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ON THE NUMBER OF ZEROS AND POLES

OF DIRICHLET SERIES

BAO QIN LI

Abstract. This paper investigates lower bounds on the number of zeros and

poles of a general Dirichlet series in a disk of radius r and gives, as a conse-
quence, an affirmative answer to an open problem of Bombieri and Perelli on
the bound. Applications will also be given to Picard type theorems, global
estimates on the symmetric difference of zeros, and uniqueness problems for
Dirichlet series.

1. Introduction and the main results

A general Dirichlet series is an infinite series of the form

(1.1)

∞∑
n=1

ane
−λns,

where the an’s are complex numbers, {λn} is a strictly increasing sequence of real
numbers whose limit is infinity, and s = σ + it is a complex variable. The special
type

∑∞
n=1

an

ns , also referred to as an ordinary Dirichlet series, is obtained by substi-
tuting λn = log n. We refer to the monographs [1], [14], [23], etc., for general theory
and applications of Dirichlet series. Dirichlet series appearing in many problems
admit analytic continuation in the complex plane C as meromorphic functions,
and information on their analytic properties are important in many areas from
analysis to number theory to mathematical physics. This paper is concerned with
the number of zeros and poles (as well as a-values) of these general Dirichlet se-
ries. Denote by n(r, a; f) the number of solutions, counted with multiplicity, of
the equation f(s) = a in the disc |s| ≤ r for a function f meromorphic in C and
a value a. Since we are dealing with general Dirichlet series without assumptions
such as functional equation, this counting function (instead of the one in strips),
or its integrated form (see below), is a natural measure for the zeros of f(s) − a.
This measure, which is well known, is one of the most important quantities in the
study of value distribution of meromorphic functions and their applications. The
growth of n(r, a; f) for a meromorphic function f can be at the same rate as, but
cannot exceed, that of the function (see e.g. [15, p. 26]), which provides a general
connection between the upper bound of the counting function and the growth of
the function; there is, however, no such kind of connection in general between the
lower bound of the counting function and the growth of the function. These bounds
have long been studied for Dirichlet series, especially, of course, for the Riemann
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zeta function
∑∞

n=1
1
ns , for which the well-known Riemann–von Mangoldt formula

(see, e.g., [30, p. 214]) characterizes the counting function of its zeros, and also for
other ordinary and general Dirichlet series under various analytic and arithmetic
conditions (see, e.g., [20], [25], [26], [27], [28], and [29], to list a few). It appears in
many known cases of Dirichlet series with “few” poles, besides various L-functions,
that n(r, 0; f) grows at least at the order r and that there are nontrivial Dirichlet
series with growth order equal to r. It remained to be an open problem whether a
lower bound of growth order equal to r can be given for the zeros and poles in a
general setting, and it, if established, would be best possible. This is also closely
tied to several other problems studied in complex analysis and number theory on
Picard type theorems, global estimates on the symmetric difference of zeros, and
uniqueness problems for Dirichlet series (see §2). In fact, Bombieri and Perelli [6]
obtained a lower bound, which is of growth order rγ for any γ < 1, on the number of
zeros and poles for general Dirichlet series under mild analytic assumptions; more
precisely, they proved the following theorem.

Theorem A. Let f(s) =
∑

ane
λns, λn ∈ R, be uniformly convergent in a half-plane

�(s) > b and admit an analytic continuation in C as a nonconstant meromorphic
function of finite order. Suppose that f(s) tends to a nonzero finite limit as �(s) →
+∞. Then, for any fixed γ < 1, we have

(1.2) lim sup
r→+∞

N(r, 0; f) +N(r,∞; f)

rγ
> 0.

In the above,

N(r, a; f) =

∫ r

0

n(t, a; f)− n(0, a; f)

t
dt+ n(0, a; f) log r,

which is the integrated counting function and plays a similar role as n(r, a; f) for the
solutions of the equation f(s) = a. (It will be seen from (2.1) in §2 that N(r, a; f)
can be replaced by the simpler un-integrated counting function n(r, a; f).)

The lower bound given in (1.2) is not of growth order equal to r due to the
assumption γ < 1. Bombieri and Perelli asked whether the conclusion of Theorem
A holds with γ = 1, which would be best possible. This is stated in the following
problem.

Problem A ([6, p. 71]). Under the same conditions of Theorem A, do we have

(1.3) lim sup
r→+∞

N(r, 0; f) +N(r,∞; f)

r
> 0?

Bombieri and Perelli proved that (1.3) does hold under the following additional
conditions [6].

Theorem B. In addition to the hypotheses of Theorem A, suppose that f(s) is
uniformly almost periodic in some half-plane �(s) < c and f(s) tends to a nonzero
finite limit as �(s) → −∞. Then, (1.3) holds.

Here, the notion of a uniformly almost periodic function is in the sense of Bohr
(see §2 for the definition).

In this paper, we will solve Problem A by an affirmative answer (and thus the
additional conditions in Theorem B are superfluous); that is, we will prove the
following theorem.
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Theorem 1.1. Under the same conditions of Theorem A, we have

lim sup
r→+∞

N(r, 0; f) +N(r,∞; f)

r
> 0.

Remark. We show in this remark that Theorem 1.1 is best possible in the following
senses:

(i) As mentioned above, the growth order r in the conclusion of Theorem 1.1 is
the best possible, as seen from the Dirichlet series f(s) =

∑∞
n=0

an

2ns with suitable

an (for example, simply take f(s) = 1 + 1
2s ).

(ii) The condition “f(s) tends to a nonzero finite limit as �(s) → +∞” cannot
be dropped, as seen from the function f(s) = e−s (resp., f(s) = es), which tends
to zero as �(s) → +∞ (resp., tends to ∞ as �(s) → +∞). The function f satisfies
all the other conditions of Theorem 1.1 but has no zeros or poles.

(iii) The condition “finite order” cannot be dropped in Theorem 1.1. To see
this, consider the Dirichlet series f(s) =

∑∞
n=0

1
n!e

−ns, which clearly satisfies all
the conditions of Theorem 1.1 except that f(s) is of infinite order, in view of the

fact that f(s) = ee
−s

, which has no zeros or poles.
(iv) The sum N(r, 0; f) + N(r,∞; f) in the conclusion of Theorem 1.1 cannot

be strengthened as N(r, 0; f) or N(r,∞; f) alone, as seen from the Dirichlet series
f(s) = 1

1−e−s =
∑∞

n=0 e
−ns (�(s) > 0), which has no zeros, and the Dirichlet series

f(s) = 1− e−s, which has no poles.

Under the same conditions of Theorem 1.1 or Theorem A, we will actually es-
tablish the following result, which improves the original estimate (1.3) in Problem
A; specifically we have the following theorem.

Theorem 1.2. Let f(s) =
∑

ane
λns, λn ∈ R, be uniformly convergent in a half-

plane �(s) > b and admit an analytic continuation in C as a nonconstant mero-
morphic function of finite order. Suppose that f(s) tends to a nonzero limit as
�(s) → +∞. Then either

(1.4) lim inf
r→+∞

n(r, 0; f) + n(r,∞; f)

r
> 0

or

(1.5)

∫ ∞

r0

n(t, 0; f) + n(t,∞; f)

t3
dt = ∞

for any r0 > 0.

2. Consequences of Theorem 1.2

Theorem 1.2 has various consequences. We include in this section its applications
to Picard type theorems, global estimates on the symmetric difference of zeros, and
uniqueness problems for Dirichlet series and, particularly, L-functions.

We first show that Theorem 1.1 is a direct consequence of Theorem 1.2, from
which it is also clear (see (1.4) and (2.2) below) that under the same conditions of
Theorem 1.1 or Theorem 1.2,

(2.1) lim sup
r→+∞

n(r, 0; f) + n(r,∞; f)

r
> 0.
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In fact, each of (1.4) and (1.5), given in terms of the unintegrated counting
function (often more convenient as a counting function), yields a stronger result
than the conclusion of Theorem 1.1, i.e., (1.3).

If (1.4) holds, then there is a constant A > 0 such that

n(r, 0; f) + n(r,∞; f)

r
> A

for all large r. By the definition of the integrated counting function, we easily
deduce, by integration, that

lim inf
r→+∞

N(r, 0; f) +N(r,∞; f)

r
> 0,

which is a stronger statement than (1.3).
If (1.5) holds, then it is easy to see that for any small ε > 0,

(2.2) lim sup
r→+∞

n(r, 0; f) + n(r,∞; f)

r2−ε
= +∞,

since otherwise there would be an M > 0 such that

n(r, 0; f) + n(r,∞; f) < Mr2−ε

for all large r, which clearly implies that∫ ∞

r0

n(t, 0; f) + n(t,∞; f)

t3
dt < +∞

for any r0 > 0, a contradiction to (1.5). In view of the fact that for r ≥ 1,

n(r, 0; f) + n(r,∞; f)

≤
∫ er

r

n(t, 0; f) + n(t,∞; f)

t
dt

≤ N(er, 0; f) +N(er,∞; f),

we deduce from (2.2) the following stronger result than (1.3):

lim sup
r→+∞

N(r, 0; f) +N(r,∞; f)

r2−ε
= +∞.

In Remark (ii) of Theorem 1.1, we pointed out that the condition “f(s) tends
to a nonzero finite limit as �(s) → +∞” cannot be dropped in Theorem 1.1 and
thus in Theorem 1.2. However, this condition can be dropped for general Dirichlet
series in both Theorem 1.1 and Theorem 1.2 (note that the series f in Theorem 1.1
and Theorem 1.2 is an infinite exponential sum, which is more general than general
Dirichlet series), except the trivial case that f(s) = ae−λs (a �= 0) with only one
term, which obviously has no zeros or poles. We particularly include the following
corollary, in which (and in the sequel) f is called nontrivial if f(s) �≡ ae−λs with
a, λ being constant.

Corollary 2.1. Let f be a nontrivial general Dirichlet series uniformly convergent
in a half-plane �(s) > b and admit an analytic continuation in C as a meromorphic
function of finite order. Then,

lim sup
r→+∞

n(r, 0; f) + n(r,∞; f)

r
> 0.
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In particular, if f has “few” poles in the sense that n(r,∞; f) = o(r), then

lim sup
r→+∞

n(r, 0; f)

r
> 0.

To show Corollary 2.1, suppose that f(s) =
∑∞

n=1 ane
−λns is a general Dirichlet

series, i.e., {λn} is a sequence of real increasing numbers tending to infinity (see
(1.1)). We may then assume, without loss of generality, that a1 �= 0 (otherwise
just use the first nonzero coefficient an). The Dirichlet series eλ1sf(s) = a1 +∑∞

n=2 ane
−(λn−λ1)s and f(s) have the same zeros and poles. Thus, it suffices to

consider eλ1sf(s) in Theorem 1.2, which is nonconstant since f is nontrivial, tends
to a nonzero finite limit (equal to a1) as �(s) → +∞, and thus satisfies all the
conditions of Theorem 1.2. Corollary 2.1 then follows from Theorem 1.2 and (2.1).

The above results readily extend to those for a-values of f . In particular, for
Corollary 2.1, all the conditions are still satisfied for f − a, provided that f − a is
nontrivial, i.e., f−a is not of the form ce−λs with c, λ being constant (cf. Corollary
2.1). Thus, we obtain from Corollary 2.1 the following quantitative Picard type
theorem.

Corollary 2.2. Let f be a general Dirichlet series uniformly convergent in a half-
plane �(s) > b and admit an analytic continuation in C as a meromorphic function
of finite order. Then

(2.3) lim sup
r→+∞

n(r, a; f) + n(r,∞; f)

r
> 0

for any complex number a, provided that f − a is nontrivial.

It is worth noting that in Corollary 2.2, if f is not of the form a0 + b0e
−λs for

some constants λ, a0, b0, then (2.3) holds for every complex number a without any
exception (the situation when f is of the form a0 + b0e

−λs is trivial). In the case
that f is entire or has “few” poles in the sense stated above, i.e., n(r,∞; f) = o(r),
the conclusion (2.3), giving a lower bound on how often f assumes a, implies par-
ticularly that f takes every complex number a infinitely often without any ex-
ception. This should be compared to the famous Picard theorem: A nonconstant
entire (resp., meromorphic) function takes every complex number infinitely often
with possibly one exception (resp., two exceptions), and it can be thought of as a
quantitative Picard type theorem for general Dirichlet series. We refer to the mono-
graph [23, Chapter III], for related but different results for Picard type theorems
for Dirichlet series.

In many problems of significance in number theory, Dirichlet series admit an
analytic continuation in C as meromorphic functions of order ≤ 1. Theorem 1.2
may further be applied to yield a global estimate, which is substantially stronger
than the estimate from the upper limit result, on the counting functions of zeros,
poles, and, more generally, a-values for these Dirichlet series f . In fact, when f is
of order ≤ 1, it follows from Jensen’s formula (see, e.g., [15, pp. 25–26]) that for
any complex value a (including a = ∞), n(r, a; f) = O(r1+ε) for any 0 < ε < 1,
which implies that ∫ ∞

r0

n(t, 0; f) + n(t,∞; f)

t3
dt < +∞

for any r0 > 0. This last inequality actually holds for all f of order strictly less
than 2, since then n(r, a; f) = O(r2−δ) for some small δ > 0. Thus for these f ,
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(1.5) does not hold, and consequently, the global estimate (1.4) in Theorem 1.2
must hold. That is, we have the following (cf. Corollary 2.1).

Corollary 2.3. Let f be a nontrivial general Dirichlet series uniformly convergent
in a half-plane �(s) > b and admit an analytic continuation in C as a meromorphic
function of order < 2. Then

(2.4) lim inf
r→+∞

n(r, 0; f) + n(r,∞; f)

r
> 0.

As in Theorem 1.2, the nontrivial general Dirichlet series f in Corollary 2.3 can
be replaced by a nonconstant infinite exponential sum f(s) =

∑
ane

λns, λn ∈ R,
with f(s) tending to a nonzero limit as �(s) → +∞, and the result also extends to
a-values of f as given in Corollary 2.2. We omit their statements here.

We next present another consequence of Theorem 1.2 (Corollary 2.3) as an ap-
plication to L-functions, which are important objects and extensively studied in
number theory, for lower bounds on the cardinality of the symmetric difference of
their zeros. Let F (s) and G(s) be two general Dirichlet series, and let mF (ρ) (resp.,
mG(ρ)) be the multiplicity of ρ as zero of F (resp., of G). The symmetric difference
DF,G is defined as

(2.5) DF,G =
∑
|ρ|≤T

|mF (ρ)−mG(ρ)|,

where ρ = σ + it runs over the zeros of F (s)G(s). As given in [6], the following
holds on the cardinality DF,G of two distinct L-functions F,G satisfying the same
functional equation:

(2.6) DF,G(T ) = Ω(T )

(counting only the nontrivial zeros of F (s)G(s) with |t| ≤ T in (2.5)), where the
notation f(x) = Ω(g(x)) denotes the negation of f(x) = o(g(x)) (see, e.g., [30,

p. 184]), or lim sup
T→+∞

DF,G(T )
T > 0, under only the function-theoretic properties of F

and G, disregarding their arithmetical aspects. Here and in the sequel, by abuse
of language, an L-function means a Dirichlet series F (s) =

∑∞
n=1

an

ns with a1 = 1,
which is absolutely convergent for σ > 1, admits an analytic continuation in C
as a meromorphic function of finite order with at most one pole at s = 1, and
satisfies a standard functional equation (cf. [27]), without requiring the Ramanujan
hypothesis and Euler product. Note that the same bound (2.6) was obtained in
[24] for any two distinct L-functions F and G in the Selberg class, which consists
of Dirichlet series

∑∞
n=1

an

ns satisfying the above-mentioned conditions and also the
Ramanujan hypothesis and Euler product (see [27] for the details). Now, by the
fact that a nonconstant L-function, as defined above, is actually of order equal to 1
(see, e.g., [27, p. 48]), which implies that for two L-functions F and G, the Dirichlet
series f = F

G (not an L-function in general) is of order at most 1 and thus from

Corollary 2.3, the inequality (2.4) holds for f = F
G , which clearly improves the

above mentioned result (2.6) of [6] to the following global estimate for all large T :

(2.7) DF,G(T ) > AT,

where A > 0 is a constant.
We mention that Bombieri and Perelli obtained in [5] that DF,G(T ) 
 T log T

for a large class of L-functions, which is expected to hold for the Selberg class and
would be optimal for this type of function.
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Note from the above that the estimate (2.7) also holds for general Dirichlet
series under much weaker conditions than those for L-functions. It also connects
to another topic: uniqueness problems for L-functions, or, more generally, Dirichlet
series, when F and G are identically equal in terms of the so-called shared values.
This has recently been studied in various settings; see [7], [11], [13], [16], [18], [19],
[22], [28], etc. From Corollary 2.3 and (2.7), we have the following.

Corollary 2.4. Let F and G be two L-functions, or, more generally, let F,G be
two general Dirichlet series so that F/G is uniformly convergent in a half-plane
�(s) > b and admits an analytic continuation in C as a meromorphic function of
order < 2 with the limit equal to 1 as �(s) → +∞. Then F �≡ G if and only if

(2.8) DF,G(T ) > AT or n(T, 0;F/G) + n(T,∞;F/G) > AT

for all large T , where A > 0 is a constant. Equivalently, F ≡ G if and only if (2.8)
does not hold.

The assumption in Corollary 2.4 that F/G tends to 1 as �(s) → +∞ together
with F �≡ G guarantees that F/G is nontrivial; otherwise, F/G = ae−λs for some
a, λ, from which it follows that λ = 0 and then a = 1 by letting �(s) → +∞ and
thus F ≡ G, a contradiction. It is interesting to see that this limit condition is tied
to the exceptional case in a more familiar form of uniqueness in terms of shared
values (cf. Corollary 2.5 below).

If two L-functions F and G share the value 0, i.e., F and G have the same zeros
with counting multiplicities, then F ≡ G (see [28, p. 152], where the Ramanujan
hypothesis is also required), which can now follow from Corollary 2.4 immediately
since DF,G(T ) = O(1) and thus (2.8) does not hold, and consequently F ≡ G. If
two L-functions F and G share a complex number a, i.e., F − a and G − a have
the same zeros with counting multiplicities, we may apply Corollary 2.4 to F − a
and G − a. Note that F−a

G−a has the limit 1 as �(s) → +∞, except when a = 1,
for which the limit might not be 1. We deduce from Corollary 2.4 the uniqueness
that F − a ≡ G − a, i.e., F ≡ G, except the case a = 1, for which the result need
not hold (compare the result in [28, p. 152]; see also [16]). In fact, the quantitative
condition (2.8) can produce a quantitative condition for uniqueness, (see Corollary
2.5 below) in which we say that F − a and G − a have “enough” common zeros
(resp., poles) if F − a and G − a have the same zeros (resp., poles) counted with
multiplicity except an exceptional set E of their zeros (resp., poles) satisfying that
n(r, E) = o(r) as r → ∞, where n(r, E) is the counting function of E, i.e., the
number of points in E ∩ {|s| < r} counted with multiplicity. From Corollary 2.4,
we immediately have the following uniqueness theorem.

Corollary 2.5. Let F and G be two general Dirichlet series and let a �= 1 be a
complex number so that F−a

G−a is uniformly convergent in a half-plane �(s) > b and
admits an analytic continuation in C as a meromorphic function of order < 2 with
the limit equal to 1 as �(s) → +∞. Then F ≡ G if and only if F − a and G − a
have “enough” common zeros and poles.

In particular, if F and G are two L-functions and a �= 1, then F ≡ G if and only
if F − a and G− a have “enough” common zeros.

The result need not hold when a = 1.

To see Corollary 2.5 need not hold when a = 1, consider the functions F =
1 + 2

4s and G = 1 + 3
9s . Then F,G trivially satisfy all the sufficient conditions
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of Corollary 2.5 with a = 1. Actually, F and G satisfy the functional equations
2sL(s) = 21−sL(1− s̄) and 3sL(s) = 31−sL(1− s̄), respectively (cf. [16]), and thus
it is easy to see that F and G are also L-functions as defined above. But, F �≡ G.

We note that a connection (an equivalence) between the Riemann hypothesis
and uniqueness of the Riemann zeta function ζ(s) and its analogue for L-functions
has been given in [17].

3. Proof of Theorem 1.2

Throughout the proof, we will use ε to denote a positive constant which can be
made arbitrarily small and C a positive constant, the actual values of which may
vary from one occurrence to the next.

Recall the classic Poisson–Jensen formula (see, e.g., [30, p. 129], and [15, p. 1]):
Let f be a meromorphic function in |s| ≤ R. Then for each s in |s| < R with
f(s) �= 0,∞, we have

log |f(s)| = 1

2π

∫ 2π

0

�{Re
iφ + s

Reiφ − s
} log |f(Reiφ)|dφ(3.1)

+

M∑
k=1

log |R(s− ak)

R2 − āks
| −

N∑
k=1

log |R(s− bk)

R2 − b̄ks
|,

where ak(1 ≤ k ≤ M) and bk(1 ≤ k ≤ N) are the zeros and poles of f in |s| < R,
respectively. In particular, if s = 0, we have the Jensen formula:

log |f(0)| = 1

2π

∫ 2π

0

log |f(Reiφ)|dφ+

M∑
k=1

log |ak
R

| −
N∑

k=1

log |bk
R
|.(3.2)

If f(s) = 0 or ∞, log |f(0)| is then replaced by log |am| + m logR, where m =
n(0, 0; f)−n(0,∞; f) and am �= 0 is the coefficient in the Laurant or Taylor expan-
sion f = amsm + · · · of f at s = 0.

The underlying ideas of utilizing the Poisson–Jensen formula, which connects the
modulus (and thus the growth) of a meromorphic function with its zeros and poles,
can be traced to the relevant techniques in Nevanlinna theory (see [15, p. 36], [9],
[8], etc.), while the present paper does not need familiarity with the theory. The
Poisson–Jensen formula will be combined with several other tools in our proof.

We will make use of the following result (see [15, p .27], and [12, p. 56]), which can
be proved directly by estimating the modulus of the infinite product below: Let
{wn} be a sequence of nonzero complex numbers such that

∑
|wn|−2 converges.

Then the infinite product Π(s) := Π∞
n=1(1− s

wn
)e

s
wn is an entire function satisfying

the following estimate:

log |Π(s)|(3.3)

≤ 4(2 + log 2){|s|
∫ |s|

0

n(t, 0,Π)

t2
dt+ |s|2

∫ +∞

|s|

n(t, 0,Π)

t3
dt}.

We will also employ the following result due to Cartan (see, e.g., [2, p. 360], and
[21, p. 19]): Given any number h > 0 and complex numbers a1, a2, . . . , an, there
is a collection of disks in the complex plane with the sum of the radii equal to 2h
such that for each point s lying outside these disks one has the inequality

Πn
k=1|s− ak| > (

h

e
)n.(3.4)
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Recall also that an analytic function f(s) is uniformly almost periodic (in the
sense of Bohr) in a strip α < �(s) < β (α and β may be ±∞) if for every ε > 0,
the set of real numbers ω such that

|f(s+ iω)− f(s)| < ε, α < �(s) < β

is relatively dense, i.e., if for every ε > 0 there is an l > 0 such that every interval
of length l contains such a number ω (see, e.g., [3], [4]). If f is a nonconstant
uniformly almost periodic function in a strip α < �(s) < β and if f(s) = a has a
solution in the strip, then we have that

(3.5) N(r, a; f) ≥ cr

for some constant c > 0 and all large r. This follows from Rouché’s theorem in
a standard argument (see, e.g., [6], [10]). For completeness, we include its proof.
In fact, suppose that s0 is a solution of f(s) = a in the strip and let ε be the
minimum of |f(s)− a| on the boundary of a disk containing s0 and lying inside the
strip with f(s) �= a on the boundary. Then by uniformly almost periodic property,
there is a number l > 0 such that every interval of length l contains a τ such
that |f(s + iτ ) − f(s)| < ε on the boundary. By Rouché’s theorem, f(s) − a and
f(s+ iτ )− a have the same number of zeros inside the disc, which clearly implies
the inequality (3.5).

Let us now turn to the proof of Theorem 1.2.

Proof of Theorem 1.2. If the conclusion (1.5) holds, we have nothing to prove.
Thus, it suffices to prove (1.4) when

(3.6)

∫ ∞

r0

n(t, 0; f) + n(t,∞; f)

t3
dt < ∞

for some r0 > 0.
Suppose, to the contrary, that (1.4) does not hold. Then there exists an increas-

ing sequence {rn} of positive numbers with rn → +∞ such that for all n,

(3.7)
n(rn, 0; f) + n(rn,∞; f)

rn
<

1

n
.

We will arrive at a contradiction eventually.
By (3.6), for any given ε > 0 we have that for large r,

ε >

∫ 2r

r

n(t, 0; f) + n(t,∞; f)

t3
dt

≥ n(r, 0; f) + n(r,∞; f)

(2r)3
r

=
1

8

n(r, 0; f) + n(r,∞; f)

r2
,

which implies that

(3.8)
n(r, 0; f) + n(r,∞; f)

r2
→ 0

as r → +∞.
Let ak (k = 1, 2, . . .) be the nonzero zeros of f arranged with |ak| ≤ |ak+1| and

let bk (k = 1, 2, . . .) be the nonzero poles of f arranged with |bk| ≤ |bk+1|. Then by
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the Stieltjes integral and (3.8),

∞∑
k=1

|ak|−2 =

∫ ∞

0

1

t2
d(n(t, 0; f)− n(0, 0; f))

= lim
r→∞

(
n(r, 0; f)− n(0, 0; f)

r2
+ 2

∫ r

0

n(t, 0; f)− n(0, 0; f)

t3
dt)

= 2

∫ ∞

0

n(t, 0; f)− n(0, 0; f)

t3
dt

converges by (3.6). One can then check (or see (3.3)) that the infinite product

f1 = Π∞
k=1(1−

s

ak
)e

s
ak

is an entire function having ak’s as its zeros. Similarly, the infinite product

f2 = Π∞
k=1(1−

s

bk
)e

s
bk

is an entire function having bk’s as its zeros. Therefore, we have the following
factorization of f :

f(s) = sm
f1(s)

f2(s)
eQ(s),

where m is an integer, which is the order of zero or pole of f at s = 0, and Q is a
polynomial of degree deg(Q) ≤ ρ(f), where ρ(f) denotes the order of f .

Fix a small positive number τ (to be specified later). Define the operator Λ:

Λf(s) =
f(s+ τ )

f(s)
, Λk = Λ(Λk−1).

It is clear that ΛeQ(s) = eQ(z+τ)−Q(z) and Q(z+τ )−Q(z) is a polynomial of degree
at most deg(Q)− 1. Applying the operator Λ again, we see that Λ2eQ(s) = eQ1(s),
where Q1(s) is a polynomial of degree at most deg(Q)− 2. Applying Λ repeatedly
for d0 times, we obtain that Λd0eQ(s) = c0, a nonzero constant, where d0 = deg(Q).
Set d = d0 + 1 ≥ 1. We thus obtain, in view of the above factorization of f , that

(3.9) F (s) := Λdf(s) =
Λdf1(s)

Λdf2(s)
R(s),

where R(s) = Λdsm is a nonzero rational function. (It is worth mentioning that
d ≥ 1, so we apply the operator Λ on f at least once even when the polynomial Q
is a constant.)

By the given condition, f(s) is nonconstant and tends to a nonzero finite limit,
denoted by A0, as �(s) → +∞. Thus, Λf(s) tends to 1 as �(s) → +∞. This implies
that Λf(s) cannot be a constant function, since otherwise it must be identically
equal to 1; that is, f(s + τ ) ≡ f(s), a periodic function. But, f is bounded when
�(s) → +∞. Hence, f is bounded in the complex plane (for any σ0 + it0, |f(σ +
it0)| ≤ |A0| + 1 for large σ and thus for all σ, particularly σ0, by the periodicity)
and consequently must be a constant by Liouville’s theorem, a contradiction. This
same argument (cf. [6]) shows that Λ2f(s), . . . ,Λdf(s) are all nonconstant. In
particular, F (s) = Λdf(s) is nonconstant. Note that an exponential series of the
form

∑∞
n=1 ane

λns uniformly convergent in a strip α < �(s) < β (α and β may
be ±∞) must be uniformly almost periodic in the strip (see, e.g., [3, Theorem 6,
Ch. III]). Thus, the Dirichlet series f is uniformly almost periodic in the half-plane
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�(s) > b. It is then easy to verify directly that Λf , as the quotient of f(s+ τ ) and
f(s), which tend to the nonzero finite limit A0 as �(s) → +∞, is also uniformly

almost periodic in a right half-plane. In fact, we have that |A0|
2 < |f(s)| < 2|A0|

and |A0|
2 < |f(s+ τ )| < 2|A0| for large �(s). For any ε > 0, there is an l > 0 such

that every interval of length l contains a ω such that |f(s + iω) − f(s)| < ε for
�(s) > b. Thus,

|Λf(s+ iω)− Λf(s)|

= |f(s+ τ + iω)

f(s+ iω)
− f(s+ τ )

f(s)
|

= |
(
f(s+ τ + iω)− f(s+ τ )

)
f(s) + f(s+ τ )(f(s)− f(s+ iω))

f(s+ iω)f(s)
|

≤ 4|A0|ε
( |A0|

2 )2
=

16ε

|A0|

for large �(s). This shows that Λf(s) is uniformly almost periodic in a right half-
plane. The same argument shows that Λ2f(s), . . . ,Λdf(s) are all uniformly almost
periodic in a right half-plane; in particular, F (s) = Λdf(s) is uniformly almost
periodic in a right half-plane. Take a point w0 in this right half-plane and denote
a = F (w0). Then by virtue of (3.5), there exists a constant c > 0 such that for
large r,

(3.10) N(r, a, F ) ≥ cr.

We will establish a tight estimate on N(r, a, F ) in terms of the zeros of f1 and
f2 and thus the zeros and poles of f . Fix any r > e. By the Jensen formula (3.2),
we have that

log |F (0)− a|

=
1

2π

∫ 2π

0

log |F (reiθ)− a|dθ +
∑

|αk|<r

log
|αk|
r

−
∑

|βk|<r

log
|βk|
r

,

where αk are the nonzero zeros of F − a and βk are the nonzero poles of F − a
(and thus F ) in |s| < r. Here, if F (0) = a or ∞, the term log |F (0) − a| needs to
be replaced by c0 + c1 log r for some constants c0 and c1. Noting that

∑
|αk|<r

log
r

|αk|
=

∫ r

0

log
r

t
d(n(t, a;F )− n(0, a;F ))

=

∫ r

0

n(t, a;F )− n(0, a;F )

t
dt

= N(r, a;F )− n(0, a;F ) log r(3.11)
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and, similarly, ∑
|βk|<r

log
r

|βk|
= N(r,∞;F )− n(0,∞;F ) log r,

we deduce that

N(r, a;F ) ≤ 1

2π

∫ 2π

0

log |F (reiθ)− a|dθ +N(r,∞;F ) + C log r

=
1

2π

∫
|F (reiθ)|≤|a|

log |F (reiθ)− a|dθ + 1

2π

∫
|F (reiθ)|>|a|

log |F (reiθ)− a|dθ

+N(r,∞;F ) + C log r

≤ 1

2π

∫
|F (reiθ)|≤|a|

log(2|a|)dθ + 1

2π

∫
|F (reiθ)|>|a|

log(2|F (reiθ)|)dθ

+N(r,∞;F ) + C log r

≤ 1

2π

∫
E

log |F (reiθ)|dθ +N(r,∞;F ) + C log r

≤ 1

2π

∫
E

log |Λ
df1(re

iθ)

Λdf2(reiθ)
|dθ +N(r,∞;F ) + C log r,

where E denotes the set of θ such that |F (reθ)| > |a|, in view of (3.9) and the fact
that ∫

E

log |R(reθ)|dθ = O(log r)

since R is a rational function and thus log |R(reθ)| = O(log r). By the definition

of the operator Λ, it is easy to check that Λdf1(s)
Λdf2(s)

is a product of finitely many

quotients of the form

f1(s+ η + τ )

f1(s+ η)
,

f1(s+ η)

f1(s+ η + τ )
,
f2(s+ η + τ )

f2(s+ η)
,

f2(s+ η)

f2(s+ η + τ )
,

where η = kτ and k is an integer with 0 ≤ k ≤ d − 1, i.e., there are finite sets
Ij (1 ≤ j ≤ 4), whose elements are of the form kτ with 0 ≤ k ≤ d− 1, such that

Λdf1(s)

Λdf2(s)

= Πη∈I1

f1(s+ η + τ )

f1(s+ η)
Πη∈I2

f1(s+ η)

f1(s+ η + τ )
Πη∈I3

f2(s+ η + τ )

f2(s+ η)
Πη∈I4

f2(s+ η)

f2(s+ η + τ )
.

(Actually, I4 = I1 and I3 = I2.) Thus, we obtain that with s = reiθ,

N(r, a, F ) ≤
∑
η∈I1

1

2π

∫
E

log |f1(s+ η + τ )

f1(s+ η)
|dθ

+
∑
η∈I2

1

2π

∫
E

log | f1(s+ η)

f1(s+ η + τ )
|dθ +

∑
η∈I3

1

2π

∫
E

log |f2(s+ η + τ )

f2(s+ η)
|dθ

+
∑
η∈I4

1

2π

∫
E

log | f2(s+ η)

f2(s+ η + τ )
|dθ +N(r,∞;F ) + C log r.(3.12)

We now estimate each term in (3.12). To estimate N(r,∞;F ), we note that the
poles of F come from the zeros of f1(s+ kτ ) or f2(s+ kτ ) or poles of R(s), where
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k is an integer with 0 ≤ k ≤ d. When |s| ≤ r, all these zeros lie within |s| ≤ r+ dτ.
Thus,

n(r, 0; f1(s+ kτ )) ≤ n(r + dτ, 0; f1(s)),

n(r, 0; f2(s+ kτ )) ≤ n(r + dτ, 0; f2(s)),

which clearly implies that

n(r,∞, F ) ≤ C
(
n(r + dτ, 0; f1) + n(r + dτ, 0; f2) + 1

)

for all r > 0, where C > 0 is a constant. (The last term +1 in the above inequality
comes from the possible poles of R(s).) We may take a small τ in the beginning so
that f1, f2 do not vanish in |s| ≤ 2dτ (such a τ clearly exists since f1(0)f2(0) �= 0
by the definitions of f1 and f2). Then, for a fixed sufficiently small δ > 0,

N(r,∞, F ) =

∫ r

0

n(t,∞;F )− n(0,∞;F )

t
dt+ n(0,∞;F ) log r

=

∫ r

δ

n(t,∞;F )− n(0,∞;F )

t
dt+ n(0,∞;F ) log r

≤
∫ r

δ

C(n(t+ dτ, 0; f1) + n(t+ dτ, 0; f2) + 1)

t
dt+ n(0,∞;F ) log r

≤ C(

∫ r

0

n(t+ dτ, 0; f1) + n(t+ dτ, 0; f2)

t
dt+ log r)

= C(

∫ r+dτ

dτ

n(t, 0; f1) + n(t, 0; f2)

t− dτ
dt+ log r)

= C
(∫ r+dτ

2dτ

n(t, 0; f1) + n(t, 0; f2)

t
(1 +

dτ

t− dτ
)dt+ log r

)

≤ C
(
N(r + dτ, 0; f1) +N(r + dτ, 0; f2) + log r

)
≤ C

(
N(r + dτ, 0; f) +N(r + dτ,∞; f) + log r

)
.(3.13)

Next we estimate 1
2π

∫
E
log | f1(s+η+τ)

f1(s+η) |dθ in (3.12); the same estimate for it given

below applies to each of the integrals in (3.12). To this end, we use the Poisson–
Jensen formula (3.1) for the entire function f1 in |s| < R, where R is a large number
to be determined later, but large enough at this moment so that the considered
points s = reiθ and s + kτ (1 ≤ k ≤ d) all lie within |s| < R, i.e., R > r + dτ .
For all these s = reiθ, except those with f1(s+ η) = 0 or f1(s+ η + τ ) = 0, which
constitute a finite set and do not affect the involved integrals below, we have that

log |f1(s+ η)|

=
1

2π

∫ 2π

0

�{ Reiφ + s+ η

Reiφ − (s+ η)
} log |f1(Reiφ)|dφ

+
M∑
k=1

log | R(s+ η − ak)

R2 − āk(s+ η)
|
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and that

log |f1(s+ η + τ )|

=
1

2π

∫ 2π

0

�{ Reiφ + s+ η + τ

Reiφ − (s+ η + τ )
} log |f1(Reiφ)|dφ

+
M∑
k=1

log | R(s+ η + τ − ak)

R2 − āk(s+ η + τ )
|,

where ak (k = 1, 2 . . . ,M) are the zeros of f1 in |s| < R. Observing that

(3.14) | R
2 − āks

R(s− ak)
| ≥ 1

for any |s| ≤ R, we deduce that

log |f1(s+ η + τ )

f1(s+ η)
|

=
1

2π

∫ 2π

0

�{ Reiφ + s+ η + τ

Reiφ − (s+ η + τ )
− Reiφ + s+ η

Reiφ − (s+ η)
} log |f1(Reiφ)|dφ

+

M∑
k=1

log | R(s+ η + τ − ak)

R2 − āk(s+ η + τ )
| −

M∑
k=1

log | R(s+ η − ak)

R2 − āk(s+ η)
|

≤ 1

2π

∫ 2π

0

2τR

(R− r − dτ )2
| log |f1(Reiφ)||dφ

+

M∑
k=1

log |R
2 − āk(s+ η)

R(s+ η − ak)
|.(3.15)

It is easy to check that for any x > 0, | log x| = 2 log+ x − log x, where log+ x =
max{log x, 0}. Thus,

1

2π

∫ 2π

0

| log |f1(Reiφ)||dφ

=
1

π

∫ 2π

0

log+ |f1(Reiφ)|dφ− 1

2π

∫ 2π

0

log |f1(Reiφ)|dφ

≤ 1

π

∫ 2π

0

log+ |f1(Reiφ)|dφ− log |f1(0)|(3.16)

by virtue of Jensen formula (3.2) for the last inequality. We further estimate the
last integral in (3.16) using the tight estimate provided by (3.3). Applying this
estimate to f1 and in view of (3.6) and (3.8), we obtain that for any given ε > 0,

log+ |f1(s)| ≤ 4(2 + log 2){|s|
∫ |s|

0

n(t, 0, f1)

t2
dt+ |s|2

∫ +∞

|s|

n(t, 0, f1)

t3
dt}

≤ ε|s|2

for large |s|. This together with (3.16) yields that

1

2π

∫ 2π

0

| log |f1(Reiφ)||dφ ≤ εR2
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for large R. We then deduce from (3.15) that with s = reiθ,

1

2π

∫
E

log |f1(s+ η + τ )

f1(s+ η)
|dθ(3.17)

≤ 2τεR3

(R− r − dτ )2
+

M∑
k=1

1

2π

∫
E

log |R
2 − āk(s+ η)

R(s+ η − ak)
|dθ.

To estimate the summation in the above inequality, set g(s) := R2−āk(s+η)
R(s+η−ak)

. We

notice by (3.14) that |g(s)| ≥ 1 in |s| ≤ R, and thus g has no zeros in |s| ≤ r < R.
Also, g has only one pole ak − η in |s| ≤ r if |ak − η| ≤ r and has no poles in |s| ≤ r
if |ak − η| > r. Hence, applying Jensen formula (3.2) to g(s) in |s| ≤ r, we obtain
that

log |g(0)| = log | R
2 − ākη

R(η − ak)
|

=
1

2π

∫ 2π

0

log |R
2 − āk(re

iθ + η)

R(reiθ + η − ak)
|dθ + log+

r

|ak − η|

and thus, noting (3.14) again, that with s = reiθ,

M∑
k=1

1

2π

∫
E

log |R
2 − āk(s+ η)

R(s+ η − ak)
|dθ

≤
M∑
k=1

1

2π

∫ 2π

0

log |R
2 − āk(s+ η)

R(s+ η − ak)
|dθ

=

M∑
k=1

log | R
2 − ākη

R(η − ak)
| −

M∑
k=1

log+
r

|ak − η|

≤
M∑
k=1

log
R+ dτ

|η − ak|
.

Since the zeros of f1(s) are ak (k = 1, 2, . . .), the zeros of f1(s + η) are ak − η
(k = 1, 2, . . .). Note also that when |ak| ≤ R, |ak − η| ≤ R + |η| ≤ R + dτ by the
definition of η. Thus, we deduce, in view of (3.11) and the fact that f1 does not
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vanish in |s| < 2dτ , that

M∑
k=1

log
R+ dτ

|η − ak|

≤
∑

|ak−η|≤R+dτ

log
R + dτ

|ak − η|

=

∫ R+dτ

0

n(t, 0; f1(s+ η))− n(0, 0; f1(s+ η))

t
dt

≤
∫ R+dτ

0

n(t+ dτ, 0; f1(s))

t
dt

=

∫ R+2dτ

dτ

n(t, 0; f1(s))

t− dτ
dt

=

∫ R+2dτ

2dτ

n(t, 0; f1(s))

t
(1 +

dτ

t− dτ
)dt

≤ 2N(R + 2dτ, 0; f1).

This together with (3.17) yields that with s = reiθ,

1

2π

∫
E

log |f1(s+ η + τ )

f1(s+ η)
|dθ

≤ 2τεR3

(R− r − dτ )2
+ 2N(R + 2dτ, 0; f1).

This same estimate holds for all the integrals in (3.12) by the same argument.
Thus, in view of (3.10), (3.12), and (3.13) we obtain that for a small number ε > 0
and a constant C > 0,

cr ≤ N(r, a, F )(3.18)

≤ C
( εR3

(R− r − dτ )2
+N(R + 2dτ, 0; f) +N(R + 2dτ,∞; f) + log r

)

for r > e and large R > r + dτ , where c > 0 is the constant in (3.10).
Next, we bound the right-hand side of estimate (3.18) in terms of n(r, 0; f) +

n(r,∞; f) so that we can make use of assumption (3.7) to arrive at the desired
contradiction mentioned in the beginning of the proof. (It would be tempting to
try to use the definition of the integrated counting function to bound N(r, 0; f) +
N(r,∞; f) using n(r, 0; f) + n(r,∞; f) directly, but it would only yield the rough
estimate that N(r, 0; f) + N(r,∞; f) ≤

(
n(r, 0; f) + n(r,∞; f)

)
log r + O(log r),

which does not serve our purpose.) To this end, fix a large positive number R1.
Let a1, a2, . . . , ap be the zeros and b1, b2, . . . , bq be the poles of f in |s| ≤ R1. Thus,
p = n(R1, 0; f) and q = n(R1,∞, f). Applying the Cartan theorem (see (3.4)) to
the zeros and poles of f , respectively, with h = 1

32R1, we obtain a collection D of

the disks with the sum of the radii equal to 4h = 1
8R1 such that for all z �∈ D we

have

(3.19) Πp
k=1|s− ak| > (

h

e
)p

and

Πq
k=1|s− bk| > (

h

e
)q.
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Since the sum of the radii of the disks in D is 1
8R1, it is easy to check that those

disks in D cannot fill up the annulus G: 1
16R1 ≤ |s| ≤ 1

4R1. Therefore, there must
be a point s0 ∈ G outside all the above disks, i.e., s0 �∈ D with f(s0) �= 0,∞.
Note that the estimate (3.18) was obtained for any f that satisfies the conditions
of Theorem 1.2 and the assumption (3.6), which are satisfied by f(s+ s0) as well.
Therefore, applying the proved estimate (3.18) to f(s+s0), we obtain that for large
R and r with R > r + dτ ,

cr ≤ N(r, a, F (s+ s0))

≤ C
( εR3

(R− r − dτ )2
+N(R+ 2dτ, 0; f(s+ s0))

+N(R+ 2dτ,∞; f(s+ s0)) + log r
)
.(3.20)

Note that f(s) vanishes at ak if and only if f(s0 + s) vanishes at ak − s0. Denote
ρ = 3

4R1. We have, in view of (3.11), that

N(ρ, 0; f(s0 + s))

=
∑

|ak−s0|≤ρ

log
ρ

|ak − s0|

= log
ρn1

Π|ak−s0|≤ρ|ak − s0|

= log
ρn1Π|ak|≤R1,|ak−s0|>ρ|ak − s0|

Π|ak|≤R1
|ak − s0|

,

where n1 is the number of the points ak satisfying |ak − s0| ≤ ρ; these ak’s satisfy
that |ak| ≤ ρ + |s0| ≤ 3

4R1 +
1
4R1 = R1. Let n2 be the number of ak’s satisfying

that |ak − s0| > ρ and |ak| ≤ R1. It is then clear that n1 + n2 = p = n(R1, 0; f).
Thus, by virtue of (3.19) and the fact that |ak−s0| ≤ 5

4R1 for any k ≤ p, we deduce
that

N(ρ, 0; f(s0 + s))

≤ log
ρn1(2R1)

n2

( R1

32e )
p

≤ log
(2R1)

p

( R1

32e )
p
= n(R1, 0; f) log(64e).

In the exactly same way, we also have that

N(ρ,∞; f(s0 + s)) ≤ n(R1,∞; f) log(64e).

Thus, we have that

N(
3

4
R1, 0; f(s0 + s)) +N(

3

4
R1,∞; f(s0 + s))

≤
(
n(R1, 0; f) + n(R1,∞; f)

)
log(64e).(3.21)

Fix a large n. Take R1 = rn, where {rn}, which tends to +∞, is the sequence in
(3.7). Then, take r = 1

4rn and R = 3
4rn − 2dτ in (3.20). Combining (3.20), (3.21),
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and (3.7) yields that

crn ≤ C
(ε( 34rn − 2dτ )3

( 12rn − 3dτ )2
+ (n(rn, 0; f) + n(rn,∞; f)) log(64e) + log rn

)

≤ C(ε+
1

n
)rn,

where c, C > 0 are fixed constants, ε > 0 can be made arbitrarily small, and n can
be made arbitrarily large, which is clearly impossible. This finally completes the
proof of the theorem. �
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