits of the
action H-conjugacy classes. For a subset T of G, we denote by kH(T ) the number
of H-orbits in G that have non-trivial intersection with T . If G acts on itself by
conjugation, then for simplicity k(G) = kG(G) will denote the number of conjugacy
classes of G. An element g ∈ G is called H-real, or simply real when there is no
possible confusion, if g and g−1 are in the same H-orbit. A conjugacy class is called
H-real if it consists of H-real elements. We denote by rH(T ) the number of H-real
conjugacy classes of G that have non-trivial intersection with T . For simplicity we
write r(G) = rG(G).

In the Introduction we already noted that the parities of k(G) and r(G) coincide
when G is a finite group. Next we prove this easy fact.

Lemma 2.1. For a finite group G, k(G) ≡ r(G) (mod 2).

Proof. Observe that inversion of elements in G induces a permutation of order at
most 2 on the set of conjugacy classes of G. Since a conjugacy class of G is real if
and only if it is fixed by this permutation, the result is clear. �

The following results relate the parities of the number of conjugacy classes of a
finite 2-group and a maximal subgroup of it.

Lemma 2.2. Let H be a subgroup of a finite group G of index 2. Then k(H) ≡
kG(G \H) (mod 2).

Proof. Recall that if G acts on a non-empty finite set Ω, then by Burnside’s formula
([16, Theorem 3.22]), the number of orbits of the action equals

1

|G|
∑
g∈G

|FixΩ(g)|,

where FixΩ(g) is the set of fixed points of g ∈ G in Ω. Since both H and G \H are
normal subsets of G we have that

2kG(H) = 2
|G| |{(g, h) ∈ G×H : gh = hg}|

= kH(G) = kH(G \H) + k(H) = kG(G \H) + k(H),

where the last equality follows from the fact that each G-conjugacy class in G \H
is already an orbit under conjugation by H, because H has index 2 in G. �

Corollary 2.3. Let G be a finite group and H a subgroup of index 2. If there are
no real elements in G \H, then k(H) is even.

If G is a finite group, we denote by Irr(G) the set of irreducible complex charac-
ters of G. If Ḡ is a quotient group of G, then Irr(Ḡ) is identified in a natural way
with a subset of Irr(G). We denote by Irrr(G) the set of irreducible characters of
G taking only real values. Such characters are called real.

Lemma 2.4. For a finite group G, r(G) = | Irrr(G)|.
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Proof. This is an immediate consequence of Brauer’s Theorem 6.32 of [5] (see Prob-
lem 6.13 of [5]). �

As a consequence of the previous lemma and the fact that characters of a quotient
group can be identified with characters of the whole group, we obtain the following:

Corollary 2.5. Let G be a finite group having r real conjugacy classes. Then any
quotient group of G has at most r real conjugacy classes.

In the next proposition we compare the number of real classes in H and G \H
when H has index 2 in a finite group G.

Proposition 2.6. Let G be a finite group and let H be a subgroup of G of index
2. Denote by Irrr,G(H) the set of real irreducible characters of H which are G-
invariant. Then

rG(G \H) ≤ | Irrr,G(H)|.
In particular, rG(G \H) ≤ r(H).

Proof. Let ϕ ∈ Irr(H) be such that there exists χ ∈ Irrr(G) lying over ϕ, so
ϕ ∈ Irr(H) is also a constituent of χH . Since G/H is cyclic, ϕ is G-invariant if
and only if χH = ϕ by Corollary 11.22 of [5], so ϕ is real-valued in this case. Also,
Gallagher’s theorem [5, Corollary 6.17] implies that if ϕ is G-invariant, then ϕ has
2 irreducible extensions to G, both of them being real-valued because χ is real. On
the other hand, if ϕ is not G-invariant, then χH = ϕ + ϕa, where a ∈ G \H, and
χ is the only irreducible character of G lying over ϕ, by Clifford’s correspondence
[5, Theorem 6.11]. For any a ∈ G \H, this yields

| Irrr(G)| ≤ 2| Irrr,G(H)|+ | Irrr(H) \ Irrr,G(H)|
2

+
|{ϕ ∈ Irr(H) : ϕa = ϕ �= ϕ}|

2

=
3| Irrr,G(H)|

2
+

| Irrr(H)|
2

+
|{ϕ ∈ Irr(H) : ϕa = ϕ �= ϕ}|

2
.

Since |{ϕ ∈ Irr(H) : ϕa = ϕ}| = | Irrr,G(H)| + |{ϕ ∈ Irr(H) : ϕa = ϕ �= ϕ}|, we
obtain that

(2.1) | Irrr(G)| ≤ | Irrr,G(H)|+ | Irrr(H)|
2

+
|{ϕ ∈ Irr(H) : ϕa = ϕ}|

2
.

Now, denote by rG(H) the number of real conjugacy classes of H which are
stabilized by G under conjugation. If K = ClH(x) for x ∈ H, we write K−1 =
ClH(x−1) and Ka = ClH(xa), where again a ∈ G \ H. For any a ∈ G \ H, it is
clear that

rG(H) = rG(H) +
1

2
(r(H)− rG(H)) +

1

2
|{K ∈ Cl(H) : Ka = K−1 �= K}|

=
1

2
r(H) +

1

2
rG(H) +

1

2
|{K ∈ Cl(H) : Ka = K−1 �= K}| .

Note that

|{K ∈ Cl(H) : Ka = K−1}| = rG(H) + |{K ∈ Cl(H) : Ka = K−1 �= K}|,
and so

(2.2) rG(H) =
r(H)

2
+

|{K ∈ Cl(H) : Ka = K−1}|
2

.
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Let an involution σ act on the sets Irr(H) and Cl(H) via ϕσ = ϕa and Kσ =
(Ka)−1, respectively, for all ϕ ∈ Irr(H) and K ∈ Cl(H). By Brauer’s Theorem
6.32 of [5], σ fixes the same number of points in Irr(H) as in Cl(H), that is,

|{ϕ ∈ Irr(H) : ϕa = ϕ}| = |{K ∈ Cl(H) : Ka = K−1}|.

Since by Lemma 2.4, | Irrr(H)| = r(H) and | Irrr(G)| = r(G) = rG(H)+rG(G\H),
it follows from (2.1) and (2.2) that

rG(G \H) ≤ | Irrr,G(H)| ≤ | Irrr(H)| = r(H).

�

For a finite 2-group G, we consider the following series of subgroups:

G1 = G, Gk+1 = [Gk, G]G2
k (k ≥ 1).

Note that the series eventually reaches the trivial subgroup {1G}, because G is
nilpotent. For simplicity, instead of “bounded by a function that only depends
on r” we shall write simply “r-bounded”. Recall that the rank of a finite group
is the supremum of the number of generators of its subgroups. (Of course, it is
understood that the number of generators of a group G is the size of a minimal
generating set of G.)

Lemma 2.7. Let G be a finite 2-group with r real conjugacy classes. Then the
following hold:

(1) The number of conjugacy classes of elements of order 2 in every quotient
group of G is r-bounded.

(2) The rank of G is r-bounded.
(3) There exists an r-bounded number k such that Irrr(G) ⊆ Irr(G/Gk).

Proof. Involutions are real elements, because an element of order 2 is its own inverse,
so (1) follows from Corollary 2.5. Now (2) follows from (1) and exercise 7 of Chapter
2 in [3]. Finally, by [12, Theorem C], there exists a normal subgroup N of G of
r-bounded index in G such that Irrr(G) ⊆ Irr(G/N). Thus (3) follows from the
nilpotency of G. �

3. Profinite group preliminaries

In this section we extend some of the results about real characters and real classes
from the previous section to profinite groups.

If P is a profinite group we denote by Irr(P ) the set of irreducible continuous
complex characters of P ; i.e., Irr(P ) is the union of Irr(P̄ ) for all the finite contin-
uous quotients P̄ of P . As in the finite order case, we denote by Irrr(P ) the subset
of characters of Irr(P ) taking only real values. We say that a profinite group P
is R-finite if the set Irrr(P ) is finite. It is not true in general that for a profinite
group P the number of conjugacy classes of real elements is equal to the cardinality
of Irrr(P ), as it is in the case for finite groups. For example, in a non-abelian
free pro-2 group the trivial element forms the unique real conjugacy class, but the
number of real irreducible characters is infinite.
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Lemma 3.1. Let P be a profinite group. Then the following hold.

(1) An element g ∈ P is real if gN is real in P/N for any open normal subgroup
N of P .

(2) Let S be a closed subset of P , let S be the set of P -real elements of S, and
let N be a normal open subgroup of P . Then there exists a normal open
subgroup L of P contained in N such that the P/L-real elements of SL/L
lie in SN/L.

(3) | Irrr(P )| = supN�oP | Irrr(P/N)|.
(4) If P is R-finite, then it has at most | Irrr(P )| real conjugacy classes. In

particular, every real element of P has finite order in this case.

Proof. First we prove (1). Suppose that gN is real in P/N for all open normal
subgroups N of P , and define XN = {x ∈ P | (gN)x = (gN)−1} �= ∅ for each
N �o P . Note that {XN}N�oP is an inverse system of compact sets with the
inclusion maps, since XN ⊆ XM if N ⊆ M and N,M �o P . Then the inverse limit
of this inverse set is non-empty ([14, Proposition 1.1.4]), so there exists x ∈ P such
that ggx ∈ N for all N �o P , and thus gx = g−1, as wanted.

We work by contradiction in order to obtain (2). For each open normal subgroup
L of P contained in N , let XL be the set of elements x ∈ SL such that xL is real in
P/L but x �∈ SN , and suppose that XL �= ∅ for each such L. Since the set formed
by such subgroups L is a base of neighborhoods of the identity element, SN is open
and S is closed, arguing as in (1) it follows that there exists a real element in S not
lying in SN , which of course is a contradiction.

Note that (3) follows from the definition of Irr(P ) and the first part of (4) follows
from (3), Lemma 2.4, and the fact that two elements x, y ∈ P are conjugate in P
if and only if xN, yN are conjugate for any open normal subgroup N of P .

Finally, suppose that P is R-finite and x ∈ P is real of infinite order, so Mx =
{o(xN) |N �o P} is infinite. Thus there exist infinitely many m ∈ N such that
x �∈ Nm and xm ∈ Nm for some Nm �o P depending on m, which implies that x
is not conjugate to xm. Similarly, xm is not conjugate to xn if n,m ∈ Mx with
n �= m. Since powers of real elements are real, P has infinitely many real classes,
which is a contradiction. �

The following corollary is a consequence of the previous lemma and Corollary
2.3.

Corollary 3.2. Let Q be a profinite group and let P be an open subgroup of index
2. Assume that there are no real elements of Q in Q\P . Then there exists an open
normal subgroup L of Q contained in P such that for any normal open subgroup M
of Q contained in L, r(P/M) ≡ 0 (mod 2). Thus if | Irrr(P )| is finite, then it is
even.

4. R-finite pro-2 groups and pro 2-groups of finite rank

In this section we include some basic facts about pro-p groups of finite rank and
analyze their real characters and real classes.

Let P be a profinite group. Denote by d(P ) the minimal cardinality of a topo-
logical generating set of P (see [3, p. 20]). Then the rank of P is defined to be
the supremum of d(H), where H ranges over the closed subgroups of P . Pro-p
groups of finite rank are very well understood, and we refer the reader to [3] for
different equivalent characterizations of this class of groups. We say that a finitely
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generated pro-p group N is uniform if N is torsion-free and [N,N ] ≤ N2p. It is
a fundamental result that the pro-p groups of finite rank are exactly the virtually
uniform pro-p groups, that is, the pro-p groups having a (normal) uniform subgroup
U of finite index. From this we immediately obtain that a pro-p group P of finite
rank has a unique maximal finite normal subgroup, denoted radf (P ). In fact, one
can obtain a stronger result.

Lemma 4.1. Let P be a pro-p group of finite rank. Then there are only finitely
many conjugacy classes of finite subgroups in P .

Proof. See Theorem 4.23 of [3]. �
Suppose that P is a finitely generated pro-2 group. As in the finite order case,

consider the following series of subgroups of P :

P1 = P, Pk+1 = [Pk, P ]P 2
k (k ≥ 1).

If N is a uniform pro-2 group, then Nk = N2k and {Nk}k∈N is a base of open
neighbourhoods of the identity.

In the next lemma we collect some basic properties of R-finite pro-2 groups.

Lemma 4.2. Let P be an R-finite pro-2 group. Then the following hold.

(1) P has finite rank;
(2) there exists a normal open subgroup N of P such that N is uniform and

Irrr(P ) ⊆ Irr(P/N);
(3) any element of P of finite order belongs to radf (P ).

Proof. The first two propositions follow from Lemma 2.7(2),(3). In order to show
(3) it is enough to prove that if radf (P ) = {1}, then P is torsion free. Thus, assume
that radf (P ) = {1} and that there exists x ∈ P of order 2. Let N be a uniform
normal open subgroup of P . Then, since the elements of the form [x, g] with g ∈ N
are inverted by x, we have that they have finite order by Lemma 3.1(4). On the
other hand, [x,N ] ≤ N and N is torsion free, so x ∈ CP (N). Now since N has
finite index in P , CP (N) is virtually central. Hence its derived subgroup is finite,
by Schur’s theorem [15, Theorem 10.1.4]. Since radf (CP (N)) ≤ radf (P ) = {1}, we
deduce that CP (N) is abelian. Thus x ∈ radf (CP (N)) = {1}, a contradiction. �

Thus, in order to understand R-finite pro-2 groups we have to look at pro-2
groups of finite rank. The most powerful method to study these groups is based on
the Lie method that we describe next.

Let L be a Lie Zp-algebra. We say that L is uniform if for some k, L ∼= Zk
p as a

Zp-module and [L,L] ⊆ 2pL. One can define the functors exp and log between the
categories of uniform Lie Zp-algebras and uniform pro-p-groups in such a way that
these two functors are isomorphisms of categories (see [3, Chapter 4]). There is a
relatively easy way to define the functor log. If N is a uniform pro-p group, then

every element x ∈ Npi

has a unique pith root in N , denoted x1/pi

. Now log(N) is
defined to be the Lie Zp-algebra whose underlying set coincides with N and which
has Lie operations defined as follows:

(4.1) a+ b = lim
i→∞

(ap
i

bp
i

)1/p
i

, [a, b]L = lim
i→∞

[ap
i

, bp
i

]1/p
2i

, ∀a, b ∈ N,

where [a, b] = a−1b−1ab is the commutator defined in the group N . We write
LQp

(N) = log(N) ⊗Zp
Qp and refer to this Lie Qp-algebra as the Lie algebra

associated to N .
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Let P be a pro-p group of finite rank and let N be an open normal uniform
subgroup of P . Then conjugation by P provides log(N) with the structure of
a P -module, via the adjoint representation. For g ∈ P we denote by ad(g) ∈
EndZp

(log(N)) the endomorphism corresponding to the conjugation action by g:

ad(g)(n) = g−1ng, ∀n ∈ N.

By a slight abuse of notation, we denote also by ad(g) the extension of ad(g) to
LQp

(N). The Lie algebra LQp
(N), regarded as a P -module via the action of P on

it by conjugation, does not depend on the choice of N and it is an invariant of P ,
called the Lie algebra L(P ) associated to P . If we consider only the Lie structure
on L(P ), then L(P ) is a virtual invariant of P (i.e., the Lie algebra associated to
an open subgroup of P is isomorphic to L(P )).

Lemma 4.3. Let P be a pro-p group of finite rank and N a normal uniform

subgroup of P . For each k ≥ 0, we put Nk = Npk

. Let i, j ∈ N be such that
i ≤ j ≤ 2i+ 1. Then Ni/Nj is abelian and

Ni/Nj
∼= log(N)/pj−ilog(N)

as P -modules (P acts on Ni/Nj by conjugation and on log(N)/pj−ilog(N) via the
adjoint map).

Proof. The lemma is a consequence of the definition of the sum in (4.1). �
The following lemma provides information about some real elements of pro-2

groups of finite rank. If N is a finite-index normal subgroup of a profinite group P ,
then Irr(P |N) denotes the set of irreducible characters of G whose restriction to N
is non-trivial.

Lemma 4.4. Let P be a pro-2 group of finite rank and N a normal uniform sub-
group of P . Then the following statements are equivalent:

(1) there are g ∈ P and 0 �= l ∈ LQ2
(N) such that ad(g)(l) = −l;

(2) there are g ∈ P and 1 �= n ∈ N such that g−1ng = n−1;
(3) for infinitely many t ∈ N there are gt ∈ P and ψt ∈ Irr(Nt/N2t|N2t−2/N2t)

such that ψgt
t = ψ̄t.

Proof. (1) and (2) are equivalent statements with different notation (of course, note
that if −1 is an eigenvalue of ad(g) in LQp

, then it is also an eigenvalue of ad(g)
in log(N)). Suppose (2) holds. Let t ∈ N. The finite group Nt/N2t is abelian of
exponent 2t. If t is large enough, by possibly taking a power of n instead of n, we
can assume that nN2t is an element of order 2t such that g−1(nN2t)g = (nN2t)

−1.
By duality, there exists a character ψ of order 2t of Nt/N2t such that ψg = ψ−1 = ψ̄.
Since Nt/N2t−2 has exponent 2t−2 we have that ψ is non-trivial on N2t−2.

Suppose now that (3) holds. Note that if ψt ∈ Irr(Nt/N2t|N2t−2/N2t), then ψt

has order at least 2t−1. Then by duality, for infinitely many t ∈ N there exists ntN2t

in Nt/N2t of order at least 2t−1 and gt ∈ P such that g−1
t (ntN2t)gt = (ntN2t)

−1.
In particular, note that nt ∈ Nt \Nt+2. By Lemma 4.3, for any such t there exists
xt ∈ log(N) \ 4log(N) such that

ad(gt)(xt) ≡ −xt (mod 2tlog(N)).

For any such t, let Xt ⊆ P × (log(N) \ 4log(N)) be the set of elements (g, x)
satisfying ad(g)(x) ≡ −x (mod 2tlog(N)), so Xt is non-empty. Note that each
Xt is closed and therefore compact. Now Xt1 ⊆ Xt2 if t1 ≥ t2, and {Xt}t is an
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inverse system with the inclusion maps. The inverse limit of this inverse system is
non-empty (by Theorem 1.4 of [3]), so there are g ∈ P and x ∈ log(N) \ 4log(N)
such that for infinitely many t, ad(g)(x) ≡ −x (mod 2tlog(N)). Since {2tlog(N)}
constitutes a base of open neighbourhoods of the identity element of log(N), we
have that ad(g)(x) = −x, as wanted. �

As a consequence of the above lemma, we obtain that pro-2 groups of finite rank
with a finite number of real irreducible characters admit the following equivalent
characterizations.

Proposition 4.5. Let P be a pro-2 group of finite rank. Then the following state-
ments are equivalent:

(1) P is R-finite;
(2) any real element of P belongs to radf (P );
(3) P has a finite number of real conjugacy classes;
(4) any real element of P has finite order;
(5) −1 is not an eigenvalue of ad(g) for any g ∈ P .

Proof. The fact that (1) implies (3) is already proved in Lemma 3.1(4). It is evident
that (2) implies (3), and (3) implies (4) by the arguments in the proof of Lemma
3.1. If we assume (1) and (4), then (2) follows by Lemma 4.2(3). Hence we have
that (1) implies (2). Now (5) follows from (4), because if N is an open normal
uniform subgroup of P and −1 is an eigenvalue of ad(g) in its action on LQp

(N),
then by Lemma 4.4 N contains a non-trivial real element of P , which would have
infinite order because N is torsion-free.

Let us prove that (1) follows from (5). By way of contradiction assume that P
has infinitely many real irreducible characters {λi}i∈N. As above, suppose that N
is an open normal uniform subgroup of P . Let ti be such that kerλi ≥ N2ti but
kerλi �≥ N2ti−2 and let ψi ∈ Irr(Nti/N2ti |N2ti−2/N2ti) be an irreducible component
of the restriction of λi onNti . Since λi is real, there exists gi ∈ P such that ψgi

i = ψ̄i.
Hence, by the implication from (3) to (1) in Lemma 4.4, −1 is an eigenvalue of ad(g)
for some g ∈ P , a contradiction. �
Corollary 4.6. Let P be an R-finite pro-2 group. Then any closed subgroup of P
is also R-finite.

Proof. Let T be a closed subgroup of P . Since P is R-finite, P is of finite rank, by
Lemma 4.2(1), and so T is also of finite rank. A real element of T is also real in P .
Since all the real elements of P are of finite order, all the real elements of T are of
finite order. Thus, the previous proposition implies that T is R-finite. �

In the next lemma we analyze some real elements of quotients of a semidirect
product P � 〈φ〉, where φ is an automorphism of P of order 2.

Lemma 4.7. Let P be a pro-2 group of finite rank, let N be a normal open uniform
subgroup of P , and let φ be an automorphism of P of order 2 that fixes N . Then
for any s > t ≥ 2 and for any n ∈ Nt such that φ(n)Ns = n−1Ns, there exists
m ∈ Nt−1 such that nNs−1 = φ(m−1)mNs−1.

Proof. We prove the lemma by induction on s− t. If s = t+ 1 we can take m = 1.
Consider the case s = t + 2. Note that Nt−1/Nt+2 is abelian. Let m ∈ Nt−1 be
such that m2 = n. Then

(φ(m−1)m)2Nt+2 = φ(n−1)nNt+2 = n2Nt+2.
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Hence nNt+1 = φ(m−1)mNt+1.
Now assume s > t + 2. Then by induction, there exist l ∈ Nt−1 such that

nNs−2 = φ(l−1)lNs−2. Let k = nl−1φ(l). Since Ns−2/Ns ⊆ Z(N/Ns), nNs com-
mutes with φ(l−1)lNs and so

φ(k)kNs = φ(n)φ(l−1)lnl−1φ(l)Ns = Ns.

Since k ∈ Ns−2, by the case s − t = 2, there exists v ∈ Ns−3 such that kNs−1 =
φ(v−1)vNs−1. Hence, since Ns−3/Ns−1 ≤ Z(N/Ns−1),

nNs−1 = kφ(l−1)lNs−1 = φ(v−1)vφ(l−1)lNs−1 = φ((lv)−1)lvNs−1.

�

5. Just infinite quotients of pro-2 groups with odd number

of real characters

In this section we start the study of infinite pro-2 groups having an odd number
of real irreducible characters. Recall that a profinite group is called just infinite
if it is infinite and it does not have proper infinite continuous quotients. Every
infinite finitely generated pro-p group has at least one just infinite quotient. It
turns out that every just infinite quotient of a pro-2 group with an odd number of
real irreducible characters also has an odd number of real irreducible characters.

Theorem 5.1. Let P be an infinite pro-2 group with a (finite) odd number of real
irreducible characters. Then P/radf (P ) also has an odd number of real irreducible
characters.

Proof. Let N be a normal open uniform subgroup of P such that Irrr(P ) ⊆
Irr(P/N) (by Lemma 4.2). Suppose that K = radf (P ), and write Ā = AK/K
for each A ⊆ P (for simplicity, we denote the images of N and Nt in P̄ just by
N and Nt respectively). Also, for each x ∈ K, let Tx = CP (x). Since N and K
commute, we have that N ≤ Tx. By Lemma 4.2(3), P̄ , and so T̄x, is torsion free.
By Corollary 4.6, T̄x is also R-finite, and thus T̄x does not contain non-trivial real
elements, by Proposition 4.5(2). Again by Proposition 4.5(2) and by Lemma 3.1(2),
there exists kx ∈ N such that for every t ≥ kx, the real elements of P/Nt are in
NK/Nt, and the real elements of T̄x/Nt lie in N/Nt.

Let t ≥ maxx∈K kx. Since k(P/Nt) is odd, there exists x ∈ K such that
kP (ClP (x)N/Nt) is odd. Put T = Tx. Hence

kT (N/Nt) = kT (xN/Nt) = kP (ClP (x)N/Nt),

since that map sending each T -conjugacy class in xN/Nt into the P -conjugacy class
in ClP (x)N/Nt which contains it is a bijection, because N ∩K = 1. In particular
kT (N/Nt) is odd. Now inversion defines an action on N/Nt of order at most 2, so
kT (N/Nt) ≡ rT (N/Nt) (mod 2). Thus T̄ /Nt has an odd number of real irreducible
characters by the choice of t. By enlarging t if necessary, we can assume that
Irrr(T̄ ) ⊆ Irrr(T̄ /Nt), so T̄ has an odd number of real irreducible characters. Since
there are no real elements in P̄ \ T̄ , Corollary 3.2 implies that P̄ = T̄ . �

Corollary 5.2. Let P be an infinite pro-2 group with odd number of real irre-
ducible characters. Then any just infinite quotient of P has an odd number of real
characters.
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Proof. Let N be a normal open uniform subgroup of P such that Irrr(P ) ⊆
Irrr(P/N) (Lemma 4.2). Let M be a closed normal subgroup of P such that P/M
is just infinite. Then P/(N ∩M) has an odd number of real irreducible characters.
Note that M/N ∩M = radf (P/N ∩M), so P/M also has an odd number of real
irreducible characters by the above result. �

Corollary 5.3. Let P be an infinite pro-2 group with odd number of real irreducible
characters. Then P is not solvable.

Proof. Let P̄ be a just infinite quotient of P . Since P̄ is just infinite, radf (P̄ ) = {1}.
Now, using that P̄ is R-finite, we obtain that P̄ is torsion-free. Thus, if P̄ is
solvable, it is isomorphic to Z2 (the only solvable torsion-free just infinite pro-2
group). However, Z2 has only 2 real irreducible characters. This is a contradiction,
because P̄ should have an odd number of real irreducible characters by the previous
corollary. �

6. Torsion free pro-2 groups with odd number

of real irreducible characters

In this section we show that a torsion free pro-2 group P with an odd number
of real irreducible characters and such that P can be embedded non-trivially as
a subgroup of index 2 in another pro-2 group contains a proper pro-2 subgroup
with an odd number of real irreducible characters. Furthermore, the proper pro-2
subgroup of P that we obtain has at most as many real irreducible characters as P .
This is the main step in the proof of Theorem A, and it will be used in inductive
arguments.

Theorem 6.1. Let P be a torsion free subgroup of a pro-2 group Q of index 2.
Assume that P has an odd number of real irreducible characters. Then there exists
an element x ∈ Q \ P such that CP (x) has an odd number of real irreducible
characters and | Irrr(CP (x))| ≤ | Irrr(P )|.

Proof. Since P has an odd number of real irreducible characters and P has index
2 in Q, by Corollary 3.2 there exists a real element a of Q in Q \ P . Then a2 lies
in P and it is real in P , because a2 is real in Q and it is centralized by a. Since P
is R-finite, Proposition 4.5 implies that a2 has finite order, and thus a has order 2
because P is torsion free. In particular, note that every real element of Q contained
in aP is an involution

Observe that by Lemma 4.2(1), P has finite rank. Let N be a normal uniform
open subgroup of Q contained in P . Let S be the set of elements of order 2 in Q.
By Lemma 3.1(2) applied to the normal closed subset S = aP of Q, we have that
for large k all the real elements of aP/Nk are in SN2/Nk. Now, by Lemma 4.1,
there are only finitely many Q-conjugacy classes in S, so let {a1, . . . , as} be a set
of representatives of these conjugacy classes.

We claim that {a1N2, . . . , asN2} lie in different conjugacy classes in Q/N2, and
thus the Q-orbits of the subsets a1N2/Nk, . . . , asN2/Nk in Q/Nk are mutually dis-
joint. Indeed, note that if (aiN2)

g = ajN2 for some g ∈ Q and 1 ≤ i, j ≤ s, then
n = aja

g
i lies in N2. Hence

najn = (ajn)
2 = (agi )

2 = 1.
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By Lemma 4.7, for each s>2 there existsm∈N1 such that nNs−1=(m−1)ajmNs−1.
Hence

agiNs−1 = ajnNs−1 = amj Ns−1 ,

and we deduce that aj is conjugate to ai in Q because the subgroups Ns constitute
a base of neighbourhoods of the identity. Thus i = j, as wanted.

By the previous paragraph, we have

(6.1) rQ(aP/Nk) =

s∑
i=1

rQ(aiN2/Nk),

for k large enough. Since P has index 2 in Q, by Lemma 2.2 rQ(aP/Nk) is congruent
to r(P/Nk) modulo 2, for k ∈ N. If we take k large enough, then r(P/Nk) =
| Irrr(P )| by Lemma 4.2(2), so there exists i such that rQ(aiN2/Nk) is odd.

Next we work to prove the main step in the proof, namely, that for any element
a ∈ Q \ P of order 2,

(6.2) | Irrr(Cp(a))| = rQ(aN2/Nk)

if k is large enough. Of course, this will complete the proof of the first part of
the theorem. In order to prove the second part of the result, it is enough to
show that | Irrr(CP (a))| ≤ | Irrr(P )| for all such a. It is clear that (6.2) implies
that | Irrr(Cp(a))| ≤ rQ(aP/Nk), and thus if k is large enough, then it follows
from Proposition 2.6 that | Irrr(Cp(a))| ≤ | Irrr(P )|. Therefore proving (6.2) will
complete the proof of the theorem.

We fix an element a ∈ Q \ P of order 2 for the rest of the proof. By Corollary
4.6, CP (a) is R-finite. Let

r = max{| Irrr(P )|, | Irrr(CP (a))|}.
The following follows easily from the choice of r:

Claim 1. For k ≥ r large enough, suppose that M is an open normal subgroup of P
(respectively of CP (a)) contained in Nk (resp. in CNk

(a)). Then all real elements
of P/M (resp. of CP (a)/M) are contained in Nk−r+1/M (resp. in CNk−r+1

(a)/M).

Proof. By Lemma 2.4, r(P/M) ≤ r. Since P is R-finite and torsion free, P has no
non-trivial real elements by Proposition 4.5. Then by Lemma 3.1 there exists an
open normal subgroup L of P contained in N such that all real elements of P/L
lie in N/L. Now let k be large enough so that Nk ≤ L. Suppose that M ≤ Nk, so
the real elements of P/M lie in N/M . Then if yM is a real element of P/M not
contained in Nk−r+1/M , the powers of yM provide representatives of at least r+1
distinct real classes in P/M , which is a contradiction. The same argument works
for CP (a). �

Claim 2. Let k ≥ r + 2 be large enough. Then rQ(aN2/Nk) = rP (aNk−r/Nk).

Proof. Since P has index 2 in Q, it is clear that Q-conjugate elements in
(Q \ P )Nk/Nk are P -conjugate. Thus

rQ(aN2/Nk) = rP (aN2/Nk).

Let y = an ∈ aN2 be such that yNk is a P -real element of Q/Nk. Then y2Nk =
nanNk is real in P/Nk. Hence nan ∈ Nk−r+1, by Claim 1. By Lemma 4.7 (φ is the
conjugation by a), there exists m ∈ N/Nk such that anNk−r = amNk−r, so any
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P -conjugacy class of an element yNk ∈ aN2/Nk which is inverted by P intersects
aNk−r. Therefore

rP (aN2/Nk) = rP (aNk−r/Nk),

as wanted. �

Observe that it is clear from the previous claim that if Nk−r ≤ H ≤ N2, then

(6.3) rQ(aN2/Nk) = rP (aH/Nk).

Claim 3. Let k be sufficiently large. Then the following hold:

(1) The real elements of CP (a)/CNk−1
(a) are in CN (a)/CNk−1

(a);
(2) Irrr(CP (a)) ⊆ Irr(CP (a)/CNk−1

(a));
(3) CP (aNk) ≤ CP (a)Nr+2;
(4) CNk

(aN2k) ≤ CNk
(a)Nk+r+2.

Proof. Since P is R-finite and torsion free, P has no non-trivial real elements.
Thus Lemma 3.1(2) (with P , S, and N replaced by CP (a), CP (a), and CN (a),
respectively) implies (1). Also, Lemma 4.2(2) implies (2).

Now we prove the third statement. If there are infinitely many k ≥ r + 2
such that CP (aNk) �≤ CP (a)Nr+2, then for each such k we can find an element
xk ∈ CP (aNk) \ CP (a)Nr+2. Since P is compact, some subsequence {xki

} of {xk}
has a limit x that belongs to

⋂∞
i=1 CP (aNki

) = CP (a). However P \ CP (a)Nr+2

is closed, whence x �∈ Cp(a) ≤ CP (a)Nr+2, a contradiction. Thus, there exist only
finitely many k such that CP (aNk) �≤ CP (a)Nr+2. This gives the third statement.

The last statement can be proved similarly once one notes that it is equivalent
to the following claim:

Clog(N)(a+ 2klog(N)) ≤ Clog(N)(a) + 2r+2log(N).

�

Claim 4. Let k be large enough and suppose that Nk−r−1 ≤ H ≤ Nk−r−2. Then

rQ(aN2/Nk) = rCP (a)Nr+2
(aH/Nk).

Proof. Note that if ah1Nk, ah2Nk ∈ aH/Nk are conjugate via g ∈ P , then
(aNk−r−2)

g = aNk−r−2, so g ∈ CP (aNk−r−2) and thus

(6.4) rP (aH/Nk) = rCP (aNk−r−2)(aH/Nk).

Since CP (aNk−r−2) ≤ CP (a)Nr+2 by Claim 3(3), we obtain from (6.4) that

(6.5) rCP (aNk−r−2)(aH/Nk) = rCP (a)Nr+2
(aH/Nk).

Now, if we put together (6.3), (6.4), and (6.5), we obtain the claim. �

For k large enough we define

A = CNk−r−2
(a)

and

J = {zaz−1Nk ∈ Q/Nk : z ∈ Nr+2} ∩Nk−r−2/Nk .

We observe that J is an abelian subgroup of Q/Nk. Indeed, if zi
azi

−1Nk ∈ J
with zi ∈ Nr+2 and i = 1, 2, then

za1z
−1
1 za2z

−1
2 Nk = za1z

a
2z

−1
2 z−1

1 Nk = (z1z2)
a(z1z2)

−1Nk,
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because Nk−r−2/Nk ≤ Z(Nr+2/Nk). So let Nk ≤ B be the subgroup of Q such
that B/Nk = J . Since CP (a) normalizes B, we have that AB is a subgroup of
Nk−r−2, and also CP (a) acts on the set of left cosets of B in AB.

Claim 5. Let k be large enough. Then Nk−r−1 is contained in AB.

Proof. Let y ∈ Nk−r−2. Then y2 = (yya)((y−1)ay). Note that

yya ∈ CNk−r−2
(aN2k−2r−4),

and thus yya ∈ ANk by Claim 3(4). Thus y2 lies in AB. Therefore, Nk−r−1/Nk =
(Nk−r−2)

2/Nk ≤ AB/Nk. �

Note that in particular we have that

Nk−r−1 ≤ AB ≤ Nk−r−2.

Thus, by Claim 4 if k is large enough, then

(6.6) rQ(aN2/Nk) = rCP (a)Nr+2
(aAB/Nk).

The aim of introducing the subgroups A and B is to compare the action by
conjugation of Q with that of CP (a). We have the following:

Claim 6. Let h1, h2 ∈ AB. Then there exists g ∈ CP (a)Nr+2 such that (ah1)
gNk =

ah2Nk if and only if there exists c ∈ CP (a) such that (h1)
cB = h2B.

Proof. Firstly assume that

(h1)
cB = h2B for some c ∈ CP (a).

Hence there exists b ∈ B such that (h1)
c = h2b. Let n ∈ Nr+2 be such that

anNk = ab−1Nk. Hence

(ah1)
cnNk = (a(h1)

c)nNk = anh2bNk = ah2Nk,

where we are using that Nk−r−2/Nk ≤ Z(Nr+2/Nk).
Secondly, we assume that

(ah1)
gNk = ah2Nk for some g ∈ CP (a)Nr+2.

Write g = cm, where c ∈ CP (a) and m ∈ Nr+2. Hence

ah2Nk = (ah1Nk)
g = amhc

1Nk,

where again the last equality holds because Nk−r−2/Nk is centralized by Nr+2.
Thus

aamNk ⊆ B,

and so

h2 ≡ hc
1 (mod B).

�

Claim 7. Let k be large enough. Then rCP (a)Nr+2
(aAB/Nk) = rCP (a)(AB/B).

Proof. Let n ∈ AB. Since (an)−1 = n−1a = an−1[n−1, a] and [n−1, a] ∈ B, by
Claim 6 we have that anNk is real in CP (a)Nr+2/Nk if and only if there exists
c ∈ CP (a) such that nc ≡ n−1 (mod B). Thus,

rCP (a)Nr+2
(aAB/Nk) = rCP (a)(AB/B).

�
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In order to finish the proof, we need one more observation:

Claim 8. Let k be large enough. Then

rCP (a)(AB/B) = | Irrr(Cp(a))|.
Proof. Observe that

(zaz−1)a = z(z−1)a = (zaz−1)−1,

for any z ∈ Nr+2. In particular, (A ∩ B)Nk/Nk has exponent 2, and so M =
A ∩B ⊆ CNk−1

(a). By Claim 1, all real elements of CP (a)/M are in

CNk−r
(a)/M ≤ A/A ∩B ∼= AB/B.

By Claim 3, we have that Irrr(CP (a)) = Irrr(CP (a)/M) and the claim follows. �
Now, if we put together (6.6), Claim 7, and the previous claim we obtain that

| Irrr(Cp(a))| = rQ(aN2/Nk)

holds for any k large enough, as wanted. The proof is complete. �

7. Just infinite pro-2 groups with odd number

of real irreducible characters

Observe that by Corollary 5.2 and Corollary 5.3, in order to understand pro-2
groups with odd number of real irreducible characters one has to consider non-
solvable just infinite pro-2 groups of finite rank. Also, Theorem 6.1 indicates that
we have to look at “minimal” examples of such groups. As will follow from the
results in this section, these groups are Sylow pro-2 groups of Aut(sl1(D)), where
D is some finite-dimensional division algebra over Q2.

Just infinite pro-p groups of finite rank are well understood. We refer to the
book [8] for detailed information on these groups, including their classification. Let
P be a non-solvable just infinite pro-p group of finite rank. Then it is known (see
[8, Proposition III.6]) that L(P ) is a semi-simple Lie Qp-algebra, and all summands
appearing in the decomposition of L(P ) as a sum of simple Lie algebras are iso-
morphic. Since P is just infinite, we have that ker ad = {1}. In fact, ad(P ) is an
open subgroup in Aut(L(P )) isomorphic to P . By [8, Lemma III.16], Aut(L(P ))
contains a Sylow pro-p subgroup that is a maximal pro-p subgroup, and the Sylow
pro-p subgroups of Aut(L(P )) are all conjugate.

Let L be a simple finite-dimensional Q2-algebra. Then the centroid K of L is
defined as

EndL(L) = {φ ∈ EndQ2
(L) : [φ(l),m] = φ([l,m]) for every l,m ∈ L}.

It can be shown that K is in fact a finite extension field of Q2, and L may be
regarded in a natural way as a Lie K-algebra, denoted by a slight abuse of notation
L as well. The K-algebra L is absolutely simple; i.e., for any field extension F/K
the Lie F -algebra L ⊗K F is simple (see Chapter X of [7]).

We shall describe a standard construction of an absolutely simple algebraic group
G = GL defined over K such that G(K) ∼= AutK(L), and, moreover, if E is an
extension of K, then G(E) ∼= AutE(L ⊗K E). This is done in the following way.
Fix a basis B = {l1, . . . , ln} of L over K and define akij ∈ K as follows:

[li, lj ]L =
n∑

k=1

akijlk.
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Let φ be an automorphism of the Lie K-algebra L and let X = (xij) ∈ GLn(K) be
such that

φ(li) =
n∑

j=1

xijlj .

Then we obtain that

(7.1)

n∑
u=1

auijxuk =

n∑
s,t=1

akstxisxjt, for all 1 ≤ i, j, k ≤ n.

Then we define G = GL to be the algebraic subvariety of GLn defined by the
equation (7.1). In fact, one can easily check that G is an algebraic subgroup of
GLn and G(E) ∼= AutE(L ⊗K E).

Denote by Go the connected component of the identity of G. Note that Go is
also defined over K (see [4, 34.2]). The algebraic group Go is of adjoin type (see

[4, 31.1]). Denote by G̃o the simply connected cover of Go (see [10, Theorem 2.6]).

By [10, Proposition 2.10], there exists a universal covering π : G̃o → Go defined

over K. In particular G̃o can be defined over K.
Since G is a K-group, its Lie algebra (see [4, 9.1]) has a K-structure (see [4,

34.2]). Arguing as in the proof of [4, Corollary 13.2], we obtain that the K-points
of the Lie algebra of G are isomorphic to the algebra DerK(L) of K-derivations of
L. Since L is simple, DerK(L) � L (see [4, 14.1]). Thus, the K-points of the Lie
algebra of G are isomorphic to L. In particular, G is absolutely simple.

Now, we consider a particular case of the previous situation. If K is a field, we
say that a division algebra D is K-central if Z(D) ∼= K and D has finite dimension
overK. Suppose thatK is a finite extension of Q2, and letD be a finite-dimensional
K-central division algebra. Suppose that E is a splitting field for D, so by definition
there exists an isomorphism of E-algebras ϕ : D ⊗K E � Md(E), where d is the
index of D (recall that E can be taken to be any field containing a maximal subfield
of D; see Theorem 7.15 of [11] and the discussion before it). For each element x ∈ D
we denote its reduced trace by way of

trd(x) = tr(ϕ(x⊗K 1E)).

Let sl1(D) be the elements of D of reduced trace 0. Then sl1(D) is a simple Lie
Q2-algebra with Lie bracket defined by [x, y]L = xy − yx. One can show that in
fact the algebraic group Gsl1(D) is already connected. Let us describe its simply
connected cover.

The reduced norm is the map given by Nrd(x) = det(ϕ(x⊗K 1)), for all x ∈ D.
It follows from the definition that Nrd is a multiplicative map. Also, the reduced
norm is independent of the choice of E and ϕ, and it takes values in K (see Theorem
9.3 and p. 116 of [11]).

It is well known that Nrd(x) is given by a homogeneous polynomial of degree
d with coefficients in K in the coordinates of x ∈ D with respect to an arbitrary
fixed basis for D over K (see p. 27 of [10]). Next we define, following 2.3.1 in
[10], an algebraic K-group SL1(D) whose group of K-rational points is SL1(D) =
{x ∈ D∗ : Nrd(x) = 1}. For x ∈ D, let rx be the K-linear map in D induced
by right multiplication by x. The algebra representation ρ : D → Md2(K) sending
each x ∈ D to the matrix ρ(x) of rx with respect to a fixed K-basis for D is
called the regular representation of D. Observe that the K-linear subspace
ρ(D) of Md2(K) is the set of common zeros of a finite number of linear polynomials
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f1, . . . , ft with coefficients in K in the coordinates of the matrices with respect to
the canonical basis of Md2(K). There exists a polynomial f with coefficients in K
such that if ρ(x) =

(
kij

)
∈ Md2(K), then

f(k11, . . . , k1d2 , k21, . . . , kd2d2) = Nrd(x),

for all x ∈ D. We define SL1(D) to be the algebraic subvariety of GLd2 defined
by the equations f1 = . . . = ft = f − 1 = 0.

Now let Ω be an algebraic closure of K containing E. Observe that the vanishing
set of f1, . . . , ft inMd2(Ω) is isomorphic as an Ω-algebra toD⊗KΩ ∼= Md(Ω). Thus,
if b =

(
bij

)
∈ Md2(Ω) annihilates all polynomials f − 1, f1, . . . , ft, then b may be

regarded as a point in Md(Ω), and as such it has determinant equal to 1 because
f(b) = 1. It then follows that SL1(D) is an algebraic K-group Ω-isomorphic to
SLd, and in particular it is simply connected.

Now, π : SL1(D) → Gsl1(D) is defined in an obvious way because any point of
D ⊗K Ω induces by conjugation an automorphism of sl1(D)⊗K Ω.

Theorem 7.1. Let L be a finite-dimensional semi-simple Lie Q2-algebra all of
whose simple components are isomorphic. Assume that the Sylow pro-2 subgroups
of Aut(L) are torsion free. Then L ∼= sl1(D) for some finite-dimensional division
Q2-algebra D.

Proof. First observe that L is simple. Indeed, if L decomposes as a direct sum
of more than one simple algebra, then the automorphism of L that permutes two
of the summands into which L decomposes and acts as the identity on the rest of
summands has order 2, which is a contradiction.

We use the notation introduced before the theorem. Let G = GL. Hence
G(K) ∼= AutK(L). First, let us show that Go is K-isotropic; i.e., that the K-rank
of Go is zero (see [4, 34.5] for a definition of K-rank). Assume that the K-rank
of Go is not zero. Then Go contains a K-split torus T of positive dimension n.
Since the group T (K) of K-points of T , which is isomorphic to (K∗)n, contains
an element of order 2 (because −1 is an element of K∗ of order 2), we obtain a
contradiction.

Since Go is K-isotropic, G̃o is also K-isotropic. Hence, by [9] (see also [10,

Theorem 6.5]), G̃o ∼= SL1(D) for some K-central division algebra D. Thus, L is
isomorphic to sl1(D). �

8. Real characters of Sylow 2-pro groups of PGL1(D)

In this section we study the Sylow pro-2 subgroups of Aut(sl1(D)) having odd
number of real irreducible characters, where D is a K-central division algebra over
a finite degree extension K of Q2.

Let K be a field. It is well known (see [13]) that the isomorphism types of K-
central division algebras are classified by the elements of the group
H2(Gal(Ks/K),K∗

s ), where Ks denotes the maximal algebraic separable exten-
sion of K. The situation when K is a finite extension of Qp is perfectly understood.
From local class field theory we know that H2(Gal(Ks/K),K∗

s ) = Q/Z in this case.
In particular, this implies that there are exactly φ(d) different (up to isomorphism)
K-central division algebras of dimension d2 over K, and one can easily describe
these algebras. We recommend the reader look at [13] for details and proofs of the
results that we present in the next paragraphs.
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Let K be a finite extension of Q2. Next we describe how to construct the
different K-central division algebras of a given dimension d2. Denote by OK the
ring of integers of K, which is a local ring, and let mK be its maximal ideal. Then
mK is principal, and we choose a generator πK of mK . The residue class field
OK/mK has order a power of 2, say q. Now, let w be a (qd− 1)th primitive root of
unity and write W = K(w). Then W/K is an unramified, cyclic Galois extension
of degree d. The Galois group Gal(W/K) is generated by the K-automorphism θ
sending w to wq, so the φ(d) distinct powers θr of θ, where r is coprime to d, are
the generators of Gal(W/K). Choose such a generator α = θr sending w to wqr .
Then the K-algebra D generated by W and an element πD satisfying the relations

(8.1) (πD)d = πK and (πD)−1vπD = α(v) for all v ∈ W

is a K-central division algebra. The set {1, πD, . . . , (πD)d−1} is a basis of D over
W , so D has dimension d2 over K.

The following proposition describes the structure of AutQ2
(sl1(D)).

Proposition 8.1. Let K be a finite extension of Q2, let D be a K-central division
algebra of dimension dimK D = d2 > 1, and let L = sl1(D). Let Ψ : AutQ2

(D) →
AutQ2

(L) be the restriction map. Then the map Ψ is an isomorphism.

Proof. It is clear that any Q2-automorphism of D fixes the Lie algebra L and it
induces an automorphism of L. Thus, Ψ is well-defined. It is also clear that the
map Ψ is a monomorphism. Let us show that Ψ is surjective. We divide the proof
of this into several steps.

Claim 1. Let φ be an element of AutQ2
(L). Then φ induces an automorphism of

K (that we will denote also by φ) such that

φ(k)φ(l) = φ(kl) for every k ∈ K and l ∈ L.

Proof. For every k ∈ K, let αk : L → L be a Q2-linear map defined by means of

αk(l) = φ(kφ−1(l)) (l ∈ L).

Then we see that for any l,m ∈ L we have that

[αk(l),m]L = [φ(kφ−1(l)),m]L = φ([kφ−1(l), φ−1(m)]L)

= φ(kφ−1([l,m]L)) = αk([l,m]L).

Hence αk is an element of the centroid of L, which is equal to K (since GL is
an absolutely simple K-group, this follows from [7, Theorem 3 of Chapter X] by
construction of GL). Thus, αk is represented by multiplication by a (uniquely
defined) element of K. We denote this element of K by φ(k). One easily checks
that φ : K → K is an automorphism of K. �

Claim 2. Let φ be an element of AutQ2
(L). Then φ induces a Q2-algebra automor-

phism of the enveloping K-algebra UK(L) of L (that we will denote also by φ) that
extends the action of φ on K and L.

Proof. Note that UK(L) can be defined as a Q2-algebra generated by two Q2-vector
spaces K and L with the following relations:

k · l = l · k = kl, l ·m−m · l = [l,m]L (k ∈ K, l,m ∈ L).
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In the previous relations · is the multiplication in the algebra UK(L) and kl is
considered as an element of the space L. Since φ conserves these relations we can
extend φ on UK(L). �

Now, we will use an argument that appears in Lemma [8, XI.14]. Note that
K̄ ⊗K D ∼= Matd(K̄) and K̄ ⊗K UK(L) ∼= UK̄(sld(K̄)).

Claim 3. Let I1 and I2 be two ideals of UK(L). Then I1 ≤ I2 if and only if
K̄I1 ≤ K̄I2.

Proof. We have to prove only the “if” part. For this, observe that if K̄I1 ≤ K̄I2,
then

I1 ≤ UK(L) ∩ K̄I2 = I2.

�

The embedding of L into D induces a surjective homomorphism UK(L) → D.
We denote by I the kernel of this homomorphism. The Lie algebra L can also be
embedded into Dop (the opposite algebra of D) by sending l ∈ L to −l ∈ D. This
embedding induces a surjective homomorphism UK(L) → Dop. We denote by J
the kernel of this homomorphism.

Claim 4. Let d �= 2. Then D �∼= Dop as Q2-algebras. In particular, I and J are not
equal.

Proof. We have described the structure of D before this proposition, and we use
the notation introduced there. The relevant parameters that determine D up to K-
isomorphism are its center K, its index d, and the number r (1 ≤ r ≤ d, (r, d) = 1).
Another division K-algebra, with the same parameters as D, is K-isomorphic to
D. Let us recall briefly how one can define r internally in terms of D.

The division algebra D contains a unique maximal compact subring OD =
OW [πD], and πDOD is its maximal ideal. Recall that q is the size of the field
OK/mK (and so depends only on K). The group D∗ contains a unique maximal
compact subgroup OD∗ which is known to be prosoluble of order (qd−1)2∞. Hence
D∗ contains a unique conjugacy class of subgroups of order qd − 1 (which are, in
fact, cyclic). Let A = 〈a〉 be one such subgroup (for example, it can be 〈w〉). Take
g ∈ ND∗(A) ∩ (πDOD \ π2

DOD). Then ag = aq
r

, and r does not depend on the
choices of a and g.

Let ψ : D → Dop be an isomorphism of Q2-algebras. We want to show that D
and Dop are isomorphic as K-algebras as well. The center of Dop is K and its index
is equal to d. So we only have to analyze the parameter r corresponding to Dop.

Note that ψ is a topological isomorphism as well. Hence, ψ(OD) = ODop , and
ψ(πDOD) = ψ(πD)ODop is the maximal ideal of ODop . Put A = 〈ψ(w)〉 and
g = ψ(πD). Since ag = aq

r

, we obtain from the previous discussion that Dop and
D are isomorphic as K-algebras.

Let [D] ∈ Br(K) denote the element of the Brauer group of K corresponding to
the algebra D. Since K is a local field, the order of [D] is d. Note that [D]−1 =
[Dop], and so if D ∼= Dop, d = 2, a contradiction. �

Claim 5. Let Z be an ideal of K-algebra UK(L) of codimension d2 such that
UK(L)/Z is a central simple K-algebra. Then if d = 2, Z = I, and if d > 2,
Z = I or Z = J .
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Proof. Note that sld(K̄) has a single irreducible module (up to isomorphism) of
dimension 2 if d = 2 and exactly two irreducible modules of dimension d if d > 2.

Thus, if d = 2, K̄I is the only ideal of UK̄(sld(K̄)) such that the quotient of
UK̄(sld(K̄)) by this ideal is isomorphic to Matd(K̄). Claim 3 implies that I = J is
the only ideal of UK(L) such that the quotient of UK(L) by this ideal is a central
simple K-algebra of dimension d2.

Assume now that d > 2. Since I �= J , by Claim 3, K̄I �= K̄J . Hence, if d > 2
there are exactly two ideals K̄I and K̄J of UK̄(sld(K̄)) such that the quotient of
UK̄(sld(K̄)) by this ideal is isomorphic to Matd(K̄), and so there are exactly two
ideals I and J of UK(L) such that the quotient of UK(L) by these ideals is a central
simple K-algebra of dimension d2. �
Claim 6. Let φ be an element of AutQ2

(UK(L)). Then φ(I) = I.

Proof. Note that UK(L)/φ(I) is isomorphic to D (as a Q2-algebra). Thus, φ(I) is
an ideal of K-algebra UK(L) of codimension d2, and UK(L)/φ(I) is a central simple
K-algebra. Hence by the previous claim, φ(I) = I or φ(I) = J . In the first case we
are done.

Now, assume that d > 2 and φ(I) = J . We want to show that it cannot happen.
If this happens, then φ induces a Q2-isomorphism between UK(L)/I ∼= D and
UK(L)/J ∼= Dop, but this is impossible by Claim 4. �

Now, we are ready to finish the proof of the proposition. Let φ be an element of
AutQ2

(L). Then by Claim 2, φ extends to a Q2-automprhism of UK(L). By Claim
6, φ(I) = I. Hence φ induces a Q2-automorphism of UK(L)/I ∼= D which extends
the action of φ on L. This finishes the proof of the proposition. �

We writeD∗ for the multiplicative group of non-zero elements ofD and PGL1(D)
= D∗/Z(D∗). Recall that by the Skolem-Noether Theorem, AutK(D) ∼= PGL1(D).

Now let us describe the structure of PGL1(D). Let OD = OW [πD] and let UD

be its unit group. Note that mD = ODπD = πDOD = (πD) is the unique maximal
ideal of OD, and OD/mD

∼= OW /mW
∼= Fqd . Define the following subgroups of

PGL1(D) : let C = 〈πD〉Z(D∗)/Z(D∗), U0 = UDZ(D∗)/Z(D∗), and for i ≥ 1,
Ui = (1 +mi

D)Z(D∗)/Z(D∗).

Proposition 8.2. The following hold:

(1) C is a cyclic group of order d.
(2) U0 is a normal subgroup of PGL1(D) and PGL1(D) is a semidirect product

of U0 by C.
(3) For i, j ≥ 1, Ui is a normal pro-2 subgroup of PGL1(D) and [Ui, Uj ] ≤ Ui+j.

Moreover,

Ui/Ui+1
∼=

{
Fqd if i �≡ 0 mod d,
Fqd/Fq if i ≡ 0 mod d,

where Fqd = (Fqd ,+) denotes the additive group of the field.
(4) U0/U1 is isomorphic to the multiplicative group of Fqd .

(5) Let q = 2r and n = dimQ2
K. If i > dn

r , then U2
i = Ui+ dn

r
.

Proof. It is clear that (1) follows at once from the relations (8.1).
Since OD = OK [w, πD] and w ∈ U0, we have that PGL1(D) = U0C. It is clear

that U0 is a normal subgroup of PGL1(D) which intersects C trivially (because any
power of πD in UDZ(D∗) is already in Z(D∗)), so (2) follows.
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The normality of the subgroups Ui and the statement on the commutator sub-
groups are straightforward. By [10, Proposition 1.8], the map 1 + aπi

D �→ a+mD

induces an isomorphism from (1 +mi
D)/(1 +mi+1

D ) into the abelian group of the
residue field OD/mD

∼= Fqd . It follows from (1) that moding out by Z(D∗) only

affects the quotient group (1 +mi
D)/(1 +mi+1

D ) when i ≡ 0 mod d, in which case
Ui/Ui+1

∼= Fqd/Fq because (1+ODπi
D)∩Z(D∗) = 1+OKπi

D and OK ∩ mD = mK

(see Theorem 13.2 of [11]).
(4) follows from Proposition 1.8 of [10].
It remains to prove (5). The ramification index of K/Q2 is n/r by [11, Theorem

13.3], so we have that there exists a unit u of OK such that uπ
n/r
K = 2. Now let

1 + aπi
D ∈ (1 +mi

D) \ (1 +mi+1
D ), with a ∈ UD. Then

(1 + aπi
D)2 = 1 + auπ

i+ dn
r

D + (aπi
D)2 ∈ 1 +m

i+ dn
r

D ,

since i > dn
r , and we easily deduce from the isomorphism (1 +mi

D)/(1 +mi+1
D ) ∼=

OD/mD used in the proof of (3) that

(1 +mi
D)2 = (1 +m

i+ dn
r

D ).

In particular, U2
i = Ui+ dn

r
. �

Corollary 8.3. Let K be a finite extension of Q2, let D be a K-central division
algebra of dimension d2, and let L = sl1(D). Assume that the Sylow pro-2 subgroups
of AutQ2

(L) are R-finite. Then d is odd.

Proof. Since L is simple, the Sylow pro-2 groups of AutQ2
(L) are just infinite (see

Proposition III.9 of [8]). By Lemma 4.2, R-finite just infinite pro-2 groups are
torsion free, so AutK(L) ⊆ AutQ2

(L) has no 2-torsion elements. Thus d must be
odd by Proposition 8.1 and Proposition 8.2(1),(2). �

Corollary 8.4. Let K be a finite extension of Q2, let D be a K-central division
algebra of dimension d2 > 1, and let L = sl1(D). Assume that the Sylow pro-2
subgroups of AutQ2

(L) have at most 25 real irreducible characters. Then d = 3 and
K = Q2.

Proof. Let q = 2r be the order of the residue field OK/mK and n = |K : Q2|.
Let ρ ∈ AutQ2

(L). By Proposition 8.1, we may regard ρ as a Q2-automorphism
of D. Note that OD consists of the elements of D which are integral over Z2, and
so both OD and mD are ρ-invariant. Then the restriction of ρ to mi

D induces

an automorphism on the quotient mi
D/mi+1

D . If we identify mi
D/mi+1

D with Fqd

(mi
D/mi+1

D is canonically isomorphic to OD/mD
∼= Fqd), then ρ acts on mi

D/mi+1
D

as an element from Gal(Fqd/F2)�F∗
qd acts on Fqd . Note that in this way we obtain

a group homomorphism Ψi from AutQ2
(L) into Gal(Fqd/F2)� F∗

qd .

Let P be a Sylow pro-2 subgroup of AutQ2
(L). Since |Gal(Fqd/F2) � F∗

qd | =
rd(qd − 1) and d is odd, by Corollary 8.3 we obtain that |Ψi(P )| ≤ r. It follows
from this that the orbits of the action of a Sylow pro-2 group of AutQ2

(L) on

mi
D/mi+1

D have size at most r.
Next we consider the action of P on the subquotient U dn

r
/U 2dn

r
of PGL1(D) ∼=

AutK(L). For each dn/r ≤ i ≤ 2dn/r−1, P acts by conjugation on Ui/Ui+1. Recall
that wπi

D+mi+1
D �→ (1+wπi

D)Ui+1 defines a group homomorphism from mi
D/mi+1

D

onto Ui/Ui+1, and it is easy to check that this map respects the action of P . It



3684 ANDREI JAIKIN-ZAPIRAIN AND JOAN TENT

follows that the P -orbits in Ui/Ui+1 have size at most r, and so by Proposition
8.2(3),

rP ((Ui \ Ui+1)/Ui+1) ≥
{

qd−1
r if i �≡ 0 mod d,

qd−1−1
r if i ≡ 0 mod d.

Thus, we obtain that

rP (U dn
r
/U 2dn

r
) ≥ 1+

2dn
r −1∑
i= dn

r

rP ((Ui\Ui+1)/U 2dn
r
)≥ n

r2
((d−1)(2rd−1)+2r(d−1)−1)+1.

Since rP (U dn
r
/U 2dn

r
) ≤ 25 and d is odd, an easy calculation yields d = 3 and

n = 1. �
The following theorem implies Theorem B.

Theorem 8.5. Let D be a Q2-central division algebra of dimension 9 and let L =
sl1(D). Then the Sylow pro-2 subgroups of AutQ2

(L) have exactly 25 real irreducible
characters.

Proof. By Proposition 8.1 and by the Skolem-Noether theorem,

AutQ2
(L) ∼= AutQ2

(D) ∼= PGL1(D) = D∗/Z(D∗).

When there is no possible confusion, we shall identify an element in the group
AutQ2

(L) with a preimage of it in D.
Using the same notation as at the beginning of the section, let w be a prim-

itive 7th root of unity, and let πD be an element such that π3
D = 2 ∈ Z2 and

(πD)−1wπD = w2, so we can assume that

D = Q2[w, πD].

Recall that the valuation ring OD = Z2[w, πD] has a unique maximal ideal mD =
πDOD, and it is clear that 2OD = m3

D and OD/mD
∼= F8. We know that the group

U1 defined above is a Sylow pro-2 subgroup of PGL1(D).
We start with some calculations inside the group U1.

Claim 1. Let i, j ≥ 1 and let x ∈ Ui \ Ui+1. Then CUj
(xUi+j+1) = CUj

(x)Uj+1.

Proof. The inclusion CUj
(x)Uj+1 ≤ CUj

(xUi+j+1) is obvious. Let us show the
converse inclusion. Write i = i0 + 3i1 and j = j0 + 3j1 with 0 ≤ i0, j0 ≤ 2. The
proof is divided into 4 subcases depending on whether i0 and j0 are equal to 0
or not. We consider only the subcase when i0, j0 �= 0; the other cases are proved
similarly.

We write x ≡ 1 + aπi
D (mod Ui+1) with a ∈ OD \ mD. First observe that

since i0, j0 �= 0, |CUj
(x)Uj+1/Uj+1| ≥ 2. Indeed, if i0 = j0, then 1 + aπi

D2j1−i1 ∈
CUj

(x) \ Uj+1, and if i0 �= j0, then 1 + (aπD)2i2(j−2i)/3 ∈ CUj
(x) \ Uj+1.

Thus, it is enough to show that |CUj
(xUi+j+1)/Uj+1|=2. Take y∈CUj

(xUi+j+1)

with y ≡ 1 + bπj
D (mod Uj+1) and b ∈ OD \mD. Since [x, y] ∈ Ui+j+1 we obtain

that ab4
i − ba4

j ∈ mD. Hence

(8.2) b4
i−1 ≡ a4

j−1 (mod mD).

Recall that OD/mD
∼= F8. Note that the map F∗

8 → F∗
8 that sends b̄ to b̄2

2i−1 is
bijection, since i �≡ 0 (mod 3). Hence there exists only one class of b modulo mD

that satisfies (8.2). This implies that |CUj
(xUi+j+1)/Uj+1| = 2. �
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As a corollary we obtain the following.

Claim 2. Let i, j ≥ 1, n > i+ j, and x ∈ Ui \Ui+1. Then CUj
(xUn) = CUj

(x)Un−i.

Proof. The proof is done by induction on n. The base of induction (n = i+ j + 1)
is done in the previous claim. �

By Proposition 8.2(5), Ui/Ui+3 is elementary abelian for i ≥ 4. Thus all the
conjugacy classes in this group are real. Moreover, the same result implies that
these are all the conjugacy classes of elements of order at most 2 in Ui/Ui+3. In
the following claim we count their number.

Claim 3. Let i ≡ 1 (mod 3) and assume i ≥ 4. Then rU1
(Ui/Ui+3) = 25.

Proof. Recall that Ui+2/Ui+3 is central in U1/Ui+3. By Claim 2, if x ∈ Ui \ Ui+1,
then CU1

(xUi+3) = CU1
(x)U3, and if x ∈ Ui+1\Ui+2, then CU1

(xUi+3) = CU1
(x)U2.

Moreover, using that i ≡ 1 (mod 3), an argument along the lines of the proof of
Claim 1 yields that if x ∈ Ui\Ui+1, then |U1 : CU1

(x)U3| = 24, and if x ∈ Ui+1\Ui+2,
then |U1 : CU1

(x)U2| = 22.
By the previous paragraph, since i ≡ 1 (mod 3) we have that Proposition 8.2(3)

implies that there are 14 = |(Ui\Ui+1)/Ui+3|
24 U1-conjugacy classes in

(Ui \Ui+1)/Ui+3, 7 = |(Ui+1\Ui+2)/Ui+3|
22 U1-conjugacy classes in (Ui+1 \Ui+2)/Ui+3,

and 4 = |Ui+2/Ui+3| U1-conjugacy classes in Ui+2/Ui+3. �

By the comments before Claim 3, in order to finish the proof we only need to
show that for large i, U1/Ui does not contain real elements of order 4.

Claim 4. Let i ≥ 4. Let x ∈ Ui be such that xUi+4 is a real element of order 4 in
U1/Ui+4. Then there exists y ∈ U3 such that (xUi+4)

y = (xUi+4)
−1.

Proof. Note that x2 ∈ Ui+3 by Proposition 8.2(5). Now if y ∈ U1 is such that
(xUi+4)

y = (xUi+4)
−1, then y ∈ CU1

(xUi+3), and thus by Claim 2 we can assume
that y ∈ U3. �

Claim 5. If i ≥ 6, then there are no real elements of order 4 in U1/Ui+4.

Proof. Let xUi+4 be a real element of order 4 in U1/Ui+4. Then x ∈ Uj \ Uj+1

for i − 2 ≤ j ≤ i. Since the following arguments do not depend on the value of j,
for simplicity we may assume that x = 1 + aπi

D ∈ Ui with a ∈ OD \ mD. Again
we distinguish two cases depending on whether i ≡ 0 (mod 3) or not. We only
consider the case i �≡ 0 (mod 3); the other case is proven in a similar way.

By the previous claim there exists y = 1 + 2b ∈ U3 (b ∈ OD \mD) such that

1 + 2(ab4
i − ab)πi

D ≡ [x, y] ≡ x2 ≡ (1 + 2aπi
D) (mod Ui+4).

Hence ab4
i − ab ≡ a (mod mD). Since a is invertible in OD, we obtain that there

should exist b̄ ∈ F8
∼= OD/mD such that b̄2

2i − b̄ = 1̄. But this is impossible,
obtaining a contradiction. �

Now we are ready to finish the proof of the theorem. Let i be a positive integer
congruent to 1 modulo 3. It suffices to prove that for any large enough i, the finite
2-group U1/Ui has 25 real conjugacy classes by Lemma 2.4 and Lemma 4.2(2). This
follows from Claims 3 and 5. �
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9. Proof of Theorem A

In this section we obtain Theorem A as a consequence of two results. Firstly
we show that if there are infinitely many finite 2-groups G as in the statement of
Theorem A, then there is an infinite pro-2 group having exactly r real irreducible
characters. Secondly we show that such a pro-2 group does not exist for odd r and
r ≤ 23.

Theorem 9.1. Let r be a natural number. Assume that there are infinitely many
finite 2-groups G with r(G) = r. Then there is an infinite pro-2 group having exactly
r real irreducible characters.

Proof. Let us consider the following directed graph Γ. The set of vertices V (Γ) of Γ
consists of the isomorphism classes of finite 2-groups with exactly r real irreducible
conjugacy classes. There is an edge from G1 to G2 if and only if there exists a
normal subgroup Z of order 2 in G2 such that G2/Z ∼= G1. We say also that G1 is
a father of G2 and G2 is a son of G1.

Claim 1. There is a number C such that if G ∈ V (Γ) and |G| > C, then G has at
least one father.

Proof. Let G ∈ V (Γ). By Lemma 2.7(3), there exists an r-bounded k such that
Irrr(G/Gk) = Irrr(G). Note that the order of Gi/Gi+1 is r-bounded for all 1 ≤
i ≤ k − 1 by Lemma 2.7(1), whence the order of G/Gk is also r-bounded (say
|G/Gk| ≤ C = C(r)). Thus, if |G| > C, then Gk �= {1}. Let Z ≤ Gk be a normal
subgroup of G of order 2. Then it is clear that G/Z is a father of G. �

For any G ∈ V (Γ) consider the subgraph ΓG of Γ consisting of G and all its
descendants (the vertices of Γ that can be reached by a path from G).

Claim 2. Let 2n ≥ C. Then there exists a group G ∈ V (Γ) of order 2n such that
ΓG is infinite. Moreover, if H ∈ V (Γ) and ΓH is infinite, then there exists a son G
of H such that ΓG is infinite.

Proof. From the previous claim any group in V (Γ) of order at least 2n lies in⋃
G∈V (Γ),|G|=2n ΓG. Thus if Γ is infinite, then some ΓG is infinite. The second

statement of the claim is proved in a similar way. �

Now we are ready to finish the proof of the theorem. By the previous claim we
can construct inductively Gi ∈ V (Γ), i ∈ N, such that ΓGi

is infinite and Gi+1 is
a son of Gi. Then the pro-2 group isomorphic to the inverse limit of {Gi}i∈N has
exactly r real irreducible characters. �

Theorem 9.2. Let P be a pro-2 group having r real irreducible characters. If r is
odd and r ≤ 23, then P is finite.

Proof. By way of contradiction, assume that there exists an infinite pro-2 group P
having an odd number of real irreducible characters smaller that 25. Then P is of
finite rank. Thus, we may assume also that dimL(P ) is as small as possible. If P
is not just infinite, by Corollary 5.2, any of its just infinite quotients satisfies our
hypothesis. Thus, assume also that P is just infinite. Then P is an open subgroup
of Aut(L), where L = L(P ) is a semi-simple finite-dimensional Lie Q2-algebra all of
whose simple components are isomorphic. Also, by Corollary 5.3, P is non-solvable.
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Note also that P is torsion free, because all torsion elements of P are in radf (P )
(Lemma 4.2(3)).

If P is not a Sylow pro-2 subgroup of Aut(L), then there exists P < Q ≤ Aut(L)
such that |Q : P | = 2. By Theorem 6.1, there exists a ∈ Q such that CP (a) has an
odd number of real characters and | Irrr(CP (a)| ≤ | Irrr(P )|. Observe that a acts
non-trivially on L, and so the dimension of L(CP (a)) ∼= CL(a) is smaller than the
dimension of L. This contradicts our choice of P .

On the other hand, if P is a Sylow pro-2 subgroup of Aut(L), then, by Theorem
7.1, L(P ) ∼= sl1(D) for some division Q2-algebra D. Corollary 8.4 implies that D
has dimension 9 over its center Q2. But then Theorem 8.5 states that | Irrr(P )| =
25 > 23, a contradiction. �

10. Further comments

In this section we describe several possible directions for further research. As
we have proved the “minimal” pro-2 group with odd number of conjugacy classes
belongs to the Sylow subgroups of PGL1(D) where D has dimension at least 9 over
its center. In particular, these groups have at least 3 generators. So we suggest the
following problem.

Conjecture 1. Let k be an odd number. Then there exists only a finite number of
finite 2-groups generated by 2 elements with exactly k real conjugacy classes.

In a similar fashion to Lemma 4.2 we believe that the following holds.

Conjecture 2. Let G be a finite 2-group. Then rk(G) is q-bounded, where q is the
number of rational characters of G.
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