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IMPROVED SUBCONVEXITY BOUNDS FOR GL(2)×GL(3)

AND GL(3) L-FUNCTIONS BY WEIGHTED STATIONARY

PHASE

MARK MCKEE, HAIWEI SUN, AND YANGBO YE

Abstract. Let f be a fixed self-contragradient Hecke–Maass form for
SL(3,Z), and let u be an even Hecke–Maass form for SL(2,Z) with Laplace

eigenvalue 1/4+k2, k ≥ 0. A subconvexity bound O
(
(1+k)4/3+ε

)
in the eigen-

value aspect is proved for the central value at s = 1/2 of the Rankin–Selberg

L-function L(s, f ×u). Meanwhile, a subconvexity bound O
(
(1+ |t|)2/3+ε

)
in

the t aspect is proved for L(1/2+it, f). These bounds improved corresponding
subconvexity bounds proved by Xiaoqing Li (Annals of Mathematics, 2011).
The main techniques in the proofs, other than those used by Li, are nth-order
asymptotic expansions of exponential integrals in the cases of the explicit first
derivative test, the weighted first derivative test, and the weighted stationary
phase integral, for arbitrary n ≥ 1. These asymptotic expansions sharpened
the classical results for n = 1 by Huxley.

1. Introduction

Bounds for automorphic L-functions on the critical line Re(s) = 1/2 are central
questions in number theory and have far-reaching applications (cf. Iwaniec and
Sarnak [13] and Michel [26]). The ultimate conjectured bounds are predicted by
the Lindelöf Hypothesis, while trivial bounds include the convexity bounds as a
consequence of the Phragmén-Lindelöf principle. Any bound which has a power
saving over the corresponding convexity bound is highly nontrivial and called a
subconvexity bound.

The strength of a subconvexity bound is crucial. There are important applica-
tions which depend on the strength of the subconvexity bounds. A notable example
is the number of real zeros of a holomorphic Hecke cusp form f for SL(2,Z) of weight
k, i.e., zeros of f on {iy|y ≥ 1}. By Ghosh and Sarnak [7], the number of such ze-
ros is � log k. Their proof uses a Weyl-like, i.e., a 1/3 power-saving, subconvexity
bound for L(s, f) proved by Peng [28] and Jutila and Motohashi [15]. Note that a
subconvexity bound for L(s, f) with a power saving less than 1/3 does not suffice
in [7].
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In this paper, we will prove subconvexity bounds for certain Rankin–Selberg L-
functions for GL(3)×GL(2) and automorphic L-functions for GL(3) over Q which
improve bounds established by Xiaoqing Li [20].

Theorem 1.1. Let f be a fixed self-contragradient Hecke–Maass form for SL(3,Z)
normalized by A(1, 1) = 1, and let {uj} be an orthonormal basis of even Hecke–
Maass forms for SL(2,Z). Denote by 1/4 + t2j , tj ≥ 0, the Laplace eigenvalue of

uj. Then for large T and T 1/3+ε ≤ M ≤ T 1/2 we have
(1.1)∑
j

e−(tj−T )2/M2

L
(1
2
, f×uj

)
+

1

4π

∫ ∞

−∞
e−(t−T )2/M2

∣∣∣L(1
2
−it, f

)∣∣∣2dt �ε,f T 1+εM

for any ε > 0.

Note that in [20] the same equation as (1.1) was proved for T 3/8+ε ≤ M ≤ T 1/2.
As pointed out in [20],

(1.2) L
(1
2
, f × uj

)
≥ 0

was proved by Lapid [17] because f is orthogonal and uj is symplectic (Jacquet and
Shalika [14]). The nonnegativity in (1.2) allows us to deduce a bound for individual
terms from (1.1).

We remark that the normalization of uj is different from the normalization
λuj

(1) = 1 as required in the definition of L(s, f × uj), but the discrepancy is
within tεj as proved in Hoffstein and Lockhart [10]. The smaller allowable power of
T for M in Theorem 1.1 gives us a smaller subconvexity bound.

Corollary 1.2. Let f be a fixed self-contragradient Hecke–Maass form for SL(3,Z)
normalized by A(1, 1) = 1, and let u be an even Hecke–Maass form for SL(2,Z)
normalized by λu(1) = 1. Denote by 1/4 + k2, k > 0, the Laplace eigenvalue of u.
Then

L
(1
2
, f × u

)
�ε,f k4/3+ε.

Note that Corollary 1.2 improved the bound O
(
k11/8+ε

)
proved in [20]. The

convexity bound is O
(
k3/2+ε

)
. Because of the nonnegativity in (1.2), the bound in

(1.1) implies a square moment bound for L(s, f) over a short interval.

Corollary 1.3. Let f be a fixed self-contragradient Hecke–Maass form for SL(3,Z)
normalized by A(1, 1) = 1. Then for T 1/3+ε ≤ M ≤ T 1/2,

(1.3)

∫ ∞

−∞
e−(t−T )2/M2

∣∣∣L(1
2
− it, f

)∣∣∣2dt �ε,f T 1+εM.

Since f is a GL(3) form, the square moment in (1.3) is comparable to a sixth
power moment of the Riemann zeta function. Similar arguments were carried out
for a GL(2) form in Ye [32] and Lau, Liu, and Ye [18].

By a standard argument of analytic number theory (cf. Heath-Brown [9] or
Ivić [12, p. 197]), we derived a subconvexity bound for L(s, f) in the t aspect. Its
improvement over [20]’s O

(
(1 + |t|)11/16+ε

)
is again based on the smaller allowable

power of T for M . The convexity bound is O
(
(1 + |t|)3/4+ε

)
.
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Corollary 1.4. Let f be a fixed self-contragradient Hecke–Maass form for SL(3,Z)
normalized by A(1, 1) = 1. Then

L
(1
2
+ it, f

)
�ε,f (1 + |t|)2/3+ε.

Following Ye and Deyu Zhang [33], we can deduce the following result on zero
density for L(s, f) from (1.3). Let

Nf (σ, T, T + T δ) = #
{
ρ = β + iγ

∣∣L(ρ, f) = 0, σ < β < 1, T ≤ γ ≤ T + T δ
}

be the number of zeros of L(s, f) in the box of σ < β < 1 and T ≤ γ ≤ T + T δ.

Corollary 1.5. Let f be a fixed self-contragradient Hecke–Maass form for SL(3,Z).
Then for 1/3 < δ ≤ 1, we have

Nf (σ, T, T + T δ) �ε,f T
(2+4δ)(1−σ)

3−2σ +ε for 1/2 ≤ σ <
2 + δ

2 + 2δ

�ε,f T 2(1+δ)(1−σ)+ε for
2 + δ

2 + 2δ
≤ σ < 1.

(1.4)

We note that Corollary 1.5 shows that (1.4) is now valid on a shorter interval
[T, T + T δ] with 1/3 < δ ≤ 1 than the interval with 3/8 < δ ≤ 1 in [33] which uses
Li [20].

As noted in [20], Theorem 1.1 can also be proved for f being the minimal Eisen-
stein series on GL(3). This has been carried out in Lu [23]. Our proof and im-
provement can also be applied to that case.

P. Sarnak pointed out to us that for a holomorphic cusp form g for SL(2,Z),
the Dirichlet series for the L-functions L(s, Sym2g) and L(s, Sym2g×uj) have the
same structure and properties as L(s, f) and L(s, f × uj), respectively, for f being
a self-dual Maass form for SL(3,Z) (cf. Bump [4, 5] and Luo and Sarnak [24]).
Consequently our theorem and corollaries are also valid for such L(s, Sym2g) and
L(s, Sym2g × uj).

The main techniques of our proof, other than those used in [20], include an
asymptotic expansion of exponential integrals∫ β

α

g(x)e(f(x)) dx(1.5)

when f ′(x) changes signs at a point x = γ with α < γ < β. Huxley [11] obtained
the first-order asymptotic expansion of (1.5). His results [11] are widely used as
standard techniques in analytic number theory and other branches of mathematics.

What we need in our proof, however, is an asymptotic expansion of (1.5) beyond
the first order. Blomer, Khan and Young [3] proved such an asymptotic expansion
for f(x) being smooth and g(x) being smooth of compact support. In [25] we
proved a similar asymptotic expansion for f(x) being continuously differentiable
2n + 3 times and g(x) being continuously differentiable 2n + 1 times on a finite
interval [α, β]. Since the latter one is explicitly written, we will use it in the present
paper:∫ β

α

g(x)e(f(x)) dx =
e(f(γ)± 1/8)√

|f ′′(γ)|

(
g(γ) +

n∑
j=1

�2j
(−1)j(2j − 1)!!

(2πif ′′(γ))j

)
+ Boundary terms + Error terms.
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Here γ is the only zero of f ′(x) in (α, β), and �2j are given in (2.4). Note that the
boundary terms do not appear in [3]. See Proposition 2.2 below for details. We
will apply Voronoi’s summation formula (Lemma 3.1) and its asymptotic expansion
(Lemma 3.2) to the leading term of (2.4) for all �2j the second time.

In the following sections, ε is any arbitrarily small positive number. Its value
may be different on each occurrence.

2. Oscillatory integrals

The following proposition is the weighted first derivative test, which strengthens
Lemma 5.5.5 of [11, p. 113] with more boundary terms and smaller error terms.
We can also use a similar formula proved in Jutila and Motohashi [15, Lemma 6].

Proposition 2.1 (McKee, Sun, and Ye [25]). Let f(x) be a real-valued function,
n+ 2 times continuously differentiable for α ≤ x ≤ β, and let g(x) be a real-valued
function, n+1 times continuously differentiable for α ≤ x ≤ β. Suppose that there
are positive parameters M , N , T , U , with M ≥ β − α, and positive constants Cr

such that for α ≤ x ≤ β,

|f (r)(x)| ≤ Cr
T

Mr
, |g(s)(x)| ≤ Cs

U

Ns
,

for r = 2, . . . , n + 2 and s = 0, . . . , n + 1. If f ′(x) and f ′′(x) do not change signs
on the interval [α, β], then we have∫ β

α

g(x)e(f(x))dx =
[
e(f(x))

n∑
i=1

Hi(x)
]β
α

+O
(M
N

[n/2]∑
j=1

UT j

min |f ′|n+j+1M2j

n−j∑
t=j

1

Nn−j−tM t

)

+O
((M

N
+ 1

) U

Nn min |f ′|n+1

)

+O
( n∑

j=1

UT j

min |f ′|n+j+1M2j

n−j∑
t=0

1

Nn−j−tM t

)
,

where

(2.1) H1(x) =
g(x)

2πif ′(x)
, Hi(x) = −

H ′
i−1(x)

2πif ′(x)

for i = 2, . . . , n.

The following proposition is for a weighted stationary phase integral and sharpens
Lemma 5.5.6 of [11, p. 114], with main terms up to the nth order, more boundary
terms, and smaller error terms. In [3, Proposition 8.2], Blomer, Khan, and Young
obtained the same main terms and the last big-O term as in (2.4), under the
assymptions that f(x) and let g(x) be are smooth and g(x) is compactly supported
on R. We may use their version in the present paper.

Proposition 2.2 (McKee, Sun, and Ye [25]). Let f(x) be a real-valued function,
2n+3 times continuously differentiable for α ≤ x ≤ β, and let g(x) be a real-valued



IMPROVED SUBCONVEXITY BOUNDS 3749

function, 2n + 1 times continuously differentiable for α ≤ x ≤ β. Let Hk(x) be
defined as in (2.1). Assume that there are positive parameters M , N , T , U with

(2.2) M ≥ β − α,

and positive constants Cr such that for α ≤ x ≤ β,

(2.3) |f (r)(x)| ≤ Cr
T

Mr
, |f (2)(x)| ≥ T

C2M2
, |g(s)(x)| ≤ Cs

U

Ns
,

for r = 2, . . . , 2n+ 3 and s = 0, . . . , 2n+ 1. Suppose that f ′(x) changes signs only
at x = γ, from negative to positive, with α < γ < β. Let

Δ = min
{ log 2

C2
,

1

C2
2 max
2≤k≤2n+3

{Ck}
}
.

If T is sufficiently large such that T
1

2n+3Δ > 1, we have for n ≥ 2 that∫ β

α

g(x)e(f(x))dx

=
e
(
f(γ) + 1

8

)
√
f ′′(γ)

(
g(γ) +

n∑
j=1

�2j
(−1)j(2j − 1)!!

(4πiλ2)j

)
+
[
e(f(x)) ·

n+1∑
i=1

Hi(x)
]β
α

+O
( UM2n+5

Tn+2Nn+2

( 1

(γ − α)n+2
+

1

(β − γ)n+2

))

+O
(UM2n+4

Tn+2

( 1

(γ − α)2n+3
+

1

(β − γ)2n+3

))

+O
( UM2n+4

Tn+2N2n

( 1

(γ − α)3
+

1

(β − γ)3

))
+O

( U

Tn+1

(M2n+2

N2n+1
+M

))
,

where

λj =
f (j)(γ)

j!
for j = 2, . . . , 2n+ 2, η� =

g(�)(γ)

!
for  = 0, . . . , 2n

and

(2.4) �k = ηk +
k−1∑
�=0

η�

k−�∑
j=1

Ck�j

λj
2

∑
3 ≤ n1, . . . , nj ≤ 2n + 3

n1 + · · · + nj = k − � + 2j

λn1
· · ·λnj

,

with Ck�j being some constant coefficients.

3. Background on automorphic forms

We will follow the setting and notation in Li [20]. Recall for m,n ≥ 1 the
Kuznetsov trace formula (Kuznetsov [16] and Conrey and Iwaniec [6])∑′

j≥1

h(tj)ωjλj(m)λj(n) +
1

4π

∫
R

h(t)ω(t)η̄
(
m,

1

2
+ it

)
η
(
n,

1

2
+ it

)
dt(3.1)

= δ(m,n)
H

2
+
∑
c≥1

1

2c

{
S(m,n; c)H+

(4π√mn

c

)
+ S(−m,n; c)H−

(4π√mn

c

)}
.
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Here
∑′ in (3.1) means we are only summing over even Maass forms uj , δ(m,n) is

the Kronecker delta,

(3.2) ωj =
4π|ρj(1)|2
coshπtj

, ω(t) = 4π
|φ(1, 1/2 + it)|2

coshπt
,

H =
2

π

∫ ∞

0

h(t) tanh(πt)t dt, H+(x) = 2i

∫
R

J2it(x)
h(t)t

coshπt
dt,

H−(x) =
4

π

∫
R

K2it(x) sinh(πt)h(t)t dt, and S(a, b; c) =
∑

dd̄≡1(mod c)

e
(da+ d̄b

c

)
is the standard Kloosterman sum. Above, Jν is the J-Bessel function.

We let f be a Maass form of type ν = (ν1, ν2) for SL3(Z) (cf. Goldfeld [8]).
Then f has a Whittaker function expansion

f(z) =
∑

±Γ∞\SL2(Z)

∞∑
m1=1

∑
m2 �=0

A(m1,m2)

m1|m2|
WJ

(
M

(
γ 0
0 1

)
z, ν, ψ1,1

)
,

where WJ is the Jacquet–Whittaker function, M = diag(m1|m2|,m1, 1), and ψ1,1

is a fixed specific generic character on the abelianization of the standard unipotent
upper triangular subgroup of SL3(Z). Put α = −ν1 − 2ν2 + 1, β = −ν1 + ν2,
γ = 2ν1+ ν2− 1. These are the Langlands parameters of f at ∞. In the usual way,
we put

ψ̃(s) =

∫ ∞

0

ψ(x)xs−1 dx

to be the Mellin transform of ψ which we assume is smooth and compactly sup-
ported on (0,∞).

For k = 0, 1 we define

Ψk(x) =

∫
Res=σ

(π3x)−sΓ(
1+s+2k+α

2 )Γ( 1+s+2k+β
2 )Γ( 1+s+2k+γ

2 )

Γ(−s−α
2 )Γ(−s−β

2 )Γ(−s−γ
2 )

ψ̃(−s− k) ds.

Here σ is taken sufficiently large depending on α, β, γ. We then define, for k = 0, 1,

(3.3) Ψk
0,1(x) = Ψ0(x) + (−1)k

1

xπ3i
Ψ1(x).

Then the following is a crucial tool, the Voronoi formula for GL(3).

Lemma 3.1 ([27]). Let ψ ∈ C∞
c (0,∞). Let f be a SL3(Z) Maass form with

corresponding Fourier coefficients A(m,n) as in (3). Let d, d̄, c ∈ Z with c 	= 0,
(d, c) = 1, and dd̄ ≡ 1(mod c). Then

∑
n>0

A(m,n)e
(nd̄

c

)
ψ(n) =

c

4π5/2i

∑
n1|cm

∑
n2>0

A(n2, n1)

n1n2
S
(
md, n2;

mc

n1

)
Ψ0

0,1

(n2
1n2

c3m

)
(3.4)

+
c

4π5/2i

∑
n1|cm

∑
n2>0

A(n1, n2)

n1n2
S
(
md,−n2;

mc

n1

)
Ψ1

0,1

(n2
1n2

c3m

)
.

To use this formula, asymptotics of Ψ0,Ψ1 are needed which were proved in Li
[19] and Ren and Ye [29] for GL(3). (For GL(m) see Ren and Ye [30].) Since
x−1Ψ1(x) has similar asymptotics to Ψ0, following [20], we only deal with Ψ0. We
will use the following lemma ([19]).
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Lemma 3.2. Suppose ψ ∈ C∞
c ([X, 2X]). Then for any fixed integer K ≥ 1 and

xX � 1 we have

Ψ0(x)=2π3xi

∫ ∞

0

ψ(y)
K∑
j=1

cj cos(6π(xy)
1/3) + dj sin(6π(xy)

1/3)

(xy)j/3
dy+O((xX)

2−K
3 ).

Here cj and dj are constants depending on the Langlands parameters with c1 = 0

and d1 = −2/
√
3π.

We now assume f is a self-dual Hecke–Maass form for SL3(Z) of type (ν, ν),
normalized so that A(1, 1) = 1. The Rankin–Selberg L-function of f with itself is
then defined by

L(s, f × f) =
∑
m≥1

∑
n≥1

|A(m,n)|2
(m2n)s

for Res large. L(s, f × f) has meromorphic continuation to the complex plane,
with a simple pole at s = 1. By a standard analytic number theory argument using
complex analysis, this gives ∑

m2n≤N

|A(m,n)|2 �f N.

Applying Cauchy–Schwartz, this gives

(3.5)
∑
n≤N

|A(m,n)| �f |m|N.

We will use (3.5) and summation by parts in the estimates below. Here f being
self-dual also means A(m,n) = A(n,m) for all m,n.

The Rankin–Selberg L-function of f with uj is (for Res sufficiently large)

L(s, f × uj) =
∑
m≥1

∑
n≥1

λj(n)A(m,n)

(m2n)s
.

L(s, f × uj) can be completed to Λ(s, f × uj) with six Γ factors at ∞ (involving
the Langlands parameters of f , and tj).

We now need to define the Rankin–Selberg L-function of f with the Eisenstein
series. (See Li [20] for the definition of E(z, s) and η(n, s).)

L(s, f × E) =
∑
m≥1

∑
n≥1

η̄(n, 1/2 + it)A(m,n)

(m2n)s
.

Following Goldfeld [8], comparing Euler products, we have

L
(1
2
, f × E

)
=

∣∣∣L(1
2
− it, f

)∣∣∣2.
We need to set up the approximate functional equation. We define

γ(s, t) = π−3sΓ
(s− it− α

2

)
Γ
(s− it− β

2

)
Γ
(s− it− γ

2

)
×Γ

(s+ it− α

2

)
Γ
(s+ it− β

2

)
Γ
(s+ it− γ

2

)
.

Here α = −3ν + 1, β = 0, and γ = 3ν − 1 are the Langlands parameters of f at

∞. We define F (u) =
(
cos(πu/A)

)−3A
for A a positive integer. For |Imt| ≤ 1000
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we now define

(3.6) V (y, t) =
1

2πi

∫
(1000)

y−uF (u)
γ(1/2 + u, t)

γ(1/2, t)

du

u
.

By known bounds for the Langlands parameters, this integral converges. We have
the following important approximate functional equation (cf. [20]).

Lemma 3.3. For f a self-dual Maass form of type (ν, ν) for SL3(Z) and uj a
Hecke–Maass form for SL2(Z) corresponding to the eigenvalue 1/4 + t2j in an or-
thonormal basis, as above,

(3.7) L
(1
2
, f × uj

)
= 2

∑
m≥1

∑
n≥1

λj(n)A(m,n)√
m2n

V (m2n, tj).

The point of using V in the expansion (3.7) is that V decays rapidly for m2n �
|tj |3+ε, and so in an effective way, we can take both sums above to be finite. For
the precise decay rate, see Lemma 2.3 of Li [20]. We also have the approximate
functional equation for L(s, f × E):

(3.8) L
(1
2
, f × E

)
= 2

∑
m≥1

∑
n≥1

η(n, 1/2 + it)A(m,n)√
m2n

V (m2n, t).

Following Li [20] we now define

W =
∑′

j

e−(
tj−T

M )2ωjL
(1
2
, f × uj

)
+

1

4π

∫
R

e−( t−T
M )2ω(t)

∣∣∣L(1
2
− it, f

)∣∣∣2 dt.

Here ωj and ω(t) are defined in (3.2). It is known that ωj � t−ε
j and ω(t) � t−ε.

See the references in Li [20]. It follows that∑′

j

e−(
tj−T

M )2L
(1
2
, f × uj

)
+

1

4π

∫
R

e−( t−T
M )2

∣∣∣L(1
2
− it, f

)∣∣∣2 dt � WT ε.

Consequently, Theorem 1.1 will be proved if we show W �ε,f T 1+εM . As Li

[20] points out, the function e−( t−T
M )2 cannot be used as a test function in the

Kuznetsov trace formula simply because it is not even. Following Li [20] we will
use the modified function

(3.9) k(t) = e−( t−T
M )2 + e−( t+T

M )2

which essentially captures the size of e−( t−T
M )2 for t near T . Thus, we define

(3.10) W =
∑′

j

k(tj)ωjL
(1
2
, f × uj

)
+

1

4π

∫
R

k(t)ω(t)
∣∣∣L(1

2
− it, f

)∣∣∣2 dt.

By plugging (3.7) and (3.8) into W in (3.10) we see that we need to analyze R,
which we define by the equation

R = 2
∑′

j

k(tj)ωj

∑
m≥1

∑
n≥1

λj(n)A(m,n)√
m2n

V (m2n, tj)g
(m2n

N

)
(3.11)

+
1

2π

∫
R

k(t)ω(t)
∑
m≥1

∑
n≥1

η(n, 1/2 + it)A(m,n)√
m2n

V (m2n, t)g
(m2n

N

)
dt.
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Here and for the rest of this article we take N = T 3+ε and g is a fixed nonnegative
function with compact support in [1, 2]. This is the trick of using a dyadic partition
of unity which is best outlined in Lau, Liu, and Ye [18].

Now, we apply the Kuznetsov trace formula (3.1) to R (3.11). Consequently, we
write

(3.12) R = D +R+ +R−;

(3.13) D =
∑
m≥1

∑
n≥1

A(m,n)√
m2n

g
(m2n

N

)
δ(n, 1)Hm,n;

Hm,n =
2

π

∫
R

k(t)V (m2n, t) tanh(πt)t dt;

(3.14) R+ =
∑
m≥1

∑
n≥1

A(m,n)√
m2n

g
(m2n

N

)∑
c>0

S(n, 1; c)

c
H+

m,n

(4π√n

c

)
;

(3.15) H+
m,n(x) = 2i

∫
R

J2it(x)
k(t)V (m2n, t)t

cosh(πt)
dt;

(3.16) R− =
∑
m≥1

∑
n≥1

A(m,n)√
m2n

g
(m2n

N

)∑
c>0

S(n,−1; c)

c
H−

m,n

(4π√n

c

)
;

(3.17) H−
m,n(x) =

4

π

∫
R

K2it(x) sinh(πt)k(t)V (m2n, t)t dt.

By the estimates in Section 3 of Li [20], we see easily that D in (3.13) is negligible
for any M with T ε ≤ M ≤ T 1−ε, and we leave the details for the reader. In the
next two sections we will estimate R+ in (3.14) and R− in (3.16).

4. Estimates for the J-Bessel function terms

In this section we provide estimates for R+ in (3.14). In this section and the
next, we show estimates under the assumption T 1/3+2ε ≤ M ≤ T 1/2. Following Li
[20] we define the parameters

(4.1) C1 = T 100, and C2 =

√
N

T 1−εM
,

and we split R+ = R+
1 +R+

2 +R+
3 with

(4.2) R+
1 =

∑
m≥1

∑
n≥1

A(m,n)√
m2n

g
(m2n

N

) ∑
c≥C1/m

S(n, 1; c)

c
H+

m,n

(4π√n

c

)
,

(4.3) R+
2 =

∑
m≥1

∑
n≥1

A(m,n)√
m2n

g
(m2n

N

) ∑
C2/m≤c≤C1/m

S(n, 1; c)

c
H+

m,n

(4π√n

c

)
,

(4.4) R+
3 =

∑
m≥1

∑
n≥1

A(m,n)√
m2n

g
(m2n

N

) ∑
c≤C2/m

S(n, 1; c)

c
H+

m,n

(4π√n

c

)
.
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For R+
1 in (4.2), Li [20] shifts the integral defining H+

m,n (see (3.15)) and uses an
integral representation of the J-Bessel function and Stirling’s formula to conclude

(4.5) H+
m,n(x) � x

3
4T

3
8 (m2n)−

3
8T 1+εM.

Consequently (4.2) is bounded
(4.6)

R+
1 � T

11
8 +εM

∑
m≤

√
2N

∑
n≤2N/m2

|A(m,n)|
m
√
n

∑
c≥C1/m

|S(n, 1; c)|
c

(√n

c

) 3
4 · (m2n)−

3
8 .

Using Weil’s bound for S(n, 1; c), we see

(4.7)
∑

c≥C1/m

|S(n, 1; c)|
c

7
4

�
∑

c≥C1/m

c
1
2+ε

c
7
4

�
(C1

m

)− 1
4+ε

.

By (3.5) and summation by parts, we have

(4.8)
∑

n≤2N/m2

|A(m,n)|√
n

� m
( N

m2

) 1
2

.

Inserting (4.7) and (4.8) into (4.6) we get

(4.9) R+
1 � T

11
8 +εMN

1
2C

− 1
4

1

∑
m≤

√
2N

1

m
3
2

.

Plugging in C1 = T 100 from (4.1), N = T 3+ε, and noticing that the sum on m in
(4.9) converges, we have R+

1 � 1 for any M with T ε ≤ M ≤ T 1−ε.
We now deal with R+

2 in (4.3). We do not wish to reproduce all the estimates
in Li [20], so we will summarize. As used in Liu and Ye [21], [22] and Li [20] we
need an integral representation for

J2it(x)− J−2it(x)

cosh(πt)

from 1.13(69) of [2, vol. 1, p. 59]. Using integration by parts, a change of variables,
and the fact that k(t) (recall (3.9)) is a Schwartz function, we define

Wm,n(x) = T

∫
R

k̂∗(ζ) cos
(
x cosh

(ζπ
M

))
e
(
− Tζ

M

)
dζ.

Here

k∗(t) = e−t2V (m2n, tM + T )

is a Schwartz function and k̂∗ is its Fourier transform. We remark that derivatives
of k∗(t) are � 1. In fact, by (3.6) ∂�

∂t�
V (y, tM + T ) can be expressed in terms of

derivatives of γ(s, tM + T ) and hence in terms of d
dz log Γ(z) =: ψ(z) and ψ(�)(z)

(Bateman [1, p. 15, 1.7(1), and p. 45, 1.16(9)]). By their asymptotic expansions in
[1, p. 47, 1.18(7), and p. 48, 1.18(9)], we can see

∂�

∂t�
V (y, tM + T ) �

(M
T

)�

.

We define

(4.10) W ∗
m,n(x) = T

∫
R

k̂∗(ζ)e
(
− Tζ

M
− x

2π
cosh

(ζπ
M

))
dζ
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so that

Wm,n(x) =
W ∗

m,n(x) +W ∗
m,n(−x)

2
.

The upshot here is that up to a lower-order term (which can be handled in a similar
way) and a negligible amount, we have H+

m,n(x) = 4Wm,n(x).
The contribution to the integral in (4.10) from |ζ| ≥ T ε is a negligible amount,

so in what follows we can assume |ζ| ≤ T ε. The phase φ(ζ) in the exponential
(4.10) is

2πφ(ζ) = −Tζ

M
− x

2π
cosh

(ζπ
M

)
.

Looking at φ′(ζ), we see W ∗
m,n(x) is negligible for |x| ≤ T 1−εM . So in what

follows we assume T 1−εM ≤ |x| ≤ T 2. Using a Taylor expansion in ζ (within the
exponential) of

e
(
− Tζ

M
− x

2π
cosh

(ζπ
M

))
in (4.10), using the Fourier transform of a Gaussian, using Parseval’s Theorem,
completing the square, and working out many estimates, Lau, Liu, and Ye (Lemma
5.1 of [18]) and Li (Proposition 4.1 of [20]) proved similar propositions, estimating

W ∗
m,n(x) by a finite series involving derivatives of k̂∗, based on ideas in Sarnak [31].

For our purposes we can modify the proof of Proposition 4.1 of [20].

Lemma 4.1. 1) For |x| ≤ T 1−εM we have W ∗
m,n(x) �ε,A T−A.

2) For T 1−εM ≤ |x| ≤ T 2, with T 1/3+2ε ≤ M ≤ T 1/2 and L1, L2 ≥ 1,

W ∗
m,n(x) =

TM√
|x|

e
(
− x

2π
+

T 2

πx

) L1∑
l=0

∑
0≤l1≤2l

∑
l1
4 ≤l2≤L2

cl,l1,l2
M2l−l1T 4l2−l1

xl+3l2−l1

(4.11)

×
[
k̂∗

(2l−l1)
(
− 2MT

πx

)
− π6ix

6!M6
(y6k̂∗(y))(2l−l1)

+
π12i2x2

2!(6!)2M12
(y12k̂∗(y))(2l−l1)

(
− 2MT

πx

)]

+O
( TM√

|x|

( T 4

|x|3
)L2+1

+ T
( M√

|x|

)2L1+3

+
T |x|3
M18

)
,

where cl,l1,l2 are constants depending only on the indices.

Note that part 1) is valid for T ε ≤ M ≤ T 1−ε and part 2) is valid for T 1/3+ε ≤
M ≤

√
T with the assumption of T 1−εM ≤ |x| ≤ T 2. With our assumption

T 1/3+2ε ≤ M ≤
√
T on M , to acquire the desired decay rate of the

(4.12) O
( TM√

|x|

( T 4

|x|3
)L2+1)

term, L2 could depend on ε. From 1) of Lemma 4.1 and (4.5) we seeR+
2 is negligible.

The extra term in the brackets in (4.11), as compared to [20], comes from a degree
2 Taylor expansion in x (with remainder) of e(−π6ixζ6/(2 · 6!M6)).

In the rest of this section, we estimate R+
3 as in (4.4). By choosing L1, L2 large

enough (possibly depending on ε) in (4.11) the contribution to R+
3 from the first

two error terms in (4.11) can be made as small as desired. We need to estimate
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the contribution from the last error term in (4.11). By the support of g we may
assume x2 = 16π2n/c2 � N = T 3+ε. By our assumptions on M and T we
then have T |x|3/M18 � T |x|/M9. Plugging in x = 4π

√
n/c into T |x|/M9, we

estimate this error term contribution to R+
3 in (4.4), using (4.5), Weil’s bound for

the Kloosterman sum, and the compact support of g. This error can be seen to be
bounded by O(TN/M9), which is smaller than O(T 1+εM) by a power of T with our

assumption T 1/3+2ε ≤ M ≤
√
T . In the finite series (4.11) with our assumptions we

also have M2l−l1T 4l2−l1xl1−l−3l3 � 1. All the terms in (4.11) are similar and can
be estimated in a similar way, so we will only work with the first term. Following
Li [20] we define

R̃+
3 =

i(i+ 1)MT√
2π

∑
m≥1

∑
n≥1

A(m,n)

mn3/4
g
(m2n

N

)
(4.13)

×
∑

c≤C2/m

S(n, 1; c)√
c

e
(2√n

c
− T 2c

4π2
√
n

)
k̂∗

( MTc

2π2
√
n

)
.

Li [20] points out here that even with Weil’s bound for S(n, 1; c) simple estimates

for R̃+
3 are too large. So we expand the Kloosterman sum S(n, 1; c) and use the

Voronoi formula (Lemma 3.1) with

(4.14) ψ(y) = y−
3
4 g

(m2y

N

)
e
(2√y

c
− T 2c

4π2√y

)
k̂∗

( MTc

2π2√y

)
.

We get

(4.15) R̃+
3 =

(i− 1)MT√
2π

∑
m≥1

1

m

∑
c≤C2/m

1√
c

∑∗

d (mod c)

e
(d
c

)∑
n≥1

A(m,n)e
(nd̄

c

)
ψ(n),

where the innermost sum in (4.15) will be replaced by the right hand side of (3.4).
From the function g(m2y/N) in (4.14) we can see that X = N/m2. Recall

x = n2n
2
1/(c

3m) from Lemma 3.1. Then by c ≤ C2/m

xX =
n2n

2
1N

c3m3
≥ n2n

2
1N

C3
2

=
n2n

2
1T

3−3εM3

√
N

≥ n2n
2
1T

3/2−3εM3 � 1.

Consequently we can apply Lemma 3.2 to (4.15) with (3.4) to get

(4.16) Ψ0(x) = π3d1x
2/3

∫ ∞

0

e(u1(y))a(y) dy − π3d1x
2/3

∫ ∞

0

e(u2(y))a(y) dy

with

(4.17) u1(y) =
2
√
y

c
+ 3(xy)1/3, u2(y) =

2
√
y

c
− 3(xy)1/3,

and

(4.18) a(y) = g
(m2y

N

)
k̂∗

( MTc

2π2√y

)
e
( −T 2c

4π2√y

)
y−13/12.

Note that u1 has no stationary points; indeed, simple calculus estimates give the

first integral in (4.16) a negligible contribution to R̃+
3 .

The second integral in (4.16) requires more analysis. As in [20, p. 319], if x ≥
2
√
N/(c3m) or x ≤ 2

√
N/(3c3m), then u′

2(y) will be effectively bounded away
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from zero, making the integral negligible by multiple integration by parts. Thus we
assume the contrary in what follows, namely

(4.19)
2
√
N

3n2
1

≤ n2 ≤
√
N

n2
1

.

We have

(4.20)

∫ ∞

0

e(u2(y))a(y) dy =

∫ 9
2x

2c6

1
4x

2c6
e(u2(y))a(y) dy.

We explain the limits of integration. The compact support of the integral on the
right side of equation (4.20) follows from the compact support of g, and so that
of a. Further, recall x = n2n

2
1/(c

3m). As Li [20] points out, the stationary phase
point of the integral in (4.20) is at y0 = x2c6. The constants 1/4 and 9/2 in the
limits of this integral give a segment that the support of a is contained in, since

g ∈ C∞
c ([1, 2]). In (4.18), from the support of g, and since k̂∗ is a Schwartz function,

we can assume
N

m2
≤ y ≤ 2N

m2
and

MTc

2π2√y
� T ε.

Using this information, simple calculus estimates give us

(4.21) u
(r)
2 (y) � T1M

−r
1 for r = 1, 2, . . . , 2n0 + 3

and

(4.22) a(r)(y) � U1N
−r
1 for r = 0, 1, 2, . . . , 2n0 + 1

for y in the segment. Here n0 ∈ N will be chosen in terms of ε0 later, and

(4.23) M1 =
N

m2
, T1 =

√
N

cm
, N1 =

N3/2

T 2cm3
, U1 =

( N

m2

)−13/12

.

Further, u
(2)
2 (y) � T1M

−2
1 for y ∈ [ 14x

2c6, 9
2x

2c6]. The condition N1 ≥ M1/
√
T1 is

then consistent with our assumption c ≤ C2/m when M ≥ T 1/3+2ε.
Then, all assumptions (2.2) and (2.3) are satisfied for parameters in (4.23), and

we apply Proposition 2.2 (where we take n = n0). Or, one may use Blomer, Khan,
and Young’s version in [3]. The main term of the integral in (4.20) is

(4.24)
e(u2(y0)± 1/8)√

|u′′
2 (y0)|

(
a(y0) +

n0∑
j=1

�2j
(−1)j(2j − 1)!!

(4πiλ2)j

)
,

where �2j are defined above and λ2 = u′′
2(y0)/2. Notice we have used γ − α �

β − γ � M1, with α = 1
4x

2c6, β = 9
2x

2c6, and γ = y0 = x2c6. To save time in
estimates, notice there are no boundary terms here. This is due to the compact
support of a, with itself and all of its derivatives zero at 1

4x
2c6 and 9

2x
2c6. The sum

of the four error terms in Proposition 2.2 can be simplified to

(4.25) O
( U1M

2n0+2
1

Tn0+1
1 N2n0+1

1

)
.

This estimate uses the current assumptions on c and m, and the size of N compared
to T . Note that M1 � N1.
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We need to estimate this error term, as well as error terms coming from the �2j

terms which will be very similar. First we need a nifty estimate from Li [20]. Using
the basic definitions, as Li points out (equation (4.22) of [20])

(4.26)
∑∗

0≤d≤c

e
(d
c

)
S(md, n2;mcn−1

1 ) =
∑∗

u (modmcn−1
1 )

S(0, 1 + un1; c)e
( n2ū

mcn−1
1

)
.

Here uū ≡ 1(mod mcn−1
1 ) and

S(0, a; c) =
∑∗

v(mod c)

e
(av

c

)

is the Ramanujan sum, which is � (a, c). Then (4.26) is bounded by

(4.27) �
∑∗

u (modmcn−1
1 )

(1+un1,c)

=
∑
d|c

d
∑

u (modmcn−1
1 )

(1+un1,c)=d

1 �
∑
d|c

d
∑

u (modmcn−1
1 )

un1≡−1( mod d)

1.

Now (n1, d) = 1 and so n̄1 exists (mod d). Thus the last inner sum in (4.27) is over
all u with 0 ≤ u < mcn−1

1 and u ≡ −n̄1(mod d). The number of such terms is
clearly � mc/(dn1). Plugging this into (4.27) we see that (4.26) is bounded by

(4.28)
∑∗

0≤d≤c

e
(d
c

)
S(md, n2;mcn−1

1 ) � mc

n1

∑
d|c

1 � mc1+ε

n1
.

Now let us turn back to (4.15) with (3.4) and (3.3). As we pointed out before,
we will only consider the contribution from Ψ0(x) for x = n2n

2
1/(c

3m). In other
words,

R̃+
3 � MT

∑
m≤C2

1

m

∑
c≤C2/m

c1/2
∑

n1|cm

∑
n2>0

|A(n2, n1)|
n1n2

×
∣∣∣Ψ0

(n2n
2
1

c3m

)∣∣∣ ∣∣∣ ∑∗

0≤d≤c

e
(d
c

)
S(md, n2;mcn−1

1 )
∣∣∣.

(4.29)

We know that we need to actually consider the contribution from the second term
in (4.16). Using (4.28), (4.29) can be reduced to

R̃+
3 � MT

∑
m≤C2

m−2/3
∑

c≤C2/m

c−1/2+ε
∑

n1|cm
n
−2/3
1

∑
n2


√
N/n2

1

× |A(n2, n1)|
n
1/3
2

∫ ∞

0

e(u2(y))a(y)dy.

(4.30)

The following lemma is specific to the estimation of (4.30).

Lemma 4.2. Assume α ≥ −1/2 and δ − α ≥ 1/6. Suppose we have a term
bounded by O(cαT βNγmδ) with specific numbers α, β, δ, and γ for the integral in

(4.30). Then the contribution of this term to R̃+
3 is

� M2/3−δ−2εT 13/6+β+3γ+δ/2+ε1 ,

where ε is arbitrarily small from (4.28) and ε1 = ε(11/6 + 3δ/2 + γ) + 3ε2.
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Proof. By (4.30) the contribution of O(cαT βNγmδ) to R̃+
3 is

(4.31)

� MT
∑

m≤C2

m−2/3
∑

c≤C2/m

c−1/2+ε
∑

n1|cm
n
−2/3
1

∑
n2


√
N/n2

1

|A(n1, n2)|
n
1/3
2

cαT βNγmδ.

Note that the innermost sum in (4.31) is over (4.19). Also note Li [20] seems to
have used the estimate (mc)1+ε instead of the estimatemc1+ε/n1 from (4.28). Since
the sum on n1 is a divisor sum, this is not an issue here. Using the estimates for
|A(n1, n2)| (see (3.5)) and partial summation one has

∑
n2


√
N/n2

1

|A(n1, n2)|
n
1/3
2

� n1

(√N

n2
1

)2/3

.

Since the number of divisors of cm is � (cm)ε this simplifies the contribution to
(4.31) to

(4.32) � MT 1+βN1/3+γ
∑

m≤C2

m−2/3+ε+δ
∑

c≤C2/m

c−1/2+2ε+α.

From a calculus estimate, we have∑
c≤C2/m

c−1/2+2ε+α �
(C2

m

)1/2+2ε+α

,

because α ≥ −1/2 and m ≤ C2. Plugging this into (4.32) and using C2 =√
N/(T 1−εM) we have

(4.33) � MT 1+βN1/3+γ
( √

N

T 1−εM

)1/2+2ε+α ∑
m≤C2

m−7/6+δ−α−ε.

Now, since δ − α ≥ 1/6, we have

(4.34)
∑

m≤C2

m−7/6+δ−α−ε � C
−1/6+δ−α−ε
2 + 1 � C

−1/6+δ−α
2 ,

because C2 =
√
N/(T 1−εM) = T 1/2+ε/M ≥ T ε. Inserting (4.34) into (4.33), we

see (4.31) is bounded by

� M2/3−δ−2εT 2/3+β−δ+ε(δ−5/3+2ε)N1/2+γ+δ/2+ε.

Now plugging in N = T 3+ε gives our lemma. �

Now let us turn back to the error term (4.25). By (4.23), (4.25) can be written
as

(4.35) O
(
c3n0+2T 4n0+2N− 3

2n0− 13
12m3n0+

13
6

)
.

Since (3n0 + 13/6)− (3n0 + 2) = 1/6, we may apply Lemma 4.2 to (4.35) and get

its contribution to R̃+
3 as

(4.36) O(M−3n0−3/2−2εTn0+2+ε1),

where ε > 0 is arbitrarily small as in (4.28) and ε1 = ε(3n0 + 4) + 3ε2. For any
ε0 > 0 arbitrarily small, we want to make (4.36) � T 1+ε0M . This can be done if

(4.37) M ≥ T
n0+1+ε1−ε0
3n0+5/2+ε .
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We will choose n0 later depending on ε0. Notice that if n0 = 1/2, we pick up the
3/8 constant of Li [20] from (4.37). This concludes the estimation of contribution

of error terms (4.25) in Proposition 2.2 to R̃+
3 .

We now need to deal with the �2j terms in (4.24) and their contribution to R̃+
3 .

Recall the expression for �2j in (2.4). Here we take 2 ≤ 2j ≤ 2n0. One can see

from (2.4) that the main term from �2j is a(2j)(y0). (Here a(y) given in (4.18) and
u2(y) in (4.17) take the place of g and f in Proposition 2.2. Further y0 takes the
place of γ.) Using the estimates in (4.21) and (4.22) along with |u′′

2(y0)| � T1/M
2
1

and along with our current assumptions on c and m in (4.13), we have

(4.38) �2j − a(2j)(y0) = O
( U1

M1N
2j−1
1

)
.

The constant ultimately depends on n0, and we have used M1 � N1. To estimate

the contribution of this error term (4.38) to R̃+
3 , we must divide by λ

j+ 1
2

2 and sum

over j. (See (4.24).) Since y0 � N/m2, we have λ2 � m3N−3/2/c. We then have
that this contribution is

�
( N

m2

)− 25
12
(T 2cm3

N
3
2

)2j−1(cN 3
2

m3

)j+ 1
2

= O
(
c3j−

1
2T 4j−2N− 3

2 j+
1
6m3j− 1

3

)
.

Since (3j − 1/3)− (3j − 1/2) = 1/6, by Lemma 4.2 the nonleading terms (4.38) of

�2j contribute the following to R̃+
3 :

(4.39) O
(
M1−3j−2εT j+1/2+ε1

)
with ε1 = ε(3j + 3/2) + 3ε2,

which is

(4.40) � T 1+ε0M if M ≥ T
j−1/2+ε1−ε0

3j+2ε .

So we have
j − 1/2 + ε1 − ε0

3j + 2ε
≤ 1

3
− 1

6j
+ 3ε

for j ≥ 1. Thus the condition on M in (4.40) is always true for M ≥ T 1/3.
We must now estimate the a(2j)(y0) term in �2j in (4.24). Recall that a(y) is

given in (4.18). Then a(2j)(y) will consist of a sum of terms of the following form.
Let i1 be the number of times g(m2y/N) is differentiated (with respect to y) plus
the number of times a power of y is differentiated. So at every differentiation either
the factor m2/N comes out or, up to a constant, the factor 1/y comes out. Notice

that 1/y � m2/N . Let i2 be the number of times k̂∗
(

MTc
2π2√y

)
is differentiated,

and put i3 to be the number of times e
(

−T 2c
4π2√y

)
is differentiated. (Note that we

have no restriction on the order of differentiation and that a(2j)(y) will be a sum of
these terms over different possible orders of differentiation with various coefficients.)
Then i1+ i2+ i3 = 2j, and neglecting coefficients (which ultimately depend on n0),
a(2j)(y0) is bounded by the sum over all combinatorial possibilities of

(4.41)
( N

m2

)− 13
12−i1(MTcm3

N
3
2

)i2(T 2cm3

N
3
2

)i3
.

The main term is (4.41) when i3 = 2j, and we will estimate this separately,
below. So we can assume in all terms (4.41), now, that i1 + i2 ≥ 1. To estimate
this error term, which is all but one term in a(2j)(y0), as before, in (4.24), we must
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divide by λ
j+ 1

2
2 , where λ2 � m3N−3/2/c with our assumption on y0. We have then

a sum of error terms which are all

(4.42) O
(
M i2cj+i2+i3+

1
2T i2+2i3N

3
2 j−i1− 3

2 i2−
3
2 i3−

1
3m−3j+2i1+3i2+3i3+

2
3

)
.

Using i3 = 2j − i1 − i2, by Lemma 4.2 this error term (4.42) can be seen to be

(4.43) � M−3j+i1+i2−εT j−i1−i2+
3
2+ε ≤ T 1+ε0M if M ≥ T

j−i1−i2+ 1
2
+ε1−ε0

3j−i1−i2+1+ε .

Here ε1 = ε(3j − i1 + 9/2) + 3ε2. Now

j − i1 − i2 +
1
2 + ε1 − ε0

3j − i1 − i2 + 1 + ε
≤

j − i1 − i2 +
1
2

3j − i1 − i2 + 1
+ 10ε.

We are assuming 1 ≤ i1 + i2 ≤ 2j with j ≥ 1, and so

j − i1 − i2 +
1
2

3j − i1 − i2 + 1
+ 10ε ≤ 1

3
− 1

6j
+ 10ε.

Consequently, the latter condition on M in (4.43) is always true for M ≥ T 1/3.
This leaves the main term of a(2j)(y0) (where i3 = 2j and i1 = i2 = 0), which is

(4.44) αj

(T 2c

y
3
2

)2j

g
(m2y

N

)
k̂∗

( MTc

2π2√y

)
e
( −T 2c

4π2√y

)
y−13/12

∣∣∣∣
y0

=: a2j(y0).

Here, the constant αj depends on j which ultimately can be bounded in terms of
n0. If we estimate this similarly, we will get an estimate similar to (4.37) with 2j
replacing n0. Instead, we will apply the Voronoi formula to (4.44). This is very
similar to Li [20], in applying the Voronoi formula a second time, but only to the
main term

e(u2(y0) + 1/8)√
|u′′

2 (y0)|
a(y0)

in (4.24). It appears that the term (T 2cy−
3
2 )2j in (4.44) for 1 ≤ j ≤ n0 is on

average � 1 in summing over m and c, and so we do not improve upon the second
application of Voronoi to the term for just j = 0.

Recall that in (4.16) we have

x =
n2n

2
1

c3m
, y0 = x2c6 =

n2
2n

4
1

m2
.

Further, λ2 = 1
12c

−1y
− 3

2
0 . The contribution to R̃+

3 of a2j(y0) in (4.13) is then

� R̃+
3,j , where

R̃+
3,j = MT

∑
m≤C2

1

m

∑
c≤C2/m

1

c
1
2

∑
n1|cm

∑
n2>0

c
A(n1, n2)

n1n2
(4.45)

×
∑∗

u (modmcn−1
1 )

S(0, 1 + un1; c)e
( n2ū

mcn−1
1

)
e(−xc2)x

2
3
a2j(y0)

λ
j+ 1

2
2

.
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Inserting what x, y0, and λ2 are in terms of n1, n2, c, and m into (4.45) we have

R̃+
3,j = MT 4j+1

∑
m≤C2

m3j−1
∑

c≤C2/m

c3j−1
∑

n1|cm

1

n6j+1
1

∑
n2>0

A(n2, n1)

n3j+1
2

(4.46)

×
∑∗

u (modmcn−1
1 )

S(0, 1 + un1; c)e
( n2ū

mcn−1
1

)
e
(
− n2n

2
1

cm

)

× g
(n2

2n
4
1

N

)
k̂∗

( MTcm

2π2n2n2
1

)
e
(
− T 2cm

4π2n2n2
1

)
.

In (4.46) we can switch the sums over n2 and u, and pull out S(0, 1+un1; c) which
does not depend on n2. Then the inner sum on n2 is

(4.47)
∑
n2>0

A(n2, n1)e
(n2u

′

c′

)
bj(n2),

where

(4.48) bj(y) =
1

y3j+1
g
(y2n4

1

N

)
k̂∗

(MTcm

2π2yn2
1

)
e
(
− T 2cm

4π2yn2
1

)
and

(4.49)
u′

c′
=

ū− n1

mcn−1
1

, with (u′c′) = 1 and c′|mcn−1
1 .

We now apply the Voronoi formula for GL(3) (Lemma 3.1) a second time to
(4.47). (See (4.25) of Li [20].) We have∑

n2≥1

A(n1, n2)e
(n2u

′

c′

)
b(n2)(4.50)

=
c′

4π5/2i

∑
l1|c′n1

∑
l2>0

A(l2, l1)

l1l2
S(n1ū′, l2;n1c

′l−1
1 )B0

0,1

( l21l2
c′3n1

)

+
c′

4π5/2i

∑
l1|c′n1

∑
l2>0

A(l2, l1)

l1l2
S(n1ū′,−l2;n1c

′l−1
1 )B1

0,1

( l21l2
c′3n1

)
.

(We followed Li [20] in using the notation B rather than Ψ.) From (4.50) we have

x = l2l
2
1/(c

′3n1). From the function g(y2n4
1/N) in (4.48) we have X =

√
N/n2

1.
Then

xX =
l2l

2
1

√
N

c′3n3
1

≥ l2l
2
1

√
N

c3m3
≥ l2l

2
1

√
N

C3
2

≥ l2l
2
1T

3/2−3εM3 � 1

by (4.49). Consequently we can apply Lemma 3.2 to B0(x) in (4.50) which is, up
to a negligible amount and lower order terms (up to a constant),

(4.51) x2/3

∫ ∞

0

e(v2(y))qj(y) dy,

where

(4.52) v2(y) = −3(xy)1/3 − T 2cm

4π2yn2
1

and

(4.53) qj(y) = y−3j− 4
3 g

(y2n4
1

N

)
k̂∗

(MTcm

2π2yn2
1

)
.
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See equation (4.26) of Li [20]. We need only consider the case

T 6c3m3n2
1

103π6N2
≤ x ≤ T 6c3m3n2

1

10π6N2
.

Thus

(4.54) x =
l2l

2
1

c′3n1
� T 6c3m3n2

1

π6N2
.

By the compact support of g, we may assume the integral (4.51) is taken over a com-
pact segment in y so that 1 ≤ y2n4

1/N ≤ 2. With these assumptions, differentiating
(4.52) we have

|v′′2 (y)| �
T 2cmn4

1

N3/2
.

By (4.53) the variation of qj over this interval can be seen to be � y
−3j− 4

3
0 T ε. This

computation uses basic estimates with simple calculus. Also needed is that

y �
√
N

n2
1

, n1 ≤ cm ≤ C2 =

√
N

T 1−εM
, and M ≥ T 1/3+2ε.

Then, by the second derivative test (see Huxley [11]), we have by (4.54) that

B0(x) �
( l2l

2
1

c′3n1

) 2
3
(T 2cmn4

1

N−3/2

)−1/2(√N

n2
1

)−3j− 4
3

T ε(4.55)

� T 3+εc3/2N− 3
2 j−

5
4n6j+2

1 m3/2.

Put

L2 =
T 6c3m3n3

1c
′3

π6N2l21
.

Combining (4.55), (4.46), and (4.50) we see

R̃+
3,j � MT 4j+1

∑
m≤C2

m3j−1
∑

c≤C2/m

c3j−1
∑

n1|cm

1

n6j+1
1

∑
u( mod mcn−1

1 )

(1 + un1, c)c
′

(4.56)

×
∑

l1|c′n1

∑
l2
L2

|A(l1, l2)|
l1l2

×
(n1c

′

l1

)
(T 3+εc

3
2N− 3

2 j−
5
4n6j+2

1 m
3
2 ).

Here l2 � L2 means L2/10
3 ≤ l2 ≤ L2/10. Also, we have used the trivial bound

for the Kloosterman sum: ∣∣∣S(n1ū, l2;
n1c

′

l1

)∣∣∣ ≤ n1c
′

l1
.

Using the estimate (4.28) and that c′ ≤ mc/n1, we deduce from (4.56) that

R̃+
3,j � N− 3

2 j−
5
4MT 4+ε

∑
m≤C2

m3j+ 7
2

∑
c≤C2/m

c3j+
7
2+ε(4.57)

×
∑

n1|cm

1

n1

∑
l1|c′n1

1

l21

∑
l2
L2

|A(l1, l2)|
l2

.

Now

(4.58)
∑

l2
L2

|A(l1, l2)|
l2

� l1L
ε
2 � l1−2ε

1

T 6εc6εm6ε

N2ε
,
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(4.59)
∑

l1|c′n1

1

l1+2ε
1

= O(ε−1),
∑

n1|cm

1

n1
≤

∑
n1≤cm

1

n1
� cεmε.

Consequently by (4.58) and (4.59), (4.57) is bounded by

R̃+
3,j � N− 3

2 j−
5
4MT 4j+4+7ε

∑
m≤C2

m3j+ 7
2+7ε

∑
c≤C2/m

c3j+
7
2+8ε.

Simple calculus and similar estimates then give us

(4.60) R̃+
3,j � N− 3

2 j−
5
4MT 4j+4+7εC

3j+ 9
2+8ε

2 .

Plugging in N = T 3+ε and C2 =
√
N/(T 1−εM) into (4.60), we see

(4.61) R̃+
3,j � M−3j− 7

2−8εT j+ 5
2+ε2 .

Here ε2 = ε(3j + 33/2) + 12ε2. This final term (4.61) is ≤ MT 1+ε0 if

(4.62) M ≥ T

j+3
2
+ε2−ε0

3j+9
2
+8ε .

Now 0 ≤ j ≤ n0 and (with 0 < ε ≤ 1/2)

j + 3
2 + ε2 − ε0

3j + 9
2 + 8ε

≤ 1

3
+

3j

3j + 9
2

ε+
33/2

3j + 9
2

ε+
12

3j + 9
2

ε2 ≤ 1

3
+ 6ε.

Thus (4.62) is always true for M ≥ T
1
3+6ε.

Now we have showed that R+
1 � 1 after (4.9) and that R+

2 is negligible after
(4.12). For R+

3 , other than negligible terms, if we take arbitrarily small ε0 > 0,

we have proved the bound O(T 1+ε0M) for M ≥ T 1/3 in (4.40) and (4.43), and for
M ≥ T 1/3+6ε in (4.61) and (4.62), where ε > 0 is arbitrarily small independently.
The only bound left is (4.36) which is O(T 1+ε0M) when (4.37) holds, where ε > 0
is arbitrarily small as in (4.28) and ε1 = ε(3n0 +4)+ 3ε2. To have O(T 1+ε0M) for
any M ≥ T 1/3+ε0 we require

(4.63)
n0 + 1 + ε1 − ε0
3n0 + 5/2 + ε

≤ 1

3
+ ε0.

Solving (4.63) for n0 we conclude that (4.36) is � T 1+ε0M for M ≥ T 1/3+ε0

provided we take n0 sufficiently large, i.e., if we take sufficiently many main terms
in (4.24) when we apply Proposition 2.2:

(4.64) n0 ≥ 1

ε0 − ε

( 1

18
+

11ε

9
− 7ε0

6
+ ε2 − εε0

3

)
.

Here we may simply take ε = ε0/6.
Therefore, we have proved that R+ in (3.14) is bounded by T 1+ε0M for M ≥

T 1/3+ε0 by choosing n0 satisfying (4.64) and setting the ε in (4.61) equal to ε0/6.

5. K-Bessel function terms

Following Li [20] we split R− as in (3.16) into R−
1 +R−

2 with

R−
1 =

∑
m≥1

∑
n≥1

A(m,n)

(m2n)
1
2

g
(m2n

N

) ∑
c≥C/m

c−1S(n,−1; c)H−
m,n

(4π√n

c

)
,(5.1)

R−
2 =

∑
m≥1

∑
n≥1

A(m,n)

(m2n)
1
2

g
(m2n

N

) ∑
c≤C/m

c−1S(n,−1; c)H−
m,n

(4π√n

c

)
,(5.2)
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where H−
m,n is defined in (3.17) and C =

√
N + T . In estimating R−

1 , one can
express the K-Bessel function in terms of the I-Bessel function. Set σ = 100. Then
the estimates for the I-Bessel function, along with Li’s previous estimates of V (see
(4.7) and (5.6) of Li [20]), give a bound for (5.1) (using the trivial bound for the
Kloosterman sum):

(5.3) R−
1 � MTσ+1+ε

∑
m≤

√
2N

1

m1+2σ

∑
n≤ 2N

m2

A(m,n)

n
1
2

∑
c≥C/m

1

c2σ
e4π

√
n
c .

Using n ≤ 2N/m2 and c ≥ C/m we see that e4π
√
n/c � 1. Further,∑

c≥C/m

1

c2σ
�

(C

m

)1−2σ

and
∑

n≤ 2N
m2

A(m,n)

n
1
2

� m
(2N
m2

) 1
2

.

Plugging this into (5.3) and noting that the sum over m converges, we have

(5.4) R−
1 �

√
NMTσ+1+εC1−2σ � 1

for ε sufficiently small. Notice this bound holds for T ε ≤ M ≤ T 1−ε.
Following the derivation in Li [20], up to a negligible term, we can write

(5.5) H−
m,n(x) = H−,1

m,n(x) +H−,2
m,n(x),

where

H−,j
m,n(x) =

4M jT 2−j

π

∫
R

∫
|ζ|≤T ε

tj−1e−t2V (m2n, tM + T )

× cos(x sinh ζ)e
(
− (tM + T )ζ

π

)
dtdζ,

for j = 1, 2. In (5.5) H−,2
m,n(x) is a lower-order term. We only work with H−,1

m,n(x),

since the analysis with H−,2
m,n(x) is similar. Up to a negligible amount, we can write

H−,1
m,n(x) = 4Ym,n(x), where

Ym,n(x) =
Y ∗
m,n(x) + Y ∗

m,n(−x)

2
,

with

(5.6) Y ∗
m,n(x) = T

∫
R

k̂∗(ζ)e
(
− Tζ

M
+

x

2π
sinh

ζπ

M

)
dζ.

The part of the integral over |ζ| ≥ Mε/2 in (5.6) is negligible. Further, with this
assumption, it can be shown by integration by parts that Y ∗

m,n(x) is negligible unless

(5.7)
T

100
≤ |x| ≤ 100T and

x

M3
� T−ε,

which we now assume. Recall M ≥ T
1
3+2ε. Thus, the sum over c in (5.2) for which

c ≥ 400π
√
N

Tm
or c ≤

√
2π

√
N

25Tm

is negligible. We thus may assume
√
2π

√
N

25Tm
≤ c ≤ 400π

√
N

Tm

and we will denote this by c �
√
N/(Tm).
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Using one more nonzero term in the Taylor expansion than Li [20], estimating,
we have

Y ∗
m,n(x) = T

∫
R

k̂∗(ζ)e
(
− Tζ

M
+

xζ

2M
+

π2xζ3

12M3
+

π4xζ5

240M5
+

π6xζ7

2 · 7!M7

)
dζ(5.8)

+O
(
T

∫
R

|k̂∗(ζ)| |ζ|
9|x|

M9

)
.

Now, expanding

e
(π2xζ3

12M3
+

π4xζ5

240M5
+

π6xζ7

2 · 7!M7

)
in (5.8) into a Taylor series of order L2 (which could depend on ε) we have

Y ∗
m,n(x) = T

∫
R

k̂∗(ζ)e
(
− (2T − x)ζ

2M

)

×
∑

j1+j2+j3≤L2

dj1,j2,j3

(xζ3
M3

)j1(xζ5
M5

)j2(xζ7
M7

)j3
dζ

+O
(T |x|L2+1

M3L2+3
+

T |x|
M9

)
,

where dj1,j2,j3 are constants with d0,0,0 = 1 with the sum taken over j1 ≥ 0, j2 ≥ 0,
and j3 ≥ 0. It follows that

Y ∗
m,n(x) = T

∑
j1+j2+j3≤L2

dj1,j2,j3 · xj1+j2+j3

(2πiM)3j1+5j2+7j3
k∗(3j1+5j2+7j3)

(x− 2T

2M

)
(5.9)

+O
(T |x|L2+1

M3L2+3

)
+O

(T |x|
M9

)
.

We take L2 large enough (possibly depending on ε) so that the first error term
in (5.9) is negligible, or rather has as fast an inverse polynomial decay as desired.
(Recall (5.7).) The contribution to R−

2 coming from the error term O
(
T |x|/M9

)
can be seen to be bounded by

(5.10)
T 2

M9

∑
m≤

√
2N

1

m

∑
n≤2N/m2

|A(m,n)|
n

1
2

∑
c≤C/m

|S(n,−1; c)|
c

.

Using Weil’s bound for S(n,−1; c) we see∑
c≤C/m

|S(n,−1; c)|
c

�
(C

m

) 1
2+ε

.

Estimating similarly to the above, we see that (5.10) is bounded by

� T 2

M9
C

1
2+ε

√
N =

T 2+ 3
2+

3
4+ε

M9
.

The above is � T 1+εM by a power of T for M ≥ T
1
3+2ε.

We take the leading term in the finite series for Y ∗
m,n(x) in (5.9), as the terms

with higher derivatives of k∗ can be handled in the same way. It follows that we
need to bound

(5.11) R̃−
2 = T

∑
m≥1

∑
n≥1

A(m,n)

(m2n)
1
2

g
(m2n

N

) ∑
c


√
N

Tm

S(n,−1; c)

c
k∗

(4π√n/c− 2T

2M

)
.
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Denote

r(y) = g
(m2y

N

)
k∗

(4π√y/c− 2T

2M

)
y−

1
2 ,

which is a smooth function of compact support. From x = n2n
2
1/(c

3m) and X =
N/m2 we know

xX =
n2n

2
1N

c3m3
≥ n2n

2
1N

C3
≥ T

3
2−ε � 1.

Consequently we may apply the Voronoi formula (Lemma 3.1) and its asymptotic
expansion (Lemma 3.2) to the sum over n in (5.11). As in Li [20] we only consider
R0(x) (see (5.11) of [20]), which is (up to lower order terms)

R0(x) = 2π4xi

∫ ∞

0

r(y)
d1 sin(6π(xy)

1
3 )

π(xy)
1
3

dy.

Li [20] states that (in an equivalent form) if n2 � N
1
2 T ε

M3n2
1
, then r′(y)x− 1

3 y
2
3 � T−ε.

For this assumption on n2, the integral term in R0 as well as the contribution to

R̃−
2 is found to be negligible.

Thus, we may assume n2 � N
1
2 T ε

M3n2
1
. Now, r(y) is negligible unless

∣∣∣2π√y/c− T

M

∣∣∣ ≤ T ε.

This gives us an interval of width � T 1+εMc2 where y � N/m2, and so

R0(x) �
(n2n

2
1

c3m

) 2
3
( N

m2

)− 5
6

T 1+εMc2.

Using this estimate along with (4.28) it follows from (5.11) that

R̃−
2 � T

∑
m≤

√
2N

∑
c


√
N

Tm

∑
n1|cm

∑
n2�

√
NT ε/(M3n2

1)

|A(n1, n2)|
n1n2

mc1+ε

n1

(5.12)

×
(n2n

2
1

c3m

) 2
3
( N

m2

)− 5
6

T 1+εMc2

= T 2+εMN− 5
6

∑
m≤

√
2N

m
∑

c
C/m

c1+ε
∑

n1|cm
n
− 2

3
1

∑
n2�

√
NT ε/(M3n2

1)

|A(n1, n2)|
n

1
3
2

.

Estimating similarly to the last section, the inner sum in (5.12) is

∑
n2�

√
NT ε/(M3n2

1)

|A(n1, n2)|
n
1/3
2

� n1

(√NT ε

M3n2
1

)2/3

.

Plugging this and ∑
n1|cm

1

n1
� (cm)ε

into (5.12) we see

R̃−
2 � T 2+5ε/3M−1N−1/2

∑
m≤

√
2N

m1+ε
∑

c

√

N
Tm

c1+2ε.
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Now ∑
c


√
N

Tm

c1+2ε �
(√N

Tm

)2+2ε

and
∑

m≤
√
2N

1

m1+ε
� 1

ε
.

Consequently, R̃−
2 � T

3
2+

13
6 εM−1. This is clearly smaller than T 1+ε0M if M ≥

T 1/4+13ε/12−ε0/2.
Together with (5.4) for T ε ≤ M ≤ T 1−ε, we conclude that R− � T 1+ε0M if

M ≥ T 1/3. Recall that D in (3.13) is negligible for T ε ≤ M ≤ T 1−ε as we pointed at
the end of Section 3. Together with our conclusion at the end of Section 4 forR+, we
have proved that R in (3.12) is bounded by O(T 1+ε0M) for T 1/3+ε0 ≤ M ≤ T 1/2.
This implies Theorem 1.1. �
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