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FINDING BASES OF UNCOUNTABLE FREE

ABELIAN GROUPS IS USUALLY DIFFICULT

NOAM GREENBERG, DAN TURETSKY, AND LINDA BROWN WESTRICK

Abstract. We investigate effective properties of uncountable free abelian
groups. We show that identifying free abelian groups and constructing bases
for such groups is often computationally hard, depending on the cardinality.
For example, we show, under the assumption V = L, that there is a first-order
definable free abelian group with no first-order definable basis.

1. Introduction

How complicated is it to find a basis of a free abelian group? Can it be done re-
cursively, as we do when building bases for vector spaces? Here by a basis we mean
a subset which is both linearly independent and spans the whole group (with in-
teger, rather than rational coefficients). The difficulty is that unlike vector spaces,
free abelian groups can contain maximal linearly independent subsets which are
not bases. For countable groups, there is a strengthening of linear independence,
originally used by Pontryagin [28], which allows us to recover a recursive construc-
tion. This notion generalises p-independence, which is widely used in the study
of torsion-free abelian groups. Recall that a subgroup H of a torsion-free abelian
group G is pure if G∩QH = H; that is, if for all n ∈ Z and all h ∈ H, if n divides h
in G, then it also divides it in H.

Definition 1.1. Let G be a torsion-free abelian group. A subset A ⊆ G is P -
independent if it is linearly independent and its span is a pure subgroup of G.

Note that any subset of a P -independent set is also P -independent. Let Zω =⊕
k∈N

Z denote the countably generated free abelian group. The following is im-
plicit in Pontryagin’s work and is stated in the following way, for example, in
Downey and Melnikov’s [5] (who generalised it to completely decomposable groups).

Proposition 1.2. Suppose that B ⊂ Zω is a finite P -independent subset; let g ∈
Zω. Then there is a finite P -independent B′ ⊇ B such that g ∈ Span(B′).

Again, to be specific, Span(B) is the set of elements of G of the form
∑

miai
where ai ∈ B and mi ∈ Z; B is a basis of Zω if it is linearly independent and
spans Zω if and only if Zω =

⊕
b∈B Zb. Of course every basis of Zω must be P -

independent. Proposition 1.2 tells us that a basis for Zω can be built recursively,
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repeatedly extending finite P -independent subsets while ensuring that the next
element of the group (in some arbitrary ω-enumeration of the elements of the group)
belongs to the span of the basis that we are building.

Can this process be mimicked when we are given an uncountable free abelian
group? We know that there is no important difference between countable and
uncountable vector spaces. A basis for a vector space can be built by transfinite
recursion, extending as usual at successor steps and taking unions at limit stages.
Searching the literature, we found no such construction for uncountable free abelian
groups. The purpose of this paper is to show that in most cases, such a construction
cannot be performed. One key point is that Proposition 1.2 heavily relies on the fact
that B is finite.1 A recursive construction can get stuck at a limit stage: we can find
elements a1, a2, . . . , of a free abelian group G such that each finite initial segment
{a1, a2, . . . , an} can be extended to a basis of G, but such that the countable set
{a1, a2, . . . } cannot be extended to a basis of G. We thank Alexander Melnikov for
pointing out to us the following construction, which was known to Fuchs.

Example 1.3. Let G = Zω+1 be a copy of the countably generated free abelian
group, with a basis reordered in order-type ω+ 1: let {e0, e1, e2, . . . , eω} be a basis
of G. For i < ω let ui = piei + eω, where p0, p1, . . . is an enumeration of the prime
numbers.

The set U = {u0, u1, . . . } is P -independent: if pj |
∑

aipiei +
∑

aieω, then
pj | aipi and pj |

∑
ai; it follows that pj | ai for all i �= j, and so must also

divide aj . Proposition 1.2 implies that any finite subset of U can be extended to
a basis of G. However, U cannot be extended to a basis of G. Suppose otherwise.
Extending to a basis and taking a finite subset, we can find a finite set V ⊂ G such
that eω ∈ Span(V ) and V ∪ U is P -independent. There is some n such that V is
spanned by {e0, e1, . . . , eω}\{en}. Let H = Span(V ∪{un}). We show that H is not
pure, contradicting the P -independence of V ∪ U . This is because pnen = un − eω
is an element of H, but en /∈ H. In fact for any h ∈ H, if h =

∑
i�ω αiei, then

pn | αn; un is the only generator that can contribute anything in the nth standard
coordinate.2

Of course, one could imagine that there is another property, even stricter than
P -independence, adherence to which will allow us to pass limit stages without
breaking down. We show that there cannot be any such property.

What do we actually mean by that statement? If G is a free abelian group, then
there is a property Q of subsets of G (say of smaller cardinality than G) such that:

• every subset satisfying Q is linearly independent (or even P -independent);
• the analogue of Proposition 1.2 holds: for every subset A satisfying Q and
every g ∈ G there is some A′ ⊇ A satisfying Q such that g ∈ Span(A′); and

• if A =
⋃

α<λAα is a union of subsets satisfying Q, then A satisfies Q as
well.

Namely, we can let Q hold of the subsets of a fixed basis B of G. And in turn, we
can use Q to “recursively” build B. What we mean by the statement above is that
there is no way to obtain such a property Q if we are just handed the group table

1This is a common theme in the investigation of effective properties of uncountable objects:

there is a significant difference between finiteness and boundedness. See for example [14,16].
2More formally: h = bun +

∑
bivi for vi ∈ V , and for each i, vi =

∑
j�ω ci,jej , with ci,n = 0

for all i.
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for G and don’t have a basis to begin with. Informally, we want to show that it is
impossible to only use the group operation of a free abelian group to build a basis.

To make this statement formal we use the tools of mathematical logic, in par-
ticular definability and computability. We fix an uncountable cardinal κ and show
that:

• For any Δ1
1 κ-Turing degree d, there are κ-computable free abelian groupsG

with no d-computable basis. In particular, there is a first-order definable
free abelian group of size κ with no first-order definable basis.

Before we explain further, we state two important caveats. The first is that this
nondefinability result holds for most cardinals κ but not for all of them. It is known
to fail at some singular cardinals, such as ℵω. Even among regular cardinals, we
do not know how to show this for weakly compact ones. The second caveat is
that throughout we make a nontrivial set-theoretic assumption: that all sets are
constructible. While this is often harmless when uncountable computability is
concerned, it does leave open the possibility that the picture is different under
other, possibly strong, set-theoretic assumptions.

Groups in computable algebra and set theory. The study of effective proce-
dures in group theory goes back to work of Max Dehn [4] on finitely presented
groups, and in fields, rings, and vector spaces to work of Hermann [20], van
der Waerden [33], and explicitly using computability to Rabin [29], Maltsev [25],
Fröhlich and Shepherdson [12], and Metakides and Nerode (for example [26]). The
basic idea is to study how effective algebraic objects and processes are. For example,
famously, Novikov and Boone (see for example [2,27]) showed that the word prob-
lem in groups may fail to be solved effectively; the same holds for conjugacy and
isomorphism questions. Similarly, Higman’s embedding theorem [21] characterises
embeddability into finitely presented groups using an effective criterion.

The key notion is that of a computable group: this is one whose collection of el-
ements is a computable set (say of natural numbers), and the group operation can
be performed effectively (computably). Key questions are: (a) which groups have
computable copies? and (b) how similar or different are various computable copies
of the same group? One possible answer for the second question is encapsulated in
the notion of computable categoricity, meaning that all computable copies are iso-
morphic via computable isomorphisms; informally, this means that all computable
copies have the same computable properties. For example, finitely generated free
abelian groups are computably categorical, since a bijection between two finite bases
effectively lifts to an isomorphism of the groups.

Very few groups are computably categorical, and so it makes sense to consider
weakenings of this notion by allowing the help of the jump operator. For example,
we say that a group is Δ0

2-categorical if any two computable copies are isomorphic
via a Δ0

2 (0′-computable) isomorphism. For a free abelian group, the complexity of
isomorphisms with a standard computable copy (with a computable basis) is the
same as the complexity of bases. In [5], Downey and Melnikov use Proposition 1.2 to
show that the countably generated free abelian group is Δ0

2-categorical, equivalently,
that every computable copy of the countably generated free abelian group has a Δ0

2

basis.3

3This is sharp: in this paper we show that there is a computable copy of Zω, every basis of
which computes ∅′.
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Uncountable free groups were studied by algebraists and set theorists. Best
known is Shelah’s work on the Whitehead problem [31]. Two main questions which
were addressed are: (1) for which cardinals λ are there λ-free groups which are
not λ+-free? (2) Is it possible to axiomatise the class of free abelian groups in
infinitary logic? The latter question is related to results below on the complexity
of the collection of free abelian groups of a fixed cardinality. Some techniques used
for the investigation of these questions are related to ones we use below. These
investigations though were not concerned with questions of effectiveness. See for
example [6, 22, 32] and the book [9].

Uncountable computable algebra. The tools of traditional computability are
restricted to investigating countable groups, since the basic objects that can be
manipulated by computers are hereditarily finite. To be able to make sense of the
questions above for uncountable groups we use an extension of computability to
uncountable domains. Several approaches have been suggested (see [15]). In this
paper we use admissible computability, as described in [18], to investigate uncount-
able computable model theory. This approach was successfully used in [16, 17] to
investigate uncountable linear orderings. An abstract investigation of computable
categoricity in this setting is given in [3, 19].

There are several ways to describe admissible computability. Köpke [24] used
Turing machines with transfinite tapes. The original way, and quickest, is to use
definability. Let κ be a cardinal. The universe for κ-computability is H(κ), the
collection of all sets whose transitive closure is of size smaller than κ. A set is
defined to be κ-c.e. if it is Σ0

1-definable over H(κ) (with parameters). A set is
κ-computable if it is both κ-c.e. and co-κ-c.e.; a function is partially κ-computable
if its graph is κ-c.e. The main assumption which makes computability work is
that there is a κ-computable isomorphism between κ and the universe H(κ). Most
commonly this is achieved by assuming that every set in H(κ) is constructible, in
which case H(κ) = Lκ. Note that this holds for κ = ω and that ω-computability
is the familiar notion of Turing computability. The main tool in κ-computability
is defining computable functions recursively. Formally, if I : H(κ) → H(κ) is κ-
computable, then there is a unique function f : κ → H(κ) such that for all α < κ,
f(α) = I(f �α); this function is κ-computable. The main point is that even when
κ is singular, f �α ∈ H(κ); we say that H(κ) is admissible.

For more details on κ-computability see [18,30]. As mentioned above, throughout
this paper we assume that V = L.

Identifying free groups. When investigating the complexity of free abelian
groups we come across a closely related question: how complicated is it to tell
if a given (torsion-free and abelian) group is free? Informally, the idea is that if
there were some effective or definable way to take the group operation of a free
group and produce a basis, we could start with any group, attempt to build a
basis according to this procedure, and see if we succeed or fail. For example, for
countable groups this approach, using the Downey-Melnikov procedure described
above, gives an upper bound for the complexity of the collection of free groups (it
is Π0

3, in fact complete at that level). On the other hand it stands to reason that
a procedure that tells whether a given group is free can be used to get a proof of
this fact, namely a basis. Thus the complexity of the two problems of identifying



FINDING BASES OF FREE ABELIAN GROUPS IS USUALLY DIFFICULT 4487

free groups and of building bases is often related. We shall see though that in some
cases this intuition does not seem to hold.

There is a natural upper bound to the complexity of the collection of free groups,
namely Σ1

1 — the defining formula is “the group has a basis”. A proof that this
collection is Σ1

1-complete would show that there is no simpler way of identifying
free groups; a proof that this collection is much simpler (say first-order definable)
would show that there is some kind of effective or definable procedure to find out
whether a group is free without having to divine a basis out of nowhere. Our first
theorem settles the complexity of the collection of free abelian groups for regular
uncountable cardinals.

Theorem 1.4 (V = L). Let κ be a regular uncountable cardinal.

(1) If κ is not weakly compact, then the collection of free abelian groups is
Σ1

1-complete. If further κ is a successor cardinal or the least inaccessible
cardinal, then this collection is Σ1

1-complete.
(2) If κ is weakly compact, then the collection of free abelian groups is Π0

1-
complete (indeed it is Π0

1(∅′)-complete) in the set of groups. The index-set4

of the computable free abelian groups is Π0
2-complete.

We should be more formal about what we actually mean. Just as for κ = ω,
if κ is regular, then we can discuss the complexity of subsets of 2κ (or κκ) using
definability. The subset of 2κ defined by a formula ϕ (in the language of set theory)
is the collection of A ⊆ κ such that the structure (H(κ);∈, A) satisfies ϕ. We allow
quantification over subsets of κ; for example, a Σ1

1 formula ∃X ϕ holds of A if there
is some B ⊆ κ such that (H(κ);∈, A,B) |= ϕ. In all of these formulas we allow
parameters from the structure H(κ). We also use the usual conventions for boldface
classes to denote that we allow a fixed subset predicate.

Lightface statements of completeness are effective. We use a rich topology for 2κ:
basic open sets are specified by specifying fewer than κ bits. A partial continuous
function from 2κ to itself is defined by a functional, a set Φ of pairs (p, q) where
p, q ∈ 2<κ, and by satisfying the requirement that if (p, q), (p′, q′) ∈ Φ and p and
p′ are comparable, then q and q′ are also comparable; the defined function maps
A ∈ 2κ to Φ(A) defined by q ≺ Φ(A) if and only if there is some p ≺ A such
that (p, q) ∈ Φ. If Φ itself is κ-c.e., then the induced function is called partial
κ-computable. We remark that just as in the case κ = ω, relative κ-computability
can be defined using these maps; we say that X ∈ 2κ is κ-computable from Y ∈ 2κ

if f(Y ) = X for some partial κ-computable f .
When we say that the collection of free abelian groups is Σ1

1 complete, we mean
that for any Σ1

1 set R ⊆ 2κ there is a κ-computable function f : 2κ → 2κ such that
for all A ∈ 2κ, A ∈ R if and only if f(A) is (the graph of the group operation of) a
free abelian group. This also gives an index-set result: it shows that the collection
of indices of partial κ-computable functions f : κ → κ which are total and compute
(the graph of the group operation of) a free abelian group is complete among all Σ1

1

subsets of κ.
By boldface completeness we mean to allow an oracle. That is, Σ1

1-completeness
stated above says that there is some A ⊆ κ such that the collection of free abelian

4Using a κ-computable listing 〈Wα〉α<κ of all κ-c.e. sets (obtained from a universal Σ0
1(Lκ)

predicate), the notions of an index for a κ-computable object and of an index-set are identical to
the familiar one from Turing computability.
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groups is Σ1
1(A), and for any Σ1

1(A) set R there is an A-computable function f
which reduces R to the collection of free abelian groups.

We also remark that the first part of Theorem 1.4 can be relativised to any
oracle. Namely, if the collection of free abelian groups of size κ is Σ1

1(A)-complete
for some A ∈ 2κ, then it is also Σ1

1(B)-complete for all B ∈ 2κ which κ-compute A.
We remark though that when we later discuss singular cardinals we cannot rel-

ativise to any oracle, as for many oracles A the structure (H(κ);∈, A) will not be
admissible.

The complexity of bases. Theorem 1.4 gives us information about the complex-
ity of bases of free groups. The fact that there is a complete Σ1

1 subset of κ implies
the following.

Corollary 1.5 (V = L). Let κ be a successor cardinal. For any Δ1
1 set X ∈ 2κ

there is a κ-computable free abelian group which has no X-computable basis.

We note that the class Δ1
1(Lκ) is huge. It properly contains all κ-hyperarithmetic

sets (under any reasonable definition of that concept), all sets in the least admissible
set beyond Lκ (or the least model of ZF−), and more.

One could hope for more. Can we not only avoid lower cones but code compli-
cated information into all bases of a group? We will show that this is not the case;
bases can be built by forcing and so can avoid computing even simple sets.

Theorem 1.6 (V = L). Let κ be a regular uncountable cardinal.

• If κ is a successor of a regular uncountable cardinal which is not weakly
compact, let D = ∅′′ (the complete Σ0

2(Lκ) set).
• Otherwise let D = ∅′ (the complete Σ0

1(Lκ) set).

Then:

(1) There is a κ-computable free abelian group, all of whose bases κ-compute D.
(2) If X �κ D, then every κ-computable free abelian group has a basis which

does not κ-compute X.

In fact coding in ∅′ is not complicated; we will show that for any cardinal κ
there is a κ-computable free abelian group, all of whose bases compute ∅′. The
proof covers κ = ω and singular cardinals as well.

Singular cardinals. Singular cardinals pose many difficulties. If κ is singular,
then for many sets A, (Lκ, A) is not admissible, and computability itself behaves
in strange ways. For example, the ℵω1

-degrees above ∅′ are well-ordered [11]. How-
ever Lκ itself is admissible, and in some cases we can say something about κ-
computable groups. For example, we can code ∅′ into bases of a group. In the case
of cofinality ω, the complexity introduced by closed and unbounded sets disappears,
and we can say more.

Theorem 1.7 (V = L).

(1) Every ℵω-computable group has a ∅′-computable basis.
(2) The index set of the ℵω-computable free abelian groups is Π0

2-complete.

A more general theorem holds for all cardinals of cofinality ω.
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Questions. We are left with several questions.

(1) Can Corollary 1.5 be strengthened? For example, is there a κ-computable
group with no Δ1

1(Lκ) basis? We remark that for regular uncountable
cardinals there is no “overspill” phenomenon.

(2) There are cases which were not covered. For example, we don’t know if
Corollary 1.5 holds for weakly compact cardinals.

(3) What happens if V �= L? Recall that for computability to take a familiar
form we assume that there is a κ-computable bijection between κ and the
universe H(κ). For κ = ℵ1 this implies that all reals are constructible,
but it is consistent with some subsets of ω1 not being constructible. For
κ = ℵ2 this is a consequence of some forcing axioms (for example PFA),
which imply the failure of CH.

(4) What can be said about more complicated groups? Some of the results can
be extended to homogeneously completely decomposable groups (see [5]).
It may be interesting to investigate the effective properties of uncountable
such groups.

2. Preliminaries

We start with a few basic facts, most of which are well known. We provide some
details for completeness and also because our presentation reflects a more dynamic
approach than appears in the literature. This will make them more convenient to
use in the arguments in the rest of the paper.

Recall that throughout this paper, we assume that V = L. A general reference
for torsion-free abelian groups is [13]. The fine-structure tools we use appear in [23].

2.1. Detachment, freeness, and clubs. All groups we will discuss are abelian
and torsion-free. A group G is free abelian if it has a basis: a subset B which is
linearly independent (

∑
mibi = 0 implies each mi = 0, where mi ∈ Z and bi ∈ B)

and spans G (every element of G is of the form
∑

mibi for some mi ∈ Z and
bi ∈ B). We will omit the adjective “abelian” and just call these groups free. For
any infinite cardinal κ, the free group of size κ will be denoted by Zκ.

Fact 2.1. Any subgroup of a free group is free.

The following is a key notion.

Definition 2.2. If G is a group and H ⊆ G is a subgroup, we say that H detaches
in G if G = H ⊕K for some subgroup K ⊆ G. We write H | G.

If G is free, then H | G if and only if some basis of H can be extended to a basis
of G if and only if every basis of H can be extended to a basis of G.

Fact 2.3. Suppose that G is free and that H ⊆ G is a subgroup. Then H detaches
in G if and only if the quotient group G/H is free.

We also remark that if G is torsion-free abelian and H is a subgroup of G, then
H is a pure subgroup of G if and only if G/H is torsion-free.

If H is a subgroup of a group G, then we write [H,G] to denote the interval
in the lattice of subgroups: it is the collection of all subgroups K ⊆ G such that
H ⊆ K.

Proposition 2.4. Suppose that H detaches in G. Then H detaches in every sub-
group K ∈ [H,G].
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Proof. If G is free, then this follows from Facts 2.1 and 2.3, but it also holds for
arbitrary G. Suppose that G = H ⊕G′ for some G′ ⊆ G. Let K ′ = K ∩G′. Then
K = H ⊕K ′, for if g ∈ K, then g ∈ G, so g = h+ k where h ∈ H and k ∈ G′, and
this decomposition is unique. Since h, g ∈ K, we have k ∈ K, so k ∈ K ′. �

Proposition 2.5. There is a countable free group G and a (by Fact 2.1, free)
pure subgroup H of G which does not detach in G, but every finitely generated pure
subgroup of H does detach in G.

Proof. Let G = Zω. Take any torsion-free, nonfree countable abelian group K, fix
an epimorphism from G onto K, and let H be its kernel. Every finitely generated
pure subgroup of H detaches in G because of Pontryagin’s criterion Proposition 1.2.

�

We also note that Example 1.3 gives a direct construction of such groups H
and G. In the notation of that example, we may set G = Zω+1 and let H be the
span of U .

A sequence 〈Gα〉α<γ of groups of some ordinal length γ is increasing if α < β

implies Gα ⊆ Gβ; it is continuous if for all limit α < γ, Gα =
⋃

β<α Gβ. A filtration

of a group G is a sequence Ḡ = 〈Gα〉 such that Ḡ is increasing and continuous,
G =

⋃
α<γ Gα, and |Gα| � |α| for all α.

If γ is regular and G is a group of universe γ, then all filtrations of G agree on a
club; in fact, for club many α, Gα = G ∩ α. We decide that the standard filtration
of a group G of universe a regular cardinal γ is defined by Gα = Span(G ∩ α).

Definition 2.6. Let Ḡ = 〈Gα〉α<γ be increasing and continuous. The detachment

set of Ḡ is
Div(Ḡ) = {α < γ : ∀β ∈ (α, γ) (Gα | Gβ)} .

If γ is regular and Ḡ, Ḡ′ are two filtrations of a group of universe γ, then Div(Ḡ)
and Div(Ḡ′) agree on a club; this uses Proposition 2.4. In this case we will write
Div(G) for Div(Ḡ), where Ḡ is the standard filtration of G.

The following can essentially be found in [7]; see [9, IV.1.7].

Proposition 2.7. Let γ be a limit ordinal and let Ḡ = 〈Gα〉α<γ be a filtration of
a group Gγ . Suppose that for all α < γ, Gα is free.

(1) If Div(Ḡ) contains a club of γ, then Gγ is free.
(2) If γ is a regular cardinal and Gγ is free, then Div(Ḡ) contains a club of γ.

Proof. For (2), let B be a basis for Gγ . There are club many α < γ for which
Gα = Span(B ∩ α); each such α belongs to Div(Ḡ).

For (1), suppose that C ⊆ Div(Ḡ) is closed and unbounded. We may assume
that G0 is the trival group and that 0 ∈ C. For α ∈ C let α′ = minC \ (α + 1)
be the next element of C after α. Then Gα | Gα′ ; choose some Hα such that
Gα′ = Gα ⊕Hα. Then Gγ =

⊕
α∈C Hα. Each Hα is free (as Gα′ is free). If Bα is

a basis of Hα, then
⋃

α∈C Bα is a basis of Gγ . �

If γ is a regular cardinal and 〈Gα〉 is a filtration of a group G of universe γ, then
the relation Gα | Gβ is γ-c.e.; we need to search for a complement for Gα in Gβ

(when Gβ is free, equivalently we search for a basis of Gβ/Gα). We will see that
for some γ this relation will be Σ0

1(Lγ)-complete, but for other γ the relation will
be γ-computable. Note that the standard filtration of G is G-computable.
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Remark 2.8. Let γ be a limit ordinal, and let Ḡ = 〈Gα〉α<γ be a filtration of a

group Gγ . Suppose that Div(Ḡ) contains a club of γ. Then

Div(Ḡ) = {α < γ : Gα | Gγ} .

One direction follows from Proposition 2.4, the other from the proof of Proposi-
tion 2.7.

2.2. Σ1
1 completeness of finding clubs, and a class arising from the proof

of square principles. We saw that identifying a free group reduces to finding
club subsets of the definable set Div(G). Thus, our stated result would imply that
existence of a club subset is Σ1

1-complete. This is indeed the case; this was proved
for κ = ω1 by Fokina et al. in [10]. The proof generalises. We will need this fact and
will need to get more information from its proof. Most material in this subsection
can be found in [23].

Here is a key notion.

Definition 2.9. For a singular ordinal α, we let s(α) be the least ordinal β � α
such that there is a cofinal sequence in α of order-type smaller than α which is
definable over Jβ .

In other words this is the first place at which we recognise that α is singular.
The sets Jβ are Jensen’s modification of the Lα hierarchy which is required to make
fine structure theory work (the sets Jβ are closed under the rudimentary functions).
The details are unimportant, and for sufficiently nice ordinals α we have Lα = Jα
anyway. We will use some basic facts which hold for both hierarchies. For example,
the function α �→ Jα is Σ1-definable in every Jβ for β > α. Also, the subsets
of Jβ which are elements of Jβ+1 are precisely the ones definable over Jβ (with
parameters).

We note:

• The function α �→ s(α) is Σ1-definable, and so its restriction to ordinals
below a cardinal κ is partial κ-computable.

The domain of this function, the set of singular ordinals below a cardinal κ, may
fail to be κ-computable; it is merely κ-c.e. Note that this only happens when κ is
a limit cardinal. If κ is a successor cardinal, then the restriction of the function
α �→ s(α) to ordinals below κ is κ-computable.

Definition 2.10. The class E consists of all the singular ordinals α such that for
some β ∈ (α, s(α)):

• Jβ |= ZF−;
• α is the greatest cardinal of Jβ ;
• for some p ∈ Jβ, Jβ is the least (fully) elementary substructure M ≺ Jβ
such that p ∈ M and M ∩ α is transitive.

Suppose that α ∈ E and let β > α witness this fact. Then Jβ can be presented as
the countable union

⋃
Mi, with M0 = {p} and each Mi+1 being the Σi(Jβ)-Skolem

hull of Mi ∪ sup(Mi ∩ α). The sequence 〈Mi〉 is definable over Jβ+1. However, for
all i, the process generating Mi is definable over Jβ . Since β < s(α), Mi ∩ α is
bounded below α. This implies that:

• Each α ∈ E has countable cofinality, and s(α) = β + 1.
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The definition of E was designed to ensure the following:

Lemma 2.11. Let κ be regular and uncountable; let q ∈ Lκ+ . Let M be the least
elementary substructure of Lκ+ such that q ∈ M and M ∩ κ is transitive. Let
π : M → Jβ be the Mostowski collapse; let α = π(κ) = M ∩ κ. Then α ∈ E,
witnessed by β.

The main idea for showing that β < s(α) is that if γ < α and f : γ → α is
Jβ-definable and cofinal, then the same definition over M (equivalently Lκ+) gives

a cofinal f̂ : γ → κ, which is impossible. It follows that if κ is regular, then E ∩κ is
stationary in κ: for any club C of κ, consider the least elementary M ≺ Lκ+ such
that C ∈ M and M ∩κ is transitive. A similar argument gives the Σ1

1-completeness
of containing a club. We will make use of the following tool.

Definition 2.12. Let κ be regular and uncountable, let B ∈ 2κ, and let ∀X ϕ be
a Π1

1 formula, where ϕ is first-order with parameter r ∈ Lκ .We let F (B,ϕ) be the
set of singular ordinals α < κ such that r ∈ Jα, B �α∈ Js(α), and for all X ∈ Js(α),
(Jα, B �α, X) |= ϕ.

That is, α ∈ F (B,ϕ) if we believe that the Π1
1 property under discussion holds

for (Jα, B �α), where we limit the second-order quantifiers to subsets of α which are
only constructed at stages at which we still think that α is regular.

Lemma 2.13. Let κ be a regular cardinal, let B ∈ 2κ, and let ∀X ϕ be a Π1
1

formula.

(1) If (Lκ, B) |= ¬∀X ϕ, then F (B,ϕ) is nonstationary in κ.
(2) If (Lκ, B) |= ∀X ϕ, then E ∩ F (B,ϕ) is stationary in κ.

Proof. Let r be the parameter for ϕ.
For (1), we build a continuous and increasing sequence 〈Mi〉i<κ of elementary

submodels of Lκ+ such that r, B ∈ M0 and αi = κ ∩Mi is an element of κ; the set
{αi : i < κ} is closed and unbounded in κ (we let αi ∈ Mi+1). Let πi : Mi → Jβi

be the Mostowski collapse. The argument above shows that βi < s(αi). There is
some X ∈ M0 ∩ 2κ such that (Lκ, B,X) |= ¬ϕ; then X �αi

= πi(X) ∈ Jβi
(and

B �αi
∈ Jβi

) and (Jαi
, B �αi

, X �αi
) |= ϕ (as Jβi

thinks it does, and this is absolute).
Hence the club {αi : i < κ} is disjoint from F (B,ϕ).

For (2), let C be a club of κ. Let M ≺ Lκ+ be least such that r, C,B ∈ M and
M ∩ κ ∈ κ. Let π : M → Jβ be the Mostowski collapse and let α = π(κ) = M ∩ κ.
Then α ∈ E ∩ C, and s(α) = β + 1. Suppose that X ∈ Jβ+1 ∩ 2α. It is definable

over Jβ , say with parameter q. Let X̂ be the interpretation of the same definition

over M (equivalently Lκ+), with parameter π−1(q). Then (Lκ, B, X̂) |= ϕ. It
follows that (Jα, B �α, X) |= ϕ, so α ∈ F (B,ϕ).5 �

Corollary 2.14. Let κ be a successor cardinal. The nonstationary ideal on κ
(equivalently the club filter on κ) is Σ1

1-complete. In fact, the restriction of the
nonstationary ideal to E ∩ κ is Σ1

1-complete. That is, for any Σ1
1(Lκ) set A ⊆ 2κ

there is a κ-computable function f : 2κ → 2κ such that for all Y ∈ 2κ, f(Y ) ⊆ E,
and Y ∈ A if and only if f(Y ) is nonstationary.

5In the definition of F (B,ϕ) we could replace s(α) by s(α)−1, assuming that we are restricting
ourselves to α ∈ E.
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Proof. Let ∃X ϕ be the formula defining A; we let f(Y ) = E ∩ F (Y,¬ϕ). Recall
that the set of singular ordinals below κ is κ-computable; this implies that E ∩κ is
κ-computable and that F (Y,¬ϕ) is Y -computable, uniformly in Y . �

A key fact that we will use for κ � ℵ2 is the following, which is [23, Thm. 5.1].

Theorem 2.15 (Jensen). The class E does not reflect at any singular ordinal.
That is, if α is singular, then E ∩ α is nonstationary in α.

The proof of this fact is complicated. It is part of the proof of the square principle
in L.

2.3. Twisting a group. The plan for proving Theorem 1.4 for the case of successor
cardinals is to take a set Y ⊆ κ and produce a Y -computable group G such that
Div(G) = κ \ f(Y ), where f is given by Corollary 2.14. A main tool would be to
take a group Gα which we have already constructed and ensure that it does not
detach in G by ensuring that it does not detach in Gα+1. On the other hand, we
need to ensure that for all β < α, if we already declared that we want Gβ to detach
in G, then Gβ detaches in Gα+1. We need to “twist” Gα without further twisting
any Gβ for β < α.

The idea is to use Proposition 2.5. We generalise it to possibly uncountable
groups by picking out countable pieces.

Proposition 2.16. Suppose that 〈Hn〉 is an increasing sequence of free groups such
that for all n, Hn | Hn+1, so Hω =

⋃
n Hn is free as well. There is a free group G

extending Hω (with |G| = |Hω|) such that Hω � G but for all n, Hn | G. The
group G can be obtained effectively from the sequence 〈Hn〉.

We write twist(〈Hn〉) for the group G.

Proof. Without loss of generality we assume that H0 is the trivial group. As in
the proof of Proposition 2.7, choose subgroups Kn such that Hn+1 = Hn ⊕Kn, so
Hω =

⊕
n Kn. As each Kn is free, we write Kn = Pn ⊕ Qn, where Qn

∼= Z. Let
P =

⊕
n Pn and Q =

⊕
Qn.

Using Proposition 2.5 we can find a countable free group R ⊇ Q, such that Q � R,
but for any n, Q<n =

⊕
m<n Qm does detach inside R. We let G = P ⊕R.

It follows that for all n, P ⊕ Q<n detaches in G. As Hn detaches in P ⊕ Q<n,
and detachment is transitive, we see that each Hn detaches in G.

It also follows that Hω = P ⊕ Q does not detach in G. If Hω | G, then Q | G,
and as Q ⊆ R ⊆ G we would have Q | R (Proposition 2.4). �

3. Identifying free groups

We now turn to the proof of Theorem 1.4.

3.1. The successor case. We prove Theorem 1.4 where κ is a successor cardinal:

Theorem 3.1. Let κ be a successor cardinal. The set of free abelian groups of
universe κ is Σ1

1(Lκ)-complete.

Proof. Let A ⊆ 2κ be Σ1
1. Given Y ∈ 2κ we (uniformly) compute an abelian

group GY which is free if and only if Y ∈ A. To begin, we find a set U = UY ⊆ E∩κ,
effectively obtained from Y , such that Y ∈ A if and only if U is nonstationary
(Corollary 2.14). Without loss of generality, U ∩ κ− = ∅, where κ− is the cardinal
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predecessor of κ. The point here is that every ordinal in (κ−, κ) is singular, and
so E does not reflect at any ordinal in this interval (Theorem 2.15).

We will build a filtration 〈Gα〉α<κ of a group GY such that each Gα is free and
Div(〈Gα〉) = κ \ U ; our desired equivalence then holds by Proposition 2.7.

We define the sequence 〈Gα〉 computably in U . The construction is of course by
recursion on α. In order for the construction to proceed as we will shortly describe,
we will need to maintain the following:

(i) each Gα is free; and
(ii) for all β < α, if β /∈ U , then Gβ | Gα.

We start with G0 being the trivial group. Taking α < κ, we assume that Gβ is
defined for all β < α and that the above hypotheses hold below α.

Case 1 (α is a successor ordinal and α− 1 /∈ U). We let Gα = Gα−1 ⊕ Z. (i) for α
holds easily. (ii) holds because Gα−1 | Gα and detachment is transitive.

Case 2 (α is a successor ordinal and α − 1 ∈ U). Since α − 1 ∈ E we know that
cf(α−1) = ω. We can choose an increasing and cofinal sequence 〈αn〉 in α−1 which
is disjoint from U , for example, consisting of successor ordinals. By induction, for
all n, Gαn

| Gαn+1
. We can thus apply Proposition 2.16: we let Gα = twist(〈Gαn

〉).
(i) holds by construction. For (ii), let β < α, β /∈ U . There is some n such that
β < αn. By induction, Gβ | Gαn

; by construction, Gαn
| Gα.

Case 3 (α is a limit ordinal). We let Gα =
⋃

β<α Gβ . To verify (i) and (ii) in
this case we use the fact that there is a club C of α which is disjoint from U
(Theorem 2.15). It follows that Div(〈Gβ〉β<α) contains a club, and so Gα is free

(Proposition 2.7). (ii) follows from Remark 2.8.

Note that in case 2, to perform the twist, we need a basis for Gα. However we
know that Gα is free, so we can simply search for a basis until we find it. Identifying
that B is a basis of a free group G is κ-computable.

(ii) above implies that κ \ U ⊆ Div(GY ). However, if α ∈ U , then we have
ensured that Gα � Gα+1, so α /∈ Div(GY ). This completes the proof. �

We remark that a noneffective, static construction of an ℵ1-free group of size ℵ1

with a prescribed detachment set can be found in [9, IV].

3.2. Lightface weak compactness. A cardinal κ is weakly compact if and only
if it is Π1

1-indescribable. Under V = L, for B ∈ 2κ, say that κ is Π1
1(B)-describable

if there is a Π1
1(B) fact which holds for Lκ but not for Lλ for any λ < κ (we may

restrict ourselves to regular λ < κ, since this is expressible by a Π1
1-statement).

That is, if for some first-order ϕ, for all X ∈ 2κ, (Lκ, B,X) |= ϕ, but for all
λ < κ, for some X ∈ 2λ, (Lλ, B �λ, X) |= ¬ϕ. For example, the least inaccessible
cardinal is Π1

1-describable. A cardinal κ is weakly compact if and only if it is
Π1

1(B)-indescribable for all B ∈ 2κ. The next part of Theorem 1.4 follows from the
following theorem.

Theorem 3.2. Let κ be an inaccessible cardinal, and let B ∈ 2κ. If κ is Π1
1(B)-

describable, then the collection of free abelian groups of size κ is Σ1
1(B)-complete.

Note that if κ is Π1
1(B)-describable and C κ-computes B, then κ is also Π1

1(C)-
describable. Also note that Theorem 3.2 implies that the collection of free abelian
groups on the least inaccessible cardinal is Σ1

1-complete.
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3.3. An elaboration on square for inaccessible cardinals. Toward proving
Theorem 3.2, we need an elaboration on the class E above and on Corollary 2.14.
Consider what would go wrong if we tried to replicate the proof of Theorem 3.1 for
an inaccessible cardinal κ. One problem is that E ∩ κ is no longer κ-computable,
merely κ-c.e.; we will need to address this problem in the construction below by
approximating the final filtration 〈Gα〉 while still building a computable group. A
more serious obstacle is that E does reflect at all regular cardinals and so unbound-
edly below κ. This would mean that we will not be able to ensure that all the
groups Gα that we build along the way are free. We need to restrict ourselves to a
sparser class which will be stationary in κ but not reflect (will not be stationary in
any α < κ).

If κ is weakly compact, then every stationary subset of κ reflects (being stationary
is Π1

1). Hence there is no hope to perform this construction in this case. And indeed,
below we use this very fact to give an easy characterisation of free groups of a weakly
compact size. Jensen showed that in L, this is the only problematic case.

Recall Definition 2.12 of the set F (B,ϕ).

Proposition 3.3. Let κ be inaccessible and Π1
1(B)-describable, say by the formula

∀X ϕ. Then E ∩F (B,ϕ) is stationary in κ but does not reflect at any limit ordinal
α < κ.

Proof. That E ∩ F (B,ϕ) is stationary follows from Lemma 2.13(2).
Let α < κ be a limit ordinal. If α is singular, then we know that E does not

reflect at α. If α is a regular cardinal, then by assumption, (Lα, B �α) |= ∃X¬ϕ; by
Lemma 2.13, F (B,ϕ) is nonstationary in α. �

For brevity let F = E ∩F (B,ϕ). Replacing E by F in the proof of Lemma 2.13
shows that the nonstationary ideal on κ, in fact its restriction to F , is Σ1

1(F )-
complete. Copying the construction proving Theorem 3.1 shows that the collection
of free abelian groups of size κ is Σ1

1(F )-complete. However, this does not quite
give Theorem 3.2, because F may fail to be B-computable; it is merely B-c.e. As
mentioned above, we modify the construction to approximate the desired result.

Proof of Theorem 3.2. Let F = E ∩ F (B,ϕ), where κ is Π1
1(B)-describable, wit-

nessed by the formula ∀X ϕ. Let A be Σ1
1(B), say defined by the formula ∃X ψ.

Given Y ∈ 2κ we let U = UY = F ∩ F (Y,¬ψ). If Y ∈ A, then F (Y,¬ψ) is nonsta-
tionary in κ (Lemma 2.13), and so U is nonstationary. If Y /∈ A, then by the same
lemma, U is stationary, as it contains E ∩ F ((B, Y ), ϕ ∧ ¬ψ).

Again our aim is to build a group GY of universe κ and a filtration Ḡ = 〈Gα〉α<κ

of G such that Div(Ḡ) = κ \ U . The group GY needs to be Y ⊕ B-computable,
uniformly in Y , but as mentioned above, the filtration Ḡ will not.

What we do have, effectively from Y ⊕B, is an enumeration of U : an increasing
and continuous sequence 〈Us〉s<κ of sets in Lκ such that U =

⋃
s<κ Us. Namely

we let Us be the collection of α ∈ U such that s(α) < s. Again the point is that
the set of singular ordinals below κ is κ-c.e.; once we see that α is singular we can
effectively, from B⊕Y , check whether α ∈ U or not. Note that this means that for
any cardinal λ < κ, Uλ = U ∩ λ. For all s, Us ⊆ s.

We do define GY by building a Y ⊕B-computable increasing sequence 〈Hs〉. The
problem with copying the previous construction is that at a late stage s we may
see some relatively small α enter s. Now we could twist Hα inside Hs+1. But this
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would cause all the groups Hβ for β ∈ (α, s] to be twisted inside Hs+1 as well. This
would result in our twisting at places outside U (and outside F ). At the very end
this shouldn’t matter; we could argue that the differences are washed outside some
club of κ. The difficulty though is to explain why each group Hγ is free. Näıvely,
if t is a limit of such stages s as above, then while U ∩ t is nonstationary in t, it is
conceivable that the added twisting would cause a stationary amount of twisting,
and then H<t would fail to be free. This in fact does not happen, but we prefer to
present a modified construction. Our approach is to re-index the filtration. Namely,
at stage s we declare that all the groups Gβ for β ∈ (α, s] are swallowed inside the
new Gα+1.

So together with the sequence 〈Hs〉 we define filtrations Ḡs = 〈Gα,s〉α<s of Hs

whose limit will be the desired filtration 〈Gα〉. So Hs = Gs,s. The inductive
assumption that makes everything work is:

(i) each Hs is free;
(ii) Div(Ḡs) = s \ Us.
(iii) For all t < s and all β < t, if Us �β= Ut �β , then Gβ,t = Gβ,s.

Note that since Us ⊆ F , (ii) implies that for all limit s < κ, Div(Ḡs) contains a
club of s. Suppose that these objects have been defined for all t < s. At stage s we
act as follows.

Case 1 (s is a successor ordinal). If Us = Us−1, then we let Hs = Hs−1 ⊕ Z,
Gα,s = Gα,s−1 for all α < s, and Gs,s = Hs. In this case ensuring that (i), (ii), and
(iii) above hold for s is immediate.

Suppose that Us �= Us−1; let α be the least element of Us \Us−1. For all β � α,
we let Gβ,s = Gβ,s−1. By induction, Gα,s | Hs−1. Write Hs−1 as the direct
sum Gα,s ⊕ Ks. Find a cofinal ω-sequence 〈αn〉 in α disjoint from Us. We let
Gα+1,s = twist(〈Gαn,s〉) ⊕ Ks. So Gα+1,s ⊃ Hs−1, and Gα,s does not detach in
Gα+1,s; but for all β ∈ α \ Us−1 = α \ Us, Gβ,s | Gα+1,s.

We then go on defining Gβ,s for β ∈ (α + 1, s] as in the previous construction,
twisting on elements of Us and adding copies of Z outside Us, taking unions at limit
levels; we let Hs = Gs,s. The verification of (i) and (ii) proceeds as in the proof of
Theorem 3.1, again using the fact that Us does not reflect at any β � s. (iii) holds
by our instructions.

Case 2 (s is a limit ordinal). Let

γ = sup
{
β < s : ∃t < s

(
Ut �β= Us �β

)}
.

For all β < γ we let Gβ,s = limt→s Gβ,t; the limit exists by (iii), and this defini-
tion ensures that (iii) holds at s as well. Further, we claim that H<s =

⋃
t<s Ht

actually equals Gγ,s =
⋃

β<γ Gβ,s. This is because for each t < s there is some

r ∈ (t, s) and some α < γ which enters U at stage r; at stage r we define Gα+1,r to
extend Ht. Now by induction, for all β < γ, Gβ,s is free. We show that (ii) holds:
Div(〈Gβ,t〉β<γ) equals γ \Us; this uses the fact that Us =

⋃
t<s Ut, for if β ∈ Ut for

some t < s, then the construction ensures that for all r ∈ [t, s), Gβ,r � Gβ+1,r. And
if β /∈ Us, then for all t ∈ (β, s), for all α ∈ (β, t), Gβ,t | Gα,t; for each α ∈ (β, s)
we can find some t ∈ (β, s) such that Gα,t = Gα,s and Gβ,t = Gβ,s.

Finally, the fact that Us does not reflect at s implies that Gγ,s is free. Now as
at the successor case, we continue building the sequence 〈Gβ,s〉 for β ∈ (γ, s) (if
γ < s) as in the proof of Theorem 3.1, using Us and letting Hs = Gs,s.
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This completes the construction; applying the argument above to s = κ com-
pletes the proof. Also note that for all α < κ, |Gα| � |α|, as for each cardinal λ < κ,
Uλ = U �λ; this implies that for all β < λ, Gβ = Gβ,λ. �

3.4. The weakly compact case. We turn to the proof of Theorem 1.4(2). Unlike
the previous cases, here we not only have to prove hardness, but also membership
in the class. This membership follows from an easy characterisation. The boldface
version of the following proposition (which applies to weakly compact cardinals)
was observed by A. Mekler in his Ph.D. thesis.

Proposition 3.4. Let κ be an inaccessible cardinal, let G be a group of universe κ,
and suppose that κ is Π1

1(G)-indescribable. Then G is free if and only if every
subgroup of G of size smaller than κ is free.

Note that under our assumption that V = L, every subgroup of such a group G
of size less than κ is an element of Lκ (we say that it is κ-finite). The collection
of κ-finite free groups is κ-c.e. (as usual, search for a basis; every basis is κ-finite).
This shows that for any B ∈ 2κ, if κ is Π1

1(B)-indescribable, then the index-set of
the B-computable free groups is Π0

2(B). If κ is weakly compact, this shows that
the collection of all free abelian groups of size κ is Π0

2(Lκ).

Proof of Proposition 3.4. Recall that the standard filtration of G is defined by let-
ting Gα = Span(G∩α) and that we let Div(G) be the detachment set given by this
standard filtration.

Let λ � κ be regular. First note that if λ is closed under the group operation
(Gλ = G�λ), then for all α < λ, Gα ∈ Lλ.

Consider the Σ1
1 sentence ψ which for such λ � κ says that:

• for all α < λ, Gα is free (has a basis in Lλ), and
• Div(Gλ) contains a club.

For such λ, (Lλ, Gλ) |= ψ if and only if Gλ is free. By indescribability, if G is not
free, then there is some regular λ < κ such thatGλ = G�λ and (Lλ, G�λ) |= ¬ψ. �

Assuming that κ is weakly compact, as observed, this implies that the index
set of the computable free abelian groups on κ is Π0

2. However above the halting
problem we can save a quantifier.

Proposition 3.5. Let κ be weakly compact. Then the collection of free abelian
groups on κ is Π0

1(∅′)-complete in the collection of groups.

Proof. First we show that freeness is indeed Π0
1(∅′). The point is that if λ < κ is a

cardinal and H ∈ Lλ is a subgroup of G, then H is free if and only if H has a basis
in Lλ. So Proposition 3.4 implies that G is free if and only if for all cardinals λ, Lλ

sees that every λ-finite subgroup of G is free. The set of cardinals is κ-computable
from (indeed κ-equi-computable with) the complete Σ0

1(Lκ) set ∅′.
For completeness, we first observe that the collection of free abelian groups on κ

is Δ0
1-hard; this requires fixing only two groups, one free and one not. Now let

A ⊆ 2κ be Π0
1; say Y ∈ A if and only if (Lκ, Y ) |= ∀α ψ(α), for some formula ψ

with bounded quantifiers. Then uniformly in Y we build groups Gα, for α < κ, such
that Gα is free if and only if (Lκ, Y ) |= ψ(α), and let G =

⊕
Gα. This construction

of course relativises to any oracle. �

The following completes the proof of Theorem 1.4.
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Proposition 3.6. Suppose that κ is inaccessible and Π1
1-indescribable. Then the

index-set of the computable free abelian groups on κ is Π0
2-complete.

Proof. We have already observed that it is Π0
2. We prove hardness. The argument

for Proposition 3.5 shows that it is sufficient to prove Σ0
1-hardness.

Let A be a κ-c.e. set; we describe a procedure yielding, given α < κ, a κ-
computable group G = G(α) such that G(α) is free if and only if α ∈ A.

The idea is to follow the construction of the proof of Theorem 3.1 up to the
next cardinal α+ (the least cardinal λ such that α < λ). We twist along E (Def-
inition 2.10) as long as we don’t see α enter A. The point is that α ∈ A if and
only if Lα+ |= α ∈ A and that E is stationary in α+ but not between α and α+.
So α ∈ A if and only if at some point below α+ we stop twisting altogether. Once
we get to α+ we cannot continue the construction. Of course, effectively, we don’t
know that we reached α+, so we keep waiting to tell whether it is in E or not. To
prevent us from producing a partial group, on the side we keep building a copy of
Zκ to add to our group.

Here are the details more formally. Fix a κ-effective enumeration 〈As〉 of A; As

is the set of x < s such that Js sees that x ∈ A. For any cardinal λ, Lλ ≺Σ1
Lκ, so

for any cardinal λ, Aλ = A ∩ λ.
Fix α < κ. Computably we build an increasing and continuous sequence of

groups 〈Hβ〉β∈[α,α+] and a continuous and nondecreasing function f : [α, κ) → α++

1. We then let Gs = Hf(s) ⊕Zs for all s ∈ [α, κ]. This is done so that the sequence
〈Gs〉 is increasing, continuous and κ-computable, so G = Gκ is a κ-computable
group. At every stage we increase f by at most one, so for all t ∈ [α, κ], the range
of f �[α,t) is an initial segment of [α, α+]. So to define the groups Hβ we define the
group Hf(t) whenever we increase f .

We start with Hα being the trivial group and f(α) = α. Now let t ∈ (α, κ], and
suppose that f(s) and Hf(s) have been defined for all s ∈ [α, t). Now there are
several options.

Case 1 (t is a limit ordinal). We let f(t) = sups∈[α,t) f(s). If f is constant on a final

segment of t, then Hf(t) is already defined. Otherwise we let Hf(t) =
⋃

s∈[α,t) Hf(s).

In the other cases, t is a successor ordinal; let β = f(t− 1).

Case 2 (β is a successor ordinal). We let f(t) = β + 1 and Hβ+1 = Hβ ⊕ Z.

Case 3 (β is a limit ordinal and t < s(β)). (Of course this includes the case that β
is a regular cardinal, which will be α+). We let f(t) = β.

Case 4 (β is a limit ordinal and t = s(β)). We let f(t) = β + 1. In this case,
by induction, Hβ is free; we search for a basis and find it. Also by induction,
Div(〈Hγ〉γ∈[α,β)) contains γ \E and so contains a club.

If β ∈ E and α /∈ At, then we twist: we find a sequence 〈βn〉 cofinal in β and
disjoint from E, and let Hβ+1 = twist(〈Hβn

〉).
If β /∈ E or α ∈ At, we let Hβ+1 = Hβ ⊕ Z.

This concludes the construction. By induction we can see that range f = [α, α+].
By induction we see that for all β ∈ [α, α+), Hβ is free and that if α ∈ A, then
Div(〈Hβ〉) contains a final segment of α+ and otherwise equals [α, α+) \ E, which
does not contain a club. Hence α ∈ A if and only if Hα+ is free if and only if G is
free. �
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Remark 3.7. What about Π0
2(B)-completeness for oracles B which do not com-

pute ∅′? We do not know much, but we can show that if B is low and κ is inac-
cessible and Π1

1-indescribable, then the index set of the B-computable free abelian
groups is Π0

2(B)-complete in a strong sense: there is a κ-computable (not merely
computable in B) function f which reduces the complete Π0

2(B)-set to the set of
κ-computable (not just B-computable) free abelian groups.

As above it suffices to prove Σ0
1(B)-hardness. We sketch the argument. Let α <

κ; we effectively build a κ-computable group G which is free if and only if α ∈ B′.
Fix a κ-computable approximation 〈B′

s〉s<κ for B′.
We combine ingredients from previous constructions. We define an increasing

and continuous sequence 〈Hβ〉β�α and along with it an approximation to a filtra-

tion 〈Gβ〉β�α as in the proof of Theorem 3.2. As this is a sketch we ignore this

approximation and discuss the final result 〈Gβ〉. This is done so that Gβ is twisted
inside Gβ+1 if and only if β ∈ E; we see that Gβ is free and α /∈ B′

s for all s in
some final segment of β. As long as these conditions do not hold we keep “puffing
up” the group with copies of Z so that in the end we do get a κ-computable group;
see for example the proof of Theorem 4.10 below.

Why does this work? Suppose first that α /∈ B′. We will show that for some λ <
κ, Gλ is not free. Fix some β such that α /∈ B′

s for all s � β, and assume that Gβ

is free. Then we twist at every γ ∈ [β, β+) ∩ E, which shows that Gβ+ is not free.
Suppose that α ∈ B′. Since β ∈ B′

s for all s in a final segment of κ, eventually
we stop twisting; we just need to show that each Gβ is free; that is, the construction
does not die prematurely. Since we only twist along E, the first nonfree group could
only appear at regular cardinal stages λ < κ. Fix such λ. To show (inductively)
that Gλ is free, we consider the set C of β < κ such that cofinally in β we see
stages s such that α ∈ B′

s. At no stage s ∈ C do we twist. The set C is certainly
closed, and C∩λ is cofinal in λ because it is κ-computable (with parameter smaller
than λ) and C is cofinal in κ.

4. Coding into bases of free groups

Corollary 1.5 says that if κ is a successor cardinal, then no reasonable oracle suf-
fices to compute a basis for every computable free abelian group. The situation for
inaccessible cardinals remains unclear. In this section we tackle the other direction:
what can be coded into all bases of some free abelian group? That is, for which
sets D ∈ 2κ can we find a κ-computable free abelian group, every basis of which
κ-computes D? This is the content of Theorem 1.6, which we prove in this section.
In brief, our results say that:

• ∅′ can always be coded;
• an upper bound on the sets that can be coded is the degree of Div(G),
which is always ∅′′-computable, but sometimes ∅′-computable;

• in many cases, this upper bound can be realised.

4.1. The limits of coding. Computing bases of a free group is equivalent to
computing clubs through the detachment set. The following is an effective version
of Proposition 2.7. The proof is the same.

Lemma 4.1. Let κ be regular and uncountable, let G be a κ-computable free abelian
group, and let Ḡ = 〈Gα〉α<κ be a κ-computable filtration of G.
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The collection of bases of G and the collection of club subsets of Div(Ḡ) are κ-
Medvedev equivalent. That is, there are partial κ-computable functions f, g : 2κ →
2κ such that for every basis B of G, f(B) is a club through Div(Ḡ), and for every
club subset C of Div(Ḡ), g(C) is a basis of G.

The detachment set is the limit of possible coding into bases.

Theorem 4.2. Let κ be regular and uncountable, and let G be a κ-computable
group. For any X ∈ 2κ which is not κ-computable from Div(G), there is a basis
of G which does not κ-compute X.

Proof. The proof of Theorem 4.2 uses effective forcing. It is a generalisation of
the forcing notion used to shoot a club through a stationary subset of ω1 [1]. Of
course working effectively we do not actually extend the universe, so we will use
the fact that the detachment set does contain a club (as G is free). Fix a regular
uncountable cardinal κ and a κ-computable free group G.

The notion of forcing P = P(G) we use is the collection of all closed and bounded
subsets of Div(G). The ordering is by end-extension: D extends C if D ⊇ C and
D ∩maxC + 1 = C. Note that P is κ-computable from Div(G).

While P is not κ-closed, it satisfies a weaker form of closure which will still
allow us to build a sufficiently generic filter in κ many steps. It is κ-strategically
closed. This means that playing against an opponent, we have a strategy to stay
inside P when alternating extending conditions in plays of length < κ, as long
as we get to play at limit stages. In detail, fix a club D ⊆ Div(G). For C ∈
P let g(C) = C ∪ {minD \ (maxC + 1)}. That is, add to C the next element
of D beyond maxC. If γ < κ is a limit ordinal and 〈Cα〉α<γ is a sequence of

extending conditions in P (if β > α, then Cβ extends Cα in P) such that for any
even ordinal α < γ, Cα+1 = g(Cα), then letting C<γ =

⋃
α<γ Cα, the condition

Cγ = C<γ∪{supC<γ} is a condition in P and extends each Cα. The point of course
is that supC<γ ∈ Div(G), as it is in D. In this way we can (within L) build a filter
of P meeting any prescribed collection of κ many dense subsets of P.

Fix X �κ Div(G). Let H be a filter, sufficiently generic over X; let A =
⋃
H.

This is a closed subset of Div(G). One kind of dense set we meet ensures that A
is unbounded in κ; we can always extend conditions beyond any point below κ, as
Div(G) is unbounded. It remains to show that X �κ A. The argument is similar
to the one used for effective Cohen forcing: if H is 1-generic over Y and Y is
noncomputable, then Y �T H; here we need Div(G) as a base to compute P. Let Φ
be a κ-c.e. functional, and let C0 ∈ P. If there is some C ∈ P extending C0 such that
Φ(C) ⊥ X we take such an extension. Otherwise, we claim that C0 already forces
divergence: there is some β < κ such that for all C ∈ P extending C0, Φ(C, β)↑, for
if not, then using P (and so using Div(G)) we can κ-compute X by ranging over
extensions of C0 and applying Φ. �
4.2. Coding 0′. It is not hard to encode ∅′. It is possible in all cases, including
singular cardinals and ω.

Theorem 4.3. Let κ be any infinite cardinal. There is a κ-computable free abelian
group, every basis of which computes ∅′.
Proof. Begin by constructing a free group on κ generators {bα} for α < κ. If at
stage s < κ we see α entering ∅′, at that stage we introduce a new generator equal
to bα/2.
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Let B be a basis of the resulting group G. For each α there is a finite subset Bα

of B such that bα ∈ Span(Bα), and such a set can be found computably from B;
note that the function α �→ bα is κ-computable. Because Bα is P -independent,
α ∈ ∅′ if and only if 2 divides bα in Span(Bα). Note that even in the case κ = ω, to
determine this effectively, we look at the coefficients of bα in terms of the generators
in Bα. �

A priori, for any regular uncountable κ, for any κ-computable group G, Div(G)
is ∅′′-computable. Theorem 4.2 shows that if κ is a cardinal for which Div(G) is
∅′-computable for every κ-computable free group G, then Theorem 4.3 is optimal
for this κ. In this subsection we outline a number of cases in which this holds.

Proposition 4.4. Suppose that κ is a regular uncountable cardinal which is not
the successor of a non-weakly-compact regular uncountable cardinal. Then for any
κ-computable free group G, Div(G) is ∅′-computable.

Toward finding the complexity of Div(G), we investigate the complexity of de-
tachment among κ-finite free groups. Fix a regular uncountable cardinal κ. Recall
that “κ-finite” just means “an element of Lκ”. We first observe that given a κ-finite
group K and a subgroup H, we can effectively find a κ-finite copy of K/H. Using
Fact 2.3, this implies:

Lemma 4.5. The collection of κ-finite free abelian groups is κ-computably equiva-
lent to the collection of κ-finite pairs (K,H) such that K is free and H is a subgroup
of K which detaches in K.

Note that these sets are κ-c.e. and so are ∅′-computable. This implies that
for any κ-computable free group G, Div(G) is Π0

2(Lκ), and so, as promised, ∅′′-
computable.

To prove Proposition 4.4 we consider several cases, which together cover all
cardinals to which the proposition applies:

(1) κ is the successor of a weakly compact cardinal;
(2) κ = ω1;
(3) κ is the successor of a singular cardinal;
(4) κ is inaccessible.

For cases (1)–(3), the proposition follows immediately from the following:

Proposition 4.6. Suppose that κ falls under cases (1)–(3). Then the collection of
κ-finite free groups is κ-computable.

Proof. First, we consider cases (1) and (2).
Let H be a κ-finite (torsion free, abelian) group. Let κ− be the cardinal prede-

cessor of κ. By adding a copy of Zκ−
we may assume that |H| = κ−. Effectively

we can find a group K with universe κ− which is isomorphic to H. Now we use the
fact that in both cases, the collection of free groups on κ− is first-order definable
over κ−. If κ = ω1, then we know that the collection of free groups on ω is Π0

3; by
Theorem 1.4, if κ− is weakly compact, then the collection of free groups on κ− is
Π0

2(Lκ). In both cases, whether (Lκ− ,K) satisfies this definition can be effectively
computed within Lκ.

Next we consider case (3). The proof relies on Shelah’s singular compactness
theorem [32]; see also [8]. Let κ be the successor of a singular cardinal. Shelah’s
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theorem says that (as in the weakly compact case), a group of size κ− is free if and
only if every subgroup of strictly smaller cardinality is free.

Because the collection of κ−-finite free groups is definable over Lκ− (it is κ−-
c.e.), it is κ-finite. We know that the collection of κ-finite free groups is κ-c.e.,
so it suffices to show it is also κ-co-c.e. For a κ-finite group K, the collection of
all κ-finite subgroups of K cardinality smaller than κ− is κ-computable (uniformly

inK); for each such group H, we can effectively find a κ−-finite group Ĥ isomorphic
to H and then see whether it is free or not. �

We turn to case (4). The following lemma will also be useful later, when we
discuss singular cardinals. Recall that if H is a subgroup of a group G, then we
write [H,G] to denote the collection of all subgroups K ⊆ G such that H ⊆ K.

Lemma 4.7. Let G be a free abelian group, and let H be a subgroup of G. Then
H | G if and only if H | K for all K ∈ [H,G] such that |K| = |H|.

Proof. Given Proposition 2.4, it suffices to show that if H � G, then there is some
K ∈ [H,G] with |K| = |H| such that H � K. Let B be a basis of G. Let C ⊆ B be
a subset of size |H| such that H ⊆ Span(C); let K = Span(C). �

Proof of Proposition 4.4 in the inaccessible case. Suppose that κ is inaccessible.
We use Lemma 4.7. We are given a κ-finite subgroup H of G and want to know
whether H | G or not. First, we use ∅′ to find a regular cardinal λ < κ such
that H ∈ Lλ. With parameter λ we can computably check, given a κ-finite sub-
group K ∈ [H,G] of size smaller than λ, whether H | K or not: we search for
an isomorphism g from K to a λ-finite group g[K] and ask whether g[H] detaches
in g[K]; since both g[K] and g[H] are λ-finite, the search for this detachment is
performed within Lλ, and so is bounded.

Hence, after finding λ, we can ask ∅′ the following Σ0
1 question, equivalent to H �

G: is there a κ-finite K ∈ [H,G] and an injective function g from K into some
α < λ such that in Lλ, g[H] � g[K]? �

4.3. Coding 0′′. To finish the proof of Theorem 1.6, we consider the case in which
not only Div(G) can be made to be equivalent to ∅′′, but we can code ∅′′ into all
bases of a group, so again in this case our results are tight.

Proposition 4.8. Suppose that κ is a successor of a regular uncountable cardinal
which is not weakly compact. Then the collection of κ-finite free abelian groups is
Σ0

1(Lκ)-complete.

Proof. Let κ− be the cardinal predecessor of κ. The proposition follows from the
fact that the collection of free groups with universe κ− is Σ1

1(Lκ−)-complete and
that we can effectively translate Σ0

1 questions about Lκ into Σ1
1 questions about

Lκ− . This is not new, but we give the details for completeness. The key is the
regularity of κ− > ω, which makes well-foundedness a relatively simple question.

As a first step consider first Σ0
1(Lκ)-questions with no parameters. Let ϕ be a Σ0

1

formula. To find out if Lκ |= ϕ, we note that this happens if and only if Lα |= ϕ for
some α < κ. (Actually α < ω1, but we are doing this step as a warm-up, and this
observation won’t help later.) Then Lκ |= ϕ if and only if there is some A ⊆ (κ−)2

such that (κ−, A) is a well-founded model of ZF− +(V = L)+ϕ. Well-foundedness
is first-order definable in (κ−, A), as we only quantify over functions from ω → κ−.
As κ− is regular, all of these are κ−-finite, so this question is Σ1

1(Lκ−).
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Now for the general case, we take a Σ0
1 formula ϕ and a parameter β < κ.

Effectively, in Lκ, we can find a well-ordering B on κ− isomorphic to β. Our Σ1
1(B)

question now asks for some relation A on κ− and an embedding of (κ−, B) into
the initial segment of (κ−, A) determined by some x ∈ κ− such that (κ−, A) |=
ZF− +(V = L) + ϕ(x).

To B we can add a fixed C ⊆ κ− such that the collection of free abelian groups
is Σ1

1(C)-complete, and so given ϕ(β) find a group G on κ− which is free if and
only if Lκ |= ϕ(β). �

Corollary 4.9. Suppose that κ is a successor of a regular cardinal which is not
weakly compact. There is a partial κ-computable function which takes as input a κ-
finite free abelian group H and a Σ0

1 formula ϕ (with parameters in Lκ) and outputs
a κ-finite free abelian group BlackBox(H,ϕ) in which H detaches if and only if ϕ
holds in Lκ.

Proof. GivenH and ϕ, first use Proposition 4.8 to get a κ-finite groupK (of size κ−)
which is free if and only if ϕ holds in Lκ. Now the idea is to let G = BlackBox(H,ϕ)
be a free extension of H such that K ∼= G/H, and then refer to Fact 2.3.

Technically what we do is find a surjection f from some copy G of Zκ−
onto K,

ensuring that the kernel of f has size κ−; this can be achieved using the freeness

of Zκ−
. Since a subgroup of a free group is free, the kernel of f is isomorphic to Zκ−

and so to H. Renaming the elements of G we can thus assume that H = ker f . �

Theorem 4.10. Suppose that κ is a successor of a regular cardinal which is not
weakly compact. There is a κ-computable free group, all bases of which compute ∅′′.

Proof. We start with a Π0
2-complete set P such that for any X ∈ 2κ, if P is X-c.e.

then it is X-computable. For example let P be the join of a Π0
2-complete set P̂

and the collection of all bounded initial segments of ∅′: if X enumerates P , then it
computes ∅′, and then P̂ is both X-c.e. and X-co-c.e.

Our plan is as follows. For each α < κ, we will uniformly fix a κ-finite free
group H(α) and produce a κ-computable free group G(α) ⊃ H(α) such that H(α)
detaches in G(α) if and only if α ∈ P . Our group will be G =

⊕
α<κ G(α). We will

now argue that the set of α such that H(α) detaches in G(α) is c.e. relative to any
basis of G.

In the construction ofG(α) we will produce a κ-computable filtration 〈Gs(α)〉s<κ,
with G0(α) = H(α). Having done that, we let Gs =

⊕
α<s Gs(α) for each s < κ.

Then Ḡ = 〈Gs〉s<κ is a filtration of G. By Lemma 4.1, from any basis of G we

effectively obtain a club subset C of Div(Ḡ).
We claim that if s ∈ Div(Ḡ) and α < s, then H(α) | G(α) if and only if

H(α) | Gs(α). For one direction, we have that if H(α) | G(α), then H(α) | Gt(α)
for every t < κ. Conversely, since α < s, Gs(α) | Gs by definition of Gs, and
since s ∈ Div(Ḡ), Gs | G, so by transitivity of detachment, Gs(α) | G. So if
H(α) | Gs(α), we have that H(α) | G, and so H(α) detaches inside every subgroup
of G, including G(α).

Since H(α) | Gs(α) is a Σ0
1 relation, we can thus enumerate P from C by

enumerating all α such that H(α) | Gs(α) for some s ∈ C with s > α.
It remains only to uniformly construct the G(α) and their filtrations. Fix α, and

let H(α) be some fixed copy of Zκ−
. Fix ψ, a bounded-quantifier formula which is
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the matrix of a definition of P :

β ∈ P ⇐⇒ Lκ |= ∀x∃y ψ(β, x, y).
For s � κ, let �s = �s(α), the “length of witnessing” of the potential membership
of α in P , to be

�s = sup {γ < s : (∀x < γ)(∃y < s) ψ(α, x, y)} .
The sequence 〈�s〉s<κ is κ-computable. The sequence 〈�s〉s�κ is nondecreasing and

continuous. And α ∈ P if and only if �κ = κ if and only if the sequence 〈�s〉s<κ is
unbounded in κ. Further, α ∈ P if and only if for all s < κ, �s < �κ, for if α /∈ P ,
then 〈�s〉s<κ is eventually constant. This follows from the fact that κ is a regular
cardinal: if �κ < κ, then there is some s < κ such that for all β < �κ there is some
y < s such that ψ(α, β, y) holds.

The idea is the following. Given a length �s, we extend Gs(α) to potentially
twist H(α), to be untangled when we discover a greater length �t > �s.

We give the formal details. For each β < κ, using Corollary 4.9, let

Kβ = BlackBox(H(α), “∃s (�s > β)”).

Each group Kβ is free, H(α) ⊂ Kβ , and H(α) detaches in Kβ if and only if �κ > β.
The sequence of groups 〈Kβ〉β<κ is κ-computable. By taking isomorphic copies, we

may assume that Kγ ∩Kβ = H(α) if β �= γ.
For each β < �κ, since H(α) detaches in Kβ , we can effectively find a comple-

ment Vβ for H(α) inside Kβ . Note that the function β �→ Vβ is only partially
κ-computable (uniformly in α), as the set {(α, β) : β < �κ(α)} is κ-c.e. but not
κ-computable. At each stage t < κ we will have found Vβ for all β < �t.

We now define the sequence of groups Gt(α) for t � κ. Let U = U(α) be the set
of limit ordinals t � κ such that for all s < t, �s < �t. (Recall that α ∈ P if and
only if κ ∈ U(α).)

For brevity, for t � κ let Rt = Zt⊕
⊕

β<�t
Vβ. Here Zt is some fixed copy of that

group such that Zs ⊆ Zt if s < t. We define:

(i) If t ∈ U , then Gt(α) = H(α)⊕Rt.
(ii) If t /∈ U , then Gt(α) = K�t ⊕Rt.

Note that G0(α) = H(α) as promised. Also note that the function t �→ Gt(α)
(restricted to t < κ) is κ-computable. We need to ensure that this sequence of
groups is increasing and continuous. Fix s < t � κ; we show that Gs(α) ⊂ Gt(α).
First note that since H(α) ⊂ K�s , it suffices to show that K�s ⊕Rs ⊂ Gt(α). There
are two cases:

• If �t = �s, then t /∈ U . In this case the result follows from the fact that
Rs ⊂ Rt.

• If �s < �t, then K�s ⊕Rs ⊂ H(α)⊕Rt, and since H(α) ⊂ K�t , we see that
K�s ⊕Rs ⊂ Gt(α) regardless of whether t ∈ U or not.

Finally, suppose that t � κ is a limit ordinal; we need to ensure that Gt(α) =⋃
s<t Gs(α). But this follows from the fact that Rt =

⋃
s<tRs. We always have

H(α) = G0(α) ⊂
⋃

s<tGs(α), which takes care of the case t ∈ U . If t /∈ U , then
K�t = K�s for some s < t such that s /∈ U , and so K�t ⊂

⋃
s<t Gs(α).

We remark that this static description of the construction, while precise, does
mask a little our intentions, which are described dynamically. At a stage s /∈ U ,
we have H(α) potentially twisted in Gs(α) (as it is potentially twisted inside K�s).
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It remains this way until we discover some t > s at which we see that �t > �s. We
then discover that H(α) was not in fact twisted inside Gs(α), and we (potentially)
retwist it again inside Gt(α), via K�t .

Finally, we need to show that H(α) detaches in G(α) = Gκ(α) if and only if
α ∈ P . But we observed that α ∈ P if and only if κ ∈ U . If κ ∈ U , then certainly
H(α) | Gκ(α). If κ /∈ U , then �κ < κ and H(α) does not detach in K�κ , and as
K�κ | Gκ(α), we get H(α) � Gκ(α). �
4.4. More on κ-finite free groups. Propositions 4.4 and 4.6 raise a separate
question: in general, what is the complexity of the set of κ-finite free abelian
groups? Together with Proposition 4.8, we see that the only case left open is
when κ is inaccessible.

For the following, we generalise the definition of weak truth-table reducibility
in terms of bounding the use function. If Φ is a κ-functional and Φ(Y ) = X,
then for all β < κ we define the use of this reduction to be the least γ such that
(Y �γ , X �β) ∈ Φ. We say that Y κ-wtt computes X if there is such a functional for
which the use function is bounded by a κ-computable function.

Theorem 4.11. Let κ be inaccessible. Then the collection of κ-finite free abelian
groups κ-computes ∅′, but does not κ-wtt compute ∅′ (and so is not 1-complete for
the class Σ0

1(Lκ)).

Proof. Let α < κ; we want to find out whether α ∈ ∅′ or not. We start building
an increasing and continuous sequence of groups 〈Gβ〉β∈[α,α+], always twisting at

β ∈ E. That is, we start with Gα being trivial. We take unions at limit stages.
At successors of successors we add a copy of Z. Suppose that β > α is a limit
ordinal and Gβ is already defined. We consult our oracle to see if Gβ is free. If it
is, then β will be singular, and so we can wait for s(β) and observe if β ∈ E or not;
if so we twist Gβ inside Gβ+1; otherwise we do not. The arguments above show
that Gβ is free if and only if β < α+. So once we see that Gβ is not free, we know
that β = α+, and we can consult Lα+ to see whether α ∈ ∅′ or not.

Suppose, for a contradiction, that the set of free abelian groups κ-wtt com-
putes ∅′; let Ψ be a reduction. Let λ < κ be a successor of a singular cardinal,
sufficiently large so that the parameter used to compute Ψ is in Lλ. Then the
restriction of Ψ to Lλ is in fact a λ-computable reduction of ∅′(Lλ) to the set of
λ-finite abelian groups; this contradicts Proposition 4.6. �

5. Singular cardinals

Recall that even when κ is singular, Lκ is admissible and κ-computability makes
sense. When analysing groups with universe κ, though, we need to take care, as
the notion of filtration is not as robust. In general, if (Lκ, G) is not admissible,
then it is likely that some bounded subsets of G generate subgroups which are
unbounded. This does not happen when (Lκ, G) is admissible (for example, when G
is κ-computable), as there is a κ-computable function from B × ω onto Span(B).
In particular, when G is κ-computable, for any cardinal λ < κ, G �λ is a subgroup
of G.

In the absence of well-behaved filtrations we consider the general detachment
set, restricted to κ-finite subgroups. Fix a singular cardinal κ and a κ-computable
group G. First, for a κ-finite subgroup H of G, let

[H,G]bdd = [H,G] ∩ Lκ
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be the collection of κ-finite subgroups of G extending H and then let Divbdd(G) be
the collection of all κ-finite subgroups H of G which detach in every subgroup in
[H,G]bdd. Let 0 denote the trivial group.

Lemma 5.1. Suppose that every κ-finite subgroup of G is free. Then the detach-
ment set Divbdd(G) is cofinal in [0, G]bdd: every κ-finite subgroup H of G has an
extension in Divbdd(G).

Proof. First, note that nondetachment is witnessed at the same cardinality. That
is, if H is a κ-finite subgroup of G which is not in Divbdd(G), then there is some
K ∈ [H,G]bdd of size |H| in which H does not detach. To see this simply apply
Lemma 4.7 to H and the group G �λ, where λ < κ is regular and sufficiently large
to include H, the parameter used for the computable definition of G, and a κ-finite
subgroup of G in which H does not detach.

Fix some κ-finite subgroup H /∈ Divbdd(G); let λ = |H|+. Recall that with
parameter λ, computing detachment among groups of size < λ is κ-computable
(see the proof of Proposition 4.4 in the inaccessible case): to tell whether some
κ-finite group K detaches in another one P of size < λ, find a bijection g from P
to some α < λ and then see if in Lλ we can see a complement for g[H] in g[P ].

Suppose, for a contradiction, that H has no extension in Divbdd(G). Now we
construct a κ-computable filtration H̄ = 〈Hi〉i<λ of a κ-finite group Hλ as follows.

Starting with H0 = H, given Hi we find some Hi+1 ∈ [Hi, G]bdd of size |H| = λ−

in which Hi does not detach. By the paragraph before, such Hi+1 can be found
κ-effectively. This ensures that for all limits j � λ, the sequence H̄ �j is κ-finite and
so Hj =

⋃
i<j Hi is κ-finite. Here again we crucially used the assumption that G is

κ-computable.
Now we have reached our contradiction: by assumption, Hλ is free. But Div(H̄)

is empty, contradicting the fact that it must contain a club of λ (Proposition 2.7).
�

Proposition 5.2. Suppose that cf(κ) = ℵ0. Then a κ-computable group G is free
if and only if every κ-finite subgroup of G is free.

Again notice that this is stronger than Shelah’s singular compactness theorem,
as there are many countable subgroups of G which are not κ-finite.

Proof. Suppose that every κ-finite subgroup of G is free. Let 〈κn〉 be a cofinal
sequence in κ. Define a sequence

H0 ⊆ K0 ⊆ H1 ⊆ K1 ⊆ H2 ⊆ K2 ⊆ . . .

such that each Ki ∈ Divbdd(G) and G�κn
⊆ Hn; for example we can simply let Hn

be the subgroup generated by Kn−1 ∪G�κn
. So G =

⋃
n Kn and each Kn detaches

in Kn+1. The familiar process now gives a basis of G. �

Corollary 5.3. Suppose that X �κ ∅′ computes a cofinal ω-sequence in κ. Then
every κ-computable free group has an X-computable basis.

Proof. The sequence 〈Kn〉 from the proof of Proposition 5.2 is computable from ∅′
and the sequence 〈κn〉, which is ∅′-computable. As in Proposition 4.4, Divbdd(G)
is ∅′-computable. �
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So, for example, if κ < ℵκ (for example κ = ℵω), then every κ-computable free
group has a ∅′-computable basis: the set of cardinals is ∅′-computable, and a cofinal
sequence f : ω → α (where κ = ℵα) is κ-finite.

Proposition 5.4. If cf(κ) = ℵ0, then the index-set of the κ-computable free groups
is Π0

2(Lκ)-complete.

Proof. Just like the weakly compact case (Proposition 3.6); the same construction
works. �
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