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DEHN FILLINGS AND ELEMENTARY SPLITTINGS

DANIEL GROVES AND JASON FOX MANNING

Abstract. We consider conditions on relatively hyperbolic groups about the
nonexistence of certain kinds of splittings and show these properties persist
in long Dehn fillings. We deduce that certain connectivity properties of the
Bowditch boundary persist under long fillings.

1. Introduction

Thurston’s Hyperbolic Dehn Filling Theorem [Thu80, Section 5.8] shows that
sufficiently long (topological) Dehn fillings of a 1–cusped hyperbolic manifold are
closed hyperbolic manifolds. In particular the fundamental groups of these fill-
ings are one-ended and word hyperbolic. Thurston’s argument is to deform the
hyperbolic structure on the cusped manifold to one whose completion is the filled
manifold. Gromov and Thurston’s 2π-Theorem [BH96] makes the hypothesis of
“sufficiently long” more quantitative, concluding that the filled manifold is neg-
atively curved. Agol and Lackenby’s 6-Theorem [Ago00, Lac00] shows that the
group-theoretic conclusions can be obtained by a softer, more combinatorial argu-
ment. This work was part of the inspiration for results about purely group-theoretic
Dehn filling obtained by Osin [Osi07] and the authors [GM08], and generalized still
further in the work of Dahmani–Guirardel–Osin [DGO11]. These results all have
a “hyperbolic-like” conclusion analogous to that of the 6-Theorem. However, none
say anything about one-endedness of the quotient. The following result remedies
this.

Theorem 1.1. Suppose that (G,P) is relatively hyperbolic, with P consisting of
virtually polycyclic subgroups. If G does not admit any nontrivial elementary split-
tings, then sufficiently long Dehn fillings of G do not admit any nontrivial elemen-
tary splittings.

Let us clarify some terminology. In this paper, when we say that (G,P) is
relatively hyperbolic (Definition 2.1), we always assume G is finitely generated and
that no P ∈ P is equal to G. We do not assume that the elements of P are infinite or
nonrelatively hyperbolic. An elementary subgroup (Definition 2.4) is one which is
either virtually cyclic or parabolic. For sufficiently long Dehn fillings see Definition
1.3.

In Subsection 1.2 we explain the connection between Theorem 1.1 and Thurston’s
Hyperbolic Dehn Filling Theorem. In particular we can deduce the one-endedness
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of fundamental groups of sufficiently long classical fillings of a hyperbolic 3–manifold
without using the fact they are nonpositively curved manifolds.

Example 1.13 shows that in our more general setting it is not enough to assume
that G is one-ended in order to infer that long fillings are one-ended (even when the
elements of P are abelian). Theorem 1.1 follows from a much more general result,
Theorem 1.6, which we state in Subsection 1.1 below.

Another of our motivations is to understand the relationship between the Bow-
ditch boundary of a relatively hyperbolic group and the Bowditch boundary of long
Dehn fillings (or, in case the filled group is hyperbolic, the Gromov boundary). In
the case of classical Dehn filling, the Bowditch boundary of the original group is
S2, as is the Gromov boundary of the filled group. In Section 7, we review work
of Bowditch and others on the close relationship between connectedness properties
of the boundary of a relatively hyperbolic group and (non)existence of elementary
splittings of the group. Using these results, we prove:

Theorem 1.2. Suppose that (G,P) is relatively hyperbolic, with P consisting of
virtually polycyclic groups. Suppose that ∂(G,Pred) is connected with no local cut
points. Then for all sufficiently long fillings (Ḡ, P̄), we have ∂(Ḡ, P̄red) connected
with no local cut points.

The peripheral structure Pred is found by discarding the hyperbolic subgroups
of P. This can be done without affecting the relative hyperbolicity of the group
pair. In the case of classical Dehn filling, it corresponds to considering the filled
group as a hyperbolic group and considering its Gromov boundary. See Section 7
for more details.

1.1. Main results. We now proceed to give a description of the more technical
Theorem 1.6 and show why it suffices to prove Theorem 1.1. We also state a related
result, Theorem 1.8, and give another application to the Bowditch boundary.

Definition 1.3. Suppose that G is a group and P = {P1, . . . , Pn} is a collection
of subgroups. A Dehn filling (or just filling) of (G,P) is a quotient map: φ : G →
G/K, where K is the normal closure in G of some collection Ki � Pi. We write

G/K = G(K1, . . . ,Kn)

for this quotient. The subgroups K1, . . . ,Kn are called the filling kernels. We also
write φ : (G,P) → (Ḡ, P̄), where P is the collection of images of the P ∈ P.

We say that a property holds for all sufficiently long fillings of (G,P) if there is
a finite set B ∈ G� {1} so that whenever Ki ∩ B = ∅ for all i, the group G/K has
the property.

See Subsection 2.2 for more details. See Definition 2.1 for the definition of what
it means for (G,P) to be a relatively hyperbolic group pair, and see Theorem 2.17
for the main result of relatively hyperbolic Dehn filling.

Definition 1.4. A group H is small if H has no subgroup isomorphic to a non-
abelian free group.

A group H is slender if every subgroup of H is finitely generated.

Definition 1.5. Let (G,P) be a group pair and let M be the class of all finitely
generated groups with more than one end. We say that a filling of (G,P) is M-
finite if for all P ∈ M∩ P, the associated filling kernel K � P has finite index in
P .
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We say that a filling of (G,P) is co-slender if for each P ∈ P with associated
filling kernel K, the group P/K is slender.

The following is the first main result of this paper.

Theorem 1.6. Let G be a group which is hyperbolic relative to a finite collection
P of subgroups, and suppose that all small subgroups of G are finitely generated.
Furthermore, suppose that G admits no nontrivial elementary splittings. Then all
sufficiently long M–finite co-slender fillings (G,P) → (Ḡ, P̄) have the property that
Ḡ admits no nontrivial elementary splittings.

Remark 1.7. For G hyperbolic or (G,P) relatively hyperbolic with P consisting
of slender groups, the hypothesis that small subgroups are finitely generated holds
(see Lemma 2.11 below).

Proof of Theorem 1.1 from Theorem 1.6. By Lemma 2.11 below, if all elements of
P are virtually polycyclic (or more generally slender) and (G,P) is relatively hy-
perbolic, then all small subgroups of G are finitely generated. Moreover, in this
case the multi-ended elements of P are all two-ended. Suppose some Pi ∈ P is
two-ended. Then for all sufficiently long fillings G(K1, . . . ,Kn), the corresponding
filling kernel Ki is either trivial or finite index. Letting P ′ = P � {Pi}, the pair
(G,P ′) is also relatively hyperbolic, and has an elementary splitting if and only
if (G,P) does. Thus all sufficiently long fillings of (G,P) are M–finite fillings of
some (G,P ′) with P ′ ⊆ P. Moreover, any quotient of a virtually polycyclic group
is slender, so the assumption of the filling being co-slender is also satisfied. Thus,
Theorem 1.1 follows from Theorem 1.6. �

Theorem 1.6 concerns groups which do not admit any elementary splittings.
However, many one-ended relatively hyperbolic groups admit some elementary split-
tings over virtually cyclic groups, but no splittings over parabolic subgroups. It is
natural to ask if the nonexistence of splittings over parabolic subgroups persists
under long fillings. In this direction, the second main result of this paper is the
following.

Theorem 1.8. Let G be a group which is hyperbolic relative to a finite collection
P of subgroups, and suppose that all small subgroups of G are finitely generated.
Furthermore, suppose that G is one-ended and admits no proper peripheral split-
tings. Then all sufficiently long M–finite co-slender fillings (G,P) → (Ḡ, P̄) have
the property that Ḡ is one-ended and admits no splittings over parabolic subgroups.

See Subsection 2.3 for the definition of a proper peripheral splitting. We note
here that if the filled groups in the conclusion admit no splittings over parabolic
subgroups, then they admit no proper peripheral splittings.

Like Theorem 1.6, Theorem 1.8 has consequences for the Bowditch boundary.
Again the result is easiest to state for (G,P) with P consisting of virtually polycyclic
groups.

Theorem 1.9. Suppose that (G,P) is relatively hyperbolic, with P consisting of
virtually polycyclic groups. Suppose further that the Bowditch boundary ∂(G,P) is
connected with no cut point. Then for all sufficiently long M–finite fillings (G,P) �
(Ḡ, P̄), the resulting boundary ∂(Ḡ, P̄∞) is connected and has no cut points.
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Note that having Ḡ one-ended is a stronger condition than having the (reduced)
Bowditch boundary of (Ḡ, P̄) connected. For example, consider the relatively hy-
perbolic pair (F, {C}) where F is the fundamental group of a once-punctured torus
and C is the cyclic group corresponding to the puncture.

Question 1. For (G,P) relatively hyperbolic with ∂(G,P) connected without cut
points, is it true that ∂(Ḡ, P̄∞) is connected without cut points, for all sufficiently
long fillings? If not, what hypotheses weaker than slenderness and tameness are
required?1

Question 2. Our proofs are by contradiction, using limiting arguments. Are there
“effective” versions of our results?

1.2. Classical Dehn filling.

Definition 1.10. Let Mn be a manifold without boundary whose ends are all
homeomorphic to Tn−1×R. Remove neighborhoods of the ends E1, . . . , Ek, leaving
a manifold M̄ with boundary homeomorphic to a disjoint union of k manifolds, each
homeomorphic to Tn−1. To each of these boundary components Bi glue a copy of
D2×Tn−2 by some homeomorphism φi : ∂(D2×Tn−2) → Bi. We’ll call the result
a classical Dehn filling of M .

The following corollary of Theorem 1.1 makes explicit the connection to classical
Dehn filling and the 6-Theorem. (This corollary also follows from the fact that
the fillings support Riemannian metrics of nonpositive curvature [Sch89], so the
universal cover is Rn.)

Corollary 1.11. Let n ≥ 3. All sufficiently long classical Dehn fillings of a finite-
volume hyperbolic n–manifold have one-ended fundamental group.

Proof. Let M be such a manifold, G = π1M , and let P be the collection of funda-
mental groups of ends. The elements of P are free abelian of rank at least 2. In
particular they are one-ended and virtually polycyclic. The Bowditch boundary of
(G,P) can be identified with Sn−2, so it is connected and has no local or global cut
point. Work of Bowditch (see Corollary 7.9) then implies that G has no elementary
splitting. Theorem 1.1 implies that sufficiently long fillings are one-ended. �

Another group-theoretic consequence of Thurston’s Hyperbolic Dehn Filling
Theorem is that long fillings are torsion-free. In Section 4 we analyze how torsion
behaves under Dehn filling. In particular, Theorem 4.1 implies that for torsion-free
relatively hyperbolic groups, long enough fillings where each Pi/Ki is torsion-free
are torsion-free. It follows that fundamental groups of sufficiently long classical
Dehn fillings of finite-volume hyperbolic manifolds are torsion-free. (This result
also follows from the above-cited result of Schroeder.)

1.3. Cautionary examples. We collect here some examples to illustrate the im-
portance of the hypotheses in Theorem 1.8.

Example 1.12. Except in this example, when (G,P) is relatively hyperbolic, we
assume no P ∈ P is equal to G (in some sources, the pair is then said to be properly
relatively hyperbolic). The following shows the necessity of this assumption in
Theorem 1.8.

1See Section 7 for the definition of tame.
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The group G = Z⊕Z (considered as a relatively hyperbolic group pair (G, {G}))
admits longer and longer fillings onto Z, which admits a free splitting. But in this
case G is one-ended and admits no proper peripheral splitting.

Example 1.13. This example shows that the hypothesis of M–finiteness is neces-
sary in Theorem 1.8.

Let S be a closed orientable surface of genus 2 and let G = π1(S). Let γ be
a waist curve of S and let P1 be cyclic, generated by γ. Any nontrivial filling of
G along the peripheral structure P = {P1} gives a group which splits nontrivially
over a finite group.

Of course the pair (G,P) admits a proper peripheral splitting

G = F2 ∗P1
P1 ∗P1

F2.

However, let γ′ be another simple closed curve so that γ ∪ γ′ fills S, and let P2 be
the cyclic subgroup generated by γ′. Let P ′ = {P1, P2}. It is not hard to see that
(G,P ′) has no proper peripheral splitting.

The fillings G(〈γk〉, {1}) all split nontrivially over finite groups.
Note that this example shows that

(1) the condition that the filling is M–finite is required, and
(2) it is not enough to assume that G is one-ended for Theorem 1.8; the hy-

pothesis of having no nontrivial peripheral splittings is also needed.

Example 1.14. The following example shows that the hypotheses of M–finite and
co-slender can’t be weakened just to every filling kernel being infinite. Let G = π1Σ
as above, and consider two simple closed curves α, β which fill Σ. Choose a crossing
point p ∈ α ∩ β at which to base the fundamental group. Then P = 〈α, β〉 is the
π1–image of some immersed torus T with a single boundary component. We claim:

(1) There are α and β so that P is malnormal in G.
(2) For any action of G on a tree T without global fixed point, some element

(either α or β) of P acts hyperbolically on T .

The first condition ensures (G, {P}) is relatively hyperbolic [Bow12, Theorem 7.11].
The second implies there is no proper peripheral splitting. But by choosing fillings
Kn � P with Kn normally generated by αn, we obtain arbitrarily long fillings of
(G, {P}) which split over finite groups.

In order to obtain malnormality of 〈α, β〉, one can choose α and β such that there
is a negatively curved cone metric on Σ so that α and β are represented by (local)
geodesics which meet at a point p with four angles of π. This defines an immersion
from the rose with two petals into Σ which is locally convex. Any elevation to the
universal cover is therefore convex. Different elevations meet at single points, from
which it easily follows that the subgroup P is malnormal. See Figure 1 for a specific
example.

This shows that Theorem 1.8 does not hold without the hypothesis that the
fillings are M–finite and/or co-slender. However, in that example, the boundaries
of the filled groups are still connected with no cut points (though there are local
cut points before and after filling).

We do not have an example where all the hypotheses of Theorem 1.8 hold except
for the fillings being co-slender and the conclusion does not hold, but we use the
assumption that the fillings are co-slender in various places in our proofs. We do
not know if this assumption is necessary.
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Figure 1. Gluing the Euclidean polygons as shown gives a genus
2 surface with a nonpositively curved metric. The polygons can be
made slightly hyperbolic (preserving the angles of π and π

2 ) to get
a negatively curved metric. The black and grey loops based at the
vertex (∗) generate a malnormal free subgroup of rank 2.

Question 3. Is the assumption that the fillings be co-slender required in Theorems
1.6 and 1.8?

Question 4. Does Theorem 1.6 hold for all sufficiently long fillings, without as-
suming M–finite and co-slender?

1.4. Outline. In Section 2, we recall the relevant definitions about Dehn filling,
peripheral splittings. In Section 3, we recall some results of Bowditch about ele-
mentary splittings and begin to study how they behave under filling.

Section 4 contains a result which may be of independent interest, on finite sub-
groups of relatively hyperbolic groups obtained via Dehn filling.

In Section 5 we prove Theorem 1.6 by contradiction: If arbitrarily long fillings
of (G,P) have elementary splittings, the Bass-Serre trees of those splittings limit
to an R-tree, from which we deduce the existence of an elementary splitting of
(G,P). This also gives the setup for the proof of Theorem 1.8, which we then prove
using the Rips theory of groups acting on trees (see [Gui08]) and a version of Sela’s
“shortening argument”.

In Section 6, we give a result about Fuchsian fillings of a relatively hyperbolic
group.

Finally in Section 7 we relate our results to the structure of the Bowditch bound-
ary.

2. Preliminaries

In this section we record the definitions and results that we need in the proof of
the main results.

Suppose that G is a finitely generated group and P = {P1, . . . , Pk} is a collection
of proper, finitely generated subgroups. In [GM08, §3] the construction of a cusped
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space is given, by gluing combinatorial horoballs onto the left cosets of the Pi in
a Cayley graph for G. We denote such a cusped space by X(G,P) (ignoring for
the moment the generating sets of G and of the Pi). This space is a locally finite
graph, on which G acts properly.

Definition 2.1 ([GM08]). The pair (G,P) is relatively hyperbolic if the cusped
space X(G,P) is δ-hyperbolic for some δ.

In case (G,P) is relatively hyperbolic, the cusped space X(G,P) has a Gromov
boundary, which we refer to as the Bowditch Boundary. Since our peripheral struc-
ture P is not assumed to be minimal, this may be different from what some other
authors call the Bowditch boundary. For more on this see Section 7.

In [GM08, Theorem 3.25] it is proved that Definition 2.1 agrees with the other
notions of relative hyperbolicity for finitely generated G. (In [Hru10] an extension
to the case where G is not finitely generated is given, and this definition still agrees
with the standard ones in this setting. We consider only the finitely generated case
in this paper.)

Remark 2.2. If (G,P) is relatively hyperbolic, the family P is almost malnormal,
in the sense that if P, P ′ ∈ P and P g ∩ P ′ is infinite for some g ∈ G, then P = P ′

and g ∈ P (see [Far98, Example 1, p. 819]). In particular, each P ∈ P is almost
malnormal. We use this property of P frequently, often without explicit mention.

Terminology 2.3. In this paper, we consider relatively hyperbolic groups acting on
trees. Both relatively hyperbolic groups and groups acting on trees have ‘hyperbolic’
elements, and these are different notions.

When we talk about an element being hyperbolic in the sense of relatively hyper-
bolic groups, we call it an RH-hyperbolic element. These RH-hyperbolic elements
are defined in the following subsection.

When talking about a group element being hyperbolic when acting on a tree, we
mention the tree.

2.1. Small, slender, and elementary subgroups. The contents of this section
are well known, but we have been unable to find some of the exact statements that
we require in the literature.

Definition 2.4. For a relatively hyperbolic pair (G,P), a subgroup E < G is
elementary if it is either virtually cyclic or parabolic, i.e. conjugate into some P ∈ P.

It is more convenient to think about the action of (subgroups of) G on the cusped
space X(G,P), so we record the following.

Lemma 2.5. Let (G,P) be relatively hyperbolic. A subgroup H ≤ G is elementary
if and only if H preserves a finite set in X(G,P) ∪ ∂(G,P).

The action of a relatively hyperbolic group (G,P) on its Bowditch boundary is
geometrically finite [Bow12, Proposition 6.15], meaning that every point is either a
conical limit point or a bounded parabolic point. (A converse to this statement was
proved by Yaman [Yam04, Theorem 0.1].) The stabilizers of the parabolic points
are exactly the conjugates of the elements of P.
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An element of a relatively hyperbolic group (G,P) is either finite order, infinite
order parabolic (in which case it fixes a unique point in ∂(G,P)) or else RH-
hyperbolic, in which case it fixes a pair of points in ∂(G,P), preserves a quasi-
geodesic axis between these points in the cusped space X(G,P), and acts via North-
South dynamics on ∂(G,P).2

Definition 2.6. Let (G,P) be relatively hyperbolic, and ∂(G,P) the Bowditch
boundary. Suppose that H ≤ G is infinite. The limit set of H, denoted ΛH, is the
minimal closed nonempty H-invariant subset of ∂(G,P).

Definition 2.7. Let (G,P) be relatively hyperbolic. A pair of RH-hyperbolic
elements g, h ∈ G are independent if their fixed sets in ∂(G,P) are disjoint.

The following theorem is due to Tukia.

Theorem 2.8 ([Tuk94, Theorem 2U]). Suppose that H ≤ G has the property that
|ΛH| > 2. Then H is nonelementary. Every nonelementary subgroup contains a
nonabelian free subgroup generated by two independent RH-hyperbolic elements.

Proposition 2.9. Let (G,P) be relatively hyperbolic, and let H ≤ G. Then H is
elementary if and only if exactly one of the following occurs:

(1) H is finite;
(2) H is parabolic (conjugate into some element of P) and |ΛH| = 1; or
(3) H is virtually infinite cyclic and contains an RH-hyperbolic element. In

this case |ΛH| = 2.

Proof. It is straightforward to see that each of the three types listed are elementary,
which proves one direction of the theorem.

Conversely, suppose that H is infinite and elementary. The action of H on
X(G,P) is properly discontinuous, so the finite set preserved by H must be con-
tained in ∂(G,P). Since ΛH is the minimal closed H-invariant set, we see that ΛH
is finite.

If ΛH contains more than two points, then H contains a nonabelian free group
and ΛH is infinite, by [Tuk94, Theorem 2U]. Therefore, we are concerned with the
cases where |ΛH| has size 1 or 2.

Suppose first that ΛH = {p}. If p is a bounded parabolic point, then H is
parabolic, as required.

Suppose then that ΛH = {p} and that p is a conical limit point. We know
that elements of G are either finite order, infinite order parabolic or RH-hyperbolic
(which are also infinite order). An infinite cyclic subgroup generated by an RH-
hyperbolic element has a pair of limit points, so if |ΛH| = 1, then H can contain
no RH-hyperbolic elements. On the other hand, if H contains an infinite-order
parabolic element, then it would have to fix p, which contradicts the assumption
that p is not a parabolic limit point. Thus, every element of H is finite-order and
hence elliptic. Therefore (since p is H-invariant) each h ∈ H coarsely preserves the
level sets of a Busemann function βx based at p (with the same implicit constant
behind the word ‘coarse’ for each element of H). Let D be the maximal difference
βp(x)−βp(h.x) over x ∈ X and h ∈ H. Let x ∈ X be a base point, and γ a geodesic
ray from x to p. Since p is not parabolic, γ must intersect the Cayley graph of G in

2Note that some finite order elements of (G,P) may be parabolic, and others may be
nonparabolic.
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X infinitely many times. Let K be a bound on the size of the number of vertices in
a ball of radius D + 10δ in X which meets the Cayley graph of G. We claim that
(in case p is H-invariant) |H| ≤ K, contradicting the hypothesis that H is infinite.
Indeed, suppose that H has distinct elements h1, . . . , hK+1. Then the geodesics
hi.γ are all eventually within 2δ of each other, which implies that at a point y on γ
near the Cayley graph the points hi.y are all within D+2δ of each other. However,
this means that there are i and j (with i �= j) so that hi.y = hj .y. Since G acts
freely on X, this is a contradiction.

We are left with the case that |ΛH| = 2. Suppose that ΛH = {p, q}. Sup-
pose further that H contains no RH-hyperbolic elements. In this case, given the
basepoint x ∈ X(G,P), there are elliptic or parabolic elements h1, h2 ∈ H with
the property that d(h1.x, x) and d(h2.x, x) are as large as we like, but the Gromov
product (h1.x, h2.x)x is bounded. In particular, by taking h1.x approximating p
and h2.x approximating q, we can ensure that

min{d(h1.x, x), d(h2.x, x)} ≥ 100(h1.x, h2.x)x + 100δ.

A standard argument (see, e.g., [CDP90, Chapitre 9, Lemme 2.3]) shows that h1h2

is an RH-hyperbolic element. This contradicts the assumption that H has no RH-
hyperbolic elements.

Therefore, in case |ΛH| = 2, we see that H contains an RH-hyperbolic element.
SinceH preserves a pair of points in ∂(G,P), it is virtually cyclic. (For example, this
can be seen by noting that the action of G on the cusped space is proper and then
applying the classification of isometries of δ–hyperbolic spaces [CDP90, Chapitre
9]). �

We immediately deduce the following.

Lemma 2.10. If (G,P) is relatively hyperbolic and each element of P is slender,
then every elementary subgroup of G is slender, and in particular finitely generated.

Lemma 2.11. Let (G,P) be relatively hyperbolic, where the elements of P are
slender. Then every small subgroup of G is finitely generated.

Proof. Let H < G be small. If H is elementary, then H is finitely generated by
Lemma 2.10.

However, if H is nonelementary, then it contains a nonabelian free group by
Theorem 2.8, and so it cannot be small. �

Note that a slender group is small, but a small group may not be slender. Slender
groups have the following useful characterization due to Dunwoody and Sageev.

Lemma 2.12 ([DS99, Lemma 1.1]). A group H is slender if and only if for every
subgroup K ≤ H, every action of K on a tree either has a fixed point or has a
(setwise) invariant axis.

A general principle of relatively hyperbolic groups is that extreme pathology is
usually confined to the parabolic subgroups. The following is a well-known example
of that principle.

Lemma 2.13. Let (G,P) be relatively hyperbolic. If H < G is infinite torsion,
then H is parabolic.
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Proof. Since H is torsion, it contains no nonabelian free subgroup, so H must
be elementary by Theorem 2.8. However, the only possibility from the list of
elementary subgroups given by Proposition 2.9 for an infinite torsion group is if H
is parabolic. �

The following lemma will be used to show that certain extensions of elementary
groups coming from the Rips machine are still elementary.

Lemma 2.14. Suppose that (G,P) is relatively hyperbolic.
Any elementary-by-(virtually abelian) subgroup of G is elementary.
Any (infinite parabolic)-by-(virtually abelian) subgroup of G is parabolic.

Proof. Let H be elementary-by-(virtually abelian). There is a short exact sequence

1 → K → H → A → 1,

where A is virtually abelian. There are a number of cases.
Suppose first that K is infinite parabolic. If K is contained in a maximal para-

bolic subgroup P , then since P is almost malnormal, all of H is contained in P . In
particular H is parabolic, hence elementary.

Suppose then that K is virtually cyclic with an RH-hyperbolic element. Then
the limit set of K has two elements. Moreover, since K is normal in H, the limit
set of K is H-invariant, and so the limit set of H also has two elements and H is
virtually cyclic, by Proposition 2.9.

Suppose next that K is finite. If A is infinite torsion, then so is H. Any infinite
torsion subgroup of a relatively hyperbolic group is parabolic by Lemma 2.13, so
we can suppose that A has an infinite order element a. Let ã ∈ H map to a. The
subgroup H0 = 〈K, ã〉 is virtually infinite cyclic. We argue differently, depending on
whether ã is parabolic or loxodromic. If parabolic, H0 fixes a unique p ∈ ∂(G,P);
if loxodromic, H0 fixes two points p, q in ∂(G,P). (No element can exchange them
because H0 maps homomorphically onto Z.)

Suppose ã is parabolic, fixing p ∈ ∂(G,P). Note that p is the unique fixed point
for ã. Let h ∈ H. The commutators of h and ãn are in the finite subgroup K, so
we have, for some k ∈ K and some 0 < i < j, [h, ãi] = [h, ãj ] = k. Thus

hp = hãip = kãihp, and

hp = hãjp = kãjhp.

So both kãi and kãj fix q = hp. It follows that ãiq = k−1q = ãjq, so ãj−i fixes q.
We deduce q = p so h fixes p and lies in the same parabolic subgroup as H0.

Finally, suppose that ã is loxodromic with fixed points {p, q} ⊆ ∂(G,P). If
h ∈ H, we see that h preserves the pair {p, q} by an argument similar to that in
the last paragraph. Since H preserves a pair of points in ∂(G,P), it is virtually
cyclic, by Proposition 2.9. �

2.2. Dehn filling of groups.

Definition 2.15. Suppose that G is a group and P = {P1, . . . , Pn} is a collection of
subgroups. A filling (sometimes Dehn filling) of (G,P) is determined by a collection
of subgroups Ki � Pi and is given by the quotient map (called the filling map)

φ : G → G(K1, . . . ,Kn),
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where the group G(K1, . . . ,Kn) denotes G/K where K is the normal closure in G
of

⋃
Ki, and φ is the natural quotient map. The subgroups K1, . . . ,Kn are called

the filling kernels.

Definition 2.16. Suppose that (G,P) is as in Definition 2.15. We say that a
property S of groups holds for all sufficiently long fillings of (G,P) if there is a
finite set B ∈ G � {1} so that for any choice of filling kernels K1, . . . ,Kn so that
Ki ∩ B = ∅ the group G(K1, . . . ,Kn) satisfies S.

The following is the main result of relatively hyperbolic Dehn filling.

Theorem 2.17 ([Osi07]; cf. [GM08]). Let (G,P) be relatively hyperbolic and let
F ⊂ G be finite. For sufficiently long fillings

φ : G → G(K1, . . . ,Kn)

of (G,P) the following properties hold:

(1) For each i, the natural map Pi/Ki → G(K1, . . . ,Kn) is injective.
(2) The pair (G(K1, . . . ,Kn), {P1/K1, . . . , Pn/Kn}) is relatively hyperbolic.
(3) φ is injective on F .

Notation 2.18. We’ll also sometimes indicate a filling map by

φ : (G,P) → (Ḡ, P̄)

to emphasize the peripheral structure. Here P̄ is the collection {φ(P ) | P ∈ P}.

In fact, there is uniform control on the geometry of the cusped spaces of the
quotients. Once generating sets are fixed for G and the Pi, we can use the images
of these generating sets to build the cusped spaces for the quotients after filling. The
cusped spaces are then determined completely. In particular, the cusped space for a
quotient (Ḡ, P̄) is an isometrically embedded subgraph of the quotient of X(G,P)
by the action of the kernel of the filling map K. (The only difference between the
two graphs is that the quotient by the action of K may contain doubled edges and
self-loops not present in X(Ḡ, P̄).)

Theorem 2.19 ([Ago13, Theorem A.43(1)]). Using the cusped spaces just de-
scribed, if (G,P) is relatively hyperbolic, then:

(1) There is a δ > 0 so that for all sufficiently long fillings (G,P) → (Ḡ, P̄),
the cusped space of (Ḡ, P̄) is δ–hyperbolic.

(2) Fix any (finite) ball B ⊆ X(G,P). For all sufficiently long fillings, the
map X(G,P) → X(Ḡ, P̄) restricts to an embedding of B whose image is a
metric ball in X(Ḡ, P̄).

Definition 2.20. A sequence {ηi : G → Ḡi} of fillings is stably faithful if ηi is
faithful on the ball of radius i about 1 in G.

Corollary 2.21. If Q is a property of groups and it is not the case that all suf-
ficiently long fillings of a relatively hyperbolic pair (G,P) satisfy Q, then there is
a stably faithful sequence of fillings {ηi : G → Ḡi} so that for each i the group Ḡi

does not satisfy Q.

Lemma 2.22. Suppose that (G,P) is relatively hyperbolic and that g ∈ G is an
RH-hyperbolic element. Then for sufficiently long fillings G � Ḡ the image of g is
RH-hyperbolic in (Ḡ, P̄).
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Proof. Let δ be so that cusped spaces of sufficiently long fillings of (G,P) are all
δ–hyperbolic. The existence of such a δ is the first part of Theorem 2.19, and we
assume that the cusped space for (G,P) is δ–hyperbolic also.

Let g be an RH-hyperbolic element of G. Then for some λ, ε, g preserves a (λ, ε)–
quasigeodesic axis γ, moving every point on γ a distance of |g|, the translation
length of g. By [CDP90, Proposition 3.1.4] there are k, λ′, ε′ (depending only on
δ, λ, ε) so that every k–local (λ, ε)–quasigeodesic is a global (λ′, ε′)–quasigeodesic.
By quasigeodesic stability [CDP90, Théorème 3.1.2] any such quasigeodesic lies in
an R0–neighborhood of a geodesic with the same endpoints, where R0 depends only
on δ, λ′, ε′.

Let R = 2k + |g| + 2R0, and let B be an R–ball centered on some point of γ.
For sufficiently long fillings B embeds in the cusped space of the filling, by the
second part of Theorem 2.19. Let γ̄ be the image of γ. We claim that γ̄ is a k–local
(λ, ε)–quasigeodesic. Indeed, let σ be a subsegment of γ̄ of length k. There is a
k–neighborhood of σ contained in the image of giB for some i, so σ is the isometric
image of a subsegment of the (λ, ε)–quasigeodesic γ.

If γ̄ were a loop, it would be a (λ′, ε′)–quasigeodesic loop, which by quasigeodesic
stability would have length at most R0. Since R > 2R0, this is not the case.

It follows that γ̄ is an infinite quasigeodesic, preserved by the image of g, so the
image of g is RH-hyperbolic. �

Remark 2.23. We sketch another, almost formal, proof of Lemma 2.22: Let E(g)
be the maximal elementary subgroup containing the RH-hyperbolic element g and
note that (G,P ∪ {E(g)}) is relatively hyperbolic [Osi06, Corollary 1.7]. Extend
the filling of (G,P) by a trivial filling of E(g). Then use almost malnormality in
the quotient.

2.3. Peripheral splittings.

Definition 2.24 (Peripheral splitting). Suppose that (G,P) is a relatively hyper-
bolic group. A peripheral splitting of (G,P) is a bipartite graph of groups with
fundamental group G where the vertex groups of one color are precisely the periph-
eral subgroups P.

Proposition 2.25 ([Bow01, Proposition 5.1]). The relatively hyperbolic pair (G,P)
has a nontrivial peripheral splitting if and only if it has a nontrivial splitting over a
(not necessarily maximal) parabolic subgroup in which all peripheral subgroups are
elliptic.

2.4. Automorphisms. The following notion is required in the proof of Theorem
1.8.

Definition 2.26. Suppose that G is a group and P is a collection of subgroups.
Let Inn(G) be the set of inner automorphisms of G, and let

AutP(G) = {φ ∈ Aut(G) | ∀P ∈ P, ∃ψ ∈ Inn(G) so φ|P = ψ|P } .

Thus elements of AutP(G) are those automorphisms which restrict to an inner
automorphism on each P ∈ P (a different inner automorphism for each P , possibly).

The following is a key example of an automorphism in AutP(G).

Example 2.27. Suppose that (G,P) is relatively hyperbolic and that C is a two-
ended subgroup whose center contains an RH-hyperbolic element c. Suppose that
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G = A ∗C B and that each element of P is elliptic in this splitting (i.e. conjugate
into A or into B). Let τc : G → G be the Dehn twist about c, defined as τc(a) = a
if a ∈ A and τc(b) = bc if b ∈ B. Then τc ∈ AutP(G).

Since the kernel of a filling map is the normal closure in G of subgroups of
elements of P, the following is clear.

Lemma 2.28. Suppose that (G,P) is a group pair and that φ ∈ AutP(G). If

η : G → G(N1, . . . , Nm)

is a Dehn filling of (G,P), then ker(η ◦ φ) = ker(η).
In particular, if {ηi : G → Ḡi} is a stably faithful sequence of fillings and {φi} is

any sequence from AutP(G), then {ηi ◦ φi} is a stably faithful sequence of fillings.

3. Elementary splittings

Let (G,P) be relatively hyperbolic. Recall that a subgroup H ≤ G is elementary
if it is either finite, conjugate into some element of P or two-ended. In this sec-
tion, we are interested in splittings of relatively hyperbolic groups over elementary
subgroups. We call such splittings elementary splittings. We are also interested in
elementary splittings of quotients (under Dehn fillings).

Bowditch [Bow01, Proposition 5.2] proves that certain splittings over parabolic
subgroups can be improved to splittings in which all parabolic subgroups act ellip-
tically (see also [Sel01, Lemma 2.1]). We need a slightly different statement, but
the proof we give below is essentially Bowditch’s.

Lemma 3.1. Let (G,P) be relatively hyperbolic, and suppose that G admits a
splitting over a parabolic or abelian subgroup so that every multi-ended element of
P is elliptic. Then G admits a splitting over a parabolic or abelian subgroup so that
every element of P is elliptic.

If the original splitting was over a parabolic subgroup, then so is the P–elliptic
splitting.

Proof. Let T be the Bass-Serre tree for a one-edge splitting of G over a parabolic
or abelian subgroup, so that every multi-ended element of P is elliptic. If every
P ∈ P is elliptic in this tree, then there is nothing to prove.

So assume that some (necessarily one-ended) P0 ∈ P fixes no vertex of T , and
let T0 be a minimal P0–invariant tree. Fix some edge e of T0, and let H be the
stabilizer of e in G. Since P0 is one-ended, H ∩ P0 must be infinite. Since H is an
edge stabilizer, it is either parabolic or abelian.

Claim 3.1.1. H < P0.

Proof. Suppose that H is parabolic. Since H ∩ P0 is infinite and P is almost
malnormal, H < P0.

Suppose that H is abelian. Let H0 = H ∩P0, which we have observed is infinite.
Note that H0 is contained in hP0h

−1 ∩ P0 for any h ∈ H. But then h ∈ P0, by
almost malnormality of P0. �
Claim 3.1.2. Let P �= P0 be an element of P. Then P fixes a point in T .

Proof. If P didn’t fix a point, P would split over some H ′ = P ∩ Hg < P ∩ P g
0 .

By almost malnormality of P, this group H ′ would have to be finite, implying
that P was not one-ended. But we are assuming multi-ended peripheral groups act
elliptically. �
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Claim 3.1.3. P0 is the setwise stabilizer of T0. In other words, P0 = {g ∈ G | gT0 =
T0}. Moreover, if g �∈ P0, then |gT0 ∩ T0| ≤ 1.

Proof. Let g ∈ G, and suppose that e is an edge in T0 ∩ gT0. We proved above
that if H is the stabilizer of e, then H < P0. We want to show g ∈ P0. The
stabilizer of g−1e is g−1Hg. Some edge of the graph of groups P0\T0 is labeled
by a P0-conjugate of the edge stabilizer g−1Hg ∩ P0. Since T0 is minimal, the
corresponding one-edge splitting is nontrivial. Since P0 is one-ended, g−1Hg ∩ P0

is infinite, and so g ∈ P0 by almost malnormality of P0. �
Now every edge in T is in exactly one translate of T0, so we have a partition

of the edges of T to which we can apply the construction from [Bow01, Lemma
3.5]. Namely, we let S be a bipartite tree with red vertices equal to the set A of
translates of T0, and black vertices equal to the vertex set V (T ) of T . Connect
v ∈ V (T ) to gT0 ∈ A if and only if v ∈ gT0. Edge stabilizers are conjugate into P0,
so they are parabolic.

Finally, we explain why all elements P ∈ P fix points in S. It is clear that P0

fixes the vertex of S corresponding to T0. On the other hand, if P ∈ P is not P0,
then it fixes a vertex of T , which is still a vertex of S. �

We next want to prove a result (Lemma 3.6 below) saying that we can improve
splittings of fillings to (2, C)–acylindrical splittings. We’ll need a result about
uniformity of almost malnormality in fillings.

Definition 3.2. A collection of subgroups P of G is C–almost malnormal if there
is a constant C so that

#(P1 ∩ gP2g
−1) > C for g ∈ G and P1, P2 ∈ P

implies P2 = P1 and g ∈ P1.

The following is well known.

Lemma 3.3. Suppose (G,P) is relatively hyperbolic. Then P is C–almost malnor-
mal for some C.

Proof. Let P1 and P2 be distinct conjugates of elements of P. Let F = P1 ∩ P2.
We use the action on the (combinatorial) cusped space X(G,P) with respect to
some fixed generating set for G. Since (G,P) is relatively hyperbolic, this space is
δ–hyperbolic for some δ > 0. For each i, the subgroup Pi preserves a combinatorial
horoball Hi whose center ei ∈ ∂X is the parabolic fixed point of Pi. Choose
a biinfinite geodesic γ from e1 to e2 which is vertical inside H1 and H2. We
parametrize γ so that γ(0) is in the frontier of H1; in particular γ(0) is in the
Cayley graph of G.

For f ∈ F \{1} the geodesics γ and fγ form an ideal bigon. Moreover, deep inside
H1 and H2, the geodesics pass through vertices which are distance 1 from one an-
other. In particular, we may choose large subsegments γ([−N,R]) and fγ([−N,R′])
whose endpoints are distance 1 from one another. From this it is easy to deduce
that d(γ(0), fγ(0)) ≤ 2δ + 1. Thus F acts freely on a subset of the Cayley graph
of G of diameter at most 2δ+ 1. We can bound the cardinality of this set in terms
of δ and the size of the generating set for G. �

The following is proved by a straightforward adaptation of the methods for an-
alyzing height discussed in the Appendix to [Ago13].
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Proposition 3.4 ([GM]). If (G,P) is relatively hyperbolic, and P is C–almost
malnormal, then for all sufficiently long fillings (Ḡ, P̄) of (G,P), the collection P̄
is C–almost malnormal.

Definition 3.5. An action G � T on a tree is (k, C)–acylindrical if the stabilizer
of any segment of length at least k + 1 has cardinality at most C.

The proof of the following result is similar to that of Lemma 3.1.

Lemma 3.6. Suppose that (G,P) is relatively hyperbolic, where P is a C–almost
malnormal collection of slender subgroups. If G admits a nontrivial splitting over
a parabolic group, then G admits a nontrivial (2, C)–acylindrical splitting over a
parabolic group.

Proof. Let G � T be the Bass-Serre tree for a one-edge splitting of G over a
parabolic subgroup E. We may suppose that E < P for some P ∈ P. If #E ≤ C,
there is nothing to prove, so we suppose that #E > C. There are two cases,
depending on whether or not P acts elliptically on T .

Suppose first that P fixes a point of T . If P fixes an edge, then in fact P = E,
and each edge stabilizer is equal to P g for some g ∈ G. Since P is C–almost
malnormal, any segment of length at least 2 has stabilizer of size at most C, so
G � T is actually (1, C)–acylindrical.

If P fixes a vertex but no edge of T , and σ is a segment in T of length at least 3,
then the stabilizer of σ is again contained in the intersection of a pair of conjugates
of P , and so has size bounded above by C. Thus G � T is (2, C)–acylindrical.

Suppose now P is not elliptic. Since P is slender, Lemma 2.12 implies that P
preserves some line lP ⊆ T on which P acts either by translations or as an infinite
dihedral group. In either case every edge in lP has the same stabilizer, namely E.

We claim that for any g �∈ P we have |g.lP ∩ lP | ≤ 1. If not, there is an edge e
in this intersection. Then the stabilizer of e is contained in the intersection of two
distinct conjugates of P , which has size at most C. This contradicts the assumption
that #E > C.

We can now form a simplicial G-tree T̂ as follows: The vertices are the G-
translates of lP along with the vertices of T and we join g.lP and v when v ∈ g.lP .
It is easy to see that this is a tree (see [Bow01, Lemma 3.5]) upon which G acts.
The edge stabilizers are subgroups of P which are either E or else have E as an
index 2 subgroup (depending on whether P acts by translations or dihedrally on
lP ). In particular they are parabolic.

Moreover, if we take three consecutive edges in T̂ and a γ element of G which
stabilizes them, then γ stabilizes two different lines g.lP and h.lP . This implies that
γ ∈ P g ∩ P h which has size at most C. Therefore the G-action on T̂ has parabolic
edge stabilizers and is (2, C)-acylindrical. �

Proposition 3.7. Suppose that (G,P) is a relatively hyperbolic group, so that P is
C–almost malnormal. For all sufficiently long co-slender fillings (G,P) → (Ḡ, P̄),
if Ḡ admits a nontrivial splitting over a parabolic group, then Ḡ admits a nontrivial
(2, C)–acylindrical splitting over a parabolic group.

Proof. We suppose that the filling (Ḡ, P̄) is long enough to apply Proposition 3.4,
and then apply Lemma 3.6. �
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4. Torsion in fillings

The main result of this section is the following, which should be of independent
interest.3

Theorem 4.1. Suppose that (G,P) is a relatively hyperbolic pair. For all suffi-
ciently long fillings

η : (G,P) → (Ḡ, P̄)

any finite subgroup of Ḡ is either

(1) conjugate into some element of P̄ or
(2) the isomorphic image (under η) of some finite subgroup of G.

We’ll need the following lemma, which is used again in Section 4.1.

Lemma 4.2. Let F be a finite group acting on a δ–hyperbolic space X. Then F
has an orbit of diameter at most 4δ + 2.

Proof. Choose some x0 ∈ X. Then Fx0 is a nonempty bounded set, which has
some radius r (the radius is the infimum of those R so that Fx0 is contained
in an R–ball about some point). An ε–quasicenter for Fx0 is a point c so that
Fx0 ⊆ {x | d(x, c) ≤ r + ε}. Setting ε = 1, it is clear that there is at least one
1–quasicenter c for Fx0 and that fc is a 1–quasicenter for Fx0, for any f ∈ F . By
[BH99, Lemma III.Γ.3.3], the set of 1–quasicenters has diameter at most 4δ+2. �

Proof of Theorem 4.1. By Theorem 2.19, there is a constant δ so that (i) the cusped
space for (G,P) is δ–hyperbolic, and (ii) for all sufficiently long fillings the cusped
space of the quotient is δ–hyperbolic. We may assume that all fillings we consider
satisfy this condition, and we fix such a δ ≥ 1. Let X be the cusped space for
(G,P), and for a filling (Ḡ, P̄) we let the associated cusped space be X̄.

Now take a filling which is long in the sense of the above paragraph and which
also induces a bijection between the ball of radius 40δ about 1 in X and the ball
of radius 40δ about 1 in X̄.

Suppose that Q ≤ Ḡ is a finite subgroup. Lemma 4.2 implies that there is a
Q–orbit B ⊆ X̄ of diameter at most 4δ + 2.

Case 1. Suppose that B does not intersect the (4δ+2)–neighborhood of the Cayley
graph of Ḡ in X̄. Then since the diameter of B is at most 4δ + 2, B is entirely
contained in a single horoball of X̄, which implies that Q is conjugate into some
P̄ ∈ P̄.

Case 2. Now suppose that some x ∈ B lies in the (4δ + 2)–neighborhood of the
Cayley graph. We recall from [GM08] that vertices of the cusped space but not
in the Cayley graph correspond to triples (gP, g, n), where P ∈ P̄ and n ∈ N =
{1, 2, . . .}. We extend this labeling scheme to the Cayley graph by referring to g ∈ Ḡ
using the (not uniquely defined) triple (gP, g, 0). (The number n is the distance
from the Cayley graph.) A single combinatorial horoball is spanned by the vertices
of the form (hP, g, n) for hP fixed.

3A similar result about hyperbolically embedded subgroups (but about only elements of finite
order rather than finite subgroups) is proved in [DGO11, Theorem 7.19].
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By assumption our x = (gP, g, k) with k ≤ 4δ + 2. Since the action of Ḡ on
X̄ is depth-preserving, we may assume that all other elements of B have the form
(g′P, g′, k) for the same k. Consider the set

B0 = {h | (hP, h, k) ∈ B}
(where we consider an element g of Ḡ to be contained in X̄ via the embedding
g �→ (gP, g, 0)). Then Q ·B0 = B0 and the diameter of B0 is less than 20δ.

Moreover, Qg stabilizes g−1B0, and 1 = g−1g ∈ g−1B0. This means that Qg =
Qg · 1 ⊂ g−1B0, which puts the subgroup Qg in the ball of radius 20δ about 1 in
X̄.

The filling induces a bijection between the 40δ balls about the identity in X and
X̄. Let Q̂ be the preimage of Qg under this bijection. We claim that Q̂ is a finite
subgroup. Indeed, for any h1, h2 ∈ Qg, let h3 = h1h2. For i ∈ {1, 2, 3}, let h̃i

be the unique element of Q̂ projecting to hi. Note that h̃1h̃2 lies in the 40δ ball
about 1 and projects to h3 ∈ Qg. Since h̃3 also projects to h3, and the projection
is injective on the ball of radius 40δ, we have h̃1h̃2 = h̃3. Since h1 and h2 were
arbitrary, Q̂ is a subgroup.

Letting h be any element of G which maps to g under the filling, we see that

Q̂h−1

maps isomorphically to Q under the filling, as required. �

4.1. Controlling splittings over finite and two-ended subgroups.

Definition 4.3. For (G,P) relatively hyperbolic, let F be the set of subgroups
of G which are either finite nonparabolic or contained in the intersection of two
distinct maximal parabolic subgroups. Define C(G,P) = max{#F | F ∈ F}.

Lemma 4.4. For (G,P) relatively hyperbolic, C(G,P) < ∞.

Proof. Let F < G be finite and nonparabolic. By Lemma 4.2, there is an F–orbit
B of diameter at most 4δ + 2 in the cusped space. Since F is nonparabolic, B is
not contained entirely in a single horoball. In particular B contains a point within
4δ + 2 of the Cayley graph, and so its size can be bounded above in terms of δ
and the valence of the Cayley graph. Since #F = #B, the size of such a group is
bounded uniformly.

If F is in the intersection of two parabolics, the size of F is bounded by Lemma
3.3. �

We note the following corollary of Theorem 4.1 and Proposition 3.4.

Corollary 4.5. Let (G,P) be relatively hyperbolic. For all sufficiently long fillings
(Ḡ, P̄), we have C(Ḡ, P̄) ≤ C(G,P).

In particular there is a bound on the size of nonparabolic finite subgroups of
sufficiently long fillings, which we use in the following.

Corollary 4.6. Suppose that (G,P) is relatively hyperbolic. For all sufficiently
long co-slender fillings (G,P) → (Ḡ, P̄), if Ḡ admits a nontrivial splitting over a
finite group, then Ḡ admits a nontrivial (2, C)–acylindrical splitting over a finite or
parabolic group, where C = C(G,P).

Proof. Let (G,P) → (Ḡ, P̄) be long enough that both Proposition 3.7 and Corollary
4.5 apply, and suppose that Ḡ splits nontrivially over a finite group F . If F is
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nonparabolic, then Corollary 4.5 implies that |F | ≤ C, so the Bass-Serre tree
corresponding to the splitting over F is already (0, C)–acylindrical.

If F is parabolic, then Proposition 3.7 implies there is a (2, C)–acylindrical split-
ting over some parabolic group. �

We next examine two-ended nonparabolic subgroups.

Lemma 4.7. Let (G,P) be relatively hyperbolic, let E < G be two-ended and
nonparabolic, and let F < E be finite. Then #F ≤ 2C(G,P).

Proof. The two-ended group E preserves a pair of points E±∞ in ∂(G,P). Let
E0 < E be the subgroup which fixes these points. (If E maps onto an infinite
dihedral group E0 is index two; otherwise E = E0.) Let F0 = F ∩ E0, and let
α ∈ E be an infinite order element which centralizes F0. If F0 is nonparabolic,
then we know |F0| ≤ C(G,P) by definition. Suppose then that F0 is parabolic
and contained in gPg−1, for P ∈ P. Let p be the parabolic fixed point for gPg−1.
Then for any f ∈ F0 we have fαp = αfp = αp, so that f fixes both p and αp.
Note that we know α is not parabolic, since E is not parabolic, so we know that
αp �= p. Thus F0 is in the intersection of two distinct maximal parabolic subgroups
and #F0 ≤ C(G,P). The result follows. �

If E is a maximal two-ended subgroup of G, where (G,P) is relatively hyperbolic
and E is not already parabolic, then (G,P�{E}) is also relatively hyperbolic [Osi06,
Corollary 1.7]. The next lemma tells us how C(G,P) changes after augmenting the
peripheral structure in this way.

Lemma 4.8. Suppose that (G,P) is relatively hyperbolic and E < G is a maximal
two-ended subgroup of G which is not parabolic. Then C(G,P � {E}) ≤ 2C(G,P).

Proof. Let P ′ = P � {E}. Let F be a finite subgroup of G which is not parabolic
with respect to P ′. Then F is not parabolic with respect to P either, so #F ≤
C(G,P). Likewise, if F is in the intersection of two P–parabolic subgroups, then
#F ≤ C(G,P).

It remains to consider intersections of conjugates of E with each other or with
other parabolics. But Lemma 4.7 bounds the size of finite subgroups of E by
2C(G,P). �

Lemma 4.9. Let (G,P) be relatively hyperbolic, where each element of P is slen-
der, and let C = 2C(G,P). If G admits a nontrivial splitting over a two-ended
nonparabolic subgroup, then G admits a nontrivial (2, C)–acylindrical splitting over
an elementary subgroup.

Proof. Suppose G splits over a two-ended nonparabolic subgroup E, and let Ê
be the maximal two-ended subgroup of G containing E. Let P ′ = P � {Ê}. As
we remarked before Lemma 4.8, (G,P ′) is relatively hyperbolic. By Lemma 4.8,
C(G,P ′) ≤ C = 2C(G,P). Lemma 3.6 implies that G admits a (2, C)–acylindrical
splitting over a P ′–parabolic subgroup S. If S is not P–parabolic, then it must be
conjugate to a subgroup of E, so it is either finite or two-ended. �

Proposition 4.10. Suppose that (G,P) is relatively hyperbolic, and let C =
2C(G,P). For all sufficiently long co-slender fillings (G,P) → (Ḡ, P̄), if Ḡ ad-
mits a nontrivial splitting over a two-ended nonparabolic subgroup, then Ḡ admits
a nontrivial (2, C)–acylindrical splitting over an elementary subgroup.
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Proof. By Corollary 4.5, C(Ḡ, P̄) = C(G,P) for sufficiently long fillings. Apply
Lemma 4.9. �

5. Limiting actions on R-trees

In this section, we give the proofs of the main Theorems 1.6 and 1.8. In each
case we assume that the theorem is false and investigate a sequence of longer and
longer fillings contradicting the conclusion.

Lemma 5.1. Suppose that (G,P) is relatively hyperbolic and a counterexample
either to Theorem 1.6 or to Theorem 1.8.

Let C = 2C(G,P). There is a stably faithful sequence of M–finite co-slender
fillings ηi : (G,P) → (Ḡi, P̄i) so that for each i the group Ḡi admits a nontriv-
ial (2, C)-acylindrical elementary splitting. In case (G,P) is a counterexample to
Theorem 1.8, we may assume these splittings are over parabolic or finite subgroups.

Proof. Suppose first that (G,P) is a counterexample to Theorem 1.6. Then there is
a stably faithful sequence of M–finite co-slender fillings (G,P) → (Ḡi, P̄i) so that
each Ḡi admits a nontrivial elementary splitting. By Corollary 4.6, Proposition
3.7, and Proposition 4.10 these splittings can be modified to (2, C)–acylindrical
elementary splittings, for all sufficiently large i.

Now suppose that (G,P) is a counterexample to Theorem 1.8. In this case, there
is a stably faithful sequence of M–finite co-slender fillings ηi : (G,P) → (Ḡi, P̄i)
so that each Ḡi admits a nontrivial splitting over either a finite or a parabolic
subgroup. By Corollary 4.6 and Proposition 3.7, these splittings can be modified
to (2, C)–acylindrical splittings over finite or parabolic subgroups, for all sufficiently
large i. �

We now suppose that we have a relatively hyperbolic pair (G,P) and that we
have a stably faithful sequence of M–finite co-slender fillings ηi : (G,P) → (Ḡi, P̄i)
so that each Ḡi admits a nontrivial (2, C)–acylindrical elementary splitting.

Choose a finite generating set A for G. Each Ḡi acts (2, C)–acylindrically on
the Bass-Serre tree Ti of its splitting, and the map ηi induces an action of G on
Ti. Choose a base vertex xi ∈ Ti which is centrally located in the sense that it
minimizes the function x �→ maxa∈A dT (x, ax) on Ti.

Given any action λ : G → Isom(T ) (for some tree T with centrally located
basepoint x) define a length (with respect to A)

‖λ‖ = max
a∈A

dT (x, λ(a).x).

Thus by choosing a (2, C)–acylindrical Bass-Serre tree Ti and centrally located
point xi ∈ Ti as above, we obtain a length. Abusing notation slightly, we call this
number ‖ηi‖; we’ll use it as a scaling factor.

Definition 5.2. Let (T, x) be a basepointed tree, and let (G,P) be relatively
hyperbolic and generated by A. An action η : G → Isom(T ) is shortest (with
respect to P and A) if, for every φ ∈ AutP(G), we have

(1) ‖η ◦ φ‖ ≥ ‖η‖.

We summarize the assumptions we’ll make for the remainder of this section.
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Standing Assumption 5.3. (G,P) is a counterexample to either Theorem 1.6 or
Theorem 1.8. Let C = 2C(G,P).

(1) Small subgroups of G are finitely generated.
(2) G is one-ended and admits no proper peripheral splitting.
(3) (Ḡi, P̄i) is a stably faithful sequence of M–finite co-slender fillings of (G,P)

exhibiting the fact that (G,P) is a counterexample; for each i, there is a
(2, C)–acylindrical splitting of Ḡi as in the conclusion of Lemma 5.1.

(4) For each i, the action ηi on the associated Bass-Serre tree is shortest (with
respect to P and A).

Lemma 2.28 implies that we can arrange Assumption 5.3(4) without disturbing
Assumption 5.3(3).

Assumption (4) is required only in the proof of Theorem 1.8, not in the proof of
Theorem 1.6. However, making this assumption in both cases causes no harm.

We let Di = ‖ηi‖ and note that Di > 0, or the tree Ti would have a global fixed
point.

We thus obtain a sequence of actions of G on simplicial trees. In case the
sequence {Di} is bounded, we obtain a limiting action on a simplicial tree T∞
by noting that the Lyndon length functions on some subsequence converge to a Z–
valued Lyndon length function. This implies there is an invariant simplicial subtree
by [Chi76,AM85]. If on the other hand the sequence {Di} is unbounded, then by
rescaling the metrics by 1

Di
we obtain a limiting action of G on an R-tree T∞

(see [Bes02, Theorem 3.3]). We assume in either case that the R-tree T∞ has no
properG-invariant subtree (by passing to such a subtree if necessary). This minimal
subtree contains the basepoint x∞, which is a limit of the basepoints xi ∈ Ti.

Lemma 5.4. The action of G on T∞ has no global fixed point.

Proof. Suppose first that the stretching factors {Di} diverge. Note that by con-
struction the basepoint x∞ is not a global fixed point, since some generator in A
moves x∞ distance 1. Because the inner automorphisms of G are in AutP(G), from
a global fixed point we could conjugate to find a homomorphism which moves xi a
shorter distance for sufficiently large i, contradicting Assumption 5.3.

In case the stretching factors don’t diverge, the limiting R-tree T∞ is simplicial,
so we obtain a graph of groups decomposition of G coming from a limit of actions
on the Bass-Serre trees of the Ḡi. If there were a global fixed point for the G-action
on T∞, this splitting would be trivial. However, if the splitting of G induced by T∞
is trivial it is easy to see that for sufficiently large i the splitting of Ḡi is trivial, in
contradiction to the choice of the Ḡi. �

Lemma 5.5. Suppose that P ∈ P is multi-ended. Then P acts elliptically on T∞.

Proof. For any multi-ended P ∈ P, the M–finiteness assumption implies that the
image of P in each Ḡi is finite, and so P acts elliptically on each Ti. On the other
hand, a generator for P has some word length in A, which means that this generator
moves the basepoint xi a distance which is a bounded multiple of Di. This implies
that a fixed point for P in Ti is distance a bounded multiple of Di from xi, which
in turn implies that these fixed points persist in the limit, so P fixes a point in T∞.

�
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Lemma 5.6. The scaling factors Di are unbounded.

Proof. Suppose not. Then the limiting tree T∞ is a (minimal) simplicial tree. Let
E be an edge stabilizer for this tree. Since G is one-ended, E is infinite. We claim
that E cannot be parabolic. Indeed, by Lemma 5.5, any multi-ended peripheral
subgroup of P acts elliptically on T∞. So by Lemma 3.1, if E were parabolic there
would be a nontrivial splitting of G in which all elements of P were elliptic. By
Proposition 2.25, G would admit a proper peripheral splitting.

Since E is infinite nonparabolic, it contains an RH-hyperbolic element g. (Either
it is nonelementary, in which case we can apply Theorem 2.8, or it is elementary,
and we are in case (3) of Proposition 2.9.)

By Lemma 2.22, the image of g in Ḡi is RH-hyperbolic for large i. This means
that the elementary splitting of Ḡi giving rise to Ti is not over a parabolic subgroup
or a finite subgroup, and so must be over a two-ended nonparabolic subgroup.

Here the argument diverges depending on whether G is a counterexample to
Theorem 1.6 or 1.8.

In case G is a counterexample to Theorem 1.8, we have already reached a con-
tradiction, since the Ti are assumed to come from parabolic or finite splittings.

In case G is a counterexample to Theorem 1.6, we conclude that E is nonelemen-
tary. In particular E contains a nonabelian free subgroup. The bound in Lemma
4.7 implies that infinitely many edge groups Ei < Ḡi are isomorphic. Note that
the edge groups Ei are all quotients of E < G. But since every two-ended group
satisfies a law, there is no stably faithful sequence of homomorphisms from a group
containing a nonabelian free group to a fixed two-ended group. Thus in this case
we have also reached a contradiction. �

Since the scaling factors Di are unbounded, the limiting R-tree T∞ may not be
simplicial. In order to obtain our contradiction to prove Theorem 1.6, we apply
the Rips machine (in its version from [Gui08]) to find an elementary splitting of
G. For the contradiction for Theorem 1.8, we have to undertake a more refined
analysis of the limiting R-tree (still using the results from [Gui08]) and then use
Sela’s ‘Shortening Argument’ to argue that for large i the action ηi is not shortest,
contrary to Assumption 5.3.

We start by analyzing the arc stabilizers of the G-action on T∞.

Lemma 5.7. Let I be a nondegenerate arc in T∞. The stabilizer of I fits into a
short exact sequence

1 → N → Stab(I) → A → 1,

where A is abelian, and N is finite of order at most C.

Proof. This argument is very similar to the argument from the proof of [Sel97,
Proposition 1.2(i), p. 531]. We show that the commutator subgroup of Stab(I) has
cardinality bounded above by C.

Indeed let γ1, . . . , γn be distinct elements of the commutator subgroup of Stab(I).
For large i the set {γ1, . . . , γn} embeds in Ḡi, since the sequence is stably faithful.
For each γj fix some expression of γj as

∏nj

k=1[αj,k, βj,k], a product of commutators
of elements of Stab(I); let F be the set of αj,k, βj,k which occur in one of these
expressions.

The endpoints p and q of I are limits of sequences {pi}, {qi} of vertices in the ap-

proximating Bass-Serre trees, so the distances d(pi,qi)
Di

tend to d(p, q). The elements
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of F all stabilize I, so for sufficiently large i we have max{d(pi, fpi), d(qi, fqi)} <
Di

100 for all f ∈ F , and Di > 1000. It follows that there is a large subsegment of
[pi, qi] on which all the elements of F act like translations (or act trivially). It
follows that all the elements γ1, . . . , γn lie in the stabilizer of this segment. Since
the action of Ḡi on Ti is (2, C)–acylindrical, n ≤ C, as required. �

Recall that a group is small if it has no nonabelian free subgroup. Finite-by-
abelian groups are clearly small.

Corollary 5.8. The action G � T∞ has small arc stabilizers.

Lemma 5.9. Let Y be a nontrivial tripod in T∞. The stabilizer of Y is finite of
order at most C.

Proof. This argument is very similar to one in Sela [Sel97, Proposition 1.2(ii),
p. 531], but modified slightly to deal with torsion. Let g1, . . . , gn ⊆ Stab(Y ),
let p, q, r be the leaves of Y , and let z be its center. There are sequences of points
pi, qi, ri ∈ Ti approximating p, q, r, and it is not hard to see that if zi is the center of
the tripod spanned by {pi, qi, ri}, then the sequence {zi} tends to z. For sufficiently
large i, the distances d(pi, gjpi), d(qi, gjpi), d(ri, gjri) are all much smaller than
d(pi, zi), d(qi, zi), d(ri, zi), and these latter three distances are large. It follows that,
for large i, all the gj fix a large tripod centered at zi ∈ Ti; in particular they lie in
the stabilizer of some segment of length at least three.

Since the splittings giving rise to the trees Ti are (2, C)–acylindrical and the
sequence Ḡi is stably faithful, we have n ≤ C for sufficiently large i. �

An arc I of a G–tree T is unstable if it contains a nondegenerate subarc J with
strictly larger stabilizer. The following result follows easily from the last two lemmas
(see [RS94, Proposition 4.2]) and says that the action is “almost superstable”.

Lemma 5.10. The stabilizer in G of an unstable arc in T∞ has order at most C.

The following is an immediate corollary of Theorem 2.8.

Lemma 5.11. Let (G,P) be relatively hyperbolic. Then all small subgroups of G
are elementary.

We now complete the proof of Theorem 1.6 by appealing to a result of Guirardel.
Recall that Corollary 5.8 tells us that T∞ has small arc stabilizers.

Theorem 5.12 (Simplified version of [Gui08, Corollary 5.3]). Let G be a finitely
generated group for which any small subgroup is finitely generated, and suppose
G � T where T is an R-tree with small arc stabilizers. Then G splits over a small
subgroup.

Recall that we are assuming (see Assumption 5.3(1)) that small subgroups of G
are finitely generated, so this assumption in Theorem 5.12 is satisfied.

Recall the statement of Theorem 1.6.

Theorem 1.6. Let G be a group which is hyperbolic relative to a finite collection
P of subgroups, and suppose that all small subgroups of G are finitely generated.
Furthermore, suppose that G admits no nontrivial elementary splittings. Then all
sufficiently long M–finite co-slender fillings (G,P) → (Ḡ, P̄) have the property that
Ḡ admits no nontrivial elementary splittings.
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Proof. If (G,P) is a counterexample to this theorem, we have shown in this section
how to build a fixed-point free minimal action of G on an R-tree T∞ from a sequence
of Bass-Serre trees of (2, C)–acylindrical splittings of a stably faithful sequence of
fillings G → Ḡi. Corollary 5.8 says that arc stabilizers for this R-tree are small.
Since small subgroups of G are finitely generated, we can apply Theorem 5.12 to
conclude that G splits over a small, and hence elementary, subgroup, which is a
contradiction. �

In order to conclude the proof of Theorem 1.8, we need to get into more details
of the Rips machine and then apply (a version of) Sela’s ‘Shortening Argument’.

5.1. Proof of Theorem 1.8. Recall the statement:

Theorem 1.8. Let G be a group which is hyperbolic relative to a finite collection
P of subgroups, and suppose that all small subgroups of G are finitely generated.
Furthermore, suppose that G is one-ended and admits no proper peripheral split-
tings. Then all sufficiently long M–finite co-slender fillings (G,P) → (Ḡ, P̄) have
the property that Ḡ is one-ended and admits no splittings over parabolic subgroups.

The argument given above to prove Theorem 1.6 produces an elementary split-
ting. Such a splitting contradicts the hypotheses of Theorem 1.6, but in case the
splitting is over a nonparabolic (and hence two-ended) subgroup, it does not contra-
dict the hypotheses of Theorem 1.8. To prove Theorem 1.8 we must work harder to
obtain a contradiction, further analyzing the limiting action on the R-tree T∞ and
using this analysis to argue that for large enough i the action ηi can be shortened
using an automorphism in AutP(G). This will contradict the Standing Assumption
5.3(4). We now give more details.

We’ll use a result of Guirardel (Theorem 5.17 below) to show that the action of
G on T∞ can be decomposed into a ‘transverse covering’:

Definition 5.13 ([Gui08, Definition 1.4]). A transverse covering of an R-tree T is
a covering of T by a family of subtrees Y = (Yv)v∈V such that

• every Yv is a closed subtree of T ;
• every arc of T is covered by finitely many subtrees of Y ;
• for v1 �= v2 ∈ V , Yv1 ∩ Yv2 contains at most one point.

When T comes equipped with an isometric action of a group G, we always require
the family Y to be G-invariant.

Given a transverse covering Y of T , one can define a bipartite simplicial tree by
taking one family of vertices V1(Y) to be the set of subtrees Y ∈ Y and V0(S) to
be the set of points x ∈ T which lie in at least two distinct subtrees from Y . Join
an edge from x ∈ V0(S) to Y ∈ V1(S) when x ∈ Y . This builds a simplicial tree S,
called the skeleton of Y . If there is a group G acting on T and Y , then G naturally
acts on the skeleton S.

The data of a G-equivariant transverse covering and skeleton S give a graph of
actions decomposition for the G-action on T .

Two types of tree actions which do not decompose in this way are surface type
and axial, which we now define.

Definition 5.14. AG-tree T is of surface type if there is an epimorphism G → π1Σ,
where Σ is a hyperbolic 2–orbifold (possibly with boundary) and T is the R-tree
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dual to a filling measured lamination on Σ with no closed leaves. (Here π1Σ refers
to the orbifold fundamental group of Σ.)

Remark 5.15. Consider a surface-type tree T with the group π1Σ acting as in
Definition 5.14 above, and let I be a nontrivial arc in T . The stabilizer of I in π1Σ
is trivial.

Definition 5.16. A G-tree T is axial if T ∼= R and G acts as a finitely generated
indiscrete subgroup of Isom(R).

See [Gui08] and [Gui04] for more details. The key result we need is the following.

Theorem 5.17 ([Gui08, Corollary 5.3]). Suppose G is a finitely generated group
for which any small subgroup is finitely generated, and suppose G � T where T is
an R-tree with small arc stabilizers. Suppose further that G does not split over any
tripod stabilizer or over the stabilizer of an unstable arc. Then T has a transverse
covering giving a graph of actions in which every vertex action is either

(1) simplicial,
(2) of surface type, or
(3) axial.

Corollary 5.18. The tree G � T∞ constructed above has a decomposition as a
graph of actions where each vertex action is either simplicial, of surface type, or
axial. Moreover elements of G which act elliptically on T∞ also act elliptically on
the skeleton, S, of this graph of actions.

Proof. Corollary 5.8 says that the arc stabilizers of G � T∞ are small. Lemmas
5.9 and 5.10 imply that stabilizers of tripods and of unstable arcs are always finite.
By Assumption 5.3(2), G is one-ended, and in particular G doesn’t split over one
of these stabilizers. Theorem 5.17 therefore gives us a graph of actions as specified.

By [Gui08, Lemma 1.15], elements of G which act elliptically on T∞ also act
elliptically on S. �

For the remainder of the section, we fix this graph of actions decomposition just
obtained. The vertex trees Yv are subtrees of T∞, and we also refer to them as
components of the action G � T∞.

Lemma 5.19. G � T∞ has no axial components.

Proof. Suppose that G � T∞ has an axial component, Tv. Then the associated
vertex group Gv admits a short exact sequence

1 → K → Gv → A → 1,

where K acts trivially on Tv and A is an indiscrete subgroup of Isom(R). Since Tv

contains an arc, K is small by Corollary 5.8 and hence elementary by Lemma 5.11.
By Lemma 2.14 this implies that Gv is elementary. However, A is an indiscrete
subgroup of Isom(R), and so Gv cannot be finite or two-ended, so Gv is parabolic.
Since no P ∈ P can equal G, we have Gv �= G, and so Tv �= T∞.

In particular, there is some point x ∈ Tv where another tree is attached. Let e
be the edge in the skeleton S between the vertex corresponding to x and the one
corresponding to Tv, and let E be the stabilizer of e. Note that E contains K as
a subgroup of index at most two and that G splits over E. Since G is one-ended
(Assumption 5.3(2)), K (and hence E) must be infinite parabolic.
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By contracting edges of S not in the orbit of e to points, we obtain a Bass-Serre
tree S̄ for the splitting of G over E. By Lemma 5.5, multi-ended elements of P act
elliptically on T∞, hence on S (see Corollary 5.18), and hence on S̄. By Lemma
3.1, there is a splitting of G over a parabolic subgroup in which all elements of P
are elliptic. Therefore by Proposition 2.25 there is a proper peripheral splitting,
in contradiction to Assumption 5.3(2). This implies that G � T∞ has no axial
components, as required. �

Thus, every component of the decomposition of G � T∞ is simplicial or of
surface type.

Given the finite generating set A for G and the basepoint x∞ of T∞, we consider
the arcs in T∞ of the form [x∞, a.x∞] for a ∈ A. Since there is no global fixed
point, these arcs are not all trivial.

There are two cases. The first is when at least one of these arcs intersects
a surface type component. The second is when all of the arcs are contained in
(unions of) simplicial components.

We deal with surface-type components first.

Lemma 5.20. Suppose that Yv is a surface-type component of the graph of actions
decomposition of T∞ and that Gv is the stabilizer in G of Yv. The kernel Nv of the
action of Gv on Yv has order at most C.

Proof. Any such Yv contains a nontrivial tripod, so any element of Nv must fix a
tripod. Thus Nv has order at most C by Lemma 5.9. �

The following lemma describes the structure of the splitting of G induced by a
surface-type vertex tree in the decomposition of Yv and is important for proving
below that the shortening automorphisms constructed are in AutP(G).

Lemma 5.21. Suppose that the graph of actions decomposition of G acting on
T∞ contains a surface-type vertex tree Yv and vertex group Gv, with corresponding
2-orbifold Σ. Then:

(1) Each attaching point for Yv (to other subtrees in the decomposition) corre-

sponds to a boundary component of the universal cover Σ̃, yielding a split-
ting of G with edge group the subgroup corresponding to this boundary com-
ponent.

(2) Each boundary component of Σ arises in this way.
(3) Each two-ended subgroup of Gv corresponding to a boundary component

contains an RH-hyperbolic element of G.
(4) Any nontrivial parabolic element contained in Gv has finite order and either

corresponds to an orbifold point or is in the kernel of the action of Gv on
Tv.

Proof. By Lemma 5.20 the map from Gv to π1Σ has kernel of order at most C. If
there is an attaching point for Yv that corresponds to a point other than a boundary
component, the stabilizer in π1Σ is finite, and this would lead to a splitting of G
over a finite subgroup, contrary to Assumption 5.3(2).

If there is an ‘unused’ boundary component, an essential arc from this component
back to itself would also yield a splitting of G over a finite subgroup.

Suppose that B is a two-ended subgroup of Gv corresponding to a boundary
component of Σ, and suppose that b ∈ B is infinite order. We have to prove that b
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is RH-hyperbolic. Suppose instead that b is parabolic. Since parabolic subgroups
are almost malnormal, this implies that in fact B is parabolic. However, the graph
of actions of G � T∞ gives a splitting of G over B. Now, every multi-ended
P ∈ P acts elliptically by Lemma 5.5. Lemma 3.1 says there is a splitting over a
parabolic subgroup where all P ∈ P are elliptic. Finally Proposition 2.25 gives a
proper peripheral splitting, which contradicts Assumption 5.3(2). Thus b must be
RH-hyperbolic.

Finally, suppose that p is a nontrivial parabolic element contained in Gv. Since
the only torsion elements of Gv are in the kernel of the Gv-action on Tv or else
correspond to orbifold points, we need only rule out the case where p has infinite
order. Suppose that there is such an infinite order parabolic element p contained
in Gv, and let P be the maximal parabolic subgroup containing p. First note that
we have already proved that the (two-ended) boundary subgroups of Gv contain
RH-hyperbolic elements, which means that p is not contained in such a subgroup,
and also the intersection of such a subgroup with P is finite.

Theorem 5.17 gives an action of G on the simplicial skeleton S of the tree T∞.
If P is not contained in Gv, then the action of P on S gives a nontrivial splitting
of P over a finite group (the intersection of P with some boundary subgroup of
Gv), which implies that P is multi-ended. However, the multi-ended subgroups of
P act elliptically on T∞ by Lemma 5.5, and so on S by Corollary 5.18. This implies
that P is entirely contained in Gv. However, Gv is a virtually free group, so this
implies that P is also virtually free, and so again we know that P acts elliptically
on T∞. But the only subgroups of Gv that act elliptically on Gv correspond to
orbifold points or boundary components, and p is not in either kind of subgroup.
This contradiction implies that there are no infinite order parabolic elements in Gv,
as required. �

Suppose that an arc of the form [x∞, a.x∞] intersects a surface vertex tree (for
some a ∈ A). In the case that G is torsion-free, Rips–Sela [RS94] explain how to
obtain an automorphism of G which shortens the action on T∞, and therefore short-
ens all but finitely many of the approximating actions. In [RW14, Theorem 4.15],
Reinfeldt–Weidmann adapt this argument in the presence of torsion. One of the
subtleties they must deal with is that not all automorphisms of π1(Σ) need induce
automorphisms of Gv because the map from Gv to π1(Σ) may have finite kernel.
We have the additional requirement that our shortening automorphisms must lie
in AutP(G). Both these issues are dealt with in the following slight strengthening
of [RW14, Lemma 4.17].

Lemma 5.22. Let Γ be a finitely presented group and H = {H1, . . . , Hk} a finite
collection of cyclic, malnormal subgroups of Γ. Suppose that there is a short exact
sequence

1 → E → Γ̃
π→ Γ → 1

where E is finite. Let H̃ = {π−1(Hi)}. Let A′ be the group of automorphisms

σ ∈ AutH(Γ) that (i) lift to AutH̃(Γ̃) and (ii) such a lift acts as the identity on E.
Then A′ has finite index in AutH(Γ).

Proof. Let A be the subgroup of AutH(Γ) that lift to AutH̃(Γ̃). Then [RW14,
Lemma 4.17] states that A has finite index in AutH(Γ). However, each element of

A lifts to an element of AutH̃(Γ̃) which preserves E, so we get a homomorphism
from A to Aut(E) which is finite. Then A′ is the kernel of this homomorphism. �
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(We apply the lemma with Γ̃ = Gv, Γ = π1(Σ), and H the boundary subgroups
of π1(Σ) and finite cyclic subgroups corresponding to cone points of π1Σ. Since E
may contain parabolic elements, we need our automorphisms to act as the identity
on E.)

We can now follow the proof of [RW14, Proposition 4.16] exactly as written,
except using A′ in place of their subgroup S (which is A in Lemma 5.22 above), to
find the shortening automorphism of Gv and then extend it to an automorphism
of G as in [RW14, §4] (cf. [RS94, Proposition 5.4]).

The extension is most naturally described in terms of a coarsening of the graph of
groups decomposition of G coming from G � S. Let Λ be the quotient of S by the
action of G, let π : S → Λ be the natural quotient map, and let st(v) be the open
star of v in Λ. Let S̄ be the tree obtained from S by smashing connected components
of π−1(Λ� st(v)) to points. This gives a new graph of groups decomposition for G,
with underlying graph Λ̄, which still contains the vertex v and has one additional
vertex for each component of Λ� {v}. The edge groups incident to v are the same
as those in the original graph of groups. The following is a consequence of the
description of the extension given in [RS94].

Lemma 5.23. The extension ᾱ : Gv → Gv of a shortening automorphism α to G
satisfies:

(1) ᾱ|Gv = α, and
(2) for each w �= v in Λ̄, the restriction ᾱ|Gw = adg for some g ∈ Gv.

Though we don’t know that parabolics are elliptic on S, the next lemma shows
they are elliptic on S̄.

Lemma 5.24. Let P ∈ P. Then P fixes a point of S̄.

Proof. If not, S̄ would give a splitting of P over some P0 contained in boundary
subgroup of Gv. By Lemma 5.21(3), P0 must be finite. But then P is multi-ended,
so it fixes a point of T∞; hence (Corollary 5.18) fixes a point of S; hence fixes a
point of S̄. �

Now let P ∈ P, and consider a shortening automorphism α chosen to lie in the
subgroup A′ of AutH̃(Gv) as in the conclusion of Lemma 5.22. Let ᾱ ∈ Aut(G) be
the extension satisfying the conclusions of Lemma 5.23. Since P fixes a point of S̄,
it is conjugate into a vertex group of the graph of groups Λ̄. If the corresponding
vertex is not v, then Lemma 5.23 implies that ᾱ|P is adg for some g. If the
corresponding vertex is v, then P must actually be finite and project to a finite
cyclic group in π1Σ. Lemma 5.22 implies that ᾱ restricts to the identity on P .
Thus ᾱ ∈ AutP(G), as required, providing the required contradiction in this case.
To summarize, we have the following:

Lemma 5.25. The arcs [x∞, a.x∞] never intersect a surface component in a non-
degenerate arc.

Therefore, we are left with the case that all of the arcs [x∞, a.x∞] are covered by
arcs from simplicial subtrees. Since T∞ is a minimal G-tree, this implies that T∞
is in fact simplicial. In this case, the proof that for sufficiently large i the action
ηi can be shortened is very similar to the argument in [Sel97, Theorem 2.5]. Once
again, see [RW14, §4] for details in the presence of torsion. As in the case the arcs
intersect surface-type pieces, the key is to check that the automorphisms used to
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shorten are in AutP(G). It is also important that the two-ended subgroups found
as edge groups in the splitting induced by T∞ have infinite center, since then there
are many Dehn twists with which to shorten.

Lemma 5.26. In case T∞ is simplicial, edge stabilizers are two-ended subgroups
which contain (infinite order) RH-hyperbolic elements. These two-ended subgroups
have infinite center.

Proof. We know that edge stabilizers are small by Corollary 5.8, and hence elemen-
tary. Since the action is simplicial, G splits over its edge stabilizers. Therefore,
the edge stabilizers are not finite, since G is one-ended. Also, since multi-ended
subgroups of P are elliptic in T∞ by Lemma 5.5, and since G admits no proper
peripheral splittings, by Assumption 5.3(2), we know that the edge stabilizers are
not parabolic. Hence, they are two-ended and contain infinite order RH-hyperbolic
elements.

It remains to see that these two-ended subgroups must have infinite center.
However, this is immediate from the structure of the arc stabilizers in Lemma
5.7. �

In the simplicial case, the automorphisms are Dehn twists in two-ended sub-
groups which arise as edge groups in the (simplicial) tree T∞. By Lemma 5.26 such
an edge group must contain an RH-hyperbolic element and have infinite center.
That such automorphisms are in AutP(G) is the content of Example 2.27, in the
case of an amalgam, and is similar in the case of an HNN extension.

This implies that in fact the action ηi arising from the fillings G → Ḡi are not
shortest for large i, in contradiction to Assumption 5.3(4). Thus, we arrive at the
required contradiction, and Theorem 1.8 is proved.

6. Fuchsian fillings

This short section deals with the possibility of Dehn fillings which are Fuchsian.
Theorem 6.1 below is needed to make certain of the statements in the next section
cleaner, and may be interesting in its own right. We say a group is Fuchsian if
it is equal to the fundamental group of a hyperbolic orbifold, which is to say it is
isomorphic to a discrete subgroup of Isom(H2) < O(2, 1). It is a consequence of the
Convergence Group Theorem [CJ94,Gab92] that every virtually Fuchsian group G
fits into a short exact sequence

1 → F → G → Γ → 1

so that Γ is Fuchsian and F is finite.

Theorem 6.1. Suppose that (G,P) is relatively hyperbolic, and every small sub-
group of G is finitely generated. Further suppose that G is not virtually Fuchsian
and admits no small splittings. Then for all sufficiently long fillings (Ḡ, P̄) of
(G,P), the quotient Ḡ is not virtually Fuchsian.

Proof. Consider a longer and longer sequence of fillings (Ḡi, P̄i) which are virtually
Fuchsian, so that each Ḡi fits into a short exact sequence:

1 → Fi → Ḡi → Γi → 1

where Fi is finite and Γi is Fuchsian. Note that Fi must be contained in every
parabolic of (Ḡi, P̄i), so by Corollary 4.5 the size of Fi is uniformly bounded. By
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passing to a subsequence, we can suppose that Fi is the isomorphic image of a fixed
finite F < G. This F is the stable kernel of the sequence of fillings G → Ḡi. Let
Γ = G/F .

Each Γi has a faithful representation as a discrete subgroup of O(2, 1). Each
such representation gives a point in the O(2, 1)–character variety of G. If some
subsequence converges, then Γ is Fuchsian, contradicting the assumption that G is
not virtually Fuchsian.

The characters therefore diverge. Picking particular representations ρi : Γ →
Isom(H2) < O(2, 1) and rescaling appropriately (by some constants λi → 0), these
representations limit to an action on an R-tree T . (We make sure to conjugate
these representations to always have the same centrally located basepoint.)

Claim 6.1.1. Arc stabilizers in T are small.

Claim 6.1.2. T is a stable G-tree.

From these two claims, it follows from [BF95, Theorem 9.5] that G splits over a
small-by-abelian (hence small) subgroup, contradicting the hypothesis of no small
splitting. We finish by proving the claims.

Proof of Claim 6.1.1. Let I = [p, q] be a nondegenerate arc of T . Let pi ∈ H
2

approximate p, and let qi ∈ H
2 approximate q. We have λid(pi, qi) −−−→

i→∞
d(p, q),

but for each g ∈ Stab(I),

max{λid(pi, gpi), λid(qi, gqi)} −−−→
i→∞

0.

One can then show using an elementary hyperbolic geometry argument that for
any a, b, c, d in Γ, the elements c1 = [a, b] and c2 = [c, d] satisfy limi→∞ ρi(ci) =
limi→∞ ρi(c2) = I ∈ O(2, 1). To see this, note that, for large i, the discrete group
ρi(〈c1, c2〉) is generated by elements of a Zassenhaus neighborhood of the identity
in O(2, 1) and must therefore be abelian (cf. [Bea83, 11.6.14]). Since the ρi are
stably faithful, we deduce that the stabilizer of I in Γ is metabelian. Thus the
stabilizer of I in G is finite-by-metabelian. In particular it is small. �

Proof of Claim 6.1.2. By Claim 6.1.1, arc stabilizers are small. Since small sub-
groups of G are finitely generated, arc stabilizers satisfy the ascending chain con-
dition. In particular, the action is stable (see [BF95, Proposition 3.2(2)]). �

�

7. Behavior of the Bowditch boundary under filling

In this section we apply the main results about splittings and fillings to deduce
certain consequences about connectivity properties of the boundary under fillings,
in particular Theorems 1.2 and 1.9. The statements of results are cleanest if we
restrict to virtually polycyclic parabolics, though the alert reader will see that the
hypotheses can be weakened in various ways.

7.1. Literature review of boundaries and splittings. In this subsection we
recall different results about topological properties of boundaries of relatively hy-
perbolic groups and splittings.

Connectedness was understood first. Note that finite maximal parabolics give
rise to isolated points in the Bowditch boundary.
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Theorem 7.1 ([Bow12, Proposition 10.1]). Let (G,P) be relatively hyperbolic, and
suppose every element of P is infinite. Then ∂(G,P) is disconnected if and only if
G splits nontrivially over a finite subgroup relative to P.

If ∂(G,P) is connected, then Bowditch showed that (global) cut points corre-
spond to peripheral splittings, given some mild conditions on the parabolic sub-
groups.

Definition 7.2. Say a group is tame if it is finitely presented and contains no
infinite torsion subgroup.

Theorem 7.3. Let (G,P) be relatively hyperbolic, where the elements of P are
tame and one- or two-ended. Suppose that ∂(G,P) is connected. Then ∂(G,P) has
a cut point if and only if (G,P) has a nontrivial peripheral splitting.

Proof. Suppose first that (G,P) has a nontrivial peripheral splitting. Then [Bow01,
Theorem 1.2] implies that ∂(G,P) has a cut point. (Note that this direction only re-
quires connectedness of the boundary, and not the extra hypotheses on the parabol-
ics.)

Conversely, suppose that ∂(G,P) has a cut point. Theorem 0.2 of [Bow99b]
implies that, under the hypotheses, every cut point of ∂(G,P) is a parabolic fixed
point. Theorem 1.2 of [Bow99a] then implies that (G,P) admits a proper peripheral
splitting. �

Finally local cut points are connected to splittings over two-ended groups. Recall
that a continuum is a connected compact Hausdorff space. To have a reasonable
notion of local cut point, we must restrict attention to locally connected spaces.

Theorem 7.4 ([Bow01, Theorem 1.5]). Let (G,P) be relatively hyperbolic, where
the elements of P are tame and one- or two-ended, and suppose that ∂(G,P) is
connected. Then ∂(G,P) is locally connected.

Definition 7.5. Let p ∈ M whereM is a locally connected continuum. The valence
Val(p) is the cardinality of Ends(M � {p}). The point p is called a local cut point
if Val(p) > 1.

Lemma 7.6. Suppose (G,P) is relatively hyperbolic and that ∂(G,P) is a locally
connected continuum. If p is a parabolic fixed point which is not a cut point, then
Val(p) is equal to the number of ends of Fix(p).

Proof. Recall that the action of a relatively hyperbolic group on its Bowditch
boundary is geometrically finite [Bow12, Proposition 6.15], meaning that every
point is either a conical limit point or a bounded parabolic point. Since p is a para-
bolic fixed point, it is a bounded parabolic point, which means that Fix(p) acts prop-
erly discontinuously and co-compactly on ∂(G,P)�{p}. Since p is not a cut point,
∂(G,P)�{p} is connected. It follows that Ends(Fix(p)) = Ends(∂(G,P)�{p}). �

Lemma 7.7. Suppose (G,P) is relatively hyperbolic and that ∂(G,P) is a locally
connected continuum. There is an N < ∞ so that if p ∈ ∂(G,P) is not a parabolic
fixed point, then Val(p) < N .

Proof. Bowditch proved this in the absolute case P = ∅ [Bow98, Proposition 5.5].
Guralnik [Gur05, Proposition 4.2] points out that essentially the same proof works
in the relatively hyperbolic setting. �
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Theorem 7.8. Let (G,P) be relatively hyperbolic, where the elements of P are
tame and one-ended, and suppose that ∂(G,P) is connected and has no cut point.
Suppose further that (G,P) is not virtually Fuchsian. Then (G,P) has a local cut
point if and only if G splits relative to P over a nonparabolic two-ended subgroup.

Proof. Suppose that (G,P) splits relative to P over a two-ended subgroup H. Then
∂H is a two point set which separates ∂(G,P). To see this, note that H is quasi-
isometrically embedded in the cusped space because it is two-ended and not para-
bolic. Considering a cusped graph of spaces realizing the splitting of G, we see that
H coarsely separates the cusped space for (G,P) into at least two distinct (deep)
components. From this, it is clear that the pair of fixed points for H separates the
boundary ∂(G,P).

Conversely, suppose that (G,P) satisfies the hypotheses of the theorem, and
∂(G,P) has a local cut point. Theorem 7.4 implies that ∂(G,P) is locally connected,
so we may apply Lemmas 7.6 and 7.7 to conclude there is no infinite valence point
in ∂(G,P). It follows that ∂(G,P) is cut-rigid in the sense of Guralnik’s paper
[Gur05]. Propositions 4.7 and 4.8 of [Gur05] can then be used to conclude that
∂(G,P) has a cut pair.

The work of Papasoglu–Swenson in [PS06,PS11] encodes the cut-pair structure
of the boundary in a pre-tree which canonically (and therefore G–equivariantly)
embeds in a simplicial tree T . Groff [Gro13, Theorem 5.1] shows this tree is a JSJ
tree for elementary splittings of (G,P), relative to P.4 Since ∂(G,P) is connected,
there is no splitting over a finite group relative to P (Theorem 7.1); since ∂(G,P)
has no cut point and there are no multi-ended elements of P, there is no splitting
over a parabolic subgroup (Lemma 3.1 and Theorem 7.3). Thus every edge stabilizer
comes from a splitting over a nonparabolic two-ended subgroup relative to P.

It remains to establish that the action of G on T has no global fixed point. Here
we use Groff’s explicit description of the tree [Gro13, Section 4]: vertices correspond
to

(1) cut points (we do not have any of these),
(2) inseparable cut pairs,
(3) necklaces, or
(4) equivalence classes of points not separated by any cut point or cut pair.

See [Gro13] for the definition of these terms. Edges correspond to intersection of
closures. If there is a global fixed point in T , one quickly sees it must correspond to
a necklace, which equals ∂(G,P). But in this case ∂(G,P) = S1 and the pair (G,P)
is virtually Fuchsian, by the Convergence Group Theorem [CJ94,Gab92]. �

Corollary 7.9. Let (G,P) be relatively hyperbolic, so elements of P are tame
and one-ended. Suppose either P is nonempty or G is hyperbolic but not virtually
Fuchsian. The following are equivalent:

(1) ∂(G,P) is connected and has no (local or global) cut point.
(2) (G,P) has no elementary splitting.

Proof. This is immediate from Theorems 7.1, 7.3, and 7.8. �

4Groff requires that the elements of P are not themselves properly relatively hyperbolic, but
does not use this hypothesis for this result. This assumption is needed at other points in [Gro13].
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7.2. Connectedness properties of the boundary after filling. Now we prove
the statements about fillings and boundaries from the introduction, first recall-
ing some notation. For (G,P) a relatively hyperbolic group, let P∞ ⊆ P be the
collection of infinite peripheral subgroups, and let Pred be the collection of nonhy-
perbolic subgroups. Then (G,P∞) and (G,Pred) are still relatively hyperbolic, but
the Bowditch boundaries may be different. For example, if (G,Pred) is connected,
but P � Pred contains an infinite cyclic subgroup, then ∂(G,P) has a local cut
point. The Bowditch boundary of (G,P∞) is equal to ∂(G,P) with its isolated
points removed.

Also recall the inductive definition of polycyclic groups: Cyclic groups are poly-
cyclic. Moreover a group E is polycyclic whenever it fits into a short exact sequence

1 → P → E → C → 1

with C cyclic and P polycyclic. In particular, finitely generated nilpotent groups
are polycyclic. To apply our results in this setting we need a couple of observations
about this class of groups.

Lemma 7.10. Let P be virtually polycyclic. Then P is tame, slender, and one- or
two-ended. Moreover every quotient of P is virtually polycyclic.

Recall the statement of Theorem 1.9.

Theorem 1.9. Suppose that (G,P) is relatively hyperbolic, with P consisting of
virtually polycyclic groups. Suppose further that the Bowditch boundary ∂(G,P) is
connected with no cut point. Then for all sufficiently long M–finite fillings (G,P) �
(Ḡ, P̄), the resulting boundary ∂(Ḡ, P̄∞) is connected and has no cut points.

Proof. By Lemma 7.10, the peripheral subgroups P satisfy the hypotheses of Bow-
ditch’s Theorem 7.3. There is no cut point in ∂(G,P), so (G,P) has no proper
peripheral splitting.

Let (Ḡ, P̄) be sufficiently long that we can apply Theorem 1.8, so that Ḡ is
one-ended, and (Ḡ, P̄) has no proper peripheral splittings.

It may be the case that ∂(Ḡ, P̄) is disconnected, but this can only be because
some elements of P̄ are finite. All the elements of P̄∞ are infinite, so Theorem 7.1
implies that ∂(Ḡ, P̄∞) is connected. Since there is no nontrivial peripheral splitting
of (Ḡ, P̄), it is easy to see there is also no nontrivial peripheral splitting of (Ḡ, P̄∞).
Theorem 7.3 then implies that ∂(Ḡ, P̄∞) has no cut point. �

We now prove Theorem 1.2.

Theorem 1.2. Suppose that (G,P) is relatively hyperbolic, with P consisting of
virtually polycyclic groups. Suppose that ∂(G,Pred) is connected with no local cut
points. Then for all sufficiently long fillings (Ḡ, P̄), we have ∂(Ḡ, P̄red) connected
with no local cut points.

Proof. The hypothesis implies G is not Fuchsian, since then ∂(G,Pred) would either
be a Cantor set or S1. Note that since P consists of virtually polycyclic groups,
Pred consists of one-ended groups. Corollary 7.9 implies that (G,Pred) has no
elementary splittings. It follows that (G,P) has no elementary splittings, since the
elementary subgroups of (G,P) and (G,Pred) coincide. Now let (Ḡ, P̄) be a filling
which is sufficiently long that Theorems 1.6 and 6.1 apply. Since (Ḡ, P̄) has no
elementary splittings, neither does (Ḡ, P̄red). Moreover Theorem 6.1 implies Ḡ is
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not Fuchsian. Corollary 7.9 then implies that ∂(Ḡ, P̄red) is connected with no local
cut points. �
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Note added in proof

Our proof of Theorem 7.8 relies on Groff’s [Gro13], about which some concerns
have been raised. Specifically, Groff’s proof of Theorem 4.6 (that his combined
‘cut point/cut pair tree’ is simplicial) is incorrect. Our proof of Theorem 7.8 does
not rely on this result (since we are assuming that there are no cut points), and we
believe other arguments of Groff are correct. Chris Hruska and Matt Haulmark have
told us that they have a different proof of Theorem 4.6 of Groff. Haulmark’s paper
”Local cut points and splittings of relatively hyperbolic groups,” arXiv:1708.02855,
proves a generalization of Theorem 7.8, and does not rely on [Gro13]. Haulmark’s
paper also contains a careful proof of the last sentence of our proof of Lemma 7.6.
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