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ISOMORPHISMS OF TENSOR ALGEBRAS

ARISING FROM WEIGHTED PARTIAL SYSTEMS

ADAM DOR-ON

Abstract. We continue the study of isomorphisms of tensor algebras associ-
ated to C∗-correspondences in the sense of Muhly and Solel. Inspired by re-
cent work of Davidson, Ramsey, and Shalit, we solve isomorphism problems for
tensor algebras arising from weighted partial dynamical systems. We provide
complete bounded / isometric classification results for tensor algebras arising
from weighted partial systems, both in terms of the C∗-correspondences asso-
ciated to them and in terms of the original dynamics. We use this to show that
the isometric isomorphism and algebraic / bounded isomorphism problems are
two distinct problems that require separate criteria to be solved. Our methods
yield alternative proofs to classification results for Peters’ semi-crossed product
due to Davidson and Katsoulis and for multiplicity-free graph tensor algebras
due to Katsoulis, Kribs, and Solel.

1. Introduction

Non-self-adjoint operator algebras associated to dynamical / topological / ana-
lytic objects and their classification via these objects have been the subject of study
by many authors for almost 50 years, beginning with the work of Arveson [Arv67]
and Arveson and Josephson [AJ69].

The main theme of this line of research, as is the main theme of this paper, is to
identify the extent to which the dynamical objects classify their associated non-self-
adjoint operator algebras. In this paper, we shall mainly focus on classification of
non-self-adjoint tensor operator algebras arising from a single C∗-correspondence
over a commutative C∗-algebra, although analogous work has been done in re-
lated contexts [DK14,KK14,DRS11,DRS15,DOM14,Gur12,Har15,KS15,Ram16]
to mention only some.

1.1. History. The origin of this line of research is the work of Arveson [Arv67]
and Arveson and Josephson [AJ69]. Peters [Pet84] then continued this investigation
where he introduced his semi-crossed product algebra and generalized the Arveson–
Josephson classification. Hadwin and Hoover [HH88] improved Peters’ classification
by removing some of the restrictions on fixed points. For decades it was unknown
if a restriction on fixed points was necessary, and the problem of whether or not it
was possible to remove all restrictions came to be known as the conjugacy problem.
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In a sequence of papers [MS98, MS99, MS00], Muhly and Solel established a
non-commutative generalization of function theory, and in [MS00] they initiated
a program of classifying all tensor algebras arising from C∗-correspondences. In
[MS00], Muhly and Solel introduce a notion of aperiodicity of a C∗-correspondence
and classify tensor algebras arising from aperiodic C∗-correspondences up to iso-
metric isomorphism (see Section 5 in [MS00]).

Some of the first successful attempts to address the case of periodic C∗-correspon-
dences came from tensor algebras associated to countable directed graphs. Solel
[Sol04] (for finite directed graph and isometric isomorphisms) and Katsoulis and
Kribs [KK04] (for countable directed graphs and algebraic / bounded isomorphisms)
independently introduced methods of representations into upper triangular 2 × 2
matrices to solve isomorphism problems for tensor algebras associated to countable
directed graphs and to show that for two countable directed graphs G and G′, their
tensor algebras T+(G) and T+(G′) are isometrically / bounded isomorphic if and
only if G and G′ are isomorphic, and when G (or G′) has either no sinks or no
sources, this is equivalent to the existence of an algebraic isomorphism. We will
provide an alternative proof of this result when the graphs G and G′ are finite and
multiplicity-free (see Corollary 8.2).

The conjugacy problem was finally solved by Davidson and Katsoulis [DK08]
by adapting the methods of Hadwin and Hoover in [HH88] and the methods of
representations into upper triangular 2 × 2 matrices in [KK04,Sol04]. They prove
that for two continuous maps σ : X → X and τ : Y → Y on locally compact
spaces X and Y respectively, the semi-crossed product algebras C0(X)×σ Z+ and
C0(Y )×τ Z+ are algebraically / bounded / isometrically isomorphic if and only if
σ and τ are conjugate. We will provide an alternative proof to this result in the
case when X and Y are compact (see Corollary 8.3).

In [DK11], Davidson and Katsoulis associated an operator algebra A(X, σ) to
a multivariable system σ = (σ1, ..., σd) of continuous maps σi : X → X on a
locally compact space X. They show that if σ and τ are multivariable systems on
locally compact X and Y respectively and if A(X, σ) and A(Y, τ ) are algebraically
isomorphic, then there is a homeomorphism γ : X → Y and an open cover {Uα|α ∈
Sn} of X such that for each α ∈ Sn we have γ−1τiγ|Uα

= σα(i)|Uα
. This equivalence

relation between two multivariable systems is called piecewise conjugacy.
A strong converse showing that if (X, σ) and (Y, τ ) are piecewise conjugate,

then A(X, σ) and A(Y, τ ) are isometrically isomorphic was achieved under various
assumptions (see Theorem 3.25 in [DK11]), but the general converse remains an
open problem to this day (see Conjecture 3.31 and Theorem 3.33 in [DK11]).

Davidson and Roydor [DR11] then extend the ideas in [DK11] to the context of
compact topological graphs in the sense of Katsura [Kat04], which includes finite
directed graphs, multivariable dynamics on compact spaces, and more. Davidson
and Roydor associate a tensor algebra T+(E) to every topological graph E in a
way that generalizes the constructions mentioned above and show that if E and
F are two topological graphs with bounded isomorphic tensor algebras, then the
topological graphs are locally conjugate, in the sense of Definition 4.3 in [DR11].

Again a strong converse going through isometric isomorphism was established
when the dimension of the vertex space is at most 1. We will provide a proof that
certain multiplicity-free topological graphs also satisfy this strong converse (See
Corollary 8.6).
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1.2. General description. In this article we provide classification results for ten-
sor algebras arising from weighted partial systems (WPS for short). Our objective
is to show that WPS yield tensor algebras which are still completely classifiable
up to bounded / isometric isomorphisms while covering as many examples of such
classification results, for instance those for multiplicity-free finite directed graphs
[KK04,Sol04] and for Peters’ semi-crossed product [DK08].

A weighted partial system on a compact space X is a pair (σ,w) of d-tuples
(σ1, ..., σd) and (w1, ..., wd) of partially defined continuous functions σi : Xi → X
and wi : Xi → (0,∞) for Xi clopen. WPS generalize many classical constructions
such as non-negative matrices, continuous functions on a compact space, multivari-
able systems, distributed function systems, graph directed systems, and more.

To each WPS (σ,w) we associate a multiplicity-free topological quiver (in the
sense of [MT05b]) that encodes some information on it. This topological quiver
gives rise to a C∗-correspondence C(σ,w), as constructed in [MT05b]. We com-
pletely characterize these C∗-correspondences up to unitary isomorphism and sim-
ilarity in terms of conjugacy relations between the WPS that we call branch-
transition conjugacy and weighted-orbit conjugacy respectively.

We then associate a tensor algebra T+(σ,w) to C(σ,w) as one usually does for
general C∗-correspondences [MS98,MS99,MS00] and classify these tensor algebras
up to isometric / bounded isomorphism and in some cases up to algebraic isomor-
phism.

The following are our main results (see Theorems 7.3 and 7.4). Suppose (σ,w)
and (τ, u) are WPS over compact X and Y respectively.

(1) T+(σ,w) and T+(τ, u) are isometrically isomorphic if and only if C(σ,w)
and C(τ, u) are unitarily isomorphic if and only if (σ,w) and (τ, u) are
branch-transition conjugate.

(2) T+(σ,w) and T+(τ, u) are bounded isomorphic if and only if C(σ,w) and
C(τ, u) are similar if and only if (σ,w) and (τ, u) are weighted-path con-
jugate. If in addition the clopen sets Xi (which are the domains of each
σi) cover X, the above is equivalent to having an algebraic isomorphism
between T+(σ,w) and T+(τ, u).

The solution to these isomorphism problems requires an adaptation of a new
method in the analysis of character spaces due to Davidson, Ramsey, and Shalit in
[DRS11] used in the solution of isomorphism problems of universal operator algebras
associated to tuples of operators subject to homogeneous polynomial constraints.

One of the main thrusts of this paper is the use of these classification results
to show that the (completely) isometric isomorphism and algebraic / (completely)
bounded isomorphism problems are distinct in the sense that they require separate
criteria to be solved (see Example 7.5).

1.3. Structure of paper. This paper contains eight sections, including this intro-
ductory section.

In Section 2 we discuss some preliminary theory of Hilbert C∗-correspondences,
discuss three different notions of isomorphisms of C∗-correspondences called unitary
isomorphism, similarity, and isomorphism, and construct the GNS C∗-correspon-
dence associated to a completely positive map in the sense of Chapter 5 of [Lan95]
and quiver C∗-correspondences of a topological quiver in the sense of [MT05b].
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In Section 3 we introduce the notion of a weighted partial system and define three
different notions of conjugacy between WPS called branch-transition conjugacy,
weighted-orbit conjugacy, and graph conjugacy. We then use Section 2 to associate
a C∗-correspondence to every WPS in such a way that the three conjugacy relations
above correspond to unitary isomorphism, similarity, and isomorphism between
the C∗-correspondences. We give examples that show that these three conjugacy
relations are distinct.

In Section 4 we discuss the general theory of tensor algebras arising from C∗-
correspondences and develop the theory of semi-graded isomorphisms by building
on ideas from Section 5 of [MS00] and Section 6 of [DOM14].

In Section 5 we show that tensor algebras arising from the C∗-correspondence of
a WPS possess a certain universal property by using tools from Section 3 of [Kwa14]
and find conditions on the WPS to ensure any isomorphism onto the tensor algebra
of a WPS is automatically continuous by applying ideas from [DHK01].

In Section 6 we compute the character space of a tensor algebra associated to a
WPS by adapting the methods of [HH88] and provide a useful characterization of
semi-gradedness in terms of the character space.

In Section 7 we reduce the general isomorphism problem to the problem on
semi-graded isomorphisms, and using Sections 6, 5, 4, and 3 in tandem with a
new character space technique due to [DRS11], we conclude our main classification
results.

Finally, in Section 8 we compare and apply our theorems to other tensor algebra
constructions arising from non-negative matrices, single variable dynamics, and
partial systems with disjoint graphs and show how in some cases we can apply our
results to recover some previously obtained results in the literature.

2. Hilbert C∗
-correspondences: GNS and quiver correspondences

In this section we give the basic definitions for Hilbert C∗-correspondences and
continue with defining three notions of isomorphism between them. We then dis-
cuss two constructions of C∗-correspondences, one associated to completely positive
maps on C∗-algebras and another associated to topological quivers in the sense of
[MT05b].

2.1. Hilbert C∗-correspondences. We assume that the reader is familiar with
the basic theory of Hilbert C∗-modules, which can be found in [Lan95, MT05a,
Pas73]. We only give a quick summary of basic notions and terminology as we
proceed, so as to clarify our conventions.

Let A be a C∗-algebra and let E be a Hilbert C∗-module over A. We denote
by L(E) the collection of adjointable operators on E. If in addition E has a left
A-module structure given by a *-homomorphism φ : A → L(E), we call E a Hilbert
C∗-correspondence over A. We often suppress notation and write a · ξ := φ(a)ξ.

A key notion of C∗-correspondences is the internal tensor product. If E is a
C∗-correspondence over A with left action φ and F is a C∗-correspondence over
A with left action ψ, then on the algebraic tensor product E ⊗alg F one defines
an A-valued pre-inner product satisfying 〈x1 ⊗ y1, x2 ⊗ y2〉 = 〈y1, ψ(〈x1, x2〉)y2〉 on
simple tensors. The usual Hausdorff completion process with respect to the norm
induced by this inner product yields the internal Hilbert C∗-module tensor product
of E and F , denoted by E ⊗ F or E ⊗ψ F , which is a C∗-correspondence over A
with left action φ⊗ IdF .
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We now introduce certain types of morphisms between C∗-correspondences that
arise naturally in the context of tensor algebras.

Definition 2.1. Let E and F be C∗-correspondences over the C∗-algebras A and B
respectively, and let ρ : A → B be a *-isomorphism. Then we define the following:

(1) A ρ-bimodule map V : E → F is a map satisfying V (aξb) = ρ(a)V (ξ)ρ(b).
(2) A bounded ρ-bimodule map V : E → F is called a ρ-correspondence map.
(3) A ρ-bimodule map V : E → F is called ρ-adjointable if there exists ρ−1-

bimodule adjoint V ∗ : F → E. That is, for ξ ∈ F and η ∈ E,

〈V ∗(ξ), η〉 = ρ−1(〈ξ, V (η)〉).
We note in passing that a ρ-adjointable map V : E → F is automatically

bounded by the Uniform Boundedness Principle, where the ρ-adjoint V ∗ : F → E
is a ρ−1-correspondence map.

Given a *-isomorphism ρ : A → B and a C∗-correspondence F over B, we may
define a C∗-correspondence structure Fρ over A on the set F . For a ∈ A and ξ ∈ F ,
we define left and right actions given by

a · ξ := ρ(a)ξ and ξ · a := ξρ(a)

and an A-valued inner product, given for ξ, η ∈ F by

〈ξ, η〉ρ = ρ−1(〈ξ, η〉).
This construction turns F into a C∗-correspondence over A, satisfies (Fρ)ρ−1 = F
as C∗-correspondences over B, and behaves well with respect to the internal tensor
products. That is, if F, F ′ are C∗-correspondences over B and ρ : A → B is a
*-isomorphism, then (F ⊗B F ′)ρ is naturally unitarily isomorphic to Fρ ⊗A F ′

ρ.
Next we show that tensor products of ρ-correspondence maps exist even when

the maps are not necessarily adjointable.

Proposition 2.2. Let E,E′ be C∗-correspondences over A and let F, F ′ be C∗-
correspondences over B. Suppose V : E → F , W : E′ → F ′ are ρ-correspondence
maps for some *-isomorphism ρ : A → B. Then there exists a unique ρ-correspon-
dence map V ⊗W : E⊗E′ → F ⊗F ′ defined on simple tensors by (V ⊗W )(ξ⊗η) =
V ξ ⊗Wη. Moreover, ‖V ⊗W‖ ≤ ‖V ‖ · ‖W‖.
Proof. By the preceding discussion, looking at Fρ, F

′
ρ, and (F ⊗B F ′)ρ ∼= Fρ ⊗A F ′

ρ

instead, we may assume without loss of generality that A = B and that ρ = IdA.
Then, by item (1) of Subsection 8.2.12 of [BLM04] the desired result follows. �

Hence, if V : E → F is a ρ-correspondence map, the maps V ⊗n : E⊗n → F⊗n

are ρ-correspondence maps and are bounded with ‖V ⊗n‖ ≤ ‖V ‖n. If in addition
to that there exists C > 0 such that for all n ∈ N we have ‖V ⊗n‖ ≤ C, we say that
V is tensor-power bounded.

Definition 2.3. Let E and F be C∗-correspondences over the C∗-algebras A and
B respectively, and let ρ : A → B be a *-isomorphism.

(1) A ρ-correspondence map V : E → F is called a ρ-isomorphism if V is
bijective.

(2) A ρ-correspondence map V : E → F is called a ρ-similarity if V is bijective
and V and V −1 are tensor-power bounded.

(3) A map U : E → F is called a ρ-unitary if U is a surjective isometric
ρ-correspondence map.
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We will say that E and F are isomorphic / similar / unitarily isomorphic if there
exist a *-isomorphism ρ : A → B and a ρ - isomorphism / similarity / unitary
V : E → F respectively.

Remark 2.4. It turns out that U : E → F is ρ-unitary if and only if U is ρ-
adjointable and U∗U = IdE and UU∗ = IdF . In this case, we see that U is a
ρ-similarity.

If V is a ρ-adjointable ρ-isomorphism, then V ∗V ∈ L(E) is an Id-isomorphism
and V |V |−1 defines a ρ-unitary between E and F . Hence, we note that in gen-
eral, we do not assume that ρ-correspondence maps are ρ-adjointable. In fact, in
Example 3.22 we will see a ρ-similarity which is not ρ-adjointable.

2.2. GNS construction. We now describe the general GNS (or KSGNS) con-
struction associated to a completely positive map on a unital C∗-algebra. This
construction is done in detail in [Lan95] and goes back to Paschke in [Pas73].

Let A be a unital C∗-algebra, and let S be a completely positive map on A.
The GNS representation of S is a pair (GNS(S), ξS) consisting of a Hilbert C∗-
correspondence GNS(S) and a vector ξS ∈ GNS(S) such that S(a) = 〈ξS , aξS〉.

GNS(S) is defined as the C∗-correspondence A ⊗S A which is the Hausdorff
completion of the algebraic tensor product A⊗A with respect to the inner product
and bimodule actions given respectively for a, b, c, d ∈ A by

〈a⊗ b, c⊗ d〉 = b∗S(a∗c)d and a · (b⊗ c) · d = ab⊗ cd.

The vector of this correspondence is then given by ξS = 1⊗ 1 and clearly satisfies
S(a) = 〈ξS , aξS〉.

For an up-to-date account of the GNS construction and its associated Toeplitz,
Cuntz-Pimsner, and relative Cuntz-Pimsner algebras, see Section 3 of [Kwa14].

2.3. Topological quivers and their C∗-correspondences. Another type of dy-
namical objects that turns up in our analysis is topological quivers, in the sense
of [MT05b]. See Subsection 3.3 in [MT05b] for some of the classes of examples
generalized by topological quivers.

We modify the definition of [MT05b] to fit our settings and we note that it is the
reverse of the one given in Definition 3.1 in [MT05b]. Still the following choice of
range and source maps is the one commonly used in higher rank graph algebras in
the works of Kumjian and Pask in [KP00] and in topological graphs in the works of
Katsura [Kat04,Kat09]. This choice has the additional advantage that composition
of operators is identified with concatenation of edges in the usual, non-reversed
way.

Definition 2.5. A topological quiver is a quintuple Q = (E0, E1, r, s, λ) such that
E0 and E1 are compact Hausdorff spaces of vertices and edges respectively, such
that r : E1 → E0 is a continuous map, s : E1 → E0 is an open continuous map, and
λ = {λv}v∈E0 are Radon measures on E1 such that supp(λv) = s−1(v) and for every
ξ ∈ C(E1) the map v �→

∫
E1 ξ(e)dλv(e) is in C(E0). We call Q = (E0, E1, r, s, λ) a

topological graph if in addition s : E1 → E0 is a local homeomorphism and λv is a
counting measure on the discrete set s−1(v).

Note that we do not assume that E0 and E1 are second countable as in Definition
3.1 in [MT05b], but for our purposes it will be enough to assume that E0 and E1 are
compact. The definition of a topological graph above is justified by Example 3.20 of
[MT05b], as this gives rise to a topological graph in the sense of Katsura [Kat04].
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Now that we have defined the notion of topological quiver, we wish to construct
a C∗-correspondence from it, just as we have from a completely positive map on a
C∗-algebra. Let Q = (E0, E1, r, s, λ) be a topological quiver. We let A = C(E0)
and define an A-valued inner product and bimodule actions on C(E1) for v ∈ E0,
ξ, η ∈ C(E1), and f, g ∈ C(E0) by setting

〈ξ, η〉(v) :=
∫
s−1(v)

ξ(e)η(e)dλv(e) and (f · ξ · g)(e) := f(r(e))ξ(e)g(s(e)).

With this inner product and bimodule actions, C(E1) becomes a C∗-correspondence
over C(E0), and we call it the quiver C∗-correspondence associated to Q, which
we denote by C(Q). We note that when Q is a topological graph in the sense
of Katsura [Kat04], this C∗-correspondence coincides with the one that is usually
associated to a topological graph, also in the sense of Katsura [Kat04].

The following is a restatement of Definition 6.1 in [MT05b] that fits our reversed
definition of topological quiver.

Definition 2.6. Let Q = (E0, E1, r, s, λ) be a topological quiver. A path in Q is a
finite sequence of edges μ = μn...μ1 with r(μi) = s(μi+1) for 1 ≤ i ≤ n− 1. We say
that such a path has length |μ| := n. Let En denote the collection of paths of length
n. We extend the maps r and s to En by setting r(μ) = r(μn) and s(μ) = s(μ1).
We endow En with the topology inherited from E1× ...×E1. Since s is continuous
and open and r is continuous on E1, we see that this persists when s and r are
considered as maps on En.

Remark 2.7. In Section 6 of [MT05b] one defines Radon measures λn
v inductively

on En, which then makes the quintuple Qn = (E0, En, r, s, λn) into a topological
quiver in its own right.

As mentioned in the discussion preceding Remark 6.3 in [MT05b], it turns out
that the quiver C∗-correspondence of Qn coincides with the n-th internal tensor
iterate for the C∗-correspondence of Q. In other words, we have that C(Q)⊗n and
C(Qn) are naturally (Id-)unitarily isomorphic as C∗-correspondences over C(E0),
via the map sending simple tensors ξn⊗ ...⊗ξ1 ∈ C(Q)⊗n to the function μn...μ1 �→
ξn(μn) · ... · ξ1(μ1) in C(Qn).

In our work, we will mostly be dealing with multiplicity-free topological quivers.

Definition 2.8. Let Q = (E0, E1, r, s, λ) be a topological quiver. We say that Q
is multiplicity-free if for any two edges e, e′ ∈ E1, if r(e) = r(e′) and s(e) = s(e′),
then e = e′.

The advantage of multiplicity-free topological quivers is that they can be iden-
tified as closed subsets of E0 × E0 in a canonical way. If Q = (E0, E1, r, s, λ) is
multiplicity-free, we define a map r × s : E1 → E0 × E0 given by (r × s)(e) =
(r(e), s(e)). r × s is then an injective continuous map with closed range (as
E1 is compact), and so E1 is homeomorphic to its image under r × s, and Q
is isomorphic to the topological quiver Q′ := (E0, (r × s)(E1), πr, πs, λ

′), where
πr, πs : E

0 ×E0 → E0 are given by πr(y, x) = y and πs(y, x) = x and λ′ = {λ′
v} is

given by λ′
v(E) = λv((r × s)−1(E)).

We will often think of multiplicity-free topological quivers Q = (E0, E1, r, s, λ)
with E1 = (r×s)(E1) already a closed subspace of E0×E0, so that r = πr, s = πs,
and λ = λ′.
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3. Weighted partial systems

In this section we define the notion of weighted partial system and introduce
two conjugacy relations between WPS. We show that the GNS correspondence and
quiver correspondence of a weighted partial system coincide and further charac-
terize when such C∗-correspondences of two weighted partial systems are unitarily
isomorphic / similar in terms of the new conjugacy relations.

3.1. Definitions and constructions. We define the notion of weighted partial
system and then associate a completely positive map and a topological quiver to
it. Examples of these constructs will appear in the next subsection.

Definition 3.1. Let X be a compact space. A d-variable weighted partial system
(WPS for short) is a pair (σ,w) where σ = (σ1, ..., σd) is comprised of continuous
maps σi : Xi → X where each Xi is clopen in X, and w = (w1, ..., wd) is comprised
of continuous non-vanishing weights wi : Xi → (0,∞).

When wi = 1 for all 1 ≤ i ≤ d, the information on the weights is redundant, and
in this case we replace (σ, 1) by σ and call it a d-variable (clopen) partial system.
Partial systems were used under the name of “quantised dynamical systems” by
Kakariadis and Shalit to classify tensor algebras associated to monomial ideals in
the ring of polynomials in non-commuting variables, up to Q-P -local piecewise
conjugacy (see Definition 8.6 and Corollary 8.12 in [KS15]).

Definition 3.2. Let (σ,w) be a d-variable WPS over a compact X.

(1) The positive operator associated to (σ,w) is a positive linear map P (σ,w) :
C(X) → C(X) given by

P (σ,w)(f)(x) =
∑

i:x∈Xi

wi(x)f(σi(x)).

(2) The quiver associated to (σ,w) is the quintuple

Q(σ,w) = (X,Gr(σ), r, s, P (σ,w)),

where Gr(σ) is the (union) cograph of σ, i.e., the union of the cographs of
σi given by

Gr(σ) =

d⋃
i=1

{ (σi(x), x) | x ∈ Xi }.

The range and source maps are given by r(σi(x), x) = σi(x), s(σi(x), x) = x,
and Radon measures

P (σ,w)x =
∑

i:x∈Xi

wi(x)δ(σi(x),x).

We will refer to Gr(σ) as the graph of the system σ, even though it is actually
the cograph of the system σ. Moreover, note that the graph we have constructed is
multiplicity-free, even though the original system (σ,w) need not be multiplicity-
free. In other words, if for some x ∈ X we have an index 1 ≤ i ≤ d such that
σi(x) = σj(x) for some other index j �= i, then σ is not multiplicity-free, yet in
Gr(σ) we have (σi(x), x) = (σj(x), x). Instead, part of the information on the
multiplicity of σi(x) is encoded in the measure P (σ,w)x, depending on the weights
wj(x) for these j that satisfy σj(x) = σi(x).
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We also abused notation above and decided to denote both the positive map and
the collection of Radon measures of the topological quiver of (σ,w) in the same way,
the reason being the 1-1 correspondence between positive maps S : C(X) → C(X)
and uniformly bounded maps x �→ Px ∈ M(X) given by the relation S(f)(x) =∫
X
f(y)dPx(y), as in Lemma 3.27 in [Kwa14].
For a WPS (σ,w), it is the continuity of wi that guarantees that (integration

against or application of) P (σ,w) sends continuous functions to continuous func-
tions, and indeed P (σ,w) is a positive linear map / (uniformly) finite Radon mea-
sure, and Q(σ,w) defined above is a topological quiver by Lemma 3.30 of [Kwa14].

Remark 3.3. When proving that Q(σ,w) is a topological quiver, we use the fact
that wi never vanishes. This ensures that for every x ∈ X we have

supp(P (σ,w)x) = {(σ1(x), x), ..., (σd(x), x)} = s−1(x),

and so by Lemma 3.30 of [Kwa14] we have that Q(σ,w) is a topological quiver.
When some wi vanishes at a point x ∈ X, one may arrive at the situation where
Q(σ,w) is not a topological quiver according to our definition, because it is then
possible that supp(P (σ,w)x) does not contain the edge (σi(x), x) while s−1(x)
always does. See Section 3.5 and Example 3.35 in [Kwa14] for this phenomenon
and other complications that arise in the more general context of positive operators
on C0(X) and associated topological quivers.

See [IMV12] and Subsection 3.5 of [Kwa14], where multiplicity-free (as in Defini-
tion 2.8) topological quivers are similarly associated to positive maps P : C0(X) →
C0(X) with closed support and where their crossed product C∗-algebras are inves-
tigated.

3.2. Subclasses of weighted partial dynamics. We show that weighted partial
systems encompass many different classical dynamical objects. When they have
simpler forms, we compute the associated topological quiver and positive map as
in Definition 3.2.

3.2.1. Non-negative matrices. If A = [Aij ] is a non-negative matrix indexed by
a finite set Ω, we associate an |Ω|-variable WPS (σA, wA) to it by specifying
ΩA

i := { j ∈ Ω | Aij > 0 } and define σA
i : ΩA

i → Ω by setting σA
i (j) = i

and wA
i (j) = Aij . Note that some σA

i may be the empty set function. This way
the graph of the WPS is given by Gr(σ) = Gr(A) := { (i, j) | Aij > 0 }, the
Radon measures by P (σA, wA)j =

∑
i∈Ω Aijδ(i,j), and the positive map P (σA, wA)

by P (σA, wA)(f)(j) =
∑

i∈Ω Aijf(i). An account of the theory of non-negative
matrices, Markov chains, and their graph structure can be found in [Sen06].

3.2.2. Finite directed graphs. Let (V,E, r, s) be a directed graph with finitely many
edges and vertices. We can regard every v ∈ V as comprising a clopen subset {v}
of V and each edge e ∈ E as (the unique) map from {s(e)} to {r(e)}. With we = 1,
the collection σE = {e}e∈E becomes a (weighted) partial system. We then see
that Gr(σE), being the regular union in V ×V , yields the multiplicity-free directed
graph associated to (V,E, r, s), that is, Gr(σE) := {(r(e), s(e))|e ∈ E}. Denote by
mw,v = |s−1(v) ∩ r−1(w)| the multiplicity of edges starting at v and ending at w.
Then the Radon measures are given by P (σE)v =

∑
w:(w,v)∈Gr(σE) mw,vδ(w,v), and
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the positive map is given by

P (σE)(f)(v) =
∑

w:(w,v)∈Gr(σE)

mw,vf(w).

We note that a directed graph (V,E, s, r) with finitely many edges and vertices
can be encoded as a non-negative matrix AE = [mw,v] indexed by V , so that the
topological quiver and positive maps for this example and the previous one coincide
when A is a {0, 1}-matrix.

Finally, we note that unless we started with a multiplicity-free directed graph
(V,E, r, s), the cardinality of Gr(σE) is strictly less than that of E, as the set of
edges Gr(σE) does not contain multiple edges between two fixed vertices, and we
see that the information on multiplicity is instead encoded into the Radon measures.

3.2.3. Partially defined continuous maps. For a compact space X, a clopen subset
X ′ ⊂ X, and a continuous map σ : X ′ → X, we have that σ is a partial system.
The positive map P (σ)(f) = f ◦σ is a *-homomorphism on C(X), and in fact, all *-
homomorphisms on C(X) arise in this way via the commutative Gelfand-Naimark
duality. The graph of the partial system σ is then just Gr(σ) = { (σ(x), x) |
x ∈ X ′ }, and the Radon measures are just Dirac measures P (σ)x = δ(σ(x),x).

3.2.4. Multivariable systems. When σ = (σ1, ..., σd) is a d-tuple of continuous maps
defined on all of X, the graph of σ is just the union of the graphs of σi as in Defi-

nition 3.2, but the Radon measures yield the simpler form P (σ)x =
∑d

i=1 δ(σi(x),x)

for all x ∈ X. The positive operator associated to σ is then given by P (σ)(f)(x) =∑d
i=1 f(σi(x)).

3.2.5. Distributed function systems. If σ = (σ1, ..., σd) is a multivariable system
on a compact metric space X, and p = (p1, ..., pd) are continuous non-vanishing

probabilities in the sense that for each x ∈ X we have that
∑d

i=1 pi(x) = 1, we call
(σ, p) a distributed function system. The positive operator associated to (σ, p) given

by P (σ)(f)(x) =
∑d

i=1 pi(x)f(σi(x)) yields a Markov-Feller operator on C(X) in
the sense of [Zah05], and this is a concrete way of creating examples of such Markov-
Feller operators.

When the pi are constant and each σi is a 1-1 strict contraction, we call (σ, p) a
distributed iterated function system. Markov-Feller operators were used explicitly,
especially when pi =

1
d for all i, by Hutchinson in [Hut81] and Barnsley in [Bar93,

Bar06] to construct certain invariant measures on self-similar sets coming from σ.

3.2.6. Graph directed systems / Mauldin-Williams graphs. Let E := (V,E, r, s) be
a directed graph with finitely many vertices and edges, {Xv}v∈V a (finite) set of
compact metric spaces, and {σe}e∈E a (finite) set of 1-1 strict contractions σe :
Xs(e) → Xr(e). Then we call the data (E , {Xv}v∈V , {σe}e∈E) a graph directed
system or Mauldin-Williams graph. If we set X =

⊔
v∈V Xv, then (σe)e∈E becomes

a partial system over X.
See [MU03], where Mauldin-Williams graphs are used to construct self-similar

sets and iterated limit sets. See also [MW88], where the Hausdorff dimension of
such iterated limit sets is computed in some cases.
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3.3. Branch-transition conjugacy. We next define two of the main conjugacy
relations between WPS. One particular conjugacy relation that we call branch-
transition conjugacy will turn out to arise from isometric isomorphism of the asso-
ciated operator algebra.

We say that (σ,w) and (τ, u) d-variable and d′-variable WPS over compact spaces
X and Y respectively are conjugate if one is a homeomorphic image of the other up
to some permutation. That is, d = d′ and there is a homeomorphism γ : X → Y
and a permutation α ∈ Sd such that γ−1τα(i)γ = σi and uα(i) ◦ γ = wi for all
1 ≤ i ≤ d.

Conjugation of WPS is the most rigid notion of conjugation that we shall en-
counter in this work. We define a weaker notion of conjugation that loses some
information about multiplicities and weights of the WPS.

For an s-variable WPS (τ, u) on a compact space Y and a homeomorphism γ :
X → Y denote τγ = γ−1τγ := (γ−1τ1γ, ..., γ

−1τsγ) and uγ = uγ = (u1γ, ..., usγ).

Definition 3.4. Let σ and τ be partial systems on compact spaces X and Y respec-
tively. We say that σ and τ are graph conjugate if there exists a homeomorphism
γ : X → Y such that Gr(σ) = Gr(τγ). Equivalently, there exists a homeomorphism
γ : X → Y such that the map γ × γ : Gr(σ) → Gr(τ ) is a homeomorphism.

Some natural sets that arise while considering graphs of partial systems are the
sets of points for which some of the maps in the system coincide and/or sets of
points for which they “branch out”.

Definition 3.5. Let σ be a d-variable partial system.

(1) A point x ∈ X is a branching point for σ if there is some net xλ →λ x and
two indices i, j ∈ {1, ..., d} such that xλ ∈ Xi ∩Xj and σi(xλ) �= σj(xλ) for
all λ while σi(x) = σj(x).

(2) An edge e ∈ Gr(σ) is a branching edge for Gr(σ) if there are two nets {eλ}
and {fλ} converging to e such that s(eλ) = s(fλ) while r(eλ) �= r(fλ) for
all λ.

Remark 3.6. If e is a branching edge, then by taking subnets if necessary, we see
that s(e) is a branching point. However, if s(e) is a branching point, e may not
be a branching edge. Still, every branching point is the source of some branching
edge. Thus, if two partial systems σ and τ are graph conjugate via γ, then σ and
τγ have the same sets of branching points and branching edges.

Definition 3.7. Let σ be a d-variable partial system and let I ⊂ {1, ..., d} be a
non-empty subset of indices.

(1) The coinciding set of I is the set

C(I) =

{
x ∈
⋂
i∈I

Xi | σi(x) = σj(x) ∀i, j ∈ I

}
.

(2) x ∈ X is a coinciding point for Gr(σ) if there is some I ⊂ {1, ..., d} with
|I| ≥ 2 such that x ∈ C(I).

We also denote by B(I) := ∂C(I) the topological boundary of C(I) inside X.

For I ⊂ {1, ..., d}, since the maps σi of a partial system are defined on clopen
sets Xi, we see that

⋂
i∈I Xi is clopen, so that both C(I) and B(I) are in fact

(relatively) closed subsets of
⋂

i∈I Xi.
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We next characterize branching points and branching edges in terms of bound-
aries of coinciding sets.

Proposition 3.8. Let σ be a d-variable (clopen) partial system.

(1) x ∈ X is a branching point if and only if for some I ⊂ {1, ..., d} we have
x ∈ B(I).

(2) e ∈ Gr(σ) is a branching edge for Gr(σ) if and only if s(e) ∈ B(I) for some
I ⊂ {1, ..., d} so that r(e) = σi(s(e)) for some (and hence all) i ∈ I.

Proof. We first prove (1). If x ∈ B(I) for some I ⊂ {1, ..., d}, there exists a net
{xλ} in

⋂
i∈I Xi converging to x such that for every λ ∈ Λ there exist iλ �= jλ in I

such that σiλ(xλ) �= σjλ(x). By passing to a subnet, we may arrange that iλ1
= iλ2

and jλ1
= jλ2

for all λ1, λ2 ∈ Λ, and so x is a branching point.
For the converse, if x ∈ X is a branching point, let i, j ∈ {1, ..., d} be two distinct

indices and {xλ} a net in Xi∩Xj converging to x such that σi(xλ) �= σj(xλ), while
σi(x) = σj(x). Then by taking I = {i, j} we have that x ∈ C(I), and the existence
of the above net shows that x ∈ B(I).

Next, we prove (2). s(e) ∈ B(I) for some I ⊂ {1, ..., d} so that r(e) = σi(s(e))
for some (and hence all) i ∈ I. Then by the above we have a net {xλ} in

⋂
i∈I Xi

converging to s(e), and two distinct indices i, j in I such that σi(xλ) �= σj(xλ) for
all λ, while σi(s(e)) = σj(s(e)) = r(e). Then the nets of edges eλ = (σi(xλ), xλ)
and fλ = (σj(xλ), xλ) converge to e and have the same sources and different ranges
for every λ.

Conversely, if we have two nets {eλ} and {fλ} converging to e such that s(eλ) =
s(fλ) while r(eλ) �= r(fλ) for all λ, by taking subnets as necessary, we may assume
that r(eλ) = σi(s(eλ)) and r(fλ) = σj(s(fλ)) while r(e) = σi(s(e)) = σj(s(e)) for
i, j distinct. By taking I = {i, j} we see that s(e) ∈ B(I), while r(e) = σi(s(e)),
and we are done. �

For an edge e ∈ Gr(σ), we denote I(e, σ) = { i | σi(s(e)) = r(e), s(e) ∈ Xi },
which is the set of all indices of maps that send s(e) to r(e).

Definition 3.9. Let (σ,w) be a WPS over X. The weight induced on the graph
of σ is a function w : Gr(σ) → (0,∞) given for any edge e = (y, x) ∈ Gr(σ) by

w(e) =
∑

i∈I(e,σ)

wi(s(e)) =
∑

i:σi(x)=y, x∈Xi

wi(x).

Proposition 3.10. Let (σ,w) be a WPS over X. Then w : Gr(σ) → (0,∞) is
discontinuous at e ∈ Gr(σ) if and only if e is a branching edge for Gr(σ). Moreover,
w : Gr(σ) → (0,∞) is bounded from above and from below.

Proof. ⇒: If e is not a branching edge for σ, then there exists a neighborhood U of
e inside Gr(σ) such that for any f ∈ U we have I(f, σ) = I(e, σ). Hence, for f ∈ U
we have

w(f) =
∑

i∈I(f,σ)

wj(s(f)) =
∑

i∈I(e,σ)

wj(s(f)),

so we see that w is continuous at e by continuity of wj .
⇐: If e ∈ Gr(σ) is a branching edge, without loss of generality, and perhaps

by taking a subnet, there is a net eλ →λ e indexed by Λ with I := I(eλ1
, σ) =
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I(eλ2
, σ) � I(e, σ) for all λ1, λ2 ∈ Λ. Hence we obtain that

w(eλ) =
∑
i∈I

wi(s(eλ)) →
∑
i∈I

wi(s(e))

by continuity of wi for all 1 ≤ i ≤ d. Yet on the other hand,

w(e) =
∑

i∈I(e,σ)

wi(s(e)) >
∑
i∈I

wi(s(e)) = lim
λ

w(eλ)

since I is a proper subset of I(e, σ), and wi are bounded from below on the clopen
sets Xi.

Finally, since for every 1 ≤ i ≤ d we have that wi, being continuous on Xi,
is bounded above by Mi and below by Ci. Let M = max{M1, ...,Md} and C =
min{C1, ..., Cd}. Thus, if e ∈ Gr(σ), there is some i ∈ {1, ..., d} with σ(s(e)) = r(e)
so that w(e) ≥ wi(s(e)) ≥ C > 0, and of course w(e) ≤ |I(e, σ)| ·M ≤ d ·M , and
we see that w : Gr(σ) → (0,∞) is bounded below by C and above by d ·M . �

Definition 3.11. Let (σ,w) and (τ, u) be WPS on compact spaces X and Y re-
spectively. We say that (σ,w) and (τ, u) are branch-transition conjugate if σ and
τ are graph conjugate via some homeomorphism γ : X → Y and we have that the
weighted transition function uγ

w : Gr(σ) → (0,∞) from w to uγ given by

uγ

w
(e) :=

uγ(e)

w(e)

is continuous at e for any branching edge e ∈ Gr(σ) = Gr(τγ).

We interpret the above to mean that the discontinuities for w and uγ , which can
only be at branching edges, are of the same proportions, so that the weighted tran-
sition function becomes continuous at every branched edge, and hence everywhere
on Gr(σ).

Example 3.12. Graph conjugacy does not imply branch-transition conjugacy, not
even when the weights w and u are constant. If we take X = [0, 1] and σ1(x) = x,
σ2(x) = 0, and pick two pairs of constant weights u = ( 12 ,

1
2 ) and w = ( 13 ,

2
3 ),

then (σ,w) and (σ, u) are not branch-transition conjugate. Indeed, if σ is graph
conjugate to itself via γ, as γ sends branching points to themselves, and 0 is the
only branching point, we then must have γ(0) = 0, which means that γ must be
non-decreasing. This means that

uγ

w
(y, x) =

⎧⎪⎨⎪⎩
3
2 if x > 0 & y = x,
3
4 if x > 0 & y = 0,

1 if x = 0,

so that uγ

w is not continuous at the branching edge e = (0, 0), and so (σ,w) and
(σ, u) are not branch-transition conjugate.

Corollary 3.13. Let (σ,w) and (τ, u) be d-variable and s-variable WPS on X and
Y respectively. If σ and τ are graph conjugate, then there exists some K ≥ 1 such
that

1

K
≤ uγ

w
≤ K.

If, in addition, (σ,w) and (τ, u) are branch-transition conjugate, then uγ

w is contin-
uous on Gr(σ) = Gr(τγ).
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Proof. Without loss of generality we assume that γ = IdX . Assuming Gr(σ) =
Gr(τ ), since both w and u are bounded from above and below by the last part of
Proposition 3.10, we see that there is a K ≥ 1 such that 1

K ≤ u
w ≤ K.

Lastly, by Proposition 3.10 again, both w and u are continuous at edges which
are not branching points for Gr(σ) = Gr(τ ), and by branch-transition conjugacy
we see that u

w is continuous on all of Gr(σ). �

3.4. C∗-correspondences and tensor iterates. In this subsection we identify
the GNS correspondence and quiver correspondence of the positive operator / quiver
of a WPS (σ,w) respectively and give a simple description of the tensor iterates in
terms of iterates of the topological quiver, using Remark 2.7.

For the GNS correspondence GNS(σ,w) := GNS(P (σ,w)), for any f, g, h, k ∈
C(X) the inner product formula and bimodule actions for simple tensors are given
respectively by

〈f⊗g, h⊗k〉(x) =
∑

i:x∈Xi

g(x)f(σi(x))wi(x)h(σi(x))k(x) and f ·(g⊗h)·k = fg⊗hk.

Next, for the quiver correspondence of Q(σ,w), which we denote by C(σ,w) :=
C(Q(σ,w)) the notation for weights of edges gives a nice formula for the Radon
measures P (σ,w) by P (σ,w)x =

∑
s(e)=x w(e)δe, so that for any ξ, η ∈ C(Gr(σ))

and f, g ∈ C(X) we have left and right C(X) actions given by

(f · ξ · g)(e) = f(r(e))ξ(e)g(s(e))

and inner product

〈ξ, η〉w(x) =
∑

s(e)=x

ξ(e)w(e)η(e) =
∑

i:x∈Xi

ξ(σi(x), x)wi(x)η(σi(x), x).

We denote by f � g ∈ C(Gr(σ)) the function given by (f � g)(e) = f(r(e))g(s(e)),
which identifies well with the element f ⊗ g in GNS(σ,w), as the following propo-
sition demonstrates.

Proposition 3.14. Let (σ,w) be a d-variable WPS on a compact spaceX. Then the
map f ⊗ g �→ f � g uniquely extends to a unitary isomorphism between GNS(σ,w)
and C(σ,w). In fact, the supremum norm on C(Gr(σ)) and the norm induced by
the inner product on C(σ,w) are equivalent.

Proof. First of all, we note that the norm ‖ · ‖w := ‖〈·, ·〉
1
2
w‖ defined on C(Gr(σ)) is

equivalent to the supremum norm on it. Indeed, for ξ ∈ C(Gr(σ)) we have

sup
i, x∈Xi

wi(x)|ξ(σi(x), x)|2 ≤ sup
x

∑
i:x∈Xi

wi(x)|ξ(σi(x), x)|2

≤ d · sup
i, x∈Xi

wi(x)|ξ(σi(x), x)|2.

Since for each 1 ≤ i ≤ d we have that wi is positive and continuous on Xi and Xi

is compact, there exists C > 0 such that for all 1 ≤ i ≤ d and x ∈ Xi we have
1
C ≤ wi(x) ≤ C, so that

1

C
· ‖F‖2Gr(σ) ≤ ‖F‖2w ≤ dC · ‖F‖2Gr(σ).
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We show on finite sums of simple tensors that the map given by f ⊗ g �→ f � g is
an isometric bimodule map with dense range inside C(Gr(σ)) with the norm ‖ · ‖w.
Indeed, let

∑	
i=1 fi ⊗ gi be a finite sum of simple tensors in GNS(σ,w). Since

〈fi ⊗ gi, fj ⊗ gj〉(x) =
∑

k:x∈Xk

gi(x)fi(σk(x))wk(x)fj(σk(x))gj(x)

=
∑

k:x∈Xk

(fi � gi)(σk(x), x)wk(x)(fj � gj)(σk(x), x) = 〈fi � gi, fj � gj〉(x)

we see that

‖
	∑

i=1

fi ⊗ gi‖2 =

	∑
i,j=1

〈fi ⊗ gi, fj ⊗ gj〉(x)

= sup
x∈X

	∑
i,j=1

〈fi � gi, fj � gj〉(x) = ‖
	∑

i=1

fi � gi‖2.

Hence, f ⊗ g �→ f � g extends uniquely to the desired unitary. �

Our next goal is to compute the internal tensor iterates of C(σ,w) for a WPS
(σ,w). As it turns out, the notation for paths in topological quivers fits this purpose
very elegantly.

Recall the collection of paths in Q(σ,w) of length n given in Definition 2.6,

Gr(σn) := { μ = μn...μ1 | r(μk) = s(μk+1) ∀1 ≤ k < n },

which can be alternatively identified with the closed set of orbits of length n + 1
given by elements (xn+1, xn, ..., x1) in Xn+1 such that for all 1 ≤ m < n there is
some 1 ≤ i ≤ d such that σi(xm) = xm+1 and xm ∈ Xi.

Next, for functions ξ, η ∈ C(Gr(σn)) and f, g ∈ C(X), left and right actions of
C(X) on C(Gr(σn)) are given by

(f · ξ · g)(μ) = f(r(μ))ξ(μ)g(s(μ))

and the inner product by

〈ξ, η〉(x) =
∑

s(μ)=x

ξ(μ)w(μ)η(μ),

where w(μ) := w(μn) · ... ·w(μ1) is the extended definition of the weights of edges to
weights of paths. The above then yields the C∗-correspondence structure associated
to the topological quiver Q(σ,w)n on the space of n-paths as mentioned in the
discussion at the beginning of Section 6 of [MT05b].

Proposition 3.15. Let (σ,w) be a d-variable WPS. Then the map sending simple
tensors ξn ⊗ ...⊗ ξ1 ∈ C(Q(σ,w)n) to the function ξn � ...� ξ1 : μn...μ1 �→ ξn(μn) ·
... · ξ1(μ1) in C(Gr(σn)) extends uniquely to an (Id-)unitary isomorphism between
C(σ,w)⊗n onto C(Q(σ,w)n) with the above C∗-correspondence structure. In fact,
the supremum norm on C(Gr(σn)) and the norm induced by the inner product on
C(Q(σ,w)n) are equivalent.

Proof. The first part follows from Remark 2.7. For the last part of the proposition,
we note that for x ∈ X, the number of paths of length n emanating from x is at most
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dn, and so, for every element ξ ∈ C(Gr(σn)) and an arbitrary path μ = μn...μ1 of
length n emanating from s(μ), we have

ξ(μ)w(μ) ≤
∑

s(ν)=s(μ)

|ξ(ν)|2w(ν) ≤ dn sup
ν∈Gr(σn)

ξ(ν)w(ν).

By Proposition 3.10, we see that 1
Kn ≤ w(ν) = w(νn)...w(ν1) ≤ Kn for any ν =

νn...ν1 ∈ Gr(σn) so that

1

Kn
ξ(μ) ≤ sup

x∈X

∑
s(ν)=x

|ξ(ν)|2w(ν) ≤ dnKn · sup
ν∈Gr(σn)

ξ(ν).

Since μ was an arbitrary path, we see that

1

Kn
sup

μ∈Gr(σn)

ξ(μ) ≤ sup
x∈X

∑
s(ν)=x

|ξ(ν)|2w(ν) ≤ dnKn · sup
ν∈Gr(σn)

ξ(ν),

and so the norm induced by the inner product on C(Gr(σn)) and the supremum
norm are equivalent. �
3.5. Weighted-orbit conjugacy. We now focus on the second conjugacy relation
arising from our operator algebras, which we call weighted-orbit conjugacy. We give
an example of two WPS which are not weighted-orbit conjugate and an example
of weight-orbit conjugate WPS which are not branch-transition conjugate. We
conclude this subsection by providing a simple criterion for when graph, weighted-
orbit, and branch-transition conjugacy coincide.

Definition 3.16. Let (σ,w) and (τ, u) be WPS on compact spaces X and Y re-
spectively. We say that (σ,w) and (τ, u) are weighted-orbit conjugate with constant
C ≥ 1 if σ and τ are graph conjugate via some homeomorphism γ : X → Y and
there exists H ∈ C(Gr(σ)) such that for any n ∈ N and any path μ = μn...μ1 ∈
Gr(σn) we have

1

C
≤

n∏
k=1

[uγ

w
(μk)H(μk)

]
≤ C.

Intuitively, this means that multiplying by some continuous function H on Gr(σ)

makes the gaps introduced by uγ

w uniformly bounded on paths of any length. Note

that when C = 1, the above implies the continuity of uγ

w so that in this case (σ,w)
and (τ, u) are branch-transition conjugate.

Example 3.17. It turns out that the weighted multivariable systems of Example
3.12 are not even weighted-orbit conjugate, despite being graph conjugate. Indeed,
for every x ∈ [0, 1] one can construct a path of length n comprised of the same edge
e = (x, x) ∈ Gr(σ) at every step. In this case, if H ∈ C(Gr(σ)) and a (necessarily
non-decreasing) homeomorphism γ realize weighted-orbit conjugacy with constant
C, we have that for e = (x, x) such that x > 0 and n ∈ N,

1

C
≤

n∏
k=1

[3
2
·H(e)

]
≤ C,

so this forces H(e) = 2
3 . On the other hand, if x = 0 we have

1

C
≤

n∏
k=1

H(e) ≤ C,
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which forces H(e) = 1, and H cannot be continuous since H(x, x) does not converge
to H(0, 0) as (x, x) → (0, 0) in Gr(σ).

Example 3.18. Weighted-orbit conjugacy does not imply branch-transition con-
jugacy, not even when the weights w and u are the constant 1. If we take X = [0, 1]
and σ1(x) = χ[0, 12 ]

(x) + 2(1 − x)χ( 1
2 ,1]

, σ2(x) = 0, then the multivariable systems

σ = (σ1, σ2, σ2) and τ = (σ1, σ1, σ2), considered as WPS (σ,w) and (τ, u) with
constant weights w = u = 1, are not branch conjugate. Indeed, suppose σ is graph
conjugate to τ via γ. Then γ(1) = 1 as 1 is the only branching point for both σ
and σ′, and so γ must be non-decreasing. Hence, we have that

uγ

w
(y, x) =

⎧⎪⎨⎪⎩
2 if x < 1 & y = σ1(x),
1
2 if x < 1 & y = σ2(x) = 0,

1 if x = 1.

So we see that uγ

w is not continuous at the branching edge e = (0, 1), so that (σ,w)
and (σ, u) are not branch-transition conjugate.

However, we show that (σ,w) and (τ, u) are weighted-orbit conjugate via γ =
Id[0,1]. Note first that Gr(σ) = Gr(τ ) so that σ and τ are graph conjugate via IdX .
Next, we define the following continuous H ∈ C(Gr(σ)) by setting

H(y, x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
2 if x < 1

2 & y = σ1(x),

x if 1
2 ≤ x ≤ 1 & y = σ1(x),

2 if x < 1
2 & y = σ2(x) = 0,

−2x+ 3 if 1
2 ≤ x ≤ 1 & y = σ2(x) = 0,

1 if x = 1,

and by our definition of H for e ∈ Gr(σ) with s(e) ≤ 1
2 we have H(e) u

w (e) = 1.
The important thing to note here is that every path beginning at some x ∈ [0, 1]
must be comprised, from the third edge on, by edges e with r(e), s(e) ∈ {0, 1

2}.
Indeed, if μ = μn...μ1 is a path of length |μ| ≥ 3, suppose that s(μ1) = x. Then
r(μ1) ∈ [0, 1

2 ], and this forces r(μ2) ∈ {0, 1
2}.

Hence, we see that for any n ∈ N and any path μ = μn...μ1 we have

n∏
k=1

u(μk)H(μk)

w(μk)
=

2∏
k=1

u(μk)H(μk)

w(μk)
.

Since both H and w
u have values only in the interval [ 12 , 2], we see that(1

2

)4
≤

n∏
k=1

u(μk)H(μk)

w(μk)
≤ 24,

and so (σ,w) and (σ, u) are weighted-orbit conjugate via Id[0,1].

It is easy to see that the conjugacy relations we have defined between two WPS
have a natural hierarchy. By definition, if (σ,w) and (τ, u) are two WPS over X
and Y respectively, then each condition below implies the one after it:

(1) (σ,w) and (τ, u) are conjugate.
(2) (σ,w) and (τ, u) are branch-transition conjugate.
(3) (σ,w) and (τ, u) are weighted-orbit conjugate.
(4) (σ,w) and (τ, u) are graph conjugate.
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As we have seen, the different conjugacy relations are distinct, but in some sub-
classes, it is possible to identify some of them.

(1) For partially defined continuous functions as in Subsection 3.2.3, graph
conjugacy implies conjugacy.

(2) For non-negative matrices as in Subsection 3.2.1, graph conjugacy implies
branch-transition conjugacy.

In general we have the following in the case when there are no branching points,
which tells us that information on the weights can only be detected if the WPS
have branching points.

Corollary 3.19. Let (σ,w) and (τ, u) be WPS over compact X and Y respectively.
Suppose either σ or τ have no branching points. Then σ and τ are graph conjugate
if and only if (σ,w) and (τ, u) are branch-transition conjugate.

Proof. If σ and τ are graph conjugate and either σ or τ have no branching points,
then both have no branching points by Remark 3.6. Hence by Proposition 3.10 we
see that both w and u are continuous, and so for a homeomorphism γ : X → Y such
that Gr(σ) = Gr(τγ) we have that uγ

w is continuous and (σ,w) is branch-transition
conjugate to (τ, u). �

3.6. Conjugacy relations in terms of C∗-correspondences. We now charac-
terize when two WPS are branch-transition / weighted-orbit conjugate in terms of
unitary isomorphism / similarity of the associated C∗-correspondences respectively.

For γ implementing branch-transition / weighted-orbit conjugacy and ρ imple-
menting unitary isomorphism / similarity, we may often assume without loss of
generality that γ = IdX and/or that ρ = IdC(X).

Indeed, if V : C(σ,w) → C(τ, u) is a ρ-bimodule map, with γ : Y → X
the homeomorphism such that ρ(f) = f ◦ γ−1, we may define a ρ-unitary ρ̃ :
C(τγ, uγ) → C(τ, u) given by ρ̃(ξ)(y, v) = ξ(γ−1(y), γ−1(v)). ρ̃ then satisfies

ρ̃−1 = ρ̃−1 where ρ̃−1 is a ρ−1-unitary. Hence, by composing we get an Id-bimodule
map ρ̃−1 ◦ V : C(σ,w) → C(τγ , uγ), and V is a ρ - similarity / unitary if and only
if ρ̃−1 ◦ V is an Id - similarity / unitary respectively.

Further, on the conjugacy side, note that (σ,w) and (τ, u) are graph / weighted-
orbit / branch-transition conjugate via γ if and only if (σ,w) and (τγ , uγ) are graph
/ weighted-orbit / branch-transition conjugate via IdX respectively.

Proposition 3.20. Let (σ,w) and (τ, u) be WPS on compact spaces X and Y
respectively. Suppose that γ : X → Y is a homeomorphism and ρ : C(X) → C(Y )
is the *-isomorphism given by ρ(f) = f ◦ γ−1.

(1) If (σ,w) and (τ, u) are weighted-orbit conjugate with C ≥ 1 via γ, then
there exists a ρ-similarity V : C(σ,w) → C(τ, u) with

sup
n

max{‖V ⊗n‖2, ‖(V −1)⊗n‖2} ≤ C.

(2) If V : C(σ,w) → C(τ, u) is a ρ-similarity, then (σ,w) and (τ, u) are
weighted-orbit conjugate via γ and constant

C = sup
n

max{‖V ⊗n‖2, ‖(V −1)⊗n‖2}.
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Proof. We first show (1). Assume without loss of generality that γ = IdX , so that
Gr(σ) = Gr(τ ). Let H ∈ C(Gr(σ)) be such that for any path μ = μn...μ1 we have

1

C
≤

n∏
k=1

u

w
(μk)H(μk) ≤ C.

We define V : C(σ,w) → C(τ, u) by setting V (ξ)(e) = ξ(e)
√
H(e). It is easily

seen that V is a C(X)-bimodule map, and we show that V is an Id-isomorphism.
Indeed, for ξ ∈ C(Gr(σ)) we have

‖V (ξ)‖2 = sup
x∈X

∑
s(e)=x

|ξ(e)|2u(e)H(e) ≤ C · sup
x∈X

∑
s(e)=x

|ξ(e)|2w(e) = C‖ξ‖2,

and the symmetric argument shows that ‖ξ‖ ≤ C‖V (ξ)‖. Hence V : C(σ,w) →
C(τ, u) is an Id-isomorphism. To show that it is an Id-similarity, we repeat the
above for the tensor iterates which are identified with C(Gr(σn)) for n ∈ N by
Proposition 3.15. Indeed, fix n ∈ N and ξ ∈ C(Gr(σn)). By Proposition 3.15 and

the definition of V , we must have that V ⊗n(ξ)(μn...μ1) = ξ(μn...μ1)
∏n

k=1

√
H(μk).

Thus, we compute

‖V ⊗n(ξ)‖2 = sup
x∈X

∑
s(μn...μ1)=x

|ξ(μn...μ1)|2
n∏

k=1

H(μk)u(μk)

≤ C · sup
x∈X

∑
s(μn...μ1)=x

|ξ(μn...μ1)|2
n∏

k=1

w(μk) = C‖ξ‖2

so that V is tensor-power bounded by
√
C and the symmetric argument shows that

V −1 is also tensor-power bounded by
√
C.

We now show (2). Without loss of generality we assume that ρ = IdC(X) (so
that we need γ = IdX). Denote ζ = V (1 � 1) ∈ C(τ, u). For any f, g ∈ C(X) we
have f · ζ · g = V (f � g) and then

sup
x∈X

∑
s(e)=x

|f(r(e))|2|ζ(e)|2|g(s(e))|2u(e) = ‖V (f � g)‖

≤ ‖V ‖‖f � g‖ = ‖V ‖ sup
x∈X

∑
s(e)=x

|f(r(e))|2|g(s(e))|2w(e),

so we see that for (y, x) ∈ Gr(σ), by taking infimum over f, g : X → [0, 1] with
f(y) = 1 and g(x) = 1 which vanish outside arbitrarily small neighborhoods of y
and x respectively, we have that (y, x) ∈ Gr(τ ), for otherwise the right hand side
would vanish while the left hand side would not. The symmetric argument then
shows that Gr(σ) = Gr(τ ), and σ and τ are graph conjugate via IdX .

Next, by Proposition 3.14, convergence in C(σ,w) is equivalent to uniform con-
vergence on C(Gr(σ)), and since ζ(e)·(f�g)(e) = (f ·ζ ·g)(e) = V (f�g)(e) for every
e ∈ Gr(σ), we then must have that V (ξ)(e) = ζ(e) · ξ(e) for every ξ ∈ C(Gr(σ))
and e ∈ Gr(σ).

Next, since for every ξk ∈ C(Gr(σ)) = C(Gr(τ )) for 1 ≤ k ≤ n we have that

‖ξn ⊗ ...⊗ ξ1‖2 ≤ ‖(V −1)⊗n‖2‖V ⊗n(ξn ⊗ ...⊗ ξ1)‖2

and

‖V ⊗n(ξn ⊗ ...⊗ ξ1)‖2 ≤ ‖V ⊗n‖2‖ξn ⊗ ...⊗ ξ1‖2.



3526 ADAM DOR-ON

We obtain that

sup
x∈X

∑
s(μn...μ1)=x

n∏
k=1

|ξk(μk)|2w(μk)

≤ ‖(V −1)⊗n‖2 sup
x∈X

∑
s(μn...μ1)=x

n∏
k=1

|ξk(μk)|2|ζ(μk)|2u(μk)

and

sup
x∈X

∑
s(μn...μ1)=x

n∏
k=1

|ξk(μk)|2|ζ(μk)|2u(μk)

≤ ‖V ⊗n‖2 sup
x∈X

∑
s(μn...μ1)=x

n∏
k=1

|ξk(μk)|2w(μk).

If we fix a path ν = νn...ν1, we can take infimum over functions ξk that vanish
outside arbitrarily small neighborhoods of νk for each k and are equal to 1 at νk to
get

n∏
k=1

w(νk) ≤ ‖(V −1)⊗n‖2
n∏

k=1

|ζ(νk)|2u(νk)

and
n∏

k=1

|ζ(νk)|2u(νk) ≤ ‖V ⊗n‖2
n∏

k=1

w(νk)

so that with

C = max{sup
n

‖V ⊗n‖2, sup
n

‖(V −1)⊗n‖2},

which by our assumptions is finite, we get

1

C
≤
∏n

k=1H(νk)u(νk)∏n
k=1w(νk)

=

n∏
k=1

u

w
(νk)H(νk) ≤ C,

where H = |ζ|2 ∈ C(Gr(σ)), as required. �

As a corollary to the above, we obtain a characterization for branch-transition
conjugacy.

Corollary 3.21. Let (σ,w) and (τ, u) be WPS on compact spaces X and Y respec-
tively. Suppose that γ : X → Y is a homeomorphism and ρ : C(X) → C(Y ) is the
*-isomorphism given by ρ(f) = f ◦ γ−1.

(1) If (σ,w) and (τ, u) are branch-transition conjugate via γ, then there exists
a ρ-unitary U : C(σ,w) → C(τ, u).

(2) If U : C(σ,w) → C(τ, u) is a ρ-unitary, then (σ,w) and (τ, u) are branch-
transition conjugate via γ.

Proof. To show (1), we use Corollary 3.13 to see that H = w
uγ is continuous and

realizes weighted-orbit conjugacy with C = 1, so that the ρ-similarity U arising
from Proposition 3.20 satisfies ‖U‖, ‖U−1‖ ≤ 1 and is hence a ρ-unitary.
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To show (2), without loss of generality we assume that ρ = IdC(X) (so that we
need γ = IdX). Denote ζ = V (1 � 1) ∈ C(τ, u). For any f, g ∈ C(X) we have
f · ζ · g = U(f � g) and then

sup
x∈X

∑
s(e)=x

|f(r(e))|2|ζ(e)|2|g(s(e))|2u(e) = ‖U(f � g)‖

= ‖f � g‖ = sup
x∈X

∑
s(e)=x

|f(r(e))|2|g(s(e))|2w(e),

so we see that for e = (y, x) ∈ Gr(σ), by taking infimum over f, g : X → [0, 1] with
f(y) = 1 and g(x) = 1 which vanish outside arbitrarily small neighborhoods of y
and x respectively, we obtain |ζ(e)|2u(e) = w(e) so that e ∈ Gr(σ) if and only if
e ∈ Gr(τ ) and σ and τ are graph conjugate via Id. Moreover, since u

w = 1
|ζ|2 is a

continuous function on C(Gr(σ)), it must be continuous on each branching edge in
particular, and hence (σ,w) and (τ, u) are branch-transition conjugate. �

Example 3.22. As a consequence of Proposition 3.20 and Corollary 3.21 we see
from Example 3.18 that there are WPS which have similar C∗-correspondences
that cannot be unitarily isomorphic. In particular, by Remark 2.4 we see that
between the two correspondences arising from the weighted multivariable systems
of Example 3.18, no ρ-isomorphism can be ρ-adjointable.

Remark 3.23. Using the theory we have developed so far and the first part of
Corollary 3.13, one can show that for two WPS (σ,w) and (τ, u) over compact
spaces X and Y respectively, we have σ and τ graph conjugate via γ if and only if
C(σ,w) and C(τ, u) are ρ-isomorphic. Hence, ρ-isomorphism does not detect any
information regarding the weights of the WPS and only detects the graphs of the
systems.

4. Tensor algebras

In general, one can associate to every C∗-correspondence E over A a non-self-
adjoint norm closed operator algebra T+(E) called the tensor algebra of E. We
commence a discussion of this general theory, adapting and building on Section 5
of [MS00] and ideas from Section 6 of [DOM14].

4.1. Construction. To construct the tensor algebra associated to a C∗-correspon-
dence E over A, we first construct the Fock direct sum C∗-correspondence

FE :=
⊕
n∈N

E⊗n.

The E-shifts are the operators Sξ ∈ L(FE) for ξ ∈ E, uniquely determined by
defining them on direct summands via the equation Sξ(η) = ξ ⊗ η, for m ∈ N,
η ∈ E⊗m.

Definition 4.1. The tensor algebra T+(E) is the norm-closed subalgebra of L(FE)
generated by all E-shifts and A,

T+(E) := Alg(A ∪ { Sξ | ξ ∈ E }).



3528 ADAM DOR-ON

The Toeplitz algebra T (E) is the C∗-subalgebra of L(FE) generated by all E-
shifts and A. That is,

T (E) = C∗(T+(E)) = C∗(A ∪ { Sξ | ξ ∈ E }).

The algebra L(FE) admits a natural action α of the unit circle T ⊂ C, called
the gauge action, defined by αλ(T ) = WλTW

∗
λ for all λ ∈ T where Wλ : FE → FE

is the unitary defined by

Wλ

(⊕
n∈N

ξn

)
=
⊕
n∈N

λnξn.

Since αλ(Sξ) = Sλξ and αλ(a) = a for a ∈ A and ξ ∈ E, it follows that both
the Toeplitz algebra and tensor algebra are α-invariant closed subalgebras, so the
circle action can be restricted to a completely isometric circle action on each of
them. One then shows that for every S ∈ T (E), the function f(λ) = αλ(S) is norm
continuous, and this enables the definition of a conditional expectation Φ given by

Φ(S) =

∫
T

αλ(S)dλ,

where dλ is the normalized Haar measure on T.
Let {kn}∞n=1 denote Fejer’s kernel function defined for λ ∈ T by

kn(λ) =

n∑
j=−n

(
1− |j|

n+ 1

)
λj .

Note that for S ∈ T (E), the existence of the canonical conditional expectation Φ
permits the definition of Fourier coefficients for an element S ∈ T (E) by

Φn(S) =

∫
T

αλ(S)λ
−ndλ.

Then define the Cesaro sums

σn(S) :=
n∑

j=−n

(
1− |j|

n+ 1

)
Φj(S) =

∫
T

n∑
j=−n

(
1− |j|

n+ 1

)
αλ(S)λ

−jdλ

=

∫
T

αλ(S)kn(λ)dλ.

Every tensor algebra is graded by the spaces

T+(E)n = Φn(T+(E)) = Span{ Sξ1 · ... · Sξn | ξ1, ..., ξn ∈ E }.

We denote by S
(n)
ξ ∈ L(FE), for ξ ∈ E⊗n, the operator determined uniquely by

S
(n)
ξ (η) = ξ ⊗ η for m ∈ N and η ∈ E⊗m.
The following is a folklore result for tensor algebras that relates the above no-

tions. We refer the reader to Proposition 6.2 in [DOM14] for a proof of this result
in the case of subproduct systems over W*-algebras, which is easily adapted to our
context.

Proposition 4.2. Let E be a C∗-correspondence over A. For every n ∈ N we have
that E⊗n is isometrically isomorphic as a Banach A-bimodule to T+(E)n via the

map determined uniquely by ξ �→ S
(n)
ξ .
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Therefore, every element T ∈ T+(E) has a unique representation as an infinite

series T =
∑∞

n=0 S
(n)
ξn

where ξn ∈ E⊗n satisfies Φn(T ) = S
(n)
ξn

(called its Fourier

series representation for short), and the series converges Cesaro to T in norm: if

σN (T ) =
∑N

n=0

(
1 − n

N+1

)
S
(n)
ξn

, then we have that limN→∞ ‖σN (T ) − T‖ = 0.

Furthermore, if T, T ′ ∈ T+(E) have Fourier series representations T =
∑∞

i=0 S
(i)
ξi

and T ′ =
∑∞

i=0 S
(i)
ηi , then

TT ′ =
∞∑

n=0

S
(n)
ζ , where ζ =

n∑
k=0

ξk ⊗ ηn−k.

4.2. Graded isomorphisms. We focus now on the analysis of graded isomor-
phisms, which are isomorphisms ϕ : T+(E) → T+(F ) that satisfy ϕ(T+(E)n) =
T+(F )n for all n ∈ N.

From now on, we restrict our discussion to C∗-correspondences over commutative
C∗-algebras. This will allow us to obtain a relationship between isomorphisms of
the C∗-correspondences and graded isomorphisms of the tensor algebras.

For a C∗-correspondence E, let ΨE : E → T+(E)1 be the isometric Banach

bimodule isomorphism given by ΨE(ξ) = S
(1)
ξ . In the following theorem it is

important that we do not require ρ-similarities to be adjointable in item (2) of
Definition 2.3.

Theorem 4.3. Let E and F be C∗-correspondences over commutative C∗-algebras
A and B respectively. Then:

(1) If V : E → F is a ρ-similarity for some *-isomorphism ρ between A and B,
then there exists a graded completely bounded isomorphism AdV : T+(E) →
T+(F ) such that AdV |A = ρ with

max{‖AdV ‖cb, ‖Ad−1
V ‖cb} ≤ sup

n∈N

‖V ⊗n‖ · sup
n∈N

‖(V −1)⊗n‖.

(2) If ϕ : T+(E) → T+(F ) is a bounded graded isomorphism, then ρϕ :=
ϕ|A : A → B is a *-isomorphism and Vϕ : E → F uniquely determined
by SVϕ(ξ) = ϕ(Sξ) for ξ ∈ E yields a ρϕ-similarity satisfying

sup
n∈N

‖(Vϕ)
⊗n‖ ≤ ‖ϕ‖ and sup

n∈N

‖(V −1
ϕ )⊗n‖ ≤ ‖ϕ−1‖.

Moreover, the operations (1) and (2) are inverses of each other in the sense that
ϕ = AdVϕ

and V = VAdV
, and in particular every bounded graded isomorphism ϕ

is completely bounded with ‖ϕ‖cb ≤ ‖ϕ‖ · ‖ϕ−1‖.

Proof. (1) Suppose V : E → F is a ρ-similarity. Define a ρ-correspondence mor-
phism WV from FE to FF by WV =

⊕∞
n=0 V

⊗n, which is well defined since

supn∈N
‖V ⊗n‖ < ∞. Furthermore, we have that WV is invertible with W−1

V =
WV −1 (which is also a well-defined ρ−1-correspondence morphism since
supn∈N ‖(V −1)⊗n‖ < ∞) and

‖WV ‖ · ‖W−1
V ‖ ≤ sup

n∈N

‖V ⊗n‖ · sup
n∈N

‖(V −1)⊗n‖.

We define AdV : T+(E) → T+(F ) by setting AdV (T ) = WV TW
−1
V , which then

satisfies
max{‖AdV ‖cb, ‖Ad−1

V ‖cb} ≤ sup
n∈N

‖V ⊗n‖ · sup
n∈N

‖(V −1)⊗n‖.
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(2) Now suppose that ϕ : T+(E) → T+(F ) is a bounded graded isomorphism.
Note that ρϕ is a *-isomorphism since A and B are assumed commutative. We

define the map Vϕ : E → F by Vϕ = Ψ−1
F ϕΨE , which is a ρ-correspondence map

by virtue of gradedness of ϕ and the fact that ρϕ is a *-isomorphism. Then it is

easily verified that for all n ∈ N we have (Vϕ)
⊗n = (Ψ−1

F )⊗n ◦ ϕ ◦ (ΨE)
⊗n so that

‖(Vϕ)
⊗n‖ ≤ ‖ϕ‖ and Vϕ is tensor-power bounded with supn ‖(Vϕ)

⊗n‖ ≤ ‖ϕ‖. One

then easily shows that V −1
ϕ = Vϕ−1 = Ψ−1

E ϕ−1ΨF is also a ρ−1-correspondence

map which is similarly tensor-power bounded with supn ‖(V −1
ϕ )⊗n‖ ≤ ‖ϕ−1‖, as

required. �

We then get as an easy corollary the corresponding theorem for the isometric
case.

Theorem 4.4. Let E and F be C∗-correspondences over commutative C∗-algebras
A and B respectively.

(1) If U : E → F is a ρ-unitary for some *-isomorphism ρ between A and
B, then there exists a graded completely isometric isomorphism AdU :
T+(E) → T+(F ) with AdU |A = ρ.

(2) If ϕ : T+(E) → T+(F ) is a graded isometric isomorphism, then ρϕ is a
*-isomorphism and there exists a ρϕ-unitary Uϕ : E → F with ϕ|A = ρϕ.

Moreover, the operations (1) and (2) are inverses of each other in the sense that
ϕ = AdVϕ

and V = VAdV
, and in particular every isometric graded isomorphism ϕ

must be completely isometric.

4.3. Base-detection and semi-gradedness. We will now consider two special
classes of isomorphisms which will provide a convenient framework for addressing
isomorphism problems. When our isomorphisms fit into these classes, we can often
use this to extract information more readily from the isomorphism.

Notation 4.5. If E and F are C∗-correspondences over C∗-algebras A and B re-
spectively and ϕ : T+(E) → T+(F ) is an algebraic isomorphism, we denote ρϕ :=
Φ0 ◦ ϕ|A, which is a homomorphism between A and B.

Definition 4.6. Let E and F be C∗-correspondences over C∗-algebras A and B
respectively. We say that an algebraic isomorphism ϕ : T+(E) → T+(F ) is base-
detecting if ρϕ : A → B is a *-isomorphism and ρ−1

ϕ = ρϕ−1 .

Base-detection is usually the first thing we check for, since it usually implies that
the base algebras can be detected from the isomorphism.

We note that for a graded isomorphism ϕ as considered in Theorem 4.3, ρϕ
is automatically an isomorphism, and since they were between commutative C∗-
algebras, ρϕ had to be a *-isomorphism. This means that graded isomorphisms are
always base-detecting.

Isometric isomorphisms are also automatically base-detecting. Indeed, let E and
F be C∗-correspondences over C∗-algebras A and B and let ϕ : T+(E) → T+(F )
be an isometric isomorphism. Since T+(F ) ⊂ T (F ), we can regard ϕ as a map into
the Toeplitz C∗-algebra. Thus, ϕ|A : A → T (F ) is an isometric homomorphism
and is hence necessarily positive and preserves the involution from A to T (F ).
Thus, ϕ(A) = ϕ(A)∗ ⊂ T+(F )∗ ⊂ T (F ), and we must have that ϕ(A) ⊂ T+(F ) ∩
T+(F )∗ = B. Thus we have in fact that ϕ(A) ⊂ B, and the symmetric argument
shows that ϕ−1(B) ⊂ A, and so ρϕ−1 is the inverse of ρϕ, and ϕ is base-detecting.
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We now try to relax the assumption of gradedness of an isomorphism while trying
to maintain base-detection.

The following concept of semi-gradedness appeared in the work of Muhly and
Solel in Section 5 of [MS00], where they resolve the isometric isomorphism problem
for tensor algebras arising from aperiodic C∗-correspondences, and was also used
in [DOM14] to provide classification for tensor algebras arising from stochastic
matrices, in terms of the matrices.

Definition 4.7. Let E and F be C∗-correspondences over C∗-algebras A and B
respectively, and suppose ϕ : T+(E) → T+(F ) is an algebraic isomorphism. We say
that ϕ is semi-graded if ϕ(KerΦ0) = KerΦ0.

We now provide an analogous proof to the one of Proposition 6.15 in [DOM14]
that semi-gradedness implies base-detection.

Proposition 4.8. Let E and F be C∗-correspondences over commutative C∗-
algebras A and B respectively, and let ϕ : T+(E) → T+(F ) be a semi-graded bounded
isomorphism. Then ϕ is automatically base-detecting.

Proof. Let ΦE
0 and ΦF

0 denote the conditional expectations on T+(E) and T+(F )
respectively. As ϕ is semi-graded, for any T ∈ T+(E) we have

ΦF
0 ϕ(T ) = ΦF

0 ϕΦ
E
0 (T ).

Hence, we must have that ρφ = ΦF
0 ϕ|A is surjective. The same argument then

works for ϕ−1, and we have for every a ∈ A that

ρϕ−1 ◦ ρ(a) = ΦE
0 ϕ

−1ΦF
0 ϕ(a) = ΦE

0 ϕ
−1ϕ(a) = a.

Thus, we see that ρϕ−1 = (ρϕ)
−1. As A and B are commutative, ρϕ and ρϕ−1 must

both be contractive, and hence *-preserving, so that ϕ is base-detecting. �
Definition 4.9. Let E be a C∗-correspondence over A. The minimal degree of an
element 0 �= T ∈ T+(E), denoted md(T ), is the smallest n ∈ N with Φn(T ) �= 0.

We will need the following criterion for semi-gradedness of bounded isomor-
phisms.

Proposition 4.10 (Criterion for semi-gradedness). Let E and F be C∗-correspon-
dences over A and B respectively, and let ϕ : T+(E) → T+(F ) be a bounded
base-detecting isomorphism. The following are equivalent:

(1) md(ϕ(T )) = md(T ) for all T ∈ T+(E).
(2) ϕ is semi-graded.

(3) md(ϕ(S
(1)
ξ )) ≥ 1 for every ξ ∈ E.

Proof. It is clear that (1) implies (2), which implies (3).
We show that (3) implies (1). We first note that for η ∈ E⊗n we have that

md(ϕ(S
(n)
η )) ≥ n. Indeed, if we take η = ξ1 ⊗ ... ⊗ ξn with ξi ∈ E, since S

(n)
η =

S
(1)
ξ1

· ... · S(1)
ξn

we get md(S
(n)
η ) ≥ md(S

(1)
ξ1

) + ... + md(S
(1)
ξn

) ≥ n. Next, since

the collection of elements η′ :=
∑	

i=1 ξ
(i)
1 ⊗ ... ⊗ ξ

(i)
n is dense in E⊗n and, as we

saw, Φm(ϕ(S
(n)
η′ )) = 0 for all m < n, by continuity of ϕ and Φm we get that

Φm(ϕ(S
(n)
η )) = 0 for any η ∈ E⊗n, so that md(ϕ(S

(n)
η )) ≥ n for any η ∈ E⊗n.

We now show that md(ϕ(T )) ≥ md(T ) for any T ∈ T+(E). Indeed, let T ∈
T+(E) be an operator with md(T ) = n ≥ 0. Then we can write T =

∑∞
k=nΦk(T )
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as a norm converging Cesaro sum, and by boundedness of ϕ, we obtain that ϕ(T ) =∑∞
k=n ϕ(Φk(T )) converging Cesaro. Since Φk(T ) = S

(k)
ξk

is of minimal degree at

least k ≥ n, so would ϕ(Φk(T )). Then, by continuity of Φk and ϕ, we have that
ϕ(T ) is of minimal degree at least n, and we see that md(ϕ(T )) ≥ md(T ).

To show that md(ϕ(T )) = md(T ), we will show that md(ϕ−1(S
(1)
ξ )) ≥ 1 for

ξ ∈ F and bootstrap the above argument to show that md(ϕ−1(T )) ≥ md(T ), so
that together with the above we get md(ϕ(T )) = md(T ).

We show that md(ϕ−1(S
(1)
ξ )) ≥ 1 for ξ ∈ F . Indeed, let ξ ∈ F and write

ϕ−1(S
(1)
ξ ) = a + T with a ∈ A and md(T ) ≥ 1. We have already shown that

md(ϕ(T )) ≥ 1, so that

ρϕ(a) = Φ0(ϕ(a)) = Φ0(ϕ(a) + ϕ(T )) = Φ0(S
(1)
ξ ) = 0.

Since ϕ is base-detecting, ρϕ is a *-isomorphism, and we have that a = 0. This

means that md(ϕ−1(S
(1)
ξ )) ≥ 1, and we are done. �

We next prove an analogue of Proposition 6.17 of Section 6 in [DOM14] in the
discussion on semi-graded isomorphisms that yields a reduction of our isomorphism
problems.

Proposition 4.11. Let E and F be C∗-correspondences over commutative C∗-
algebras A and B respectively, and let ϕ : T+(E) → T+(F ) be a semi-graded
bounded isomorphism. There is a unique bounded homomorphism ϕ̃ : T+(E) →
T+(F ) satisfying

ϕ̃(S
(1)
ξ ) = Φ1(ϕ(S

(1)
ξ )), ξ ∈ E,

and ϕ̃ is a graded completely bounded isomorphism such that ϕ̃−1 = ϕ̃−1 and
‖ϕ̃‖cb ≤ ‖ϕ‖ · ‖ϕ−1‖.

Proof. First note that since ϕ is semi-graded, by Proposition 4.8 it must be base-
detecting. Hence, by Proposition 4.10, for any T ∈ T+(E) with md(T ) = n we must
have ΦF

nϕ(T ) = ΦF
nϕΦ

E
n (T ). It follows that for all n ∈ N and any S ∈ T+(E)n we

must have

(4.1) S = ΦE
n (S) = ΦE

nϕ
−1ϕ(S) = ΦE

nϕ
−1ΦF

nϕ(S).

Set ρ = ρϕ = ΦF
0 ϕ|A : A → B, which is a *-isomorphism, and define a ρ-bimodule

map Vn : E⊗n → F⊗ by setting Vn(ξ) = (ΨF
n )

−1ΦF
nϕΨ

E
n (ξ), where Ψn(ξ) =

S
(n)
ξ . Note that Vn is clearly well defined with ‖Vn‖ ≤ ‖ϕ‖ so that Vn is a ρ-

correspondence morphism. One similarly defines a ρ−1-correspondence morphism
V ′
n : F⊗ → E⊗n satisfying ‖V ′

n‖ ≤ ‖ϕ−1‖ that satisfies V −1
n = V ′

n by equation (4.1).
We now wish to show that V = V1 is a ρ-similarity, so we show that V is tensor-
power bounded by showing that Vn = V ⊗n, and a similar argument would then
work for V −1. We show by induction that Vn = V ⊗n. Indeed, suppose Vk = V ⊗k

for all k < n + m with n,m ≥ 1. Let ξ ∈ E⊗n and η ∈ E⊗m. Then by semi-
gradedness and the definition of Vn, Vm, and Vn+m, we have the following chain of
equalities:

S
(n+m)
Vn+m(ξ⊗η) = ΦF

n+mϕ(S
(n+m)
ξ⊗η ) = (ΦF

n (ϕ(S
(n)
ξ ))ΦF

m(ϕ(S(m)
η )))

= S
(n)
Vn(ξ)

S
(m)
Vm(η) = S

(n)
V ⊗n(ξ)S

(m)
V ⊗m(η) = S

(n+m)

V ⊗(n+m)(ξ⊗η)
,
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so that by applying (ΨF
n+m)−1 to both sides of this equation we obtain that

Vn+m(ξ ⊗ η) = V ⊗(n+m)(ξ ⊗ η), so that Vn+m = V ⊗(n+m).

Thus, we have constructed a ρ-similarity V : E → F satisfying S
(1)
V (ξ)=ΦF

1 ϕ(S
(1)
ξ )

for all ξ ∈ E with the tensor iterates of V and V −1 bounded in norm by the norms
of ϕ and ϕ−1 respectively. By item (1) of Theorem 4.3 the ρ-similarity V promotes
to a graded completely bounded isomorphism ϕ̃ = AdV : T+(E) → T+(F ) uniquely

determined by satisfying S
(1)
V (ξ) = ϕ̃(S

(1)
ξ ) for all ξ ∈ E, with ‖ϕ̃‖ ≤ ‖ϕ‖‖ϕ−1‖. So

we see that ϕ̃(S
(1)
ξ ) = ΦF

1 ϕ(S
(1)
ξ ) for all ξ ∈ E and that ϕ̃ is uniquely determined

by this property as required. �

Corollary 4.12. Let E and F be C∗-correspondences over commutative C∗-algebras
A and B respectively, and let ϕ : T+(E) → T+(F ) be a semi-graded isometric iso-
morphism. There is a unique bounded homomorphism ϕ̃ : T+(E) → T+(F ) satisfy-
ing

ϕ̃(S
(1)
ξ ) = Φ1(ϕ(S

(1)
ξ )), ξ ∈ E,

and ϕ̃ is a graded completely isometric isomorphism such that ϕ̃−1 = ϕ̃−1.

5. Universal description and automatic continuity

We start this section by proving a universal property for the Toeplitz algebra
T (σ,w) := T (C(σ,w)) arising from a WPS (σ,w), as a C∗-algebra generated by
certain set elements satisfying certain relations. This enables us to think of the
non-self-adjoint tensor algebra T+(σ,w) := T+(C(σ,w)) as a norm closed oper-
ator subalgebra of the universal C∗-algebra T (σ,w) generated by the same set
of elements. Moreover, we provide a criterion for automatic continuity that will
help answer the algebraic isomorphism problem for our tensor algebras under the
assumption that the union of Xi covers X, where Xi are the clopen domain of
definition for σi.

5.1. Universal description. Recall that for a partial system (σ,w), the positive
operator P (σ,w) : C(X) → C(X) used to construct the GNS C∗-correspondence
of (σ,w) was given by

P (σ,w)(f)(x) =
∑

i:x∈Xi

wi(x)f(σi(x)).

Definition 5.1. Let (σ,w) be a WPS on compact X. A representation of (σ,w)
is a pair (π, T ) with π : C(X) → B(H) a unital *-representation and an operator
T ∈ B(H) such that

T ∗π(f)T = π
(
P (σ,w)(f)

)
for all f ∈ C(X).

Denote by C∗(π, T ) the C∗-algebra and by Alg(π, T ) the norm-closed algebra
generated by the image of π and T inside B(H).

The following universal description shows that we can think of T+(σ,w) as a
certain “semi-crossed product” by the positive map P (σ,w).

Theorem 5.2 (Universal description). Let (σ,w) be a WPS on compact X. Then
the Toeplitz algebra T (σ,w) and the tensor algebra T+(σ,w) are the universal C∗-
algebra and operator algebra (respectively) generated by a universal representation
(πu, Tu) of (σ,w).
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Proof. Since representations of (σ,w) are exactly representations of (C(X), P (σ,w))
in the sense of Definition 3.1 in [Kwa14], by Proposition 3.10 in [Kwa14], these
are in bijection with isometric (in the sense of Definition 2.11 in [MS98]) rep-
resentations (π, πP (σ,w)) of the GNS C∗-correspondence GNS(σ,w) that satisfy
πP (σ,w)(f ⊗ g) = π(f)Tπ(g). By Theorem 2.12 in [MS98], these are in bijection

with the representations τ(π,πP(σ,w)) of T (σ,w) that send T+(σ,w) to Alg(π(C(X))∪
πP (σ,w)(GNS(σ,w))). Hence, if (π, T ) is a representation of (σ,w), it promotes

to a representation τ(π,T ) of T (σ,w) that sends T+(σ,w) to Alg(π, T ), and every
such representation π of T (σ,w) arises in this way and must send T+(σ,w) to
Alg(π, T ). �

5.2. Automatic continuity. We now wish to show that under certain conditions
on a WPS, an algebraic homomorphism onto T+(σ,w) is automatically bounded.
We will follow the ideas of Davidson, Donsig, Hudson, Katsoulis, and Kribs used in
[DK08,DHK01,KK04]. For Banach algebras A and B suppose we have a surjective
homomorphism ϕ : A → B. Let

S(ϕ) = { b ∈ B | there is a sequence (an) in A with an → 0 and ϕ(an) → b }.
It is readily verified that the graph of ϕ is closed if and only if S(ϕ) = {0}. Hence, by
the closed graph theorem ϕ is continuous if and only if S(ϕ) = {0}. The following
first appeared in [DHK01] as an adaptation of a lemma by Sinclair, the origins of
which can be traced back to [Sin76].

Lemma 5.3 (Sinclair). Let A and B be Banach algebras and let ϕ : A → B be a
surjective algebraic homomorphism. Let (bn)n∈N be any sequence in B. Then there
exists N ∈ N such that for all n ≥ N ,

b1b2...bnS(ϕ) = b1b2...bNS(ϕ) and S(ϕ)bn...b2b1 = S(ϕ)bN ...b2b1.

For every WPS (σ,w) we can define the weight function of the system to be
wσ(x) = P (σ,w)(1)(x) =

∑
i:x∈Xi

wi(x), which is a positive continuous function

that vanishes only on X −
⋃d

i=1 Xi.

Definition 5.4. Let σ be a partial system on X. We say σ is well-supported if
{Xi} covers X, where Xi are the clopen domain of definition for σi.

When we have a well-supported (σ,w), we define the normalized WPS (σ, w̃)
by setting w̃ = (w1

wσ
, ..., wn

wσ
), and we say that (σ,w) is normalized if wσ = 1.

Note that when (σ,w) is a well-supported normalized system, we must have that
P (σ,w) is a unital map, or in other words a Markov-Feller operator, and so for
every representation (π, T ) of (σ,w) with unital π, we have that T ∗T = T ∗π(1)T =
π(P (σ,w)(1)) = 1, and hence T must be an isometry.

Theorem 5.5. Let (σ,w) and (τ, u) be WPS operating on X and Y respectively
such that either σ or τ are well-supported. Then every algebraic isomorphism ϕ :
T+(σ,w) → T+(τ, u) is automatically a bounded isomorphism.

Proof. Suppose without loss of generality that τ is well-supported. Since for every
edge e ∈ Gr(τ ) we have that ũ

u (e) = uτ (s(e))
−1, we see that ũ

u is continuous
on Gr(τ ) so that (τ, u) and (τ, ũ) are branch-transition conjugate. By Corollary
3.21 and Theorem 4.4 used in tandem, T+(τ, u) is graded completely isometrically
isomorphic to T+(τ, ũ). So we assume without loss of generality that (τ, u) is
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normalized. In this case, the constant function 1 = 1�1 ∈ C(Gr(τ )) gives rise to an

isometry W(τ,u) := S
(1)
1 = S

(1)
1�1 ∈ KerΦ0 ⊂ T+(τ, u), since (τ, u) is well-supported

and normalized.
Now suppose towards a contradiction that there is 0 �= T ∈ S(ϕ). Since W(τ,u)

is an isometry, we have that Wn
(τ,u)T �= 0 for all n ∈ N. By Sinclair’s lemma there

is some N ∈ N such that for all n ≥ N we have

WN
(τ,u)S(ϕ) = Wn

(τ,u)S(ϕ) ⊂
⋂
k<n

KerΦk.

So in fact we must have that WN
(τ,u)S(ϕ) =

⋂
k∈N

KerΦk = {0}, in contradiction to

having WN
(τ,u)T �= 0 as shown above. �

6. Character space

In this subsection, we adapt the methods of Hadwin and Hoover [HH88], which
were used in the solution of the conjugacy problem [DK08], to compute the char-
acter space of T+(σ,w) for any WPS (σ,w). We then use this to show that every
algebraic isomorphism ϕ : T+(σ,w) → T+(τ, u) is automatically base-detecting, so
that the base spaces X and Y can be identified. Finally, we provide a criterion to
detect semi-gradedness from the induced homeomorphism on the character spaces.

6.1. Computing the character space. Let (σ,w) be a WPS on compact X.
Denote by M(σ,w) the space of multiplicative linear functionals on T+(σ,w) with
its weak* topology. M(σ,w) is partitioned by X since for every θ ∈ M(σ,w) there
is a unique x ∈ X such that θ|C(X) = δx. We denote by M(σ,w)x the weak* closed
subset of θ ∈ M(σ,w) satisfying θ|C(X) = δx, and we let θx,0 be the unique element

in M(σ,w)x such that θx,0(KerΦP
0 ) = {0}. Denote by W(σ,w) := S

(1)
1 = S

(1)
1�1 the

shift operator by the constant function 1 = 1�1 ∈ C(σ,w). Note that since KerΦP
0

is the closed two sided ideal generated by W(σ,w), we have that θx,0 is the unique
element in M(σ,w)x such that θx,0(W(σ,w)) = 0.

Definition 6.1. Let σ be a d-variable partial system on compact X. We say that
x ∈ X is a fixed point for σ if σi(x) = x ∈ Xi for some 1 ≤ i ≤ d. We denote by
Fix(σ) the closed set of fixed points of σ.

Lemma 6.2. Let (σ,w) be a WPS on compact X, x ∈ X, θ ∈ M(σ,w)x, and
ξ ∈ C(σ,w). Then we have:

(1) If x ∈ Fix(σ), then θ(S
(1)
ξ ) = ξ(x, x)θ(W(σ,w)).

(2) If x /∈ Fix(σ), then θ(S
(1)
ξ ) = 0.

In particular, when x /∈ Fix(σ), we have M(σ,w)x = {θx,0}.

Proof. First we show (1). Let x ∈ X be a fixed point for σ. For every open
neighborhood U of x, by Urysohn’s Lemma, there is a continuous function fU :
X → [0, 1] with fU (x) = 1 and fU (y) = 0 for y /∈ U . Thus, for θ ∈ M(σ,w)x and
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U, V open neighborhoods of x we have

|θ(S(1)
ξ − ξ(x, x)W(σ,w))|2 = |θ(fU · (S(1)

ξ − ξ(x, x)W(σ,w))) · fV )|2

= |θ(SfU ·(ξ−ξ(x,x)1)·fV )|2 ≤ ‖fU · (ξ − ξ(x, x)1) · fV ‖2

= sup
y∈X

∑
i:y∈Xi

|fU (σi(y))|2|ξ(σi(y), y)− ξ(x, x)|2|fV (y)|2wi(y)

≤ sup
y∈V

∑
i:y∈Xi

|fU (σi(y))|2|ξ(σi(y), y)− ξ(x, x)|2wi(y).

Taking infimum over all open neighborhoods V of x we get

|θ(S(1)
ξ − ξ(x, x)W(σ,w))|2 ≤

∑
i:x∈Xi

|fU (σi(x))|2|ξ(σi(x), x)− ξ(x, x)|2wi(x)

≤
∑

i: x∈Xi, σi(x)∈U

|ξ(σi(x), x)− ξ(x, x)|2wi(x).

Taking infimum over all U open neighborhoods of x, we obtain

|θ(S(1)
ξ − ξ(x, x)W(σ,w))|2 ≤

∑
i:σi(x)=x∈Xi

|ξ(σi(x), x)− ξ(x, x)|2wi(x) = 0

and we must have that θ(S
(1)
ξ ) = ξ(x, x)W(σ,w).

In order to show (2), note that if x /∈ Fix(σ), a similar chain of inequalities,
replacing ξ(x, x)W(σ,w) by 0 above, would yield that for all θ ∈ M(σ,w)x we have

θ(S
(1)
ξ ) = 0.

Finally, if x /∈ Fix(σ), we have that θ(W(σ,w)) = 0 for all θ ∈ M(σ,w)x so that
θ(KerΦ0) = 0 for all θ ∈ M(σ,w)x. Now since θx,0 is the only element in M(σ,w)x
with θx,0(KerΦ0) = 0, we must then have that θ = θx,0 and M(σ,w)x = {θx,0}. �

Now, in the case where x ∈ X is a fixed point for σ, we are interested to know

how θ ∈ M(σ,w)x acts on iterates S
(n)
ξ for ξ ∈ C(σ,w)⊗n ∼= C(Gr(σn)). Recall

the discussion preceding Proposition 3.15, where we identified Gr(σn) with the
collection of orbits of length n+ 1 inside Xn+1, that is, the collection of sequences
(xn+1, ..., x1) such that for every 1 ≤ m ≤ n there is some 1 ≤ i ≤ d with σi(xm) =
xm+1 ∈ Xi.

Thus, take ξ(1), ..., ξ(n) ∈ C(σ,w) and note that by Lemma 6.2,

θ(S
(n)

ξ(1)⊗...⊗ξ(n)) = θ(S
(1)

ξ(1)
) · ... · θ(S(1)

ξ(n)) = ξ(n)(x, x) · ... · ξ(1)(x, x) · θ(W(σ,w))
n.

By supremum norm approximation we obtain for every ξ ∈ C(Gr(σn)) that

θ(S
(n)
ξ ) = ξ(x, ..., x) · θ(W(σ,w))

n

due to density of the linear span of elements of the form ξ(1)⊗...⊗ξ(n) in C(σ,w)⊗n ∼=
C(Gr(σn)), with the supremum norm, established by Proposition 3.15.

The next proposition is an adaptation of the methods of Section 3 in [DK08],
originally used by Hadwin and Hoover in [HH88]. For a WPS (σ,w), recall that we
defined the weight of an edge (y, x) ∈ Gr(σ) to be w(y, x) =

∑
i:σi(x)=y, x∈Xi

wi(x).

Proposition 6.3. Let X be a compact space, let (σ,w) be a WPS on X, and let
x ∈ Fix(σ). Then M(σ,w)x ∼= Drwx via the map θ �→ θ(W(σ,w)), where Drwx is the

closed disc of radius rwx = supθ∈M(σ,w)x |θ(W(σ,w))| =
√
w(x, x).
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Moreover if Θx : Drwx → M(σ,w)x is the homeomorphism above, then it is in fact
pointwise analytic on Drwx

, in the sense that for every T ∈ T+(σ,w), the function
Θx(·)(T ) : Drwx → C is analytic.

Proof. We first define a character θx,z for every z ∈ C with |z| <
√
w(x, x). Let

T ∈ T+(σ,w). By Proposition 4.2 we get that T has a Fourier series representation

as T =
∑∞

n=0 S
(n)
ξn

converging Cesaro. We then define

θx,z(T ) =
∞∑

n=0

ξn(x, ..., x)z
n.

Since |z| <
√
w(x, x) and |ξn(x, ..., x)| ≤ ‖ξn‖√

w(x,x)n
= ‖Φn(T )‖√

w(x,x)n
we get

|θx,z(T )| ≤
∞∑

n=0

|ξn(x, ..., x)||z|n ≤
∞∑

n=0

‖Φn(T )‖
( |z|√

w(x, x)

)n
≤ ‖T‖

∞∑
n=0

( |z|√
w(x, x)

)n
so that the above is a well-defined multiplicative linear functional on T+(σ,w).
Indeed, θx,z is linear and multiplicative due to multiplication of Fourier series given
in Proposition 4.2 and due to the identification of Proposition 3.15.

We show that for every θ ∈ M(σ,w)x, one must have |θ(W(σ,w))| ≤
√
w(x, x).

Indeed, for every open neighborhood of x, by Urysohn’s Lemma, there is a contin-
uous function fU : X → [0, 1] with fU (x) = 1 and f(y) = 0 for y /∈ U . Thus, for
U, V open neighborhoods of x we have

|θ(W(σ,w))|2 = |θ(fU ·W(σ,w) · fV )|2 = |θ(SfU�fV )|2 ≤ ‖SfU�fV ‖2

= sup
x∈X

∑
i:x∈Xi

|fU (σi(x))|2|fV (x)|2wi(x) ≤ sup
x∈V

∑
i:x∈Xi

|fU (σi(x))|2wi(x).

Taking infimum over all open neighborhoods V of x we get that

|θ(W(σ,w))|2 ≤
∑

i:x∈Xi

|fU (σi(x))|2wi(x) ≤
∑

i:x∈Xi, σi(x)∈U

wi(x).

Taking infimum over all U open neighborhoods of x, we obtain

|θ(W(σ,w))|2 ≤
∑

i:σi(x)=x∈Xi

wi(x) = w(x, x).

Thus, we see that |θ(W(σ,w))| ≤
√
w(x, x), and so the range of the map θ �→

θ(W(σ,w)) contains the open disc Drwx which is dense in Drwx .

Hence, the function from M(σ,w)x to Dr given by θ �→ θ(W(σ,w)) is a continuous
injective map between compact spaces that has dense range and thus must be a
homeomorphism.

For the last part, we see that the inverse of the above homeomorphism restricted
to the open disc Θx : Drwx → M(σ,w)x is given by

Θx(z)(T ) = θx,z(T ) =

∞∑
n=0

ξn(x, ..., x)z
n
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for T ∈ T+(σ,w) with Fourier series T =
∑∞

n=0 S
(n)
ξn

so that Θx(·)(T ) is analytic on
Drwx

for every fixed T ∈ T+(σ,w). �

Let us call a subset of M(σ,w) an analytic disc if it is the range of a pointwise
analytic injective map Θ : Ds → M(σ,w), for s > 0. For f ∈ C(X) we must have

that Θ(z)(f) = Θ(z)(f), since for every z ∈ Ds there is some x ∈ X such that
Θ(z)|C(X) = δx. Thus, due to analyticity, Θ(·)(f) : Ds → C must be constant f(x),
and so Θ(Ds) is contained inM(σ,w)x for some x ∈ X. Proposition 6.3 tells us that
for every fixed point x ∈ X of σ, the interior of M(σ,w)x is an analytic disc and
is hence maximal in the collection of analytic discs, due to the above observation
and the fact that every analytic disc contained in M(σ,w)x must be open due to
the Open Mapping Theorem and is hence contained in Θx(Drwx ).

6.2. Base-detection. It turns out we can use maximal analytic discs together
with the computation of the character space to obtain automatic base-detection for
isomorphisms between tensor algebras associated to WPS. For any linear homo-
morphism θ between Banach algebras A and B, we denote by θ∗ : MB → MA the
map induced between their character spaces.

Proposition 6.4. Let (σ,w) and (τ, u) be WPS on compact X and Y respectively
and let ϕ : T+(σ,w) → T+(τ, u) be an algebraic isomorphism. Then ϕ is base-
detecting and, in fact, ρ∗ϕ is a bijection that sends fixed points of τ to those of
σ.

Proof. Let ϕ be as in the statement of the proposition. Then ϕ induces a home-
omorphism ϕ∗ : M(τ, u) → M(σ,w). It is easily verified that ϕ∗ sends maximal
analytic discs to maximal analytic discs, since it preserves the lattice of inclusion
of analytic discs. Hence we obtain a bijection between the maximal analytic discs
of M(τ, u) and M(σ,w) which extends to a bijection between closures of such an-
alytic discs. That is, to every y ∈ Y there is a unique γϕ(y) ∈ X such that ϕ∗

restricted to M(τ, u)y is a homeomorphism onto M(σ,w)γϕ(y), and furthermore,

we must have that γϕ−1 = γ−1
ϕ and that γϕ is a bijection between fixed points of τ

and fixed points of σ.
To show that ϕ is base-detecting, let ιX : C(X) → T+(σ,w) be the canonical

inclusion. By noting that ι∗ : M(σ,w) → X is the canonical quotient map sending
every element in M(σ,w)x to θx,0 (which is identified with x ∈ X), that Φ∗

0 : Y →
M(τ, u) is the map Φ∗

0(y) = θy,0, and that

γϕ = ι∗ ◦ ϕ∗ ◦ Φ∗
0 = (Φ0 ◦ ϕ ◦ ι)∗ = ρ∗ϕ

we see that ρϕ is a *-isomorphism satisfying ρ−1
ϕ = ρϕ−1 by using the commutative

Gelfand-Naimark functorial duality, with ρ∗ϕ = γϕ inducing a bijection between the
fixed points of τ and those of σ. �

Proposition 6.4 enables an important reduction of our isomorphisms problems.
Indeed, (σ,w) and (τ, u) are WPS on X and Y respectively and ϕ : T+(σ,w) →
T+(τ, u) is a bounded / isometric isomorphism. Let γ = (ρ−1

ϕ )∗ : X → Y be the
induced map on the base spaces. Then obviously the WPS (τγ , uγ) is conjugate to
(τ, u) via γ−1, and so one can see that (σ,w) is weighted-orbit / branch-transition
conjugate to (τ, u) via γ if and only if (σ,w) is weighted-orbit / branch-transition
conjugate to (τγ , uγ) via idX respectively. Moreover, the conjugation between
(τγ , uγ) and (τ, u) promotes to a completely isometric graded isomorphism γ̃ :
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T+(τγ , uγ) → T+(τ, u) and so ψ = γ̃−1 ◦ ϕ : T+(σ,w) → T+(τγ , uγ) is a bounded
/ isometric isomorphism (resp. to what ϕ is) where the WPS (σ,w) and (τγ , uγ)
are on the same space X with ρ∗ψ = IdX . Our goal is then reduced to establishing

weighted-orbit / branch-transition conjugation of (σ,w) and (τγ , uγ) via IdX from
a bounded / isometric isomorphism ψ : T+(σ,w) → T+(τγ , uγ) respectively, with
ρ∗ψ = IdX . This motivates the following definition.

Definition 6.5. Let (σ,w) and (τ, u) be partial systems on X. We say that an
isomorphism ϕ : T+(σ,w) → T+(τ, u) covers X if ρ∗ϕ = IdX , which is equivalent to
having ρϕ = Φ0 ◦ ϕ|C(X) = IdC(X).

6.3. Semi-gradedness. Next, we characterize semi-graded isomorphisms between
tensor algebras arising from WPS, in terms of the induced homeomorphism on the
character spaces, and show how this can be used to produce a semi-graded isomor-
phism from a general one for WPS comprised of strict contractions on compact
perfect metric spaces.

If (σ,w) and (τ, u) are WPS on X and ϕ : T+(σ,w) → T+(τ, u) is an alge-
braic isomorphism covering X, by Proposition 6.4 we must have that fϕ

x (·) :=
ϕ∗(θx,·)(W(σ,w)) : M(τ, u)x → M(σ,w)x. If x /∈ Fix(τ ) = Fix(σ) we must have
that fϕ

x (θx,0) = θx,0 since M(σ,w)x = {θx,0}.
Next, we note that if x ∈ Fix(τ ) is not an interior point of Fix(τ ) in X, then

fϕ
x (0) = 0 due to continuity of ϕ∗(θx,0)(W(σ,w)) in x ∈ X and the fact that for
points x′ /∈ Fix(τ ) we have ϕ∗(θx′,0) = θx′,0. Hence, the only “problematic” points
are those in the interior of Fix(τ ). Thus we obtain the following characterization
of semi-gradedness.

Proposition 6.6. Let (σ,w) and (τ, u) be WPS on compact X. A bounded isomor-
phism ϕ : T+(σ,w) → T+(τ, u) covering X is semi-graded if and only if fϕ

x (0) = 0
for all x in the interior of Fix(τ ). In particular, if either Fix(σ) or Fix(τ ) has
empty interior, then every isomorphism ϕ is semi-graded.

Proof. If ϕ is semi-graded, then ϕ(W(σ,w)) ∈ KerΦ0 and so

fϕ
x (0) = ϕ∗(θx,0)(W(σ,w)) = θx,0(ϕ(W(σ,w))) = θx,0(Φ0(ϕ(W(σ,w)))) = 0

and so fϕ
x (0) = 0.

Conversely, if fϕ
x (0) = 0 for all x ∈ X and ϕ covers X, we have that ϕ∗(θx,0) =

θx,0 for all x ∈ X, and by Proposition 4.10 it suffices to show that for any ξ ∈
C(σ,w) we have md(ϕ(S

(1)
ξ )) ≥ 1. Indeed, write ϕ(S

(1)
ξ ) = h+ T with md(T ) ≥ 1

and h ∈ C(X). Since for x ∈ X we have that h(x) = θx,0(ϕ(S
(1)
ξ )) = θx,0(S

(1)
ξ ) = 0,

we are done. �

As a corollary to the above, we show that every isomorphism is automatically
semi-graded between tensor algebras arising from distributed iterated function sys-
tems and graph-directed systems as in Subsections 3.2.5 and 3.2.6 respectively when
the spaces are with no isolated points.

Corollary 6.7. Let (σ,w) and (τ, u) be d-variable and d′-variable WPS on metric
compact perfect spaces X and Y respectively, such that either σ or τ is comprised
of strict contractions. If ϕ : T+(σ,w) → T+(τ, u) is a bounded / isometric isomor-
phism, then it is automatically semi-graded.
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Proof. Without loss of generality, σ is comprised of contractions. Let r be the metric
on X. Since for any two points x, y ∈ X we must have r(σi(x), σi(y)) < r(x, y) for
all i ∈ {1, ..., d}, we see that σi can have at most one fixed point, and so Fix(σ) has
at most d points. Since X is perfect, Fix(σ) must have empty interior, and so by
Proposition 6.6 ϕ must be semi-graded. �

7. Isomorphisms of tensor algebras arising from WPS

In this section we adapt a new method in the analysis of character spaces due
to Davidson, Ramsey, and Shalit in [DRS11] and use this to construct a bounded
/ isometric semi-graded isomorphism from any bounded / isometric isomorphism
of our tensor algebras respectively. We then use this to provide two theorems that
separately deal with classification up to bounded isomorphism and classification up
to isometric isomorphism, which turn out to yield two distinct equivalences.

7.1. Reduction to the semi-graded case. Let (σ,w) be a WPS on X. Recall
the gauge group action α : T → Aut(T+(σ,w)) uniquely determined on generators

by αλ(S
(1)
ξ ) = λS

(1)
ξ and αλ(f) = f for ξ ∈ C(σ,w) and f ∈ C(X). Now, if (σ,w)

and (τ, u) are WPS on X and ϕ : T+(σ,w) → T+(τ, u) is an algebraic isomorphism
covering X, by Proposition 6.4 we have that ϕ∗|M(τ,u)x : M(τ, u)x → M(σ,w)x.

Next, if x ∈ Fix(τ ), by Proposition 6.3 we can identify ϕ∗|M(τ,u)x with a bijective

biholomorphism fϕ
x := Θ−1

x ◦ϕ∗ ◦Θx : Drux → Drwx , which then must be of the form

given by fϕ
x (z) = rwx f̂

ϕ
x ((r

u
x)

−1z), where f̂ϕ
x is a biholomorphism of the unit disc D

given by

f̂ϕ
x (z) = eiθx

wx − z

1− wxz

for some θx ∈ [0, 2π] and wx ∈ D. Note also that since fϕ
x (0) = ϕ∗(θx,0)(W(σ,w)) =

rwx e
iθxwx, and since ϕ∗(θx,0)(W(σ,w)) depends continuously on x ∈ X, we can ex-

tend fϕ
x continuously to be 0 for x /∈ Fix(τ ). Further, if ψ : T+(τ, u) → T+(π, v) is

another algebraic isomorphism covering X we have that f̂ψ◦ϕ
x = f̂ϕ

x ◦ f̂ψ
x .

We now wish to examine an isomorphism ϕ : T+(σ,w) → T+(τ, u) covering X
for which there exists x ∈ X an interior point of Fix(σ) = Fix(τ ), with fϕ

x (0) �= 0.
Fix an element x ∈ Fix(τ ) with fϕ

x (0) �= 0. One can then find λx, γx ∈ T such
that the isomorphism ψ = ϕ◦αλx

◦ϕ−1◦αγx
◦ϕ satisfies fψ

x (0) = 0. Indeed, for λ ∈
T, since f̂ϕ◦αλ

x (0) = λ · f̂ϕ
x (0), we get that C = {f̂ϕ◦αλ

x (0)|λ ∈ T} is a circle centered

around 0. Since f̂ϕ−1

x is a Mobius map of the form described above, it must send

C to a circle through the origin. That is, C ′ = f̂ϕ−1

x (C) = {f̂ϕ◦αλ◦ϕ−1

x (0)|λ ∈ T} is

a circle through the origin, since for λ = 0 we get 0 = f̂ Id
x (0) = f̂ϕ◦αλ◦ϕ−1

x (0) ∈ C ′.
If again we take arbitrary γ ∈ T and do this, we can “fill the circle”. That is, since

f̂
ϕ−1◦αγ
x (C) = γ · fϕ−1

x (C) = γ ·C ′, the region bounded by C ′, which we denote by

ins(C ′), is a subset of { f̂
ϕ◦αλ◦ϕ−1◦αγ
x (0) | λ, γ ∈ T }. Once more, since f̂ϕ

x is the

inverse of f̂ϕ−1

x , being a Mobius map, it must send C ′ back to C, and so it must
send ins(C ′) to ins(C). Thus we obtain that the set

{ f̂ϕ◦αλ◦ϕ−1◦αγ◦ϕ
x (0) | λ, γ ∈ T }

contains the origin, and hence there is some choice of λx and γx with which

f̂
ϕ◦αλx◦ϕ

−1◦αγx◦ϕ
x (0) = 0.
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We now wish to show that a choice of continuous functions x �→ λx and x �→ γx from

X to T can be found such that f
ϕ◦αλx◦ϕ

−1◦αγx◦ϕ
x (0) = 0 for all x ∈ D ⊂ Fix(τ ),

where D is a closed set for which x �→ |wx|2 is continuous on D.

Proposition 7.1. Let (σ,w) and (τ, u) be WPS on compact X, and let ϕ : T+(σ,w)
→ T+(τ, u) be an algebraic isomorphism covering X. If D ⊂ Fix(τ ) is a closed set
on which x �→ |wx|2 is continuous and non-zero, there exist continuous functions
λ, γ : X → T such that for all x ∈ D we have

(7.1) (f̂ϕ
x ◦ f̂αγx

x ◦ f̂ϕ−1

x ◦ f̂αλx
x ◦ f̂ϕ

x )(0) = 0.

Proof. First note that since the map x �→ |wx|2 is continuous on D, and since
|wx|2 < 1 for all x ∈ D, we may extend it to a continuous function h : X → [0, 1]
so that ‖h‖∞ < 1 still. Next, we simplify equation (7.1) to the following equivalent
form:

(f̂
αλx
x ◦ f̂ϕ

x )(0) = (f̂ϕ
x ◦ f̂αγx

x ◦ f̂ϕ−1

x )(0),

which is equivalent to having for all x ∈ D that

(7.2) λxe
iθxwx = f̂ϕ

x (γxwx) = eiθx
wx − γxwx

1− γx|wx|2
.

It then suffices to find continuous functions γ, λ : X → T such that for any x ∈ D,

(7.3) λx =
1− γx

1− γxh(x)
=

γx − 1

γx − h(x)
,

as multiplying both sides by eiθxwx yields equation (7.2) for all x ∈ D.
Since h(x) < 1 for all x ∈ X, we see that γx −h(x) �= 0 for all x ∈ X, so we may

define

γx =
(1 + h(x)

2
,

√
1−
(1 + h(x)

2

)2)
and λx =

γx − 1

γx − h(x)
.

As |γx − 1| = |γx − h(x)| for all x ∈ X, we see that γ and λ are well-defined
continuous functions from X into T satisfying equation (7.3), and we are done. �

Finally, we are at the point where we can prove the main reduction of this
paper, which reduces general isomorphism problems to corresponding semi-graded
isomorphism problems. Recall that for a d′-variable WPS (τ, u) on X and an index
set I ⊂ {1, ..., d′} we defined the coinciding set of I to be

C(I) =

{
x ∈
⋂
i∈I

Xi | τi(x) = τj(x)

}
,

where for each 1 ≤ i ≤ d′ we have τi : Xi → X.

Theorem 7.2. Let (σ,w) and (τ, u) be d-variable and d′-variable WPS respectively,
on the same compact space X, and let ϕ : T+(σ,w) → T+(τ, u) be a bounded /
isometric isomorphism covering X. Then there exists a semi-graded bounded /
isometric isomorphism ψ : T+(σ,w) → T+(τ, u) covering X respectively.

Proof. Suppose k ≥ 0 for which there exists ψ such that fψ
x (0) = 0 for all x ∈

Fix(τ ) ∩
⋃

|I|≥k+1 C(I), where we range over all subsets I ⊂ {1, ..., d′} of size at

least k + 1. Our assumptions guarantee that such a k exists and that k ≤ d′, since
ϕ certainly satisfies fϕ

x (0) = 0 for all x ∈ Fix(τ ) ∩
⋃

|I|≥d′+1 C(I) = ∅.
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If there exists ψ for which we can take k = 0, then fψ
x (0) = 0 for all x ∈

Fix(τ ) ∩
⋃

I⊂{1,...,d′} C(I) = Fix(τ ), and then ψ is semi-graded by Proposition 6.6,

and we will be done.
Thus, suppose ϕ a bounded / isometric isomorphism and k > 0 such that fϕ

x (0) =
0 for all x ∈ Fix(τ )∩

⋃
|I|≥k+1 C(I), but fϕ

x (0) �= 0 for some x ∈ Fix(τ )∩
⋃

|I|≥k C(I).

We will construct ψk for which fψk
x (0) = 0 for all x ∈ Fix(τ )∩

⋃
|I|≥k C(I), so that

for ψk there is a smaller k′ < k for which fψk
x (0) = 0 for all x ∈ Fix(τ )∩

⋃
|I|≥k′ C(I).

By successive iterations of this procedure we keep decreasing k, so that we would
eventually get ψ for which we can take k = 0 and be done by the previous paragraph.

We claim that under our current assumptions on ϕ, on the closed set Dk =
Fix(τ ) ∩

⋃
|I|=k C(I) we have that x �→ |wx|2 is continuous. We know that

ϕ∗(θx,0)(W(σ,w)) = fϕ
x (0) = rwx e

iθxwx depends on x ∈ X continuously, so we restrict

it to Dk. By Proposition 6.3 we have that rwx =
√
w(x, x) =

√∑
i:σi(x)=x∈Xi

wi(x)

and as a function of x is bounded below on Fix(τ ) = Fix(σ) ⊃ Dk and is hence
non-zero on Dk. Moreover, the only discontinuities x �→ rwx can have on Dk are
those arising from branching points B(J) ∩ Fix(τ ) in Dk for subsets J � I and

|I| ≥ k, and so x �→ |wx|2 =
fϕ
x (0)2

(rwx )2 is continuous at every x ∈ Dk which is not a

point in B(J) ∩ Fix(τ ) for some J � I and |I| ≥ k.
Next, for a point y ∈ B(J) ∩ Fix(τ ) inside Dk for some J � I and |I| ≥ k,

our assumptions guarantee that 0 = fϕ
x (0) = rwx e

iθxwx for all x ∈ C(J) since
|J | > |I| ≥ k, so that |wy|2 = 0, since x �→ rwx is non-zero for all x ∈ Dk.

Now, since x �→ rwx is bounded below on Dk, say by ε, we have that |fϕ
x (0)|2 ≥

ε2|wx|2, and by continuity of x �→ fϕ
x (0) at y, we see that |wx|2 → 0 as x → y. This

means that x �→ |wx|2 is continuous at y inside Dk, so that x �→ |wx|2 is continuous
on all of Dk.

Using Proposition 7.1 we have two continuous maps L : x �→ λx and G : x �→ γx
from X to T that satisfy equation (7.1) for any x ∈ Dk. Define two unitaries
UL on C(σ,w) and UG on C(τ, u) given by UL(ξ) = L · ξ and UG(η) = G · η
for ξ ∈ C(σ,w) and η ∈ C(τ, u) using the left action by continuous functions.
Next, use Theorem 4.4 to promote UL and UG to (completely) isometric graded
automorphisms AdUL

: T+(σ,w) → T+(σ,w) and AdUG
: T+(τ, u) → T+(τ, u) such

that for any point x ∈ Dk we have

f̂
AdUL
x (z) = λxz and f̂

AdUG
x (z) = γxz.

Thus, we get for all x ∈ Dk that f̂
AdUL
x (z) = f̂

αλx
x (z) and f̂

AdUG
x (z) = f̂

αγx
x (z).

Next, we define ψk = ϕ ◦ AdUL
◦ ϕ−1 ◦ AdUG

◦ ϕ : T+(σ,w) → T+(τ, u), and since
for every x ∈ Dk,

f̂ψk
x (0) = f̂

ϕ◦AdUL
◦ϕ−1◦AdUG

◦ϕ
x (0) = (f̂ϕ

x ◦ f̂AdUG
x ◦ f̂ϕ−1

x ◦ f̂AdUG
x ◦ f̂ϕ

x )(0)

= (f̂ϕ
x ◦ f̂αγx

x ◦ f̂ϕ−1

x ◦ f̂αλx
x ◦ f̂ϕ

x )(0) = 0

we obtain that ψk is a bounded / isometric isomorphism (respectively to what ϕ
is) such that fψk

x (0) = 0 for all x ∈ Dk = Fix(τ ) ∩
⋃

|I|≥k C(I), and we have

managed to find ψk for which we can take k′ < k such that fψk
x (0) = 0 for all

x ∈ Fix(τ ) ∩
⋃

|I|≥k′ C(I). �
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7.2. Main results. The following are our main theorems that resolve algebraic
/ bounded / isometric isomorphism problems and classify tensor algebras arising
from WPS up to bounded / isometric isomorphisms.

Theorem 7.3 (Algebraic / bounded isomorphisms). Let (σ,w) and (τ, u) be WPS
over X and Y respectively. The following are equivalent:

(1) (σ,w) and (τ, u) are weighted-orbit conjugate.
(2) C(σ,w) and C(τ, u) are similar.
(3) There exists a graded completely bounded isomorphism ϕ : T+(σ,w) →

T+(τ, u).
(4) There exists a bounded isomorphism ϕ : T+(σ,w) → T+(τ, u).

Moreover, if either σ or τ are well-supported, the above is equivalent to the existence
of an algebraic isomorphism ϕ : T+(σ,w) → T+(τ, u).

Proof. The equivalence between (1) and (2) and (3) is given by Proposition 3.20
and Theorem 4.3, and (3) implies (4) trivially. To show that (4) implies (3), let
ϕ : T+(σ,w) → T+(τ, u) be a bounded isomorphism. By Theorem 7.2, there is a
semi-graded bounded isomorphism ψ : T+(σ,w) → T+(τ, u). Then by Proposition

4.11 we obtain a completely bounded graded isomorphism ψ̃ : T+(σ,w) → T+(τ, u).
For the last part, if either σ or τ is well-supported and ϕ : T+(σ,w) → T+(τ, u)

is an algebraic isomorphism, then by Theorem 5.5, either ϕ or ϕ−1 is bounded, but
then by the Open Mapping Theorem in Banach spaces, both are bounded. �

Theorem 7.4 (Isometric isomorphisms). Let (σ,w) and (τ, u) be WPS over X and
Y respectively. The following are equivalent:

(1) (σ,w) and (τ, u) are branch-transition conjugate.
(2) C(σ,w) and C(τ, u) are unitarily isomorphic.
(3) There exists a graded completely isometric isomorphism ϕ : T+(σ,w) →

T+(τ, u).
(4) There exists an isometric isomorphism ϕ : T+(σ,w) → T+(τ, u).

Proof. The equivalence between (1) and (2) and (3) is given by Corollary 3.21
and Theorem 4.4, and (3) implies (4) trivially. To show that (4) implies (3), let ϕ :
T+(σ,w) → T+(τ, u) be an isometric isomorphism. By Theorem 7.2, there is a semi-
graded isometric isomorphism ψ : T+(σ,w) → T+(τ, u). Then by Corollary 4.12 we

obtain a completely isometric graded isomorphism ψ̃ : T+(σ,w) → T+(τ, u). �

Example 7.5. By the above two theorems and Example 3.18 we see that there are
two WPS for which there exists an algebraic / bounded isomorphism of their tensor
algebras, but there is no isometric isomorphism between their tensor algebras.

This shows that the isometric isomorphism problem for general tensor algebras
cannot be solved just by extracting information from algebraic / bounded isomor-
phism invariants of the tensor algebras, such as representations into upper triangu-
lar 2× 2 matrices, which were used in [DK08,DK11,DR11,KK04,Sol04].

8. Applications and comparisons

In this section we apply our results to certain subclasses of WPS by computing
what the conjugation relations yield for these classes. For some classes of WPS,
our tensor algebras coincide with previously investigated operator algebras, and we
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are then able to recover some results on classification of operator algebras under
certain hypotheses on the class.

We note that the results we are able to recover here provide alternative proofs to
those proofs using methods of representations into upper triangular 2× 2 matrices
as used in [DK08,DK11,DR11,KK04,Sol04].

8.1. Non-negative matrices and multiplicity-free directed graphs. When
we have a non-negative matrix A = [Aij ] indexed by a finite set Ω, we associate a
d-variable WPS (σA, wA) to it as in Subsection 3.2.1, to which we associate a topo-
logical quiver Q(A) := Q(σA, wA) = (Gr(A), P (A)) given by Gr(A) = Gr(σA) =
{ (i, j) | Aij > 0 } with Radon measures P (A)j := P (σA, wA)j =

∑
i∈Ω Aijδ(i,j).

This topological quiver encodes the information of the entries of A into the Radon
measures, since the entries Aij =

∫
Gr(A)

χ{(i,j)}dP (A)j can be detected by integra-

tion against a characteristic function of a singleton. We note that Gr(A) has no
sinks if and only if (σA, wA) is well-supported.

Since the tensor algebra associated to the C∗-correspondence arising from the
topological quiver Q(A) is T+(σA, wA), we just write T+(A) := T+(σA, wA).

Thus, for two non-negative matrices A = [Aij ] and B = [Bij ] indexed by ΩA and
ΩB respectively, we see that the graphs Gr(A) and Gr(B) are isomorphic directed
graphs if and only if (σA, wA) and (σB, wB) are graph conjugate if and only if
they are branch-transition conjugate, since the topology on Gr(σA) = Gr(A) =
{ (i, j) | Aij > 0 } is discrete, and so the weight-transition functions will always be
continuous. We hence obtain the following:

Corollary 8.1. Let A and B be non-negative matrices indexed by a finite set Ω.
Then Gr(A) and Gr(B) are isomorphic directed graphs if and only if T+(A) and
T+(B) are (completely) bounded / (completely) isometrically isomorphic. Moreover,
if either Gr(A) or Gr(B) has no sinks, the above is equivalent to T+(A) and T+(B)
being algebraically isomorphic.

When the non-negative matrix is given as the incidence matrix AE = [mw,v] of
some finite directed graph G = (V,E, r, s) as in Subsection 3.2.2, such that mw,v is
either 0 or 1, then G is multiplicity-free. The topological quiver Q(AE) associated
to AE is then just the topological quiver structure we associate to the original graph
G, that is, G = Gr(AE) := { (r(e), s(e)) = e | e ∈ E }, with Radon measures given
by counting measure P (G)v = P (AE)v =

∑
w:(w,v)∈Gr(AE) δ(w,v) on s−1(v) (see

Example 3.19 in [MT05b], with reversed source and range maps). This means that
the tensor algebra T+(G) := T+(C(G)) associated to G as in [KK04] coincides with
T+(C(Q(AE))), and we recover results of Katsoulis and Kribs in [KK04] and Solel
in [Sol04] for the case of finite multiplicity-free graphs.

Corollary 8.2. Let G and G′ be finite multiplicity-free graphs. Then G and G′

are isomorphic as directed graphs if and only if T+(G) and T+(G′) are (completely)
bounded / (completely) isometrically isomorphic. Moreover, if either G or G′ has no
sinks, the above is equivalent to T+(G) and T+(G′) being algebraically isomorphic.

8.2. Peters’ semi-crossed product. For a continuous map σ on a compact space
X, we can associate an operator algebra C(X) ×σ Z+ called Peters’ semi-crossed
product to it as done originally by Peters in [Pet84]. We do this here by giving a
universal definition. We call a pair (ρ, T ) a representation of (X, σ) if ρ : C(X) →



ISOMORPHISMS OF TENSOR ALGEBRAS 3545

B(H) is a *-representation and S ∈ B(H) a contraction such that ρ(f)S = Sρ(f◦σ).
We say that a (ρ, S) is isometric if in addition S is an isometry.

Peters’ semi-crossed product C(X)×σZ+ of the system (X, σ) is the norm closed
algebra generated by the image of a universal isometric representation (ρu, Su) for
(X, σ). Note that for any isometric representation (ρ, S) we have that S∗ρ(f)S =
ρ(f ◦ σ) and we obtain a representation of the WPS (σ, 1) as in Definition 5.1.

Muhly and Solel show in [MS98] that every representation (ρ, S) of (X, σ) dilates
to an isometric representation, so that Peters’ semi-crossed product is also the norm
closed algebra generated by the image of a (contractive) universal representation
(ρu, Su).

When we look at σ = (σ, 1) as a WPS, by Proposition 3.21 in [Kwa14] any
representation (π, T ) of the WPS (σ, 1) satisfies π(f)T = Tπ(f ◦ σ), so in fact we
have obtained a representation of the system (X, σ) as in the sense above. We
conclude that T+(σ, 1) ∼= C(X)×σ Z+.

On the other hand, for two continuous maps σ and τ on compact spaces X and Y
respectively, we have that (σ, 1) and (τ, 1) are graph conjugate if and only if σ and
τ are conjugate, and we obtain the following alternative proof, assuming our spaces
are compact, of a theorem first proven by Davidson and Katsoulis as Corollary 4.7
in [DK08] via methods of representations into triangular 2× 2 matrices.

Corollary 8.3. Let σ and τ be continuous maps on compact spaces X and Y re-
spectively. Then C(X) ×σ Z+ and C(X) ×σ Z+ are algebraically / (completely)
bounded / (completely) isometrically isomorphic if and only if there is some home-
omorphism γ : X → Y such that γ−1τγ = σ.

8.3. Partial systems and topological graphs. When σ = (σ1, ..., σd) is a par-
tially defined system so that σi : Xi → X, we think of it as a WPS by specifying
w = (1, ..., 1). The weight induced on Gr(σ) then becomes mσ(e) := w(e) =∑

i∈I(e,σ) 1 = |I(e, σ)| is just the multiplicity of e ∈ Gr(σ). In this case, we have

the following characterization of isometric isomorphism between tensor algebras.
Denote by T+(σ) := T+(σ, 1) the tensor algebra of a partially defined system σ.

Theorem 8.4. Let σ and τ be partially defined systems on compact X and Y
respectively. Then T+(σ) and T+(τ ) are isometrically isomorphic if and only if
there is a homeomorphism γ : X → Y such that Gr(σ) = Gr(τγ) and the function
mτγ

mσ
: Gr(σ) → (0,∞) is locally constant.

Proof. By Theorem 7.4 we have that T+(σ) and T+(τ ) are isometrically isomorphic
if and only if there is a homeomorphism γ : X → Y such that Gr(σ) = Gr(τγ)
and the function mτγ

mσ
: Gr(σ) → (0,∞) is continuous. Since mτγ

mσ
can only attain

finitely many values, it is continuous if and only if it is locally constant. �

One can also provide a similar theorem characterizing algebraic / bounded iso-
morphisms using Theorem 7.3, in terms of multiplicity functions and orbits of the
WPS.

Next, we would like to compare our algebras with an algebra constructed from
topological graphs. For a partial system σ = (σ1, ..., σd) on a compact X so
that σi : Xi → X for Xi clopen, we can associate a topological graph E(σ) :=
(X,Grdis(σ), r, s) to it in the sense of Katsura [Kat04]. We define the edges to be
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the disjoint union

Grdis(σ) =
d⊔

i=1

Gr(σi) =
d⊔

i=1

{ (σi(x), x) | x ∈ Xi },

and range and source maps are given by r(σi(x), x) = σi(x) and s(σi(x), x) = x.
This way s is a local homeomorphism, r is continuous, and we obtain a topological
graph.

From Example 3.20 of [MT05b] (with reversed source and range) we see that we
can think of E(σ) as a topological quiver as follows: since for every x ∈ X we have
that s−1(x) is discrete, we may define counting measures P (σ)x on s−1(x), so as to
obtain a topological quiver in the sense of Muhly and Tomforde. When we associate
a C∗-correspondence to this topological quiver, as we do in the discussion after
Definition 2.5, it coincides with the C∗-correspondence that one usually associates
to the topological graph as done by Katsura in [Kat04], and we denote this C∗-
correspondence by C(E(σ)).

When we take the tensor algebra T+(E(σ)) := T+(C(E(σ))) we obtain the tensor
algebra associated to the topological graph of σ. Tensor algebras associated to
topological graphs were investigated by Davidson and Roydor in [DR11], where they
show that for two (compact) topological graphs, if the tensor algebras associated to
them are algebraically isomorphic, then the topological graphs are locally conjugate
as in the following definition.

Definition 8.5. Let E = (E0, E1, sE , rE) and F = (F 0, F 1, sF , rF ) be two com-
pact topological graphs. They are said to be locally conjugate if there exists a
homeomorphism γ : E0 → F 0 such that for any x ∈ E0, there is a neighborhood
U of x and a homeomorphism λ : s−1

E (U) → s−1
F (γU) such that sFλ = γsE |s−1

E (U)

and rFλ = γrE |s−1
E (U).

A natural question to ask is, when does the topological quiver Q(σ) := Q(σ, 1)
given in Definition 3.2 coincide with E(σ)?

In general, Q(σ), does not coincide with E(σ), as Q(σ) loses some of the informa-
tion on the multiplicity of edges. However, if σ has no coinciding points, that is, if
for all x ∈ X we have σi(x) �= σj(x) for all i �= j in {1, ..., d} and x ∈ Xi ∩Xj , then
Grdis(σ) = Gr(σ) is multiplicity-free so that Q(σ) and E(σ) coincide as topological
graphs.

Thus, in the case when there are no coinciding points, the correspondences
C(Q(σ)) and C(E(σ)) coincide, and so do their tensor algebras T+(σ) and T+(E(σ))
respectively. We then obtain the following classification result for topological graphs
arising from partial systems with no coinciding points, which yields a class of
multiplicity-free topological graphs. See Subsection 8.3 of [KS15], where Q-P lo-
cal piecewise conjugacy of a partial system is compared with local conjugacy of
associated topological graphs.

Corollary 8.6. Let σ and τ be d and d′ variable partial systems over compact
X and Y respectively, and suppose that both σ and τ have no coinciding points.
Then T+(E(σ)) and T+(E(τ )) are (completely) bounded / (completely) isometric if
and only if σ and τ are graph conjugate if and only if E(σ) and E(τ ) are locally
conjugate. If either σ or τ is well-supported, the above is equivalent to T+(E(σ))
and T+(E(τ )) being algebraically isomorphic.
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Proof. From Corollary 3.19 and Theorems 7.3 and 7.4 we see that T+(E(σ)) and
T+(E(τ )) are (completely) bounded / (completely) isometrically isomorphic if and
only if σ and τ are graph conjugate, so we need only show that graph conjugacy of
σ and τ is equivalent to local conjugacy of E(σ) and E(τ ).

Suppose E(σ) and E(τ ) are locally conjugate via γ : E0 → F 0. Since E1 and
F 1 can be identified with Gr(σ) and Gr(τ ) respectively, it is easy to see that
γ × γ : Gr(σ) → Gr(τ ) is a homeomorphism so that Gr(σ) = Gr(τγ).

For the converse, suppose that Gr(σ) = Gr(τγ) via some homeomorphism γ :
X → Y . We may assume without loss of generality that γ = IdX since we know
that F γ = E(τγ) and F = E(τ ) are isomorphic topological graphs via the pair
(γ, γ × γ) in the sense that Γ := γ × γ : Gr(τγ) → Gr(τ ) is a homeomorphism and
γsFγ = sFΓ and γrFγ = rFΓ, and isomorphism of topological graphs implies local
conjugacy of the graphs. Let sσ and rσ denote the source and range maps of E(σ),
and similarly denote sτ and rτ for the source and range of E(τ ).

Thus, for each x ∈ X we have that {σi(x)}x∈Xσ
i

= {τj(x)}x∈Xτ
j

where σi :

Xσ
i → X and τj : X

τ
j → X. Since both σ and τ have no coinciding points, we have

that the tuples (σi(x))x∈Xσ
i
and (τj(x))x∈Xτ

j
are each comprised of pairwise distinct

elements, and we have that Dσ
x := {i|x ∈ Xσ

i } andDτ
x := {j|x ∈ Xτ

j } have the same
cardinality. Hence, there is a bijection αx : Dσ

x → Dτ
x so that σi(x) = ταx(i)(x).

Now fix an x ∈ X. Continuity of σ and τ guarantees that there exists an open
neighborhood V of x such that Dσ

y = Dσ
x and Dτ

y = Dτ
x for all y ∈ V , and we

obtain a continuous map α : y �→ αy from V to the set of bijections between Dσ
x

and Dτ
x. Take U = {y ∈ V |σi(y) = ταx(i)(y)}, which is clopen in V and is hence

open in X. We then define a homeomorphism λ : s−1
σ (U) → s−1

τ (U) by setting
λ(σi(y), y) = (ταx(i)(y), y), which satisfies sτλ = sσ|s−1

σ (U) and rτλ = rσ|s−1
σ (U) as

required. �
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