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QUANTUM SUBGROUPS OF SIMPLE TWISTED QUANTUM

GROUPS AT ROOTS OF ONE

GASTÓN ANDRÉS GARCÍA AND JAVIER A. GUTIÉRREZ

Abstract. Let G be a connected, simply connected simple complex algebraic
group and let ε be a primitive �th root of unity with � odd and coprime with
3 if G is of type G2. We determine all Hopf algebra quotients of the twisted
multiparameter quantum function algebra Oϕ

ε (G) introduced by Costantini
and Varagnolo. This extends the results of Andruskiewitsch and the first
author, where the untwisted case is treated.

1. Introduction

Let G be a connected, simply connected complex algebraic group. In this paper
we determine all Hopf algebra quotients of the twisted multiparameter quantum
function algebra Oϕ

ε (G) introduced by Costantini and Varagnolo in [CV1], where
ε is a primitive �th root of unity with � odd, and if G is of type G2, further ε
is coprime with 3. The dual notion of this was introduced by Reshetikhin [R] to
produce multiparameter quantum enveloping algebras of g = Lie(G); see also [Su].
It is constructed as a twist deformation of the topological Hopf algebra U�(g) over
C[[�]], where the twist only involves elements of a fixed Cartan subalgebra h of g. In
the dual function algebra, this deformation corresponds to a skew endomorphism
ϕ on the weight lattice of g. When ϕ = 0, one recovers the standard quantum
function algebra on G and the results on this paper reproduce the classification
obtained in [AG].

It turns out that Oϕ
ε (G) is a 2-cocycle deformation of Oε(G); see Lemma 2.14.

For this reason, we call Oϕ
ε (G) the twisted quantum function algebra over G; heuris-

tically it should correspond to the function algebra over the twisted quantum group
Gϕ

ε . This is not an isolated example. The relation between multiparameter quan-
tum function algebras and 2-cocycle deformations has been explained for particular
instances of quantum groups; see for example [Ma], [Tk2], [AST], [HLT]. In general,
multiparameter quantum groups were intensively studied. They appeared first in
the work of Manin [Ma] and were subsequently treated by different authors, among
them [AE,BW,CM,DPW,H,HLT,HPR,LS,OY,R,Tk].

An important problem in the theory of quantum groups is the determination
of the general properties that a quantum group should have, since up to date
there is no axiomatic definition of an algebraic quantum group. In this sense, the
description of all possible Hopf algebra quotients of the quantum function algebra,
seen as algebras of functions over quantum subgroups, of the known examples would
give some insight on the structure of the quantum group. This can be viewed as the
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quantum version of the classical problem of studying subgroups of a simple algebraic
group. This is an actual area of research since the description by P. Podleś [P] of the
compact quantum subgroups of Woronowicz’s quantum groups SUq(2) and SOq(3)
for q ∈ [−1, 1] \ 0. Besides the result of Podleś, the main contributions are

� the description of the finite quantum subgroups of GLq(n) and SLq(n) for
q an odd root of unity by Müller [Mu];

� the classification in [AG] of the quantum subgroups of Gq, for G a con-
nected, simply connected, complex simple algebraic group G, with q a
primitive �th root of unity with � odd and coprime with 3 if G is of type
G2.

� the description in [G] of the quantum subgroups of the two-parameter de-
formation GLα,β(n) for α

−1β a primitive root of unity of odd order;
� the determination of the compact quantum subgroups of SO−1(3) by Banica
and Bichon [BB];

� the study of the quantum subgroups of SUq(2) for q = −1 in [BN] and for
q �= −1 in [FST];

� the description by Bichon and Dubois-Violette [BD] of the compact quan-
tum subgroups of the half-liberated orthogonal quantum groups O∗

n from
[BS];

� the classification of the quantum subgroups of SU−1(3) by Bichon and
Yuncken [BY].

As the reader might have noticed, the problem splits into the algebraic case and
the compact case. The latter is reduced mainly to the case when q = −1. In this
paper, we study the algebraic case, hence we will assume that q is a primitive root
of unity of odd order. The main result reads as follows.

Theorem 1. There is a bijection between

(a) Hopf algebra quotients q : Oϕ
ε (G) → A,

(b) Twisted subgroup data up to equivalence.

For the definition of the twisted subgroup data see Definition 4.8. We prove
Theorem 1 in Section 4 through Theorems 4.9, 3.4 and 4.15. We use the strategy
developed in [AG] for the untwisted case, where the Hopf algebra quotients are
constructed using commutative diagrams whose rows are central extensions of Hopf
algebras. Since Oϕ

ε (G) is a 2-cocycle deformation of Oε(G), several steps of the
construction can be carried out without much effort. On the other hand, special
attention has to be paid for certain constructions. To describe them we use the
study of Oϕ

ε (G) carried out by Costantini and Varagnolo in [CV1] and [CV2], which
is in turn a generalization of [DL].

As a consequence of Theorem 1 one would expect the construction of new exam-
ples of finite-dimensional Hopf algebras with different properties which might not
necessarily be 2-cocycle deformation of Hopf algebra quotients of Oε(G). These
examples are given by central exact sequences of Hopf algebras. We hope that,
using similar methods to those of Ştefan [Ş], who characterized Hopf algebras with
certain properties as quotients of the quantum function algebra Oq(SL(2)) and
used this to understand the structure of low-dimensional Hopf algebras (see [N] as
well), these examples might help to better understand the classification problem
for finite-dimensional Hopf algebras over the complex numbers.
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This paper is organized as follows. In Section 2 we recall the definition and gen-
eral properties of the twisted quantum enveloping algebra Uϕ

q (g), its divided power
algebra, the twisted quantum function algebra Oϕ

q (G) and their specializations at
roots of unity, and we show that Oϕ

ε (G) is a 2-cocycle deformation of Oε(G). In
Section 3 we describe the twisted Frobenius–Lusztig kernels uϕ

ε (g) and all the Hopf
algebra quotients of uϕ

ε (g)
∗. We also prove that uϕ

ε (g) is a twist deformation of
uε(g). Finally, in Section 4 we prove the main theorem.

Conventions and preliminaries. Our references for the theory of Hopf algebras
are [Mo], [Ra]. We use standard notation for Hopf algebras; the comultiplication,
counit and antipode are denoted by Δ, ε, and S, respectively. Let k be a field. The
set of group-like elements of a coalgebra C is denoted by G(C). We also denote by
C+ = Ker ε the augmentation ideal of C. Let H be a Hopf algebra. Hop denotes
the Hopf algebra with the same coalgebra structure but opposite multiplication
and Hcop denotes the Hopf algebra with the same algebra structure but opposite
comultiplication. Let g, h ∈ G(H), the set of (g, h)-primitive elements is given by
Pg,h(H) = {x ∈ H : Δ(x) = x ⊗ g + h ⊗ x}. We call P1,1(H) = P (H) the set of
primitive elements.

Recall that a convolution invertible linear map σ in Homk(H ⊗ H, k) is a nor-
malized multiplicative 2-cocycle if

(1) σ(b(1), c(1))σ(a, b(2)c(2)) = σ(a(1), b(1))σ(a(2)b(2), c)

and σ(a, 1) = ε(a) = σ(1, a) for all a, b, c ∈ H; see [Mo, Sec. 7.1]. In particular, the
inverse of σ is given by σ−1(a, b) = σ(S(a), b) for all a, b ∈ H. Using a 2-cocycle σ it
is possible to define a new algebra structure on H by deforming the multiplication,
which we denote by Hσ. Moreover, Hσ is indeed a Hopf algebra with H = Hσ as
coalgebras, deformed multiplication mσ = σ ∗m ∗ σ−1 : H ⊗H → H given by

mσ(a, b) = a ·σ b = σ(a(1), b(1))a(2)b(2)σ
−1(a(3), b(3)) for all a, b ∈ H,

and if we write Qσ = σ(Id ⊗ S) and Qσ−1

= σ−1(S ⊗ Id), then the antipode

Sσ = Qσ ∗ S ∗Qσ−1

: H → H is given by (see [Do] for details)

Sσ(a) = σ(a(1),S(a(2)))S(a(3))σ−1(S(a(4)), a(5)) for all a ∈ H.

Remark 1.1. Let H be a Hopf algebra, let I be a Hopf ideal, let A = H/I and
let π : H → A be the canonical map. Clearly, any 2-cocycle on A can be lifted
through π to a 2-cocycle on H. Let σ : H ⊗H → k be a normalized multiplicative
2-cocycle on H such that σ|I⊗H+H⊗I = 0. Then the map σ̂ : A ⊗ A → k given
by σ̂(π(h), π(k)) = σ(h, k) for all h, k ∈ H defines a normalized multiplicative 2-
cocycle on A and the induced map πσ : Hσ → Aσ̂ is a Hopf algebra map. In
particular, if B is a central Hopf subalgebra of H such that σ|I⊗H+H⊗I = 0 with
I = B+H, then the formula above defines a 2-cocycle on A = H/B+H.

Let H be a Hopf algebra and let J ∈ H ⊗H be an invertible element. We say
that J is a normalized twist if

(Δ⊗ id)(J)(J ⊗ 1) = (id⊗Δ)(J)(1⊗ J) and (ε⊗ id)(J) = 1 = (id⊗ε)(J).

Given a twist J for H, one can define a new Hopf algebra HJ with the same algebra
structure and counit as H, but different comultiplication and antipode

ΔJ (h) = J−1Δ(h)J, SJ (h) = Q−1
J S(h)QJ ,
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for all h ∈ H, where we denote J = J (1) ⊗ J (2) and QJ = S(J (1))J (2). We say that
HJ is a twist deformation of H.

The notion of a 2-cocycle and a twist are dual of each other. If H is finite-
dimensional, then J is a twist for H if and only if J∗ is a 2-cocycle on H∗.

Definition 1.2. A Hopf pairing between two Hopf algebras U and H over a ring
R is a bilinear form b : H × U → R such that, for all u, v ∈ U and f, h ∈ H,

(i) b(h, uv) = b(h(1), u)b(h(2), v); (iii) b(1, u) = ε(u);

(ii) b(fh, u) = b(f, u(1))b(h, u(2)); (iv) b(h, 1) = ε(h).

It follows that b(h,S(u)) = b(S(h), u) for all u ∈ U , h ∈ H. Given a Hopf pairing,
one has Hopf algebra maps U → H◦ and H → U◦, where H◦ and U◦ are the
Sweedler duals. The pairing is called perfect if these maps are injections.

Let G be a connected, simply connected simple complex algebraic group and let
g = Lie(G) be the Lie algebra of G. We fix h ⊆ g as a Cartan subalgebra and
Φ as the root system associated to h with simple roots Π = {α1, . . . , αn}, where
n = rk(g) := dim(h). Let (−,−) be the symmetric bilinear form over h∗ induced
by the Killing form. Then, the Cartan matrix A = (aij)1≤i,j≤n ∈ Zn×n associated

with g is given by aij =
2(αj ,αi)
(αi,αi)

. If we write di =
(αi,αi)

2 and D = diag(d1, . . . , dn),

then (αi, αj) = diaij and DA is symmetric. The fundamental weights ω1, . . . , ωn

are given by the property (ωi, αj) = diδij for all 1 ≤ i ≤ n. Then, αi =
∑n

j=1 ajiωj

for all 1 ≤ i ≤ n. We denote by P =
∑n

i=1 Zωi the weight lattice, P+ the positive
weights, Q =

∑n
i=1 Zαi the root lattice, Q+ the positive roots and W the Weyl

group associated to Φ. The bilinear form (−,−) defines a Z-pairing over P ×Q.
Let q be an indeterminate, let R = Q[q, q−1] and let Q(q) be its field of fractions.

Let ε be an �th root of unity with ord ε = � odd and 3 � � if G is of type G2. If
χ�(q) denotes the �th cyclotomic polynomial, then R/[χ�(q)R] = Q(ε). We denote
qi = qdi for all 1 ≤ i ≤ n.

For n > 0 define

(n)q =
qn − 1

q − 1
= qn−1 + · · ·+ q + 1, (n)q! = (n)q(n− 1)q · · · (2)q(1)q, (0)q = 1,

[n]q =
qn − q−n

q − q−1
, [n]q! = [n]q[n− 1]q · · · [1]q and [0]q = 1,(

n

k

)
q

=
(n)q

(k)q(n− k)q
,

[
n

k

]
q

=
[n]q!

[k]q![n− k]q!
.

2. Twisted quantum groups

In this section we recall the definition of the twisted (multiparameter simply
connected) quantum enveloping algebra Ǔϕ

q (g), its divided power algebra, and the
twisted quantum function algebra Oϕ

q (G). The former is isomorphic to the multi-
parameter quantum enveloping algebra defined in [R] and [CKP] (see [CV1]), and
the latter is introduced by Costantini and Varagnolo in [CV2]. We mainly follow
[CV2] for the description.

These algebras depend on a Q-linear map on the weight lattice that induces
a deformation on the coproduct of Ǔq(g) and on the product of Oq(G). This
deformation is given by a multiplicative 2-cocycle on Oq(G) and resembles a twist

deformation on Ǔq(g). For this reason, we call them twisted quantum function
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algebras and twisted quantum enveloping algebras, respectively. We also describe
the corresponding objects at roots of unity and some basic properties such as PBW
basis, a Hopf algebra pairing, and the quantum Frobenius map. In particular,
twisted quantum function algebras at roots of unity fit into an exact sequence of
Hopf algebras.

Throughout we omit the supraindex ϕ when ϕ = 0 on the quantum function
algebras and on the corresponding maps if no possible confusion may arise.

2.1. The twisting map ϕ. Consider the Q-linear space QP =
∑n

i=1 Qωi spanned
by the weigths and define a Q-linear map satisfying

(2)

⎧⎪⎨⎪⎩
(ϕx, y) = −(x, ϕy) ∀x, y ∈ QP,

ϕαi = δi = 2τi, τi ∈ P, i = 1, . . . , n,
1
2 (ϕλ, μ) ∈ Z ∀λ, μ ∈ P,

where (−,−) is considered as a linear extension of the Z-pairing over P × Q to a
symmetric bilinear form QP × QP → Q. In particular, ϕ is antisymmetric with
respect to this form.

According to the first two conditions we have that (2τi, αj) = −(2τj , αi). Writing
τi =

∑n
j=1 xjiωj =

∑n
j=1 yjiαj with xji, yij ∈ Z for all 1 ≤ i, j ≤ n, it follows that

djxji =

(
n∑

k=1

xkiωk, αj

)
= −

(
n∑

l=1

xljωl, αi

)
= −

n∑
l=1

xlj(ωl, αi) = −dixij .

If we denote X = (xij)1≤i,j≤n, Y = (yij)1≤i,j≤n ∈ Zn×n, then AY = X and
DX = (dixij)1≤i,j≤n is antisymmetric. In particular, xii = 0 for all 1 ≤ i ≤ n and

ϕ depends on at most n(n−1)
2 integer parameters. Moreover, by [CV1, Lemma 2.1]

the matrix A+2X is invertible and the maps 1±ϕ : QP → QP are Q isomorphisms
that satisfy that

((1 + ϕ)±1λ, μ) = (λ, (1− ϕ)±1μ) for all λ, μ ∈ P.

Write r = (1 + ϕ)−1, r̄ = (1 − ϕ)−1. Note that if λ ∈ r(P ) and μ ∈ P , then
(λ, μ) ∈ 1

det(A+2X)Z. Let u be an element contained in the algebraic clausure of

Q(q) such that q = udet(A+2X). If z ∈ 1
det(A+2X)Z, then we write qz for uz det(A+2X).

2.2. Twisted quantum enveloping algebras. Let Q ⊆ M ⊆ P be a lattice.
For convenience, we recall the definition of the one-parameter quantum enveloping
algebras Uq(g,M); see [BG, I.6.5].
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Definition 2.1. Uq(g,M) is theQ(q)-algebra generated by the elements {Ei, Fi}ni=1

and {Kλ : λ ∈ M} satisfying the relations

K0 = 1, KλKμ = Kλ+μ = KμKλ for all λ, μ ∈ M,

KλEjK−λ = q(λ,αj)Ej ,

KλFjK−λ = q−(λ,αj)Fj ,

EiFj − FjEi = δij
Ki −K−1

i

qi − q−1
i

,

1−aij∑
l=0

(−1)l
[
1− aij

l

]
qi

E
1−aij−l
i EjE

l
i = 0 (i �= j),

1−aij∑
l=0

(−1)l
[
1− aij

l

]
qi

F
1−aij−l
i FjF

l
i = 0 (i �= j).

It is well known that Uq(g,M) is a Hopf algebra with its comultiplication defined
by setting Ei to be (1,Kαi

)-primitive and Fi to be (K−αi
, 1)-primitive for all 1 ≤

i ≤ n. Using the map ϕ, one may define a different coproduct, counit, and antipode
on Uq(g,M) as follows (see [CV2, §1.3]):⎧⎪⎨⎪⎩
Δϕ(Ei) = Ei ⊗Kτi +Kαi−τi ⊗ Ei,

Δϕ(Fi) = Fi ⊗K−αi−τi +Kτi ⊗ Fi,

Δϕ(Kλ) = Kλ ⊗Kλ,

⎧⎪⎨⎪⎩
εϕ(Ei) = 0,

εϕ(Fi) = 0,

εϕ(Kα) = 1,

⎧⎪⎨⎪⎩
Sϕ(Ei) = −K−αi

Ei,

Sϕ(Fi) = −FiKαi
,

Sϕ(Kλ) = K−λ.

Note that the coproduct is well defined by (2). With this new structure, Uq(g,M) is
again a Hopf algebra which is denoted by Uϕ

q (g,M). Clearly, Uϕ
q (g,M) = Uq(g,M)

if ϕ = 0. We write Uϕ
q (g, P ) = Ǔϕ

q (g) and Uϕ
q (g, Q) = Uϕ

q (g).

Remark 2.2. From the defining relations we have that KτiEi = EiKτi and KτiFi =
FiKτi for all 1 ≤ i ≤ n. Indeed,

KτiEi =

n∏
j=1

Kxji
ωj

Ei =

⎛⎝ n∏
j=1

q
xji(ωj ,αi)
j

⎞⎠Ei

⎛⎝ n∏
j=1

Kxji
ωj

⎞⎠
=

⎛⎝ n∏
j=1

q
djxjiδij
j

⎞⎠EiKτi = EiKτi .

The second assertion follows analogously.

Definition 2.3 ([CV2, §1.4]). Let Ǔϕ
q (b+) and Uϕ

q (b+) be the Hopf subalgebras

of Ǔϕ
q (g) generated by the elements Kλ, Ei with λ ∈ P and λ ∈ Q, respectively.

Similarly, let Ǔϕ
q (b−) and Uϕ

q (b−) be the Hopf subalgebras generated by the ele-
ments Kλ, Fi, with λ ∈ P , and λ ∈ Q, respectively. The algebra Uϕ

q (g) is the Hopf
subalgebra generated by Kλ, Ei, Fi with λ ∈ Q and 1 ≤ i ≤ n.

2.3. Pairings, Borel subalgebras and integer forms. By [CV1, § 2] (see also
[CV2, §1.4], [DL, §3]) there exist perfect Hopf pairings πϕ : Ǔϕ

q (b−)
cop× Ǔϕ

q (b+) →
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Q(u) and π̄ϕ : Ǔϕ
q (b+)

cop × Ǔϕ
q (b−) → Q(u). These are given by⎧⎪⎪⎨⎪⎪⎩

πϕ(Kλ,Kμ) = q(r(λ),μ),

πϕ(Kλ, Ei) = πϕ(Fi,Kλ) = 0,

πϕ(Fi, Ej) =
δij

qi − q−1
i

q(r(τi),τi),

⎧⎪⎪⎨⎪⎪⎩
πϕ(Kλ,Kμ) = q−(r(λ),μ)),

πϕ(Ei,Kλ) = πϕ(Kλ, Fi) = 0,

πϕ(Ei, Fj) =
δij

q−1
i − qi

q−(r(τi),τi),

for λ, μ ∈ P and 1 ≤ i, j ≤ n. The pairing πϕ can be obtained from π−ϕ by the

conjugation of the Hopf algebra Q-anti-isomorphism ζϕ : Ǔϕ
q (g) → Ǔ−ϕ

q (g) given

by Ei 
→ Fi, Fi 
→ Ei, Kλ 
→ K−λ, and q 
→ q−1. Clearly, ζϕ maps Ǔϕ
q (b+) into

Ǔ−ϕ
q (b−) and πϕ = ζϕ ◦ π−ϕ ◦ (ζϕ ⊗ ζϕ). If ϕ = 0, denote by π0 the corresponding

bilinear form. Using these pairings we will define four R-Hopf algebras that will be
needed later.

Fix a reduced expression of the longest element w0 = si1 · · · siN in the Weyl
group W and consider the total ordering on Φ+ given by

β1 = αi1 , β2 = αi1αi2 , . . . βN = αi1αi2 · · ·αiN .

The braid group BW associated to W acts on Ǔϕ
q (g) via the Lusztig automor-

phisms Tij for 1 ≤ j ≤ N , and one may define the root vectors

Eβk
= Ti1Ti2 · · ·Tik−1

(Ek) and Fβk
= Ti1Ti2 · · ·Tik−1

(Fk).

For s ∈ N, 1 ≤ i ≤ n, 1 ≤ k ≤ N , and Gi = Ei or Fi define

G
(s)
i =

Gs
i

[s]qi !
and G

(s)
βk

= Ti1Ti2 · · ·Tik−1
(G

(s)
k ).

For α ∈ Φ+, let

qα = q
(α,α)

2 , τα =
1

2
ϕ(α), eϕα = (q−1

α − qα)EαK−τα ,

eϕi = eϕαi
, fϕ

i = fϕ
αi
, fϕ

α = (qα − q−1
α )FαK−τα .

Definition 2.4. Denote by Rϕ
q [B−]

′ and Rϕ
q [B−]

′′ the R-subalgebras of Ǔϕ
q (b+)

op

and Ǔϕ
q (b+)

cop, respectively, generated by the elements eϕα and K(1−ϕ)ωi
for 1 ≤

i ≤ n and α ∈ Φ+. Similarly, let Rϕ
q [B+]

′ and Rϕ
q [B+]

′′ be the R-subalgebras of

Ǔϕ
q (b−)

op and Ǔϕ
q (b−)

cop, generated by the elements fϕ
α and K(1+ϕ)ωi

for 1 ≤ i ≤ n
and α ∈ Φ+.

By restriction, we get the following pairings:

π′
ϕ : Ǔϕ

q (b−)⊗R Rϕ
q [B−]

′ → Q(q), π′′
ϕ : Rϕ

q [B+]
′′ ⊗R Ǔϕ

q (b+) → Q(q),

π̄′
ϕ : Ǔϕ

q (b+)⊗R Rϕ
q [B+]

′ → Q(q), π̄′′
ϕ : Rϕ

q [B−]
′′ ⊗R Ǔϕ

q (b−) → Q(q).

They are given by

π′
ϕ(Kλ,K(1−ϕ)μ) = q(λ,μ), π′

ϕ(Fj , e
ϕ
i ) = −δij ,

π′′
ϕ(K(1+ϕ)μ,Kλ) = q(μ,λ), π′′

ϕ(f
ϕ
i , Ej) = δij ,

π′
ϕ(Kλ,K(1+ϕ)μ) = q−(λ,μ), π′

ϕ(Ej , f
ϕ
i ) = −δij ,(3)

π′′
ϕ(K(1−ϕ)μ,Kλ) = q−(μ,λ), π′′

ϕ(e
ϕ
i , Fj) = δij .
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By [L], one may take as bases of Uϕ
q (b+) and Uϕ

q (b−), respectively, the elements

ξm,t =

1∏
j=N

E
(mj)
βj

n∏
i=1

(
Kαi

; 0

ti

)
K

−
[
ti
2

]
αi , ηm,t =

1∏
j=N

F
(mj)
βj

n∏
i=1

(
Kαi

; 0

ti

)
K

−
[
ti
2

]
αi ,

where [ ] represents the integer part function and
(
Kαi

;0
ti

)
=

ti∏
s=1

K−s+1
αi

−1

qs−1 .

Divided power algebras. We now describe an integer form of Uϕ
q (g), which is used

to define the algebra Uϕ
ε (g) at the root of unity ε.

Definition 2.5. Let Γϕ(b+) and Γϕ(b−) be the R-submodules of Uϕ
q (g) given by

Γϕ(b+) = {u ∈ Uϕ
q (b+) | π′′

ϕ(R
ϕ
q [B+]

′′cop ⊗ u) ⊂ R},
Γϕ(b−) = {u ∈ Uϕ

q (b−) | π′
ϕ(u⊗Rϕ

q [B−]
′op) ⊂ R}.

It is known that the sets {ξm,t} and {ηm,t} are R-bases of Γϕ(b+) and Γϕ(b−),
respectively. This implies that both are algebras isomorphic to Γ(b+) and Γ(b−).
Moreover, they are also subcoalgebras with the coproduct given by

(4)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ΔϕE
(p)
i =

∑
r+s=p

q−rs
i E

(r)
i Ks(αi−τi) ⊗ E

(s)
i Krτi ,

ΔϕF
(p)
i =

∑
r+s=p

q−rs
i F

(r)
i Ksτi ⊗ F

(s)
i K−r(αi+τi),

Δϕ

(
Ki; 0

t

)
=
∑

r+s=t
Ks

i q
−rs
i

(
Ki; 0

r

)
⊗
(
Ki; 0

s

)
.

Again by restriction, we get the Hopf pairings

π′
ϕ : Γϕ(b−)⊗R Rϕ

q [B−]
′ → R, π′′

ϕ : Rϕ
q [B+]

′′ ⊗R Γϕ(b+) → R,

π̄′
ϕ : Γϕ(b+)⊗R Rϕ

q [B+]
′ → R, π̄′′

ϕ : Rϕ
q [B−]

′′ ⊗R Γϕ(b−) → R.

By [CV2, Lemma 1.12], the algebras Rϕ
q [B±]

′, Rϕ
q [B±]

′′ admit a Hopf algebra struc-
ture such that the pairings above become perfect Hopf algebra pairings. Moreover,
we have that Rϕ

q [B±]
′  Rϕ

q [B±]
′′ as Hopf algebras.

Definition 2.6 ([DL, §3.4]). The algebra Γϕ(g) is the R-subalgebra of Uϕ
q (g) gen-

erated by Γϕ(b+) and Γϕ(b−). In particular, it is generated by the elements

K−1
αi

(1 ≤ i ≤ n), E
(t)
i (t ≥ 1, 1 ≤ i ≤ n),(

Kαi
; 0

t

)
(t ≥ 1, 1 ≤ i ≤ n), F

(t)
i (t ≥ 1, 1 ≤ i ≤ n).

2.4. Twisted quantum function algebras. In this subsection, we introduce the
dual algebras Oϕ

q (G) of Uϕ
q (g) and Rϕ

q [G] of Γϕ(g). They are obtained as the
submodules generated by the matrix coefficients of representations of type one.

Let Cϕ be the full faithful subcategory in Uϕ
q (g)-mod consisting of finite-dimen-

sional modules on which the elements Kαi
act diagonally by powers of q. Then

Cϕ is a tensor category which is strict. Denote by Oϕ
q (G) the Q(q)-submodule

of HomQ(q)(U
ϕ
q (g),Q(q)) spanned by all the matrix coefficients of objects in Cϕ.

Then Oϕ
q (G) is a Q(q)-Hopf algebra with the usual structure. Given V ∈ Cϕ,
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v ∈ V , and f ∈ V ∗, then the matrix coefficient cf,v : Uϕ
q (g) → Q(q) is defined by

cf,v(x) = f(x · v) for all x ∈ Uϕ
q (g). Then we have

Δ(cf,v)(x⊗ y) = cf,v(xy) and mϕ(cf,v ⊗ cg,w) = cf⊗g,v⊗w,

for V,W ∈ Cϕ, v ∈ V , f ∈ V ∗, w ∈ W , g,∈ W ∗, and x, y ∈ Uϕ
q (g).

For Λ ∈ P+, let L(Λ) be a simple highest weight module of Uϕ
q (g). Then,

L(Λ) =
⊕

L(Λ)λ is a graded module and by the Peter–Weyl Theorem we have
that Oq(G) =

⊕
Λ∈P+

L(Λ) ⊗ L(Λ)∗, where L(Λ)∗  L(−ω0Λ). If v ∈ L(Λ)μ,

f ∈ L(Λ)−λ, then write Δ(cf,v) =
∑

i c
−λ,ν
f,v ⊗ c−ν,μ

f,v ∈
⊕

ν Oq(G)−λ,ν ⊗Oq(G)−ν,μ.

Since Oϕ
q (G) equals Oq(G) as a coalgebra, we keep this notation for the coproduct

on Oϕ
q (G).

Lemma 2.7 ([LS]). For i = 1, 2 and Λi ∈ P+, vi ∈ L(Λi)μi
, fi ∈ L(Λi)−λi

we
have

mϕ(cf1,v1 ⊗ cf2,v2) = q
1
2 ((ϕ(μ1),μ2)−(ϕ(λ1),λ2))m(cf1,v1 ⊗ cf2,v2).

�

Remark 2.8. Following [HLT, §2], the quantum function algebra Oq(G) is a P -
bigraded Hopf algebra. In particular, if f ∈ L(Λ)∗λ, v ∈ L(Λ)μ, and f(v) �= 0 we
have that f(v) = f(1 ·v) = f(K−1

αi
Kαi

·v) = f(S(Kαi
)Kαi

·v) = (Kαi
·f)(Kαi

·v) =
q
(λ,αi)+(μ,αi)
i f(v) for all 1 ≤ i ≤ n, which implies that λ = −μ if f(v) �= 0.
If we define the antisymmetric bicharacter p : P × P → Q(q) by p(λ1, λ2) =

q−
1
2 (ϕ(λ1),λ2), then it induces a group 2-cocycle p̃ on P × P given by

p̃((λ1, μ1), (λ2, μ2)) = p(λ1, λ2)p(μ1, μ2)
−1 = q

1
2 ((ϕ(μ1),μ2)−(ϕ(λ1),λ2)),

and by [HLT, Theorem 2.1], Oϕ
q (G) is isomorphic to the deformed P -bigraded Hopf

algebra Oq(G)p, where the product is given

mϕ(cf1,v1 ⊗ cf2,v2) = p(λ1, λ2)p(μ1, μ2)
−1m(cf1,v1 ⊗ cf2,v2),

for Λi ∈ P+, vi ∈ L(Λi)μi
, fi ∈ L(Λi)−λi

.

Corollary 2.9. Oϕ
q (G) is a 2-cocycle deformation of Oq(G). The 2-cocycle σ :

Oq(G)⊗Oq(G) → Q(q) is given by the formula

σ(cf1,v1 , cf2,v2) = ε(cf1,v1)ε(cf2,v2)q
− 1

2 (ϕ(λ1),λ2)

for Λi ∈ P+, vi ∈ L(Λi)μi
, fi ∈ L(Λi)−λi

, and i = 1, 2.

Proof. Denote χ(λ1, λ2) = q−
1
2 (ϕ(λ1),λ2). Clearly, σ(x, 1) = σ(1, x) = ε(x) for all

x ∈ Oq(G). We first prove the condition of (1). For 1 ≤ i ≤ 3, let cfi,vi ∈ Oq(G)
with fi ∈ L(Λi)λi

and vi ∈ L(Λi)μi
. On one hand, we have

σ((cf2,v2)(1), (cf3,v3)(1))σ(cf1,v1 , (cf2,v2)(2)(cf3,v3)(2))

=
∑
ν1,ν2

σ(c−λ2,ν1

f2,v2
, c−λ3,ν2

f3,v3
)σ(cf1,v1 , c

−ν1,μ2

f2,v2
c−ν2,μ3

f3,v3
)

=
∑
ν1,ν2

ε(c−λ2,ν1

f2,v2
)ε(c−λ3,ν2

f3,v3
)χ(λ2, λ3)ε(cf1,v1)ε(c

−ν1,μ2

f2,v2
)ε(c−ν2,μ3

f3,v3
)χ(λ1, ν2 + ν3)

= ε(cf1,v1)ε(cf2,v2)ε(cf3,v3)χ(λ2, λ3)χ(λ1, λ2 + λ3).
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On the other hand,

σ((cf1,v1)(1), (cf2,v2)(1))σ((cf1,v1)(2))(cf2,v2)(2), cf3,v3

=
∑
ν1,ν2

σ(c−λ1,ν1

f1,v1
, c−λ2,ν2

f2,v2
)σ(c−ν1,μ1

f1,v1
c−ν2,μ2

f2,v2
, cf3,v3)

=
∑
ν1,ν2

ε(c−λ1,ν1

f1,v1
)ε(c−λ2,ν2

f1,v1
)χ(λ1, λ2)ε(c

−ν1,μ1

f1,v1
)ε(c−ν2,μ2

f2,v2
)ε(cf3,v3)χ(ν1 + ν2, λ3)

= ε(cf1,v1)ε(cf2,v2)ε(cf3,v3)χ(λ1, λ2)χ(λ1 + λ2, λ3).

Thus, σ is a 2-cocycle on Oq(G). We now prove that it satisfies the equation given
in Lemma 2.7. It actually follows by a direct computation using that χ(0, 0) = 1,
χ(λ, 0) = χ(0, λ) = 1, and

σ−1(cf1,v1 , cf2,v2) = σ(S(cf1,v1), cf2,v2) = ε(cf1,v1)ε(cf2,v2)χ(μ1, λ2)

for Λi ∈ P+, vi ∈ L(Λi)μi
, fi ∈ L(Λi)−λi

, and i = 1, 2, and ε(Oq(G)λ,μ) = 0 if
−λ �= μ:

mσ(cf1,v1 , cf2,v2)

=
∑

ν1,ν2,η1,η2

σ(c−λ1,ν1

f1,v1
, c−λ2,ν2

f2,v2
)m(c−ν1,η1

f1,v1
⊗ cν2,η2

f2,v2
)σ−1(c−η1,μ1

f1,v1
c−η2,μ2

f2,v2
)

=
∑

ν1,ν2,η1,η2

ε(c−λ1,ν1

f1,v1
)ε(c−λ2,ν2

f2,v2
)χ(λ1, λ2)m(c−ν1,η1

f1,v1
⊗ cν2,η2

f2,v2
)

× ε(c−η1,μ1

f1,v1
)ε(c−η2,μ2

f2,v2
)χ(μ1, η2)

= χ(λ1, λ2)m(cf1,v1 ⊗ cf2,v2)χ(μ1,−μ2) = χ(λ1, λ2)χ(μ1, μ2)
−1m(cf1,v1 ⊗ cf2,v2)

= q
1
2 ((ϕ(μ1),μ2)−(ϕ(λ1),λ2))m(cf1,v1 ⊗ cf2,v2).

�

For more details on twisting, deformation, and r-matrices, see [HLT], [CV2, §2.2].

Definition 2.10. Let Eϕ be the full faithfull subcategory in Γϕ(g)-mod whose

objects are the free R-modules of finite rank such that the elements Ki and
(
Ki;0
t

)
act by diagonal matrices with eigenvalues qmi and

(
m
t

)
qi
, respectively. Define Rϕ

q [G]

as the R-submodule of HomR(Γ
ϕ(g), R) generated by the matrix coefficients of

elements in Eϕ. Analogously, we define Rϕ
q [B±] as the R-module generated by the

matrix coefficients of elements of the full subcategories of Γϕ(b+)-mod and Γϕ(b−)-
mod, respectively.

Since the categories are strict and tensorial, Rϕ
q [G] and Rϕ

q [B±] are R-Hopf
algebras. Moreover, by [CV2, §2.3], we have the isomorphims

Rϕ
q [B±]

′  Rϕ
q [B±]  Rϕ

q [B±]
′′.

Consider the linear map Γϕ(b+)⊗RΓϕ(b−) → Γϕ(g) given by the multiplication.
The dual map composed with the isomorphism above gives the injection

(5) μ′′
ϕ : Rϕ

q [G] → Rϕ
q [B+]

′′ ⊗R Rϕ
q [B−]

′′.

Lemma 2.11 ([CV2, Lemma 2.5]). The image of μ′′
ϕ is contained in the R-sub-

algebra A′′
ϕ generated by elements the 1⊗ eϕα, f

ϕ
α ⊗ 1, and K−(1+ϕ)λ ⊗K(1−ϕ)λ for

λ ∈ P , α ∈ Φ+. �
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Let λ ∈ P+ and let v±λ be a highest (resp., lowest) weight vector of L(λ) (resp.,
L(−λ)). Let φ±λ be the unique element in L(±λ)∗ such that φ±λ(v±λ) = 1 and
vanishes over the complement Γ(h)-invariant of Q(q)v±λ ⊂ L(±λ). Denote by
ψ±λ = cφ±λ,v±λ

the corresponding matrix coefficient.

As in [DL], we define for all α ∈ Φ+, the matrix coefficient ψ±α
±λ by

ψα
λ (x) = φλ((Eαx) · vλ), ψα

−λ(x) = φ−λ((xEα) · v−λ),

ψ−α
λ (x) = φλ((xFα) · vλ), ψ−α

−λ (x) = φ−λ((Fαx) · v−λ).

Remark 2.12.
(a) Let λ ∈ P+; then μ′′

ϕ(ψ−λ) = K−(1+ϕ)λ ⊗K(1−ϕ)λ.
Indeed, evaluating both expressions in EM ⊗ FN , where EM = ξm1,0η0,t2 and

FN = ηm2,0ξ0,t1 for suitable m1, t2,m2, t1 of the basis of Γϕ(b+) and Γϕ(b−) (cf.
Definition 2.5), respectively, and using [DL, Lemma 4.4 (iv)] we have that

〈μ′′
ϕ(ψ−λ), EM ⊗NF 〉 = ψ−λ(EMNF ) = δ1,Eδ1,FMN(−λ),

where M(λ) = π0(Kλ,M) and N(λ) = π̄0(K−λ, N). Then, we have MN(−λ) =
π0(K−λ,MN)=π0(K−λ,M)π0(K−λ, N)=π0(K−λ,M)π̄0(Kλ, N) = M(−λ)N(−λ).
Moreover, using (3) we have

〈μ′′
ϕ(ψλ), EM ⊗NF 〉 = δ1,Eδ1,FM(−λ)N(−λ)

= δ1,Eδ1,Fπ
′′
ϕ(K−(1+ϕ)λ,M)π̄′′

ϕ(K(1−ϕ)λ, N).

On the other hand, using the pairings π′′
ϕ and π̄′′

ϕ we have that

〈K−(1+ϕ)λ ⊗K(1−ϕ)λ, EM ⊗NF 〉 = δ1,Eδ1,Fπ
′′
ϕ(K−(1+ϕ)λ,M)π̄′′

ϕ(K(1−ϕ)(λ), N),

and the claim follows.
(b) By [CV2, Propositions 1.9 & 2.7], for all 1 ≤ i ≤ n we have that

μ′′
ϕ(ψ

−αi
−ωi

) = q−(τi,ωi)fϕ
αi
K−(1+ϕ)ωi

⊗K(1−ϕ)ωi
,(6)

μ′′
ϕ(ψ

αi
−ωi

) = q−(τi,ωi)K−(1+ϕ)ωi
⊗K(1−ϕ)ωi

eϕαi
.

We check the first formula; the second follows similarly. Since μ′′
ϕ(ψ

−αi
−ωi

) =

μ′′
0(ψ

−αi
−ωi

), and by [DL, Lemma 4.5 (vi)] it holds that μ′′
0(ψ

−αi
−ωi

) = fαi
K−ωi

⊗Kωi
,

we have

〈μ′′
ϕ(ψ

−αi
−ωi

), EM ⊗NF 〉 = 〈fαi
K−ωi

⊗Kωi
, EM ⊗NF 〉

= π′′
0 (fαi

K−ωi
, EM)π̄′′

0 (Kωi
, NF )

= π′′
0 (fαi

K−ωi
, EM)π̄′′

0 (Kωi
, N)π̄′′

0 (Kωi
, F )

= π′′
0 (fαi

K−ωi
, EM)N(−ωi)δ1,F .

On the other hand, since π′′
ϕ(f

ϕ
αi
K−(1+ϕ)ωi

, EM) = q(τi,ωi)π′′
0 (f

0
αi
K−ωi

, EM) by
[CV2, Proposition 1.9] and [DL, (3.3)], using the definitions in (3), we obtain

〈fϕ
αi
K−(1+ϕ)ωi

⊗K(1−ϕ)ωi
, EM ⊗NF 〉 = π′′

ϕ(f
ϕ
αi
K−(1+ϕ)ωi

, EM)π′′
ϕ(K(1−ϕ)ωi

, NF )

= π′′
ϕ(f

ϕ
αi
K−(1+ϕ)ωi

, EM)N(−ωi)δ1,F

= q(τi,ωi)π′′
0 (f

0
αi
K−ωi

, EM)N(−ωi)δ1,F ,

and the assertion is proved.

The following lemma is a twisted version of [DL, Lemma 4.1].
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Lemma 2.13. Rϕ
q [G] coincides with the R-Hopf subalgebra of Uϕ

q (g)
◦ given by the

set of all linear functions f : Γϕ(g) → R such that there exists a cofinite ideal

I ⊂ Γϕ(g) and N ∈ N which satisfy that f(I) = 0 and
∏N

p=−N (Ki − qpi ) ∈ I for

all 1 ≤ i ≤ n. Further, the induced Hopf pairing ρ between Rϕ
q [G] and Γϕ(g) is

nondegenerate.

Proof. Since Γϕ(g) = Γ(g) as algebras, Rϕ
q [G] coincides with the set above by

[DL, Lemma 4.1]. The Hopf algebra structure is the one induced from Γϕ(g)◦. The
last claim follows from the fact that Γϕ(g) has a PBW-basis and its dual basis lies
in Rϕ

q [G]. �

2.5. Specializations at roots of one. In this subsection we recall the definition
of the twisted quantum algebras at roots of unity and state some results that will
be needed later. For all Q ≤ M ≤ P , we define

Uϕ
ε (g;M)=Uϕ

q (g;M)⊗RQ(ε), Γϕ
ε (g) :=Γϕ(g)⊗RQ(ε), Oϕ

ε (G)Q(ε)
:= Rϕ

q [G]⊗RQ(ε).

Note that Γϕ
ε (g)  Γϕ(g)/[χl(q)Γ

ϕ(g)] andOϕ
ε (G)Q(ε)

 Rϕ
q [G]/[χ�(q)R

ϕ
q [G]], where

R/[χ�(q)R]  Q(ε). We denote Uϕ
ε (g;P ) := Ǔϕ

ε (g) and Uϕ
ε (g;Q) := Uϕ

ε (g). For
r ∈ R, denote by r̄ the image of the canonical projection R � Q(ε).

Lemma 2.14. Oϕ
ε (G)Q(ε)

is a 2-cocycle deformation of Oε(G)Q(ε).

Proof. Let σ : Oq(G) ⊗ Oq(G) → Q(q) denote the 2-cocycle defined in Corollary
2.9. Then, the map σ̄ : Oϕ

ε (G)Q(ε)
⊗Oϕ

ε (G)Q(ε)
→ Q(ε) given by

σ̄(x̄, ȳ) = σ(x, y) for all x, y ∈ Oq(G),

is a well-defined 2-cocycle for Oϕ
ε (G)Q(ε)

, where x̄ denotes the image of x ∈ Oq(G)

under the canonical projection Oϕ
q (G) � Oϕ

ε (G)Q(ε)
. �

Remark 2.15. The relations E�
i = 0, F �

i = 0, K�
αi

= 1 hold in Γϕ
ε (g) for all 1 ≤

i ≤ n. Indeed, we have that
∏�

s=1

(
Kαi

q(−s+1) − 1
)
=
∏�

s=1(q
s − 1)

(Kαi
;0

�

)
in

Γϕ(g). If we specialize q at ε, then we have
∏�

s=1

(
Kαi

ε(−s+1) − 1
)
= 0. Since

K�
αi

− 1 =
∏�−1

s=0(Kαi
− εs) = ε

(�−1)�
2

∏�−1
s=0(Kαi

ε−s+1 − 1), we have that K�
αi

= 1,
as desired. The other two relations follow from the fact that (�)ε = 0.

The following lemma is analogue to [DL, Lemma 6.1].

Lemma 2.16. There exists a perfect Hopf pairing ρ̄ : Oϕ
ε (G)Q(ε)

⊗Q(ε) Γ
ϕ
ε (g) →

Q(ε).

Proof. Let ρ : Rϕ
q [G] ⊗R Γϕ(g) → R denote the pairing defined in Lemma 2.13.

Then, we may define the pairing ρ̄ : Oϕ
ε (G)Q(ε)

⊗Q(ε) Γ
ϕ
ε (g) → Q(ε) via ρ̄(x̄, ū) =

(ρ(x, u)) for all x ∈ Rϕ
q [G] and u ∈ Γϕ(g), where x̄ and ū denote the images of x

and u under the canonical projections Rϕ
q [G] → Oϕ

ε (G)Q(ε)
and Γϕ(g) → Γϕ

ε (g),
respectively. A direct computation shows that ρ̄ is a well-defined map and it is a
nondegenerate Hopf pairing. �

Now we introduce the twisted quantum Frobenius map. For details, see [CV2,
§3]. For 1 ≤ i ≤ n, let ei, fi, and hi denote the Chevalley generators of g and write

e
(m)
i := ei/m!, f

(m)
i := fi/m!,

(
hi

m

)
:= hi(hi−1)···(hi−m+1)

m! for all m ≥ 0.
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Lemma 2.17 ([CV2, §3.2 (i)]). There is a unique Hopf algebra epimorphism Fr :
Γϕ
ε (g) −→ U(g)Q(ε) given for all 1 ≤ i ≤ n and m > 0 by

Fr(E
(m)
i ) = e

(m/�)
i , Fr(F

(m)
i ) = f

(m/�)
i , Fr

(
Kαi

; 0

m

)
=

(
hi

m/�

)
, Fr(Kαi

) = 1,

if � | m or 0 otherwise. Its kernel is the ideal generated by the elements Kαi
− 1,

Ei, and Fi. In particular, there is a Hopf algebra monomorphism t Fr : O(G)Q(ε) →
Γϕ
ε (g)

◦. �
Let k be a field extension of Q(ε). We call Oϕ

ε (G)Q(ε)
⊗Q(ε) k the k-form of

Oϕ
ε (G)Q(ε)

. When k = C we simply write Oϕ
ε (G).

Lemma 2.18 ([CV2, §3.3]). Oϕ
ε (G)Q(ε)

contains a central Hopf subalgebra F0 iso-

morphic to O(G)Q(ε). Moreover, an element of Oϕ
ε (G)Q(ε)

belongs to F0 if only if
it vanishes on I and

F0 = Q(ε)〈cf,v ∈ Oϕ
q (G)Q(ε)|f ∈ L(�Λ)∗−�v, v ∈ L(�Λ)�μ; v, μ ∈ P+〉,

where L(eΛ) is the Γϕ(g)-module Γϕ(g)veΛ with veΛ the highest weight vector of
L(eΛ). �
Proposition 2.19. Oϕ

ε (G)Q(ε)
is a free O(G)Q(ε)-module of rank �dim g.

Proof. The proof follows from [CV2, Proposition 3.5], [DL], and [BGS]. �

Let Oϕ
ε (G) be the quotient Oϕ

ε (G)/[O(G)+Oϕ
ε (G)] and let π : Oϕ

ε (G) −→
Oϕ

ε (G)) be the canonical projection. By Proposition 2.19, Oϕ
ε (G) is a Hopf al-

gebra of dimension �dim g. Moreover, since Oϕ
ε (G) is a free O(G)-module, it is

faithfully flat. Then, by [Mo, Proposition 3.4.3], Oϕ
ε (G) fits into the short exact

sequence of Hopf algebras.

1 −→ O(G) −→ Oϕ
ε (G) −→ Oϕ

ε (G) −→ 1.

3. Twisted Frobenius–Lusztig kernels

In this section we define and study the twisted Frobenius–Lusztig kernels and the
quotients of their duals. They are finite-dimensional pointed Hopf algebras which
are twist deformations of the usual kernels.

Let Zϕ
0 be the smaller BW -invariant subalgebra of Uϕ

ε (g) that contains the ele-
ments K�α = K�

α, E
�
i , F

�
i for all α ∈ Q and 1 ≤ i ≤ n.

Theorem 3.1.

(i) Zϕ
0 is a central Hopf subalgebra of Uϕ

ε (g).
(ii) Zϕ

0 is a polynomial ring in dim g generators, with n generators inverted.
(iii) Uϕ

ε (g) is a free Zϕ
0 -module of rank �dim g.

Proof. The proof follows the same lines as [BG, Theorem III.6.2], using the fact
that the algebra W spanned by the elements K�α = K�

α, E
�
i , F

�
i for all α ∈ Q and

1 ≤ i ≤ n is a Hopf subalgebra, and this follows from a simple computation using the
q-binomial formula. For example, Δϕ(E

�
i ) = (Ei⊗Kτi+Kαi−τi⊗Ei)

� = E�
i⊗K�τi+

K�(αi−τi)⊗E�
i , since (Ei⊗Kτi)(Kαi−τi ⊗Ei) = ε−2di(Kαi−τi ⊗Ei)(Ei⊗Kτi). �

Definition 3.2. The twisted Frobenius–Luzstig kernel is defined as the quotient

uϕ
ε (g) = Uϕ

ε (g)/[(Z
ϕ
0 )

+Uϕ
ε (g)].
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By the theorem above, uϕ
ε (g) is a finite-dimensional pointed Hopf algebra of

dimension �dim g and G(uϕ
ε (g)) = 〈Kαi

| 1 ≤ i ≤ n〉  (Z/�Z)n. We denote
G(uϕ

ε (g)) = Tϕ.

Lemma 3.3. Let Ûϕ
ε (g) be the Hopf subalgebra of Γϕ

ε (g) generated by the elements

Ei, Fi, Kαi
with 1 ≤ i ≤ n. Then Ûϕ

ε (g) and uϕ
ε (g) are isomorphic as Hopf algebras.

Proof. By definition, there exists a Hopf epimorphism Ûϕ
ε (g) � uϕ

ε (g) given by
Ei 
→ Ei, Fi 
→ Fi and Kαi


→ Kαi
for all 1 ≤ i ≤ n. Since by Remark 2.15,

dim Ûϕ
ε (g) ≤ �dim g, the claim follows. �

Adapting the proof of [BG, Theorem III.7.10], we have the following.

Theorem 3.4. The Hopf algebras Oϕ
ε (G) and uϕ

ε (g)
∗ are isomorphic.

Proof. The pairing defined in Lemma 2.16 induces a perfect Hopf pairing

Oϕ
ε (G)⊗Q(ε) Û

ϕ
ε (g) → Q(ε). In particular, we have a Hopf algebra monomorphism

Oϕ
ε (G) ↪→ Ûϕ

ε (g)
∗. Since both algebras have the same dimension, the assertion

follows by Lemma 3.3. �

As a consequence of the theorem above, the following sequence of Hopf algebras
is exact:

1 �� O(G)Q(ε)
ι �� Oϕ

ε (G)Q(ε)

π �� uϕ
ε (g)

∗ �� 1.

Proposition 3.5. uϕ
ε (g)  uε(g)

J for a twist J ∈ Q(ε)[Tϕ × Tϕ].

Proof. By Lemma 2.14, Oϕ
ε (G) is a 2-cocycle deformation of Oε(G). Denote this co-

cycle by σ̄. Then, if we denote I = O(G)+Oϕ
ε (G), it holds that σ̄|I⊗Oϕ

ε (G)+Oϕ
ε (G)⊗I

= 0, and by Remark 1.1, we have that uϕ
ε (g)

∗ is a 2-cocycle deformation of
uε(g)

∗, where the cocycle is given by the formula σ̂(π(x), π(y)) = σ̄(x, y) for all
x, y ∈ Oε(G). We may consider σ̂ : uε(g)

∗ ⊗ uε(g)
∗ → Q(ε) as an element in

uε(g)⊗ uε(g), say J =
∑

i ui ⊗ ui. Then,

σ̂(π(cf1,v1)⊗ π(cf2,v2)) = 〈J, π(cf1,v1)⊗ π(cf2,v2)〉 =
∑
i

f1(ui · v1)f2(ui · v2)

= ε(cf1,v1)ε(cf2,v2)ε
1
2 (ϕ(λ1),λ2) = f1(v1)f2(v2)ε

1
2 (ϕ(λ1),λ2),

for all Λi ∈ P+, vi ∈ L(Λi)μi
, fi ∈ L(Λi)−λi

, and i = 1, 2, where 〈·, ·〉 is the perfect
pairing given by the evaluation. Thus, the components of J must act diagonally,
and consequently, J ∈ Q(ε)[Tϕ × Tϕ]. �

3.1. Subalgebras of uϕ
ε (g). In this subsection we discuss a parametrization of

the Hopf subalgebras of uϕ
ε (g). Since uϕ

ε (g) is a pointed Hopf algebra, any Hopf
subalgebra is also pointed, and in this case, it is generated by a subgroup of the
group of group-like elements and a subset of skew-primitive elements.

Lemma 3.6. The Hopf subalgebras of uϕ
ε (g) are parametrized by triples (I+, I−,Σ

ϕ),
where I± ⊂ ±Π and Σϕ is a subgroup of G(uϕ

ε (g)) such that K(1∓ϕ)(αi) ∈ Σϕ if

αi ∈ I±. Denote Ẽi := EiK−τi and F̃j := K(αj+τj)Fj. Then the Hopf subalgebra
of uϕ

ε (g) corresponding to the triple (I+, I−,Σ
ϕ) is the subalgebra generated by the

set {g, Ẽi, F̃j | g ∈ Σϕ, αi ∈ I+ and αj ∈ I−}.
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Proof. The proof follows from [AG, Corollary 1.12], since uϕ
ε (g) is generated by

group-like and skew-primitive elements. In particular, we have Δϕ(Ẽi) = Ẽi ⊗ 1 +

K(1−ϕ)(αi) ⊗ Ẽi, Δϕ(F̃j) = F̃j ⊗ 1 +K(1+ϕ)(αj) ⊗ F̃j . �
Each pair (I+, I−) determines a regular Lie subalgebra p of g containing the fixed

Cartan subalgebra h. Next we define the corresponding twisted quantum algebras.

Definition 3.7. For every pair (I+, I−) with I± ⊂ ±Π, we define Γϕ(p) as the
subalgebra of Γϕ(g) generated by the elements

K−1
αi

(1 ≤ i ≤ n),(
Kαi

; 0

m

)
:=

m∏
s=1

(
Kαi

q−s+1
i − 1

qsi − 1

)
(m ≥ 1, 1 ≤ i ≤ n),

E
(m)
j :=

Em
j

[m]qj !
(m ≥ 1, αj ∈ I+),

F
(m)
k :=

Fm
k

[m]qk !
(m ≥ 1, αk ∈ I−).

Proposition 3.8 ([AG, Proposition 2.3 (a)]). Let Γϕ
ε (p) := Γϕ(p)/[χ�(q)Γ

ϕ(p)] 
Γϕ(p) ⊗R R/[χ�(q)R] denote the Q(ε)-algebra given by the specialization. Then
Γϕ
ε (p) is a Hopf subalgebra of Γϕ

ε (g). �
Next we define a family of regular twisted Frobenius–Lusztig kernels.

Definition 3.9. For every pair (I+, I−) with I± ⊂ ±Π, we define the twisted
regular Frobenius–Lusztig kernel uϕ

ε (p) as the subalgebra of Γϕ
ε (p) generated by the

elements {Kαi
, Ej , Fk : 1 ≤ i ≤ n, αj ∈ I+, αk ∈ I−}.

In the following propositions we collect some properties.

Proposition 3.10. uϕ
ε (p) is the Hopf subalgebra of uϕ

ε (g) given by Γϕ
ε (p)∩uϕ

ε (g) =
uϕ
ε (p). It corresponds to the triple (I+, I−,Tϕ).

Proof. Follows from Lemmata 3.3 and 3.6. �
Proposition 3.11.

(i) Let U(p)Q(ε) := Fr(Γϕ
ε (p)) and denote Frres = Fr |Γϕ

ε (p). Then the following
diagram is commutative and all rows are exact sequences of Hopf algebras:

(7) 1 �� uϕ
ε (g) �� Γϕ

ε (g)
Fr �� U(g)Q(ε)

�� 1

1 �� uϕ
ε (p) ��
��

��

Γϕ
ε (p)

Frres ��
��

��

U(p)Q(ε)
��

��

��

1

(ii) There is a surjective algebra map θ : Γϕ
ε (p) → uϕ

ε (p) such that θ|uϕ
ε (p) = id.

Proof. (i) From [CV2,DL] and Lemma 2.17 it follows that Ker Fr = uϕ
ε (g)

+Γϕ
ε (g).

The proof that Γϕ
ε (g)

coFr = uϕ
ε (g) follows from [A, Lemma 3.4.2], but by using

the formula (4) instead of the formula (1.1.3) in [A]. So the first row is exact. To
prove that the second row is exact, note that uϕ

ε (p) = uϕ
ε (g)∩Γϕ

ε (p) = Γϕ
ε (g)

coFr ∩
Γϕ
ε (p) = Γϕ

ε (p)
coFrres and KerFrres = KerFr∩Γϕ

ε (p) = uϕ
ε (g)

+Γϕ(g) ∩ Γϕ
ε (p) =

uϕ
ε (p)

+Γϕ
ε (p).

(ii) This follows from [AG, Lemma 1.10 & Proposition 2.6]. �
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Remark 3.12. Let p be the set of primitive elements in U(p)Q(ε). Then, p is a regular
Lie subalgebra of g, and uϕ

ε (p) is the twisted Frobenius–Lusztig kernel associated
with it.

Proposition 3.13. uϕ
ε (p) is a twist deformation of uε(p).

Proof. We know that uϕ
ε (g)  uε(g)

J for a twist J ∈ Q(ε)[Tϕ × Tϕ]. Thus, J ∈
uε(p) ⊗ uε(p) and uε(p)

J is the subalgebra of uε(g)
J that is isomorphic to the

Hopf subalgebra of uϕ
ε (g) which corresponds to the triple (I+, I−,Tϕ). Hence,

uε(p)
J  uϕ

ε (p). �
3.2. Quotients of uϕ

ε (g)
∗. Denote the C-form of the twisted Frobenius–Lusztig

kernel by just uϕ
ε (g). Let H be a Hopf algebra quotient of uϕ

ε (g)
∗. Then, H∗ is a

Hopf subalgebra of uϕ
ε (g) and whence, by Lemma 3.6, it is determined by a triple

(I+, I−,Σ
ϕ). Let uϕ

ε (p) be the regular Frobenius–Lusztig kernel associated to the
pair (I+, I−). Then H∗ ↪→ uϕ

ε (p) ↪→ uϕ
ε (g) as Hopf algebras, and consequently we

have a sequence of Hopf algebra epimorphisms

uϕ
ε (g)

∗ �� �� uϕ
ε (p)

∗ ν �� �� H.

Let I = I+ ∪ I−, I
′ = I+ ∩ I− and Ic = (I+ ∪ I−)

c = Ic+ ∩ Ic−. We define the
abelian subgroups Tϕ

I and Tϕ
I′ of Σϕ as follows:

Tϕ
I = 〈Ki := K(1−ϕ)(αi), K̃j := K(1+ϕ)(αj) : if αi ∈ I+, αj ∈ I−〉,

Tϕ
I′ = 〈Kαi

: if αi ∈ I+ ∩ I−〉.
Note that if αi ∈ I+ ∩ I−, then Kαi

∈ Tϕ
I . Hence, Tϕ

I′ ⊆ Tϕ
I ⊆ Σϕ ⊆ Tϕ. Denote

Tϕ
Ic = Tϕ/Tϕ

I and Ωϕ = Σϕ/Tϕ
I ; so Ωϕ ⊆ Tϕ

Ic .

Definition 3.14. For all i ∈ {1, . . . , n} such that αi ∈ (I+ ∩ I−)
c, we define the

algebra homomorphism Di : uϕ
ε (p) → C by

Di(Ej)=0=Di(Fk), Di(Kαt
)=εδit for all αj ∈ I+, αk ∈ I−, t ∈ {1, . . . , n}.

Remark 3.15.
(a) For 1 ≤ i ≤ n, let D̂i ∈ T̂ϕ be given by D̂i(Kαt

) = εδit for all 1 ≤ t ≤ n.

Then 〈D̂i : 1 ≤ i ≤ n〉 = T̂ϕ and we may identify (Z/�Z)n  T̂ϕ by z 
→ D̂z =

D̂z1
1 · · · D̂zn

n . In particular, one has that D̂i = Di|Tϕ for all i ∈ (I+ ∩ I−)
c.

(b) Assume (I+ ∩ I−)
c = {αi1 , . . . , αim}. For all z ∈ (Z/�Z)m, denote

Dz = Dz1
i1

· · ·Dzm
im

∈ G(uϕ
ε (p)

∗).

If f ∈ G(uϕ
ε (p)

∗), then f = Dz for some z ∈ (Z/�Z)m. In particular, we may
identify

G(uϕ
ε (p)

∗)  T̂ϕ/Tϕ
I′  (Z/�Z)m.

(c) Since Tϕ
I′ ⊆ Tϕ

I , there is a group monomorphism T̂ϕ
Ic ↪→ T̂ϕ/Tϕ

I′ = G(uϕ
ε (p)

∗)

given for any f ∈ T̂ϕ
Ic by the composition Tϕ/Tϕ

I′ �� �� Tϕ
Ic

f
�� C .

(d) The inclusions Tϕ
I

ι
↪→ Σϕ j

↪→ Tϕ induce the surjective maps T̂ϕ
tj
� Σ̂ϕ with

Ker tj = {f ∈ T̂ϕ : f(Σϕ) = 1} and T̂ϕ
Ic

tjs� Ω̂ϕ with Nϕ = Ker tjs = {f ∈ T̂ϕ
Ic :

f(Ωϕ) = 1}. In particular, we have

(8) |Σϕ| = |Tϕ
I ||Ωϕ| = |Tϕ

I |
|Tϕ

Ic |
|Nϕ| = |Tϕ

I |
|Tϕ|

|Tϕ
I ||Nϕ| =

�n

|Nϕ| .
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Moreover, one has that Ker t(jι)  T̂ϕ
Ic , since there is a group monomorphism

Ker t(jι) → T̂ϕ
Ic and |Ker t(jι)| = |Tϕ

Ic |. Hence, in what follows we identify the

elements of T̂ϕ
Ic and Ker t(jι). On the other hand, if we denote D̂z = D̂z1

1 · · · D̂zn
n

for all z = (z1, . . . , zn) ∈ (Z/�Z)n, then

Ker t(jι) = {D̂z| D̂z
(
Ki

)
= 1 = D̂z(K̃j), for i ∈ I+, j ∈ I−, z ∈ (Z/�Z)n}  T̂ϕ

Ic .

Therefore, if D̂z ∈ Ker t(jι), then

1 = D̂z
(
Ki

)
= D̂z(K(1−ϕ)(αi)) = D̂z

⎛⎝Kαi

n∏
j=1

K−2yji
αj

⎞⎠ = εzi
n∏

j=1

ε−2yjizj ,(9)

1 = D̂z(K̃j) = D̂z(K(1+ϕ)(αj)) = D̂z

(
Kαj

n∏
k=1

K
2ykj
αj

)
= εzj

n∏
k=1

ε2ykjzj ,(10)

for all i ∈ I+ and j ∈ I−. Thus, to find the generators of Ker t(jι) it suffices to solve
a linear system over Z/�Z. Indeed, if I+ = {αi1 , . . . , αis} and I− = {αj1 , . . . , αjr},
by (9) and (10) we have a system of linear equations over Z/�Z whose matrix Sϕ

�

is given by⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2yi11 . . . 2yi1is . . . 2yi1j1 . . . 2yi1jl . . . 2yi1i1 − 1 . . . 2yi1n
...

. . .
...

. . .
...

. . .
...

. . .
...

. . .
...

2yis1 . . . 2yisis + 1 . . . 2yisj1 . . . 2yisjl . . . 2yisi1 . . . 2yisn
...

. . .
...

. . .
...

. . .
...

. . .
...

. . .
...

2yj11 . . . 2yj1is . . . 2yj1j1 − 1 . . . 2yj1jl . . . 2yj1i1 . . . 2yj1n
...

. . .
...

. . .
...

. . .
...

. . .
...

. . .
...

2yjl1 . . . 2yjlis . . . 2yjlj1 . . . 2yjljl + 1 . . . 2yjli1 . . . 2yjln

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

In particular, |Ker t(jι)| = |T̂ϕ
Ic | = �n−rkSϕ

� . Analogously, it is possible to charac-
terize in the same way the kernel Nϕ. In this case we have to consider the system

of linear equations determined by the conditions D̂z(Ωϕ) = 1 for all D̂z ∈ T̂ϕ
Ic .

Example 3.16. Assume g is of type C3 with associated Cartan matrix A =(
2 −1 0
−1 2 −1
0 −2 2

)
. Then the multiparametric matrix Y is given by

Y =

⎛⎝ a+ b/2 −a+ c/2 −b/2− c/2
2a+ b −a+ c −b/2− c

2a+ 3b/2 −a+ 3c/2 −b/2− c

⎞⎠ ,

where a ∈ Z, and b, c ∈ 2Z. Set a = 1, b = 2, c = 0, and � = 11. Then,
ϕ(α1) = 4α1+8α2+10α3, ϕ(α2) = −2α1−2α2−2α3 and ϕ(α3) = −2α1−2α2−2α3.

(a) If we choose I+ = {α2} and I− = {α1}, then Sϕ
11 = ( 5 8 10

2 3 2 ) ∼11 ( 1 0 8
0 1 10 ) and

T̂ϕ
Ic = 〈D̂3

1D̂2D̂3〉  Z/11Z. If we take Σϕ = 〈K(1−ϕ)(α2),K(1+ϕ)(α1),Kτ3 ,Kτ2〉,
then we have that Σϕ = Tϕ  (Z/11Z)3 and Nϕ is trivial.

(b) If we choose I+ = {α2}, I− = ∅ and Σϕ = 〈K(1+ϕ)(α1),K(1−ϕ)(α2)〉, then
we have that T̂ϕ

Ic = 〈D̂(1,0,10), D̂(0,1,4)〉  (Z/11Z)2, Ωϕ  〈K(1+ϕ)(α1)〉 and Nϕ =

〈D̂(3,1,1)〉.

The following proposition states that the elements in T̂ϕ
Ic are central in uϕ

ε (p)
∗.
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Proposition 3.17. The subgroup T̂ϕ
Ic of G(uϕ

ε (p)
∗) consists of central group-like

elements.

Proof. Let z ∈ (Z/�Z)m and Dz ∈ G(uϕ
ε (p)

∗) such that Dz ∈ T̂ϕ
Ic . Then Dz(Ki) =

1 = Dz(K̃j) for all i ∈ I+ and j ∈ I−. We show that Dz is central in uϕ
ε (p)

∗.
By [L, Theorem 6.7] and [AG, Lemma 2.14], uϕ

ε (p) has a basis⎧⎨⎩∏
β≥0

F
nβ

β

n∏
i=1

Kti
αi

∏
α≥0

Emα
α : 0 ≤ nβ, ti,mα ≤ �, 1 ≤ i ≤ n, β ∈ QI− , α ∈ QI+

⎫⎬⎭ .

The hypothesis on Dz ensures that Dzf(Ei) = fDz(Ei) and Dzf(Fj) = fDz(Fj)
for all f ∈ uϕ

ε (p)
∗, z ∈ (Z/�Z)m, i ∈ I+, and j ∈ I−. Moreover, since the elements

Kαt
∈ uϕ

ε (p) are group-like for all 1 ≤ t ≤ n, Dzf(Kαt
) = fDz(Kαt

). As Dz is
a group-like element in uϕ

ε (p)
∗, we have that Dzf(MN) = fDz(MN) for M,N ∈

{Kαt
, Ei, Fj : i ∈ I+, j ∈ I−}, since Dzf(MN) = (Dzf)(1)(M)(Dzf)(2)(N) =

Dzf(1)(M)Dzf(2)(N) = f(1)D
z(M)f(2)D

z(N) = fDz(MN). Analogously, using
an inductive argument one may prove that Dz and f commute when evaluated on
every element of the basis. �

The following proposition gives a characterization of all quotients of uϕ
ε (g)

∗.

Proposition 3.18. Let H be a Hopf algebra quotient of uϕ
ε (g)

∗ such that H∗

is determined by the triple (I+, I−,Σ
ϕ) and uϕ

ε (p) the twisted regular Frobenius–
Lusztig kernel associated to (I+, I−). Then H = uϕ

ε (p)
∗/〈Dz − 1 : Dz ∈ Nϕ〉.

Proof. If (I+ ∩ I−)
c = {αi1 , . . . , αim} and we write Dz = Dz1

i1
· · ·Dzm

im
, then by

Remark 3.15(b), G(uϕ
ε (p)

∗) = {Dz| z ∈ (Z/�Z)m}. By Proposition 3.17, we know

that the elements of T̂ϕ
Ic are central in uϕ

ε (p)
∗. Since Nϕ ⊆ T̂ϕ

Ic , the two-sided ideal
I of uϕ

ε (p)
∗ generated by the elements {Dz − 1 : Dz ∈ Nϕ} is a Hopf ideal and

whence uϕ
ε (p)

∗/I is a Hopf algebra.
On the other hand, we know that H∗ is determined by the triple (I+, I−,Σ

ϕ),
and, consequently, H∗ is included in uϕ

ε (p). If we denote by ν : uϕ
ε (p)

∗ → H
the epimorphism induced by this inclusion, we have that Ker ν = {f ∈ uϕ

ε (p)
∗ :

f(h) = 0 for all h ∈ H∗}. Since by Remark 3.15(c), Dz(g) = 1 for all g ∈ Σϕ

and Dz ∈ Nϕ, we have that Dz − 1 ∈ Ker ν and whence there is a Hopf algebra
epimorphism uϕ

ε (p)
∗/I � H. But by (8) we have that

dimH = |Σϕ|�|I+|+|I−| =
�n

|Nϕ|�
|I+|+|I−| = dimuϕ

ε (p)
∗/I,

which implies that the epimorphism is indeed an isomorphism. �

Example 3.19. Let ϕ be the twisting map defined in Example 3.16 over g = sp6.
If we take I+ = {α2}, I− = {α1} and Σϕ = 〈K(1−ϕ)(α2),K(1+ϕ)(α1),Kτ3 ,Kτ2〉, then
Σϕ = Tϕ  (Z/11Z)3 and Nϕ is trivial. On the other hand, if we set ϕ = 0, then
Σ = 〈Kα1

,Kα2
〉 andN is not trivial. This implies that the quotient uϕ

ε (p)
∗/〈Dz−1 :

Dz ∈ Nϕ〉 cannot be a 2-cocycle deformation of uε(p)
∗/〈Dz − 1 : Dz ∈ N〉, since

they have different dimension.

4. Quantum subgroups

In this section we determine all quantum subgroups of the twisted quantum
group Gϕ

ε . We first construct a family of quantum subgroups using the root datum
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associated to g = Lie(G) and an algebraic subgroup Γ of G. Then we prove that
any quantum subgroup of Gϕ

ε is isomorphic to one constructed in this way. We end
the section with a parametrization of the isomorphism classes.

From now on, we work with the complex form of all quantum algebras introduced
above.

4.1. Twisted quantum regular subgroups. Let I± ⊆ ±Π. Let Γϕ
ε (p) be the

Hopf algebra associated to the pair (I+, I−) as in Definition 3.7, and let p be the
regular Lie subalgebra of g given by Remark 3.12. In this subsection we construct
the twisted quantum function algebras related to the pair (I+, I−).

Denote by Res : Γϕ
ε (g)

◦ → Γϕ
ε (p)

◦ the Hopf algebra map induced by the inclusion
Γϕ
ε (p) ↪→ Γϕ

ε (g). Using Lemma 2.16, we know that Oϕ
ε (G) ⊆ Γϕ

ε (g)
◦.

Definition 4.1. We define the twisted quantum function algebra associated to the
regular Lie subalgebra p of g as the Hopf algebra given by

Oϕ
ε (P ) := Res(Oϕ

ε (G)).

If ϕ = 0, we have that O0
ε (P ) = Oε(P ); see [AG, §2.3.1]. Since O(G) is a central

Hopf subalgebra of Oϕ
ε (G), Res(O(G)) is a central Hopf subalgebra of Oϕ

ε (P ).
Thus, there exists P an algebraic subgroup of G such that Res(O(G)) = O(P ).
Since O(P ) is a central Hopf subalgebra of Oϕ

ε (P ), the quotient

Oϕ
ε (P ) := Oϕ

ε (P )/[O(P )+Oϕ
ε (P )]

is a Hopf algebra, which is in fact isomorphic to uϕ
ε (p)

∗.

Proposition 4.2.

(i) P is a connected algebraic group and Lie(P ) = p.
(ii) The following sequence of Hopf algebras is exact:

1 −→ O(P ) −→ Oϕ
ε (P ) −→ Oϕ

ε (P ) −→ 1.

(iii) There exists a Hopf algebra epimorphism Res : uϕ
ε (g)

∗ → Oϕ
ε (P ) making

the following diagram commutative:

(11) 1 �� O(G)
ι ��

res

��

Oϕ
ε (G)

π ��

Res

��

uϕ
ε (g)

∗ ��

Res
��

1

1 �� O(P )
ιP �� Oϕ

ε (P )
πP �� Oϕ

ε (P ) �� 1

(iv) Oϕ
ε (P ) and Oϕ

ε (P ) are 2-cocycle deformations of Oε(P ) and Oε(P ), respec-
tively.

(v) Oϕ
ε (P )  uϕ

ε (p)
∗ as Hopf algebras.
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Proof. (i), (ii), (iii) follow mutatis mutandis from [AG, Propositions 2.7 & 2.8].
(iv) By Lemma 2.14, we know that Oϕ

ε (G) is a 2-cocycle deformation of Oε(G),
say by the cocycle σ̄. Since the kernel I of the Hopf algebra map Res : Oε(G) →
Oε(P ) is spanned by matrix coefficients that vanish when restricted to Γε(p), using
the definition of σ̄ we see that σ̄|I⊗Oε(G)+Oε(G)⊗I = 0. Thus by Remark 1.1, Res
induces a 2-cocycle σ̂ on Oε(G)/I and we have that Oϕ

ε (P ) = Res((Oε(G))σ̄) =

(Oε(G)/I)σ̂ = (Oε(P ))σ̂. The same argument applies for Oϕ
ε (P ) and Oε(P ), since

O(P ) is a central Hopf subalgebra of Oε(P ) and the cocycle σ̂ is trivial on it.
(v) Dualizing diagram (7) we get

1 �� U(g)◦ �
� t Fr ��

����

Γϕ
ε (g)

◦ α ��

Res
����

uϕ
ε (g)

∗ ��

����

1

1 �� U(p)◦ �
� t Frres�� Γϕ

ε (p)
◦ β

�� uϕ
ε (p)

∗ �� 1

Since g is simple, we have that O(G)  U(g)◦. Thus, as O(P ) = Res(O(G))
and Oϕ

ε (P ) = Res(Oϕ
ε (G)), we have that t Frres(O(P )) ⊆ U(p)◦, and consequently

O(P )+ ⊆ Kerβ. Moreover, since α(Oϕ
ε (G)) = π(Oϕ

ε (G)) = uϕ
ε (g)

∗, we have that
uϕ
ε (p)

∗ = β Res(Oϕ
ε (G)) = β(Oϕ

ε (P )). Hence, there exists a surjective Hopf algebra

map γ : Oϕ
ε (P ) → uϕ

ε (p)
∗. But by (iv), [AG, Proposition 2.8 (c)] and Proposition

3.13, we have that dimOϕ
ε (P ) = dimOε(P ) = dimuε(p) = dimuϕ

ε (p) and the
epimorphism is in fact an isomorphism. �

Remark 4.3. By the proposition above, we know that Oϕ
ε (P ) fits into the central

exact sequence of Hopf algebras O(P ) �
� ιP �� Oϕ

ε (P )
πP �� �� uϕ

ε (p)
∗ and that Oϕ

ε (P )

is a 2-cocycle deformation of Oε(P ), where the 2-cocycle σ̂ is given by the formula
σ̂(Res(x),Res(y)) = σ̄(x, y) for all x, y ∈ Oε(G). On the other hand, by Proposi-
tions 3.5 and 3.13 we know that uϕ

ε (p)
∗ = (uε(p)

∗)τ for the 2-cocycle τ given by
τ (Res(π(x)),Res(π(y))) = σ̄(x, y). Since diagram (11) for ϕ = 0 is commutative,
the pullback of the cocycle τ coincides with the cocycle σ̂.

4.2. Quantum subgroups from classical subgroups. In this subsection we
construct a Hopf algebra quotient of Oϕ

ε (G) associated to the pair (I+, I−) and
an algebraic subgroup of G included in P . This is based in the pushout construc-
tion, which is a general method for constructing Hopf algebras from central exact
sequences.

The following proposition follows from the arguments in [AG, §2.2]. If γ : Γ →
G is a homomorphism of algebraic groups, then tγ : O(G) → O(Γ) denotes the
corresponding algebra map between the coordinate algebras.

Proposition 4.4. Let Γ be an algebraic group and γ : Γ → G an injective homo-
morphism of algebraic groups such that γ(Γ) ⊆ P . Let J denote the two-sided ideal
of Oϕ

ε (P ) generated by ι(Ker tγ). Then Aϕ
ε,p,γ = Oϕ

ε (P )/J is a Hopf algebra and
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there exist a Hopf algebra monomorphism j : O(Γ) ↪→ Aϕ
ε,p,γ and a Hopf algebra

epimorphism π̄ : Aϕ
ε,p,γ � uϕ

ε (p)
∗ such that Aϕ

ε,p,γ fits into the exact sequence of
Hopf algebras

1 �� O(Γ)
j

�� Aϕ
ε,p,γ

π �� uϕ
ε (p)

∗ �� 1.

If in addition |Γ| is finite, then dimAϕ
ε,p,γ = |Γ| dimuϕ

ε (p). Moreover, the following
diagram is commutative:

(12) 1 �� O(G)
ι ��

res

��

Oϕ
ε (G)

π ��

Res

��

uϕ
ε (g)

∗ ��

Res
��

1

1 �� O(P )
ιP ��

tγ

��

Oϕ
ε (P )

πP ��

ψ

��

uϕ
ε (p)

∗ ��

id

��

1

1 �� O(Γ)
j

�� Aϕ
ε,p,γ

π �� uϕ
ε (p)

∗ �� 1

�

Proposition 4.5. Aϕ
ε,p,γ is a 2-cocycle deformation of Aε,p,γ .

Proof. By Proposition 4.2(iv), we know that Oϕ
ε (P ) is a 2-cocycle deformation of

Oε(P ), say by the cocycle σ̂; see Remark 4.3 above. Then, by Remark 1.1 it is
enough to check that σ̂|Oϕ

ε (P )⊗J+J⊗Oϕ
ε (P ) = 0. Since J = Oϕ

ε (P )ιP (Ker tγ)

and Ker tγ is generated by matrix coefficients cf,v in O(P ), of degree (�λ, �μ)
for some λ, μ ∈ P , we have that σ̂|ιp(Ker tγ)⊗ιp(Ker tγ) = ε ⊗ ε = 0 and whence
σ̂|Oϕ

ε (P )⊗J+J⊗Oϕ
ε (P ) = 0. Thus, we may define a 2-cocycle σ̃ : Aε,p,γ ⊗ Aε,p,γ → C

by σ̃(ψ(x), ψ(y)) = σ̂(x, y) for all x, y ∈ Oε(P ) and (Aε,p,γ)σ̃ = Aϕ
ε,p,γ . Note that σ̃

coincides with the pullback through π̄ of the 2-cocycle τ on uε(p)
∗. �

By Proposition 3.11(ii), we know that there exists an injective coalgebra map
tθ : uϕ

ε (p)
∗ → Γϕ

ε (p)
◦, and since uϕ

ε (p)
∗  Oϕ

ε (P ) by Proposition 4.2, we have that

Im tθ ⊆ Oϕ
ε (P ). Thus, the image of the central subgroup T̂ϕ

Ic of G(uϕ
ε (p)

∗) is a

subgroup of G(Oϕ
ε (P )). Denote dz = tθ(Dz) for z ∈ (Z/�Z)m, Dz ∈ T̂ϕ

Ic .

Lemma 4.6. There exists a subgroup A = {∂z = ψ(tθ(Dz)) : Dz ∈ T̂ϕ
Ic} of

G(Aϕ
ε,p,γ) isomorphic to T̂ϕ

Ic consisting of central elements. In particular, |A| =
�n−rkSϕ

� .

Proof. Using the same argument as in the proof of Proposition 3.17, one sees that
the elements dz are central in Oϕ

ε (P ). Indeed, if f ∈ Oϕ
ε (P ), then dzf(M) =

fdz(M) for every generator M of Γϕ
ε (p) from Definition 3.7. For example, let

i ∈ I+ and m ≥ 0. Then by (4) we have

dzf
(
E

(m)
i

)
=
∑

r+s=m

q−rs
i dz

(
E

(r)
i Ks(αi−τi)

)
f
(
E

(s)
i Krτi

)
=
∑

r+s=m

q−rs
i dz

(
E

(r)
i

)
dz(Ks(αi−τi))f

(
E

(s)
i Krτi

)
= dz(Km(αi−τi))f

(
E

(m)
i

)
and
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fdz
(
E

(m)
i

)
=
∑

r+s=m

q−rs
i f

(
E

(r)
i Ks(αi−τi)

)
dz
(
E

(s)
i Krτi

)
=
∑

r+s=m

q−rs
i f

(
E

(r)
i Ks(αi−τi)

)
dz
(
E

(s)
i

)
dz(Krτi)

= f
(
E

(m)
i

)
dz(Kmτi).

Since dz
(
Ki

)
= dz(Kαi−2τi) = Dz(θ(Kαi−2τi)) = 1, we have that dz(Km(αi−τi)) =

dz(Kmτi) for all m ≥ 0, and then dzf
(
E

(m)
i

)
= fdz

(
E

(m)
i

)
. Analogously, using

that 1 = dz
(
K̃j

)
for all j ∈ I−, we have that d

zf
(
F

(m)
j

)
= fdz

(
F

(m)
j

)
for allm ≥

0. The equality on the generatorsK−1
αi

and
(
Kαi

;0
m

)
follows easily since the coproduct

is cocommutative on them. Applying an inductive argument on monomials on the
generators we have that dz is central in Oϕ

ε (P ). Since ψ : Oϕ
ε (P ) → Aϕ

ε,p,γ is
surjective, the group-like elements ∂z are also central in Aϕ

ε,p,γ .

Now we show that A  T̂ϕ
Ic as groups. By construction, we have that ψ ◦ tθ :

T̂ϕ
Ic → A is a group epimorphism. As the diagram

Oϕ
ε (P )

ψ

��

πP �� uϕ
ε (p)

∗

Aϕ
ε,p,σ

π

�����������

is commutative by (12), we have that π(A) = π(ψ(tθ(T̂ϕ
Ic))) = πP (

tθ(T̂ϕ
Ic) = T̂ϕ

Ic ,
which implies that ψ ◦ tθ is indeed an isomorphism. �

4.3. Quantum subgroups from subalgebras of twisted Frobenius–Lusztig
kernels. In this subsection we construct Hopf algebras from a Hopf subalgebra of
uϕ
ε (g) and an algebraic subgroup of G.
Let L be a Hopf subalgebra of uϕ

ε (g). By Lemma 3.6, it is determined by a
triple (I+, I−,Σ

ϕ) where Σϕ is a subgroup of G(uϕ
ε (g)) and I± ⊂ ±Π are such

that K(1∓ϕ)(αi) ∈ Σϕ if αi ∈ I±. If H = L∗, then by Proposition 3.18, H =
uϕ
ε (p)

∗/〈Dz −1 : Dz ∈ Nϕ〉, where Nϕ is determined by Σϕ as in Remark 3.15(d).
Let P be the regular subgroup of G determined by the pair (I+, I−) with p = Lie(P )
and let Oϕ

ε (P ), uϕ
ε (p) be the corresponding twisted quantum algebras.

Proposition 4.7. Let Γ be an algebraic group and let γ : Γ → G be an injective
morphism of algebraic groups such that γ(Γ) ⊆ P . For every group homomorphism

δ : Nϕ → Γ̂, the two-sided ideal Jδ of Aϕ
ε,p,γ generated by the elements δ(Dz)− ∂z

for ∂z ∈ A and Dz in Nϕ is a Hopf ideal and the Hopf algebra Aε,p,γ/Jδ fits into
the central exact sequence

1 −→ O(Γ)
ι̂−→ Aϕ

ε,p,γ/Jδ
π̂−→ H −→ 1.
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If in addition |Γ| is finite, then dimAϕ
ε,p,γ/Jδ = |Γ| dimH. Moreover, the following

diagram is commutative:

(13) 1 �� O(G)
ι ��

res

��

Oϕ
ε (G)

π ��

Res

��

uϕ
ε (g)

∗ ��

Res

��

1

1 �� O(P )
ιP ��

tγ

��

Oϕ
ε (P )

πP ��

ψ

��

uϕ
ε (p)

∗ ��

id

��

1

1 �� O(Γ)
j

��

id

��

Aϕ
ε,p,γ

π ��

��

uϕ
ε (p)

∗ ��

ν

��

1

1 �� O(Γ)
ι̂ �� Aϕ

ε,p,γ/Jδ
π̂ �� H �� 1

Proof. The proof follows by the proof of [AG, Theorem 2.17]. We reproduce the
first part here to give an idea. By Lemma 4.6, we know that the group-like elements
∂z ∈ A are central in Aϕ

ε,p,γ . Since δ(Dz) ∈ O(Γ) for all Dz ∈ Nϕ, the ideal Jδ in
Aϕ

ε,p,γ generated by the elements δ(Dz)− ∂z is a Hopf ideal, and whence Aϕ
ε,p,γ/Jδ

is a Hopf algebra. If we write Jδ = Jδ ∩ O(Γ), then Aϕ
ε,p,γ/Jδ fits into the central

exact sequence

1 −→ O(Γ)/Jδ −→ Aϕ
ε,p,γ/Jδ −→ uϕ

ε (p)
∗/π(Jδ) −→ 1.

Since π(δ(Dz)) = 1 and π(∂z) = Dz by the proof of Lemma 4.6, it follows that
π(Jδ) = 〈Dz − 1 : Dz ∈ Nϕ〉. Thus, by Proposition 3.18(ii), we have that
uϕ
ε (p)

∗/π(Jδ) = H. The proof that Jδ = 0 and that Aϕ
ε,p,γ/Jδ fits into the commu-

tative diagram follow the same arguments used in loc. cit. �

4.4. Parametrization of quantum subgroups. In this subsection we param-
etrize the Hopf algebra quotients of Oϕ

ε (G) by a 6-tuple called twisted subgroup
datum. We show first that there is a 1-1 correspondance between Hopf algebra
quotients of Oϕ

ε (G) and twisted subgroup data, and then we classify these quo-
tients up to isomorphism.

Definition 4.8. A twisted subgroup datum is a collectionDϕ := (I+, I−, N
ϕ,Γ, γ, δ)

where

� I± ⊂ ±
∏
. Let Ψ± = {α ∈ Φ : Suppα ∈ I±}, p =

∑
α∈Ψ±

gα and

p = p+⊕h⊕p−. Let P be the connected Lie subgroup of G with Lie(P ) = p.

� Nϕ a subgroup of T̂ϕ
Ic ; see Remark 3.15(d).

� Γ is an algebraic group.
� γ : Γ → P is a injective algebraic group homomorphism.

� δ : Nϕ → Γ̂ is a group homomorphism.

If Γ is finite, we call Dϕ a finite twisted subgroup datum.

Summarizing the previous results we obtain the first main result of the paper.
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Theorem 4.9. Let Dϕ = (I+, I−, N
ϕ,Γ, γ, δ) be a twisted subgroup datum. Then

there exists a Hopf algebra ADϕ = Aε,p,γ/Jδ of Oϕ
ε (G) that fits into the central

exact sequence

1 �� O(Γ)
ι̂ �� ADϕ

π̂ �� H �� 1.

In particular, if |Γ| is finite, then dimADϕ = |Γ| dimH.

Proof. By Lemma 3.6 and Remark 3.15(d), the triple (I+, I−, N
ϕ) determines a

quotient H of uϕ
ε (g)

∗. Besides, by Proposition 4.2, the pair (I+, I−) determines a
regular subgroup P of G, a regular Lie subalgebra p of g, and the quantum algebras
Oϕ

ε (P ) and uϕ
ε (p), which makes the upper part of diagram (13) commutative. Then

by Proposition 4.4, the morphism γ : Γ → P ⊂ G gives rise to the Hopf algebra
Aϕ

ε,p,γ through the pushout construction. Finally, by Proposition 4.7 the group

homomorphism δ : Nϕ → Γ̂ defines the Hopf ideal Jδ of Aϕ
ε,p,γ and the Hopf

algebra ADϕ = Aϕ
ε,p,σ/Jδ fits into the commutative diagram (13). �

The next theorem establishes the converse of Theorem 4.9. We give its proof in
several lemmata.

Theorem 4.10. Let κ : Oϕ
ε (G) → A be a surjective Hopf algebra morphism. Then

there exists a twisted subgroup datum Dϕ such that A  ADϕ as Hopf algebras. �
Lemma 4.11. There exists an algebraic group Γ and an injective homomorphism of
algebraic groups γ : Γ → G such that O(Γ) is a Hopf subalgebra of A and A fits into

the central exact sequence of Hopf algebras 1 �� O(Γ)
ι̂ �� A

π̂ �� H �� 1,

where H = A/O(Γ)+A. Moreover, the following diagram is commutative:

(14) 1 �� O(G)
ι ��

tγ

��

Oϕ
ε (G)

π ��

κ

��

uϕ
ε (g)

∗ ��

��

1

1 �� O(Γ)
ι̂ �� A

π̂ �� H �� 1

Proof. Let K = κ(ι(O(G))). Since O(G) is central in Oϕ
ε (G), K is central in

A and there exists an algebraic group Γ and an algebraic group homomorphism
γ : Γ → G such that K = O(Γ) and tγ : O(G) → O(Γ) is the Hopf algebra
epimorphism κ ◦ ι|O(G). Moreover, if we set H = A/K+A, then the sequence

1 �� O(Γ)
ι̂ �� A

π̂ �� H �� 1 is exact and diagram (14) is commutative.

�

By the lemma above, H∗ is a Hopf subalgebra of uϕ
ε (g). Thus, by Lemma 3.6 it

is determined by a triple (I+, I−,Σ
ϕ). Let P be the subgroup of G determined by

the pair (I+, I−), let p = Lie(P ), and let Oϕ
ε (P ), uϕ

ε (p) be the quantum algebras
given by Proposition 4.2. In particular, we have that H∗ ⊆ uϕ

ε (p) ⊆ uϕ
ε (g), and by

Proposition 3.18, H  uϕ
ε (p)

∗/〈Dz−1 : Dz ∈ Nϕ〉, where Nϕ is determined by Σϕ

as in Remark 3.15(d). Denote by ν : uϕ
ε (p) → H the corresponding epimorphism.

The next lemma follows from [AG, Lemma 3.1] but is adapted to the twisted
case.

Lemma 4.12. Diagram (14) factorizes through the central exact sequence

1 �� O(P )
ιP �� Oϕ

ε (P )
πP �� uϕ

ε (p)
∗ �� 1.
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Proof. We want to show that A fits into the commutative diagram

(15) 1 �� O(G)
ι ��

res

��

Oϕ
ε (G)

π ��

Res

��

uϕ
ε (g)

∗ ��

Res

��

1

1 �� O(P )
ιP ��

tζ

��

Oϕ
ε (P )

πP ��

ψ

��

uϕ
ε (p)

∗ ��

ν

��

1

1 �� O(Γ)
ι̂ �� A

π̂ �� H �� 1

To prove this, it suffices to show that KerRes ⊆ Kerκ. In order to do so, we realize
Oϕ

ε (G) as a subalgebra of Aϕ
ε = A′′

ϕ ⊗R Q(ε); see [CV2, §3.6] and Lemma 2.11.

Let μϕ
ε : Oϕ

ε (G) → Ǔϕ
ε (b−)

cop ⊗ Ǔϕ
ε (b+)

cop be the complexification of the injec-
tive algebra map μ′′

ϕ given by (5). Then by Lemma 2.11, μϕ
ε (Oϕ

ε (G)) ⊆ Aϕ
ε , which

is the algebra generated by fϕ
α ⊗ 1, 1⊗ eϕα and K−(1+ϕ)λ ⊗K(1−ϕ)λ for λ ∈ P and

α ∈ Φ+.
The proof follows by showing that μϕ

ε (KerRes) ⊆ μϕ
ε (Kerκ). First note that

μϕ
ε (Ker Res) is the two-sided ideal I generated by {1⊗eϕk , f

ϕ
i ⊗1| αk /∈ I−, αj /∈ I+}.

Indeed, by [CV2, Proposition 2.7], Remark 2.12(a), and (6) we have

μϕ
ε (ψ

−αi
−ωi

ψωi
) =
((

ε−(τi,ωi)fϕ
αi

)
K−(1+ϕ)(ωi)⊗K(1−ϕ)(ωi)

)(
K(1+ϕ)(ωi)⊗K−(1−ϕ)(ωi)

)
= ε−(τi,ωi)fϕ

αi
⊗ 1.

Analogously, we have μϕ
ε (ψωi

ψαk
−ωi

) = ε−(τi,ωi)1 ⊗ eϕα. Since by definition ψαk
−ωi

,

ψ−αk
−ωi

∈ KerRes when αk /∈ I−, αj /∈ I+, we obtain that 1⊗eϕk , f
ϕ
i ⊗1 ∈ μϕ

ε (KerRes)
for αk /∈ I− and αj /∈ I+. Conversely, assume f ∈ KerRes. Then f|Γϕ

ε (p) = 0 and
〈μϕ

ε (f), FM ⊗NE〉 = f(FMNE) = 0 for all elements FMNE in a basis of Γϕ
ε (p).

Using the perfect pairing (3) on ε, it follows that μϕ
ε (f) ⊆ I.

The proof that I ⊆ μϕ
ε (Kerκ) is analogous to the proof of [AG, Lemma 3.1]. �

Note that the map tζ : O(P ) → O(Γ) is given by the restriction ψ|O(P ). Hence,
tζ res = tγ and Im γ ⊆ P .

We end the proof of Theorem 4.10 with the following lemma. Its proof is analo-
gous to the case ϕ = 0 and will be given without any detail.

Lemma 4.13 ([AG, Lemmata 3.2 & 3.3]). There exists a group homomorphism

δ : Nϕ → Γ̂ such that the two-sided ideal Jδ of Aϕ
ε,p,γ generated by the elements

δ(Dz)− ∂z for Dz in Nϕ is a Hopf ideal, A  ADϕ = Aϕ
ε,p,γ/Jδ as Hopf algebras,
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and A fits into the commutative diagram

1 �� O(G)
ι ��

res

��

Oϕ
ε (G)

π ��

Res

��

uϕ
ε (g)

∗ ��

Res
��

1

1 �� O(P )
ιP ��

tγ

��

Oϕ
ε (P )

πP ��

ψ

��

uϕ
ε (p)

∗ ��

id

��

1

1 �� O(Γ)
j

��

id

��

Aϕ
ε,p,γ

π ��

��

uϕ
ε (p)

∗ ��

ν

��

1

1 �� O(Γ)
ι̂ �� A

π̂ �� H �� 1

Proof. (Sketch) Using that Aϕ
ε,p,γ is given by a pushout, one first shows that A

fits into the commutative diagram above. Then, using the commutativity of the

diagram, one proves that there exists a group homomorphism δ : Nϕ → Γ̂ and a
Hopf ideal Jδ such that A  Aϕ

ε,p,γ/Jδ. �

4.4.1. Isomorphism classes of quantum subgroups. In this subsection we parame-
trize the Hopf algebra quotients of Oϕ

ε (G) up to isomorphism. To do so, we first
define a partial order on the isomorphism classes of quotients of Oϕ

ε (G) and on the
set of twisted subgroup data.

Let Q(Oϕ
ε (G)) be the category whose objects are surjective Hopf algebra maps

κ : Oϕ
ε (G) → A. If κ : Oϕ

ε (G) → A and κ′ : Oϕ
ε (G) → A′ are such maps, then

an arrow κ
α �� κ′ in Q(Oϕ

ε (G)) is a Hopf algebra map α : A → A′ such that
ακ = κ′. In this language, a quotient of Oϕ

ε (G) is just an isomorphism class of
objects in Q(Oϕ

ε (G)); let [κ] denote the class of the map κ. There is a partial
order in the set of quotients of Oϕ

ε (G), given by [κ] ≤ [κ′] iff there exists an arrow

κ
α �� κ′ in Q(Oϕ

ε (G)). Note that [κ] ≤ [κ′] and [κ′] ≤ [κ] imply [κ] = [κ′]. Our
goal is to describe the partial order in Q(Oϕ

ε (G)).
Let I±, I

′
± ⊆ ±Π. If I ′+ ⊆ I+ and I ′− ⊆ I−, then I ′ ⊆ I and Tϕ

I′ ⊆ Tϕ
I .

Thus, there exists an epimorphism Tϕ
I′c � Tϕ

Ic which induces a monomorphism

η : T̂ϕ
Ic ↪→ T̂ϕ

I′c .

Definition 4.14. Let Dϕ = (I+, I−, N
ϕ,Γ, γ, δ) and Dϕ′ = (I ′+, I

′
−, N

ϕ′,Γ′, γ′, δ′)
be twisted subgroup data with respect to Oϕ

ε (G). We say that Dϕ ≤ Dϕ′ if and
only if:

� I ′+ ⊆ I+, I
′
− ⊆ I−.

� η(Nϕ) ⊆ Nϕ′.
� There exists an algebraic group homomorphism τ : Γ′ → Γ such that γτ =
γ′.

� δ′η = τ tδ.

Moreover, we say that Dϕ ∼ Dϕ′ if and only if Dϕ ≤ Dϕ′ and Dϕ ≤ Dϕ′. In
particular, this implies that I ′+ = I+, I

′
− = I−, N

ϕ = Nϕ′, τ is an isomorphism,
and δ′ = τ tδ.

Our last theorem yields the parametrization of the quotients of Oϕ
ε (G) up to

isomorphism. The proof is analogous to the case ϕ = 0 since it relies on the
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commutativity of diagram (12) and general constructions of the sucesive quotients.
For these reasons, it will be omitted. See [AG, Theorem 2.20].

Theorem 4.15. Let Dϕ and Dϕ′ be twisted subgroup data and let κ : Oϕ
ε (G) →

ADϕ , κ′ : Oϕ
ε (G) → ADϕ′ be the corresponding quotients. Then [κ] ≤ [κ′] if only if

Dϕ ≤ Dϕ′. �
4.4.2. Properties of the quotients. We end the paper with a list of some properties
of the quotients. Apart from item (v), the proof is analogous to [AG2, Proposition
3.8].

Proposition 4.16. Let Dϕ = (I+, I−, N
ϕ,Γ, γ, δ) be a twisted subgroup datum.

(i) If ADϕ is pointed, then I+ ∩ I− = ∅ and Γ is a subgroup of the group of
upper triangular matrices of some size. In particular, if Γ is finite, then it
is abelian.

(ii) ADϕ is semisimple if and only if I+ ∪ I− = ∅ and Γ is finite.
(iii) If dimADϕ < ∞ and A∗

Dϕ is pointed, then γ(Γ) is included in the fixed
torus of G.

(iv) If ADϕ is co-Frobenius then Γ is reductive.
(v) If ϕ and (I+, I−,Σ

ϕ) are such that Σϕ = Tϕ but Σ �= T, then ADϕ is not a
2-cocycle deformation of AD.

Proof. We prove only (v). If ϕ and (I+, I−,Σ
ϕ) are such that Σϕ = Tϕ but Σ �= T,

then Nϕ = 1 and N �= 1. Then, the quotient Hϕ = uϕ
ε (p)

∗/〈Dz − 1 : Dz ∈ Nϕ〉
cannot be a 2-cocycle deformation of H = uε(p)

∗/〈Dz − 1 : Dz ∈ N〉 since they
have different dimension. If ADϕ were a 2-cocycle deformation of AD, then by a
chasing diagram argument we would have that Hϕ is a 2-cocycle deformation of H,
a contradiction; see Example 3.19. �
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ple quantum group at roots of one, Compos. Math. 145 (2009), no. 2, 476–500, DOI
10.1112/S0010437X09003923. MR2501426
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