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VOLUME DIFFERENCE INEQUALITIES

APOSTOLOS GIANNOPOULOS AND ALEXANDER KOLDOBSKY

Abstract. We prove several inequalities estimating the distance between vol-
umes of two bodies in terms of the maximal or minimal difference between areas
of sections or projections of these bodies. We also provide extensions in which
volume is replaced by an arbitrary measure.

1. Introduction

Volume difference inequalities are designed to estimate the error in computations
of volume of a body out of the areas of its sections and projections. We start with
the case of sections. For 1 ≤ k < n, let γn,k be the smallest constant γ > 0
satisfying the inequality

(1.1) |K|
n−k
n − |L|

n−k
n ≤ γk max

F∈Grn−k

(
|K ∩ F | − |L ∩ F |

)
for all origin-symmetric convex bodies K and L in R

n such that L ⊂ K. Here
Grn−k is the Grassmanian of (n− k)-dimensional subspaces of Rn, and |K| stands
for volume of appropriate dimension.

Question 1.1. Does there exist an absolute constant C so that supn,k γn,k ≤ C ?

Question 1.1 is stronger than the slicing problem, a major open problem in
convex geometry [2, 6, 7, 35]. In fact, putting L = βBn

2 in (1.1), where Bn
2 is the

unit Euclidean ball in R
n and then sending β to zero, one gets the slicing problem:

does there exist an absolute constant C so that for any 1 ≤ k < n and any origin-
symmetric convex body K in R

n,

(1.2) |K|
n−k
n ≤ Ck max

H∈Grn−k

|K ∩H| ?

The best-to-date general estimate C ≤ O(n1/4) follows from the inequality

|K|
n−k
n ≤ (cLK)k max

H∈Grn−k

|K ∩H|,

where LK is the isotropic constant of K (see e.g. [10, Proposition 5.1]), and the
estimate LK = O(n1/4) of Klartag [19], who improved an earlier estimate LK =
O(n1/4 log n) of Bourgain [8]. For several special classes of bodies the isotropic
constant is uniformly bounded, and hence the answer to the slicing problem is
known to be affirmative; see [9].
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In the case where K is a generalized k-intersection body in R
n (we write K ∈

BPn
k ; see definition in Section 2) and L is any origin-symmetric star body in R

n,
inequality (1.1) was proved in [23] for k = 1, and in [25] for 1 < k < n :

(1.3) |K|
n−k
n − |L|

n−k
n ≤ ckn,k max

F∈Grn−k

(
|K ∩ F | − |L ∩ F |

)
,

where ckn,k = ω
n−k
n

n /ωn−k and ωn is the volume of the unit Euclidean ball in R
n.

One can check that cn,k ∈ ( 1√
e
, 1) for all n, k.

Note that in Question 1.1 we added an extra assumption that L ⊂ K, compared
to (1.3). Without extra assumptions on K and L, inequality (1.1) cannot hold with
any γ > 0, as follows from counterexamples to the Busemann-Petty problem. The
Busemann-Petty problem asks whether, for any origin-symmetric convex bodies
K and L, inequalities |K ∩ F | ≤ |L ∩ F | for all F ∈ Grn−k necessarily imply
|K| ≤ |L|. The answer is negative in general; see [22, Chapter 5] for details. Every
counterexample provides a pair of bodies K and L that contradict inequality (1.1).
However, if K is a generalized k-intersection body, the answer to the question of
Busemann and Petty is affirmative, as proved by Lutwak [33] for k = 1 and by
Zhang [40] for k > 1. Inequality (1.3) is a quantified version of this fact.

Our first result extends (1.3) to arbitrary origin-symmetric star bodies. For a
star body K in R

n and 1 ≤ k < n, denote by

(1.4) dovr(K,BPn
k ) = inf

{(
|D|
|K|

)1/n

: K ⊂ D, D ∈ BPn
k

}
the outer volume ratio distance from K to the class of generalized k-intersection
bodies.

Theorem 1.2. Let 1 ≤ k < n, and let K and L be origin-symmetric star bodies in
R

n such that L ⊂ K. Then

(1.5) |K|
n−k
n − |L|

n−k
n ≤ ckn,kd

k
ovr(K,BPn

k ) max
F∈Grn−k

(
|K ∩ F | − |L ∩ F |

)
.

By John’s theorem [18] and the fact that ellipsoids are intersection bodies, if K
is origin-symmetric and convex, then dovr(K,BPn

k ) ≤
√
n. In fact the same is true

for any convex body by K. Ball’s volume ratio estimate in [4]. The outer volume
ratio distance was also estimated in [31]. If K is an origin-symmetric convex body
in R

n, then

(1.6) dovr(K,BPn
k ) ≤ c

√
n/k [log(en/k)]

3
2 ,

where c > 0 is an absolute constant. The proof of (1.6) in [31] employs the existence
of an α-regular position for any symmetric convex body, Pisier’s extension of Mil-
man’s M -position. In conjunction with Theorem 1.2, the estimate (1.6) provides
an affirmative answer to Question 1.1 for sections of proportional dimensions.

Corollary 1.3. Let 1 ≤ k < n, let K be an origin-symmetric convex body in R
n,

and let L be an origin-symmetric star body in R
n such that L ⊂ K. Then

(1.7) |K|
n−k
n − |L|

n−k
n ≤ Ck

(√
n/k [log(en/k)]

3
2

)k

max
F∈Grn−k

(
|K ∩ F | − |L ∩ F |

)
,

where C is an absolute constant.
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It is also known that for several classes of origin-symmetric convex bodies the
distance dovr(K,BPn

k ) is bounded by an absolute constant. These classes include
unconditional convex bodies, duals of bodies with bounded volume ratio (see [27]),
and the unit balls of normed spaces that embed in Lp, −n < p < ∞ (see [28,30,34]).

The inequality of Theorem 1.2 can be extended to arbitrary measures in place of
volume, as follows. Let f be a bounded non-negative measurable function on R

n.
Let μ be the measure with density f so that μ(B) =

∫
B
f for every Borel set B in

R
n. Also, for every F ∈ Grn−k we write μ(B ∩ F ) =

∫
B∩F

f, where we integrate
the restriction of f to F against Lebesgue measure on F.

It was proved in [27] that for any 1 ≤ k < n, any origin-symmmetric star body
K in R

n, and any measure μ with even non-negative continuous density f in R
n,

(1.8) μ(K) ≤ n

n− k
ckn,k |K| kn dkovr(K,BPn

k ) max
F∈Grn−k

μ(K ∩ F ).

Considering measures with densities supported in K \ L in inequality (1.8), we
get the following measure difference inequality.

Theorem 1.4. Let 1 ≤ k < n, let K and L be origin-symmetric star bodies in
R

n such that L ⊂ K, and let μ be a measure with even non-negative continuous
density. Then

(1.9) μ(K)−μ(L) ≤ n

n− k
ckn,k |K| kn dkovr(K,BPn

k ) max
F∈Grn−k

(
μ(K∩F )−μ(L∩F )

)
.

In Section 2 we provide an alternative proof of this result.
Moreover, using an approach recently developed in [10], we prove a different ver-

sion of Theorem 1.4, where the symmetry and continuity assumptions are dropped,
but the body K is required to be convex.

Theorem 1.5. Let 1 ≤ k < n, let K be a convex body with 0 ∈ K, and let L ⊆ K
be a Borel set in R

n. For any measure μ with a bounded measurable non-negative
density, we have
(1.10)

μ(K)n−k − μ(L)n−k

≤
(
c0
√
n− k

)k(n−k)

|K|
k(n−k)

n max
F∈Gn,n−k

(
μ(K ∩ F )n−k − μ(L ∩ F )n−k

)
,

where c0 > 0 is an absolute constant.

A different kind of volume difference inequality was proved in [14]. If K is any
origin-symmetric star body in R

n, L is an intersection body, and

min
ξ∈Sn−1

(
|K ∩ ξ⊥| − |L ∩ ξ⊥|

)
> 0,

where ξ⊥ is the subspace of Rn perpendicular to ξ, then

(1.11) |K|
n−1
n − |L|

n−1
n ≥ c

1
√
nM(L)

min
ξ∈Sn−1

(
|K ∩ ξ⊥| − |L ∩ ξ⊥|

)
,

where c > 0 is an absolute constant, L = L/|L| 1
n , M(L) =

∫
Sn−1 ‖θ‖Ldσ(θ), and σ

is the normalized Lebesgue measure on the sphere.
As shown in [15], there exist constants c1, c2 > 0 such that for any n ∈ N and

any origin-symmetric convex body K in R
n in the isotropic position,

(1.12)
1

M(K)
≥ c1

n1/10LK

log2/5(e+ n)
≥ c2

n1/10

log2/5(e+ n)
.
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Also, if K is convex, has volume 1, and is in the minimal mean width position, then
we have

(1.13)
1

M(K)
≥ c3

√
n

log(e+ n)
.

Inserting these estimates into (1.11) we obtain estimates independent from the
bodies.

For a star body K in R
n and 1 ≤ k < n, we define

dk(K,BPn
k ) = inf

⎧⎨⎩
(∫

Sn−1 ‖θ‖−k
K dσ(θ)∫

Sn−1 ‖θ‖−k
D dσ(θ)

) 1
k

: D ⊂ K, D ∈ BPn
k

⎫⎬⎭ .

By John’s theorem, if K is origin-symmetric and convex, then dk(K,BPn
k ) ≤

√
n.

We prove the following generalization of (1.11).

Theorem 1.6. Let 1 ≤ k < n, and let K and L be origin-symmetric star bodies in
R

n such that L ⊂ K. Then
(1.14)

dkk(L,BPn
k )

(
|K|

n−k
n − |L|

n−k
n

)
≥ ck

1

(
√
nM(L))k

min
F∈Grn−k

(
|K ∩ F | − |L ∩ F |

)
,

where c > 0 is an absolute constant.

We introduce another method that gives a different generalization of (1.11).

Theorem 1.7. Let 1 ≤ k < n, and let K and L be bounded Borel sets in R
n with

L ⊂ K. Then

(1.15)
(
|K| − |L|

)n−k
n ≥ ckn,k min

F∈Grn−k

(
|K ∩ F | − |L ∩ F |

)
,

where ckn,k = ω
n−k
n

n /ωn−k.

Note that Theorem 1.7 holds true for an arbitrary pair of bounded Borel sets
L ⊆ K and it no longer involves the distance dk and M(L). Actually, the constant
cn,k is sharp, as one can check from the example of the ball K = Bn

2 and L = βBn
2

where β → 0. Nevertheless, it is formally not stronger than Theorem 1.6 because

|K|n−k
n − |L|n−k

n is smaller than (|K| − |L|)
n−k
n .

We deduce Theorem 1.7 from a more general statement for arbitrary measures.

Theorem 1.8. Let 1 ≤ k < n, and let K and L be two bounded Borel sets in R
n

such that L ⊂ K. Let μ a measure in R
n with bounded density g. Then,

(1.16)

(
μ(K)− μ(L)

)n−k
n

≥ ckn,k
1

‖g‖
k
n∞

(∫
Grn−k

(
μ(K ∩ F )− μ(L ∩ F )

) n
n−k dνn,n−k(F )

)n−k
n

,

where νn,n−k is the Haar probability measure on Grn−k. In particular,

(1.17)
(
μ(K)− μ(L)

)n−k
n ≥ ckn,k

1

‖g‖
k
n∞

min
F∈Grn−k

(
μ(K ∩ F )− μ(L ∩ F )

)
.
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An inequality going in the direction opposite to (1.14) was proved in [27]. Sup-
pose that K is an infinitely smooth origin-symmetric convex body in R

n, with
strictly positive curvature, that is, not an intersection body. Then there exists an
origin-symmetric convex body L in R

n such that L ⊂ K and

(1.18) |K|
n−1
n − |L|

n−1
n < cn,1 min

ξ∈Sn−1

(
|K ∩ ξ⊥| − |L ∩ ξ⊥|

)
.

Here we prove a similar inequality going in the direction opposite to (1.5).

Theorem 1.9. Let L be an infinitely smooth origin-symmetric convex body in R
n

with strictly positive curvature that is not an intersection body. Then there exists
an origin-symmetric convex body K in R

n such that L ⊂ K and

(1.19) |K|
n−1
n − |L|

n−1
n > c

1
√
nM(L)

max
ξ∈Sn−1

(
|K ∩ ξ⊥| − |L ∩ ξ⊥|

)
,

where c > 0 is an absolute constant.

Let us pass to projections. For ξ ∈ Sn−1 and a convex body L, we denote by
L|ξ⊥ the orthogonal projection of L to ξ⊥. Let βn be the smallest constant β > 0
satisfying

(1.20) β
(
|L|

n−1
n − |K|

n−1
n

)
≥ min

ξ∈Sn−1

(
|L|ξ⊥| − |K|ξ⊥|

)
for all origin-symmetric convex bodies K,L in R

n whose curvature functions fK
and fL exist and satisfy fK(ξ) ≤ fL(ξ) for all ξ ∈ Sn−1. We prove

Theorem 1.10. βn � √
n; i.e., there exist absolute constants a, b > 0 such that

for all n ∈ N,

a
√
n ≤ βn ≤ b

√
n.

It was proved in [23, 26] that if L is a projection body (see definition in Section
3) and K is an origin-symmetric convex body, then

(1.21) |L|
n−1
n − |K|

n−1
n ≥ cn,1 min

ξ∈Sn−1

(
|L|ξ⊥| − |K|ξ⊥|

)
.

Note that we formulate (1.20) with the condition fK ≤ fL, which is not needed
for (1.21). The reason is that without an extra condition inequality (1.20) simply
cannot hold in general with any β > 0. This follows from counterexamples to the
Shephard problem asking whether, for any origin-symmetric convex bodies K and
L, inequalities |K|ξ⊥| ≤ |L|ξ⊥| for all ξ ∈ Sn−1 necessarily imply |K| ≤ |L|. The
answer is negative in general; see [36, 38] or [22, Chapter 8] for details. However,
if L is a projection body, the answer to the question of Shephard is affirmative, as
proved by Petty [36] and Schneider [38]. Inequality (1.21) is a quantified version of
this fact.

For a convex body L in R
n denote by

dvr(L,Π) = inf

{(
|L|
|D|

)1/n

: D ⊂ L, D ∈ Π

}
the volume ratio distance from L to the class of projection bodies. We extend (1.21)
to arbitrary origin-symmetric convex bodies, as follows.
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Theorem 1.11. Suppose that K and L are origin-symmetric convex bodies in R
n

and their curvature functions exist and satisfy fK(ξ) ≤ fL(ξ) for all ξ ∈ Sn−1.
Then

(1.22) dvr(L,Π)
(
|L|

n−1
n − |K|

n−1
n

)
≥ cn,1 min

ξ∈Sn−1

(
|L|ξ⊥| − |K|ξ⊥|

)
.

Again by Ball’s volume ratio estimate, for any convex bodyK in R
n, dvr(K,Π) ≤√

n. In Section 3 we show that this distance can be of the order
√
n, up to an absolute

constant. The same argument is used to deduce Theorem 1.10 from Theorem 1.11.
Denote by hK the support function and by

w(K) =

∫
Sn−1

hK(ξ)dσ(ξ)

the mean width of the body K. Denote by

dw(K,Π) = inf

{
w(D)

w(K)
: K ⊂ D, D ∈ Π

}
the mean width distance from K to the class of projection bodies.

Theorem 1.12. Suppose that K and L are origin-symmetric convex bodies in R
n

and that their curvature functions exist and satisfy fK(ξ) ≤ fL(ξ) for all ξ ∈ Sn−1.
Then

(1.23) |L|
n−1
n − |K|

n−1
n ≤ c dw(K,Π)

w(K)√
n

max
ξ∈Sn−1

(
|L|ξ⊥| − |K|ξ⊥|

)
,

where c is an absolute constant.

In Section 3 we show that the distance dw can be of the order
√
n, up to a

logarithmic term. Note that if K is a symmetric convex body of volume 1 in R
n

and is in the minimal mean width position, then w(K) ≤ c
√
n(log n).

Theorems 1.11 and 1.12 are complemented by the following results, going in
opposite directions, that were proved in [29]. The constant in Theorem 1.14 is
written in a more general form than in [29].

Theorem 1.13. Suppose that L is an origin-symmetric convex body in R
n, with

strictly positive curvature, that is not a projection body. Then there exists an origin-
symmetric convex body K in R

n so that fL(ξ) ≥ fK(ξ) for all ξ ∈ Sn−1 and

max
ξ∈Sn−1

(
|L|ξ⊥| − |K|ξ⊥|

)
≤ 1

cn,1

(
|L|

n−1
n − |K|

n−1
n

)
.

Theorem 1.14. Suppose that K is an origin-symmetric convex body in R
n that is

not a projection body. Then there exists an origin-symmetric convex body L in R
n

so that fL(ξ) ≥ fK(ξ) for all ξ ∈ Sn−1 and

min
ξ∈Sn−1

(
|L|ξ⊥| − |K|ξ⊥|

)
≥ c

√
n

w(K)

(
|L|

n−1
n − |K|

n−1
n

)
,

where c is an absolute constant.

In Section 2 we provide the proofs of the volume difference inequalities for sec-
tions, and in Section 3 we give the proofs of the volume difference inequalities
for projections. As we proceed, we introduce notation and the necessary back-
ground information. We refer to the books [12] and [39] for basic facts from the
Brunn-Minkowski theory and to the book [1] for basic facts from asymptotic convex
geometry.
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2. Volume difference inequalities for sections

We need several definitions from convex geometry. A closed bounded set K in
R

n is called a star body if every straight line passing through the origin crosses
the boundary of K at exactly two points different from the origin, the origin is an
interior point of K, and the Minkowski functional of K defined by

(2.1) ‖x‖K = min{a ≥ 0 : x ∈ aK}
is a continuous function on R

n.
The radial function of a star body K is defined by

(2.2) ρK(x) = ‖x‖−1
K , x ∈ R

n, x = 0.

If x ∈ Sn−1, then ρK(x) is the radius of K in the direction of x.
We use the polar formula for the volume of a star body:

(2.3) |K| = 1

n

∫
Sn−1

‖θ‖−n
K dθ,

where dθ stands for the uniform measure on the sphere with density 1.
The class BPn

k of generalized k-intersection bodies was introduced by Lutwak
[33] for k = 1 and by Zhang [40] for k > 1. For 1 ≤ k ≤ n − 1, the (n − k)-
dimensional spherical Radon transform Rn−k : C(Sn−1) → C(Grn−k) is a linear
operator defined by

(2.4) Rn−kg(E) =

∫
Sn−1∩E

g(θ) dθ, E ∈ Grn−k,

for every function g ∈ C(Sn−1). We say that an origin-symmetric star body D in
R

n is a generalized k-intersection body and write D ∈ BPn
k if there exists a finite

non-negative Borel measure μD on Grn−k so that for every g ∈ C(Sn−1),

(2.5)

∫
Sn−1

ρkD(θ)g(θ) dθ =

∫
Grn−k

Rn−kg(H) dμD(H).

The class BPn
1 is the original class of intersection bodies introduced by Lutwak.

Proof of Theorem 1.2. For every H ∈ Grn−k we have

|K ∩H| − |L ∩H| ≤ max
F∈Grn−k

(|K ∩ F | − |L ∩ F |) .

Writing volume in terms of the Radon transform, we get

1

n− k

(
Rn−k(‖ · ‖−n+k

K )(H)−Rn−k(‖ · ‖−n+k
L )(H)

)
≤ max

F∈Grn−k

(|K ∩ F | − |L ∩ F |) .

Let D ∈ BPn
k , K ⊂ D. Integrating both sides by H ∈ Grn−k with the measure μD

corresponding to D by (2.5), we get

(2.6)

1

n− k

∫
Sn−1

‖θ‖−k
D

(
‖θ‖−n+k

K − ‖θ‖−n+k
L

)
dθ

≤ max
F∈Grn−k

(|K ∩ F | − |L ∩ F |)μD(Grn−k).

We have ‖θ‖−1
D ≥ ‖θ‖−1

K ≥ ‖θ‖−1
L , because L ⊂ K ⊂ D. Using this, Hölder’s

inequality, and the polar formula for volume, we estimate the left-hand side of
(2.6) by

1

n− k

∫
Sn−1

‖θ‖−k
K

(
‖θ‖−n+k

K − ‖θ‖−n+k
L

)
dθ ≥ n

n− k

(
|K| − |K| kn |L|

n−k
n

)
.
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To estimate μD(Grn−k) from above, we combine that 1 = Rn−k1(E)/|Sn−k−1| for
every E ∈ Grn−k with (2.5) and Hölder’s inequality to write

μD(Grn−k) =
1

|Sn−k−1|

∫
Grn−k

Rn−k1(E)dμD(E)(2.7)

=
1

|Sn−k−1|

∫
Sn−1

‖θ‖−k
D dθ

≤ 1

|Sn−k−1|
∣∣Sn−1

∣∣n−k
n

(∫
Sn−1

‖θ‖−n
D dθ

) k
n

=
1

|Sn−k−1|
∣∣Sn−1

∣∣n−k
n n

k
n |D| kn .

These estimates show that

n

n− k

(
|K| − |K| kn |L|

n−k
n

)
≤ 1

|Sn−k−1|
∣∣Sn−1

∣∣n−k
n n

k
n |D| kn max

F∈Grn−k

(|K ∩ F | − |L ∩ F |)(2.8)

=
n

n− k
ckn,k|D| kn max

F∈Grn−k

(|K ∩ F | − |L ∩ F |) .

Finally, we choose D so that |D|1/n ≤ (1 + δ)dovr(K,BPn
k )|K|1/n and then send δ

to zero. �

Next, we extend Theorem 1.2 to arbitrary measures in place of volume. Let f
be a bounded non-negative measurable function on R

n and let μ be the measure
with density f . Writing integrals in polar coordinates, we get

(2.9) μ(K) =

∫
K

f(x)dx =

∫
Sn−1

(∫ ρK(θ)

0

rn−1f(rθ)dr

)
dθ,

and for H ∈ Grn−k,

μ(K ∩H) =

∫
K∩H

f(x)dx =

∫
Sn−1∩H

(∫ ρK(θ)

0

rn−k−1f(rθ)dr

)
dθ(2.10)

= Rn−k

(∫ ρK(·)

0

rn−k−1f(r·)dr
)
(H).

Proof of Theorem 1.4. Let f be the density of the measure μ. For every H ∈ Grn−k

we have

μ(K ∩H)− μ(L ∩H) ≤ max
F∈Grn−k

(μ(K ∩ F )− μ(L ∩ F )) .

Using (2.10), we get

Rn−k

(∫ ρK(·)

ρL(·)
rn−k−1f(r·)dr

)
(H) ≤ max

F∈Grn−k

(μ(K ∩ F )− μ(L ∩ F )) .
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Let D ∈ BPn
k , K ⊂ D. Integrating both sides by H ∈ Grn−k with the measure μD

corresponding to D by (2.5), we get

(2.11)

∫
Sn−1

ρkD(θ)

(∫ ρK(θ)

ρL(θ)

rn−k−1f(rθ)dr

)
dθ

≤ max
F∈Grn−k

(μ(K ∩ F )− μ(L ∩ F ))μD(Grn−k).

We have ρD ≥ ρK ≥ ρL, because L ⊂ K ⊂ D. Using this and (2.9), we estimate
the left-hand side of (2.11) from below∫

Sn−1

ρkD(θ)

(∫ ρK(θ)

ρL(θ)

rn−k−1f(rθ)dr

)
dθ

≥
∫
Sn−1

ρkK(θ)

(∫ ρK(θ)

ρL(θ)

rn−k−1f(rθ)dr

)
dθ

≥
∫
Sn−1

(∫ ρK(θ)

ρL(θ)

rn−1f(rθ)dr

)
dθ = μ(K)− μ(L).

Now estimate μD(Gn−k) and then choose D in the same way as in the proof of
Theorem 1.2. �

Remark 2.1. Note that in the case of volume (f ≡ 1), Theorem 1.4 implies that
if K is an origin-symmetric convex body in R

n and L is an origin-symmetric star
body in R

n such that L ⊂ K, then

|K|
n−k
n −|L|

n−k
n ≤ |K| − |L|

|K| kn
≤ n

n− k
ckn,k d

k
ovr(K,BPn

k ) max
F∈Grn−k

(
|K∩F |−|L∩F |

)
.

This estimate differs from the one of Theorem 1.2 by a factor n
n−k ; however, note

that also (|K| − |L|)/|K| kn is greater than |K|n−k
n − |L|n−k

n .

To prove Theorem 1.5 we use a technique that was introduced in [10]. It is based
on the following generalized Blaschke-Petkantschin formula (see [13]).

Lemma 2.2. Let 1 ≤ q ≤ s ≤ n. There exists a constant p(n, s, q) > 0 such that,
for every non-negative bounded Borel measurable function f : (Rn)q → R,
(2.12)∫

Rn

· · ·
∫
Rn

f(x1, . . . , xq)dx1 · · · dxq

= p(n, s, q)

∫
Gn,s

∫
F

· · ·
∫
F

f(x1, . . . , xq) |conv(0, x1, . . . , xq)|n−sdx1 · · · dxq dνn,s(F ),

where νn,s is the Haar probability measure on Grs. The exact value of the constant
p(n, s, q) is

(2.13) p(n, s, q) = (q!)n−s (nωn) · · · ((n− q + 1)ωn−q+1)

(sωs) · · · ((s− q + 1)ωs−q+1)
.
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We will also use Grinberg’s inequality: If D is a bounded Borel set of positive
Lebesgue measure in R

n, then, for any 1 ≤ k ≤ n− 1,

(2.14)

R̃k(D) :=
1

|D|n−k

∫
Gn,n−k

|D ∩ F |n dνn,n−k(F )

≤ 1

|Bn
2 |n−k

∫
Gn,n−k

|Bn
2 ∩ F |n dνn,n−k(F ).

This fact was proved by Grinberg in [16]. It is stated for convex bodies D, but the
proof applies to bounded Borel sets (see also [13]). For the Euclidean ball we have

(2.15) R̃k(B
n
2 ) :=

1

|Bn
2 |n−k

∫
Gn,n−k

|Bn
2 ∩ F |n dνn,n−k(F ) =

ωn
n−k

ωn−k
n

= c−kn
n,k ,

where as before

(2.16) ckn,k := ω
n−k
n

n /ωn−k.

For any 1 ≤ k ≤ n− 1 we define

p(n, s) := p(n, s, s).

It was proved in [10] that for every 1 ≤ k ≤ n− 1 we have

(2.17) [c−n
n,k p(n, n− k)]

1
k(n−k) �

√
n− k.

Proof of Theorem 1.5. Let g be the density of the measure μ. Applying Lemma 2.2

with q = s = n − k for the functions f(x1, . . . , xn−k) =
∏n−k

i=1 g(xi)1K(xi) and

h(x1, . . . , xn−k) =
∏n−k

i=1 g(xi)1L(xi) we get

μ(K)n−k − μ(L)n−k =

n−k∏
i=1

∫
K

g(xi)dx−
n−k∏
i=1

∫
L

g(xi)dx

(2.18)

= p(n, n− k)

∫
Gn,n−k

[ ∫
K∩F

· · ·
∫
K∩F

g(x1) · · · g(xn−k) |conv(0, x1, . . . , xn−k)|kdx1

· · · dxn−k −
∫
L∩F

· · ·
∫
L∩F

g(x1) · · · g(xn−k) |conv(0, x1, . . . , xn−k)|kdx1 · · ·

dxn−k

]
dνn,n−k(F )

= p(n, n− k)

∫
Gn,n−k

∫
Pn−k(K,L;F )

g(x1) · · · g(xn−k) |conv(0, x1, . . . , xn−k)|kdx1 · · ·

dxn−k dνn,n−k(F ),

where

Pn−k(K,L;F ) = (K ∩ F )n−k \ (L ∩ F )n−k.

Note that

|conv(0, x1, . . . , xn−k)|k ≤ |K ∩ F |k
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for all (x1, . . . , xn−k) ∈ Pn−k(K,L;F ) by the convexity ofK∩F and the assumption
that 0 ∈ K. Therefore,

μ(K)n−k − μ(L)n−k

(2.19)

≤ p(n, n−k)

∫
Gn,n−k

|K∩F |k
∫
Pn−k(K,L;F )

g(x1) · · · g(xn−k) dx1 · · · dxn−k dνn,n−k(F )

= p(n, n− k)

∫
Gn,n−k

|K ∩ F |k[μ(K ∩ F )n−k − μ(L ∩ F )n−k] dνn,n−k(F )

≤ max
F∈Gn,n−k

[μ(K ∩ F )n−k − μ(L ∩ F )n−k] · p(n, n− k)

∫
Gn,n−k

|K∩F |k dνn,n−k(F ).

From Grinberg’s inequality (2.14) we have

(2.20)

∫
Gn,n−k

|K ∩ F |k dνn,n−k(F ) ≤ c−kn
n,k |K|

k(n−k)
n .

Using also (2.17) we see that
(2.21)

μ(K)n−k − μ(L)n−k

≤
(
c0
√
n− k

)k(n−k)

|K|
k(n−k)

n max
F∈Gn,n−k

[μ(K ∩ F )n−k − μ(L ∩ F )n−k],

as claimed. �

Remark 2.3. Theorem 1.5 implies that [10, Theorem 1.1]:

(2.22) μ(K) ≤
(
c0
√
n− k

)k

|K| kn max
F∈Gn,n−k

μ(K ∩ F )

for every convex body K with 0 ∈ K and any measure μ. Considering measures
with densities supported in K \L in (2.22), we get the following measure difference
inequality:

(2.23) μ(K)− μ(L) ≤
(
c0
√
n− k

)k

|K| kn max
F∈Gn,n−k

(
μ(K ∩ F )− μ(L ∩ F )

)
under the assumptions of Theorem 1.5.

The next inequalities estimate the distance between volumes of two bodies in
R

n in terms of the minimal difference between areas of their (n − k)-dimensional
sections.

Proof of Theorem 1.6. For every H ∈ Grn−k we have

|K ∩H| − |L ∩H| ≥ min
F∈Grn−k

(|K ∩ F | − |L ∩ F |) .

Writing volume in terms of the Radon transform, we get

1

n− k

(
Rn−k(‖ · ‖−n+k

K )(H)−Rn−k(‖ · ‖−n+k
L )(H)

)
≥ min

F∈Grn−k

(|K ∩ F | − |L ∩ F |) .
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Let D ∈ BPn
k , D ⊂ L. Integrating both sides by H ∈ Grn−k with the measure μD

corresponding to D by (2.5), we get

(2.24)

1

n− k

∫
Sn−1

‖θ‖−k
D

(
‖θ‖−n+k

K − ‖θ‖−n+k
L

)
dθ

≥ min
F∈Grn−k

(|K ∩ F | − |L ∩ F |)μD(Grn−k).

We have ‖θ‖−1
D ≤ ‖θ‖−1

L ≤ ‖θ‖−1
K , because D ⊂ L ⊂ K. Using this, Hölder’s

inequality, and the polar formula for volume, we estimate the left-hand side of
(2.24) from above by

1

n− k

∫
Sn−1

‖θ‖−k
L

(
‖θ‖−n+k

K − ‖θ‖−n+k
L

)
dθ ≤ n

n− k

(
|L| kn |K|

n−k
n − |L|

)
.

To estimate μD(Grn−k) from below, we combine that 1 = Rn−k1(E)/|Sn−k−1| for
every E ∈ Grn−k with (2.5) to write
(2.25)

μD(Grn−k) =
1

|Sn−k−1|

∫
Grn−k

Rn−k1(E)dμD(E) =
|Sn−1|

|Sn−k−1|

∫
Sn−1

‖θ‖−k
D dσ(θ).

These estimates show that
n

n− k

(
|L| kn |K|

n−k
n − |L|

)
≥ |Sn−1|

|Sn−k−1|

∫
Sn−1

‖θ‖−k
D dσ(θ) min

F∈Grn−k

(|K ∩ F | − |L ∩ F |) .

Finally, for δ > 0, we choose D so that∫
Sn−1

‖θ‖−k
D dσ(θ) ≥ 1

(1 + δ)dkk(L,BP
n
k )

∫
Sn−1

‖θ‖−k
L dσ(θ),

and send δ to zero. Then use Jensen’s inequality and homogeneity to get

(2.26)

(∫
Sn−1

‖θ‖−k
L dσ(θ)

) 1
k

≥
(∫

Sn−1

‖θ‖Ldσ(θ)
)−1

=
1

M(L)
|L| 1

n ,

and apply standard estimates for the Γ-function. �

Next we prove Theorem 1.8, which directly implies Theorem 1.7. For the proof
we will use some basic facts about Sylvester-type functionals. Let C be a bounded
Borel set of positive measure in R

m. For every p > 0 we consider the normalized
p-th moment of the expected volume of the random simplex conv(0, x1, . . . , xm),
the convex hull of the origin and m points from C, defined by

(2.27) Sp(C) =

(
1

|C|m+p

∫
C

· · ·
∫
C

|conv(0, x1, . . . , xm)|pdx1 · · · dxm

)1/p

.

It was proved by Pfiefer [37] (see also [13]) that

Sp(C) ≥ Sp(B
m
2 ).

More generally, for any Borel probability measure ν on R
m, for any 1 ≤ q ≤ m,

and for every p > 0, we define

(2.28) Sp,q(ν) =

(∫
Rm

· · ·
∫
Rm

|conv(0, x1, . . . , xq)|pdν(x1) · · · dν(xq)

)1/p

.
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A generalization of Pfiefer’s result appears in [11]. Let ν be a measure in R
n with

a bounded non-negative measurable density g. Then

(2.29) Sp
p,q(ν) ≥

‖g‖q+
pq
m

1

ω
q+ pq

m
m ‖g‖

pq
m∞
Sp
p,q(1Bm

2
).

Proof of Theorem 1.8. Let u(x) = g(x)1K(x) and v(x) = g(x)1L(x). Using Lemma
2.2 with s = n− k and q = 1, we start by writing

μ(K)− μ(L) =

∫
Rn

u(x)dx−
∫
Rn

v(x)dx

(2.30)

= p(n, n− k, 1)

∫
Gn,n−k

[ ∫
K∩F

g(x) ‖x‖k2dx−
∫
L∩F

g(x) ‖x‖k2dx
]
dνn,n−k(F )

= p(n, n− k, 1)

∫
Gn,n−k

∫
(K∩F )\(L∩F )

g(x) ‖x‖k2dx dνn,n−k(F ).

(Note that |conv(0, x)| = ‖x‖2, the Euclidean norm of x.) For every F set CF =
(K ∩ F ) \ (L ∩ F ) and consider the measure νF with density g on CF . Applying
(2.29) with p = k, q = 1, and m = n− k we have

μ(K)− μ(L) ≥ p(n, n− k, 1)

∫
Grn−k

Sk
k,1(νF ) dνn,n−k(F )(2.31)

≥ p(n, n− k, 1)

∫
Grn−k

‖g |CF
‖1+

k
n−k

1

ω
1+ k

n−k

n−k ‖g |CF
‖

k
n−k
∞

Sk
k (1Bn−k

2
) dνn,n−k(F )

=
p(n, n− k, 1)

ω
n

n−k

n−k

Sk
2 (1Bn−k

2
)

∫
Grn−k

‖g |CF
‖

n
n−k

1

‖g |CF
‖

k
n−k
∞

dνn,n−k(F ).

Note that

p(n, n− k, 1) =
nωn

(n− k)ωn−k

and

Sk
k,1(1Bn−k

2
) =

∫
Bn−k

2

‖x‖k2dx =
n− k

n
ωn−k.

Therefore,
p(n, n− k, 1)

ω
n

n−k

n−k

Sk
2 (1Bn−k

2
) =

ωn

ω
n

n−k

n−k

= c
kn

n−k

n,k .

On the other hand, for any F ∈ Grn−k we have

‖g |CF
‖1 = μ(K ∩ F )− μ(L ∩ F )

and

‖g |CF
‖∞ ≤ ‖g‖∞.

Combining the above we get

μ(K)− μ(L) ≥ c
kn

n−k

n,k

1

‖g‖
k

n−k
∞

∫
Grn−k

(μ(K ∩ F )− μ(L ∩ F ))
n

n−k dνn,n−k(F ),

and the result follows. �
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Remark 2.4. Theorem 1.7 is an immediate consequence of Theorem 1.8. It corre-
sponds to the case g ≡ 1, for which we clearly have ‖g‖∞ = 1.

We pass to Theorem 1.9. We consider Schwartz distributions, i.e., continuous
functionals on the space S(Rn) of rapidly decreasing infinitely differentiable func-

tions on R
n. The Fourier transform of a distribution f is defined by 〈f̂ , φ〉 = 〈f, φ̂〉

for every test function φ ∈ S(Rn). For any even distribution f , we have (f̂)∧ =
(2π)nf .

If K is an origin-symmetric convex body and 0 < p < n, then ‖ · ‖−p
K is a lo-

cally integrable function on R
n and represents a distribution acting by integration.

Suppose that K is infinitely smooth; i.e., ‖ · ‖K ∈ C∞(Sn−1) is an infinitely differ-
entiable function on the sphere. Then by [22, Lemma 3.16], the Fourier transform

of ‖·‖−p
K is an extension of some function g ∈ C∞(Sn−1) to a homogeneous function

of degree −n+ p on R
n. When we write

(
‖ · ‖−p

K

)∧
(ξ), we mean g(ξ), ξ ∈ Sn−1.

For f ∈ C∞(Sn−1) and 0 < p < n, we denote by

(f · r−p)(x) = f(x/‖x‖2)‖x‖−p
2

the extension of f to a homogeneous function of degree −p on R
n. Again by [22,

Lemma 3.16], there exists g ∈ C∞(Sn−1) such that

(f · r−p)∧ = g · r−n+p.

IfK,L are infinitely smooth origin-symmetric convex bodies, the following spherical
version of Parseval’s formula can be found in [22, Lemma 3.22]: for any p ∈ (−n, 0),

(2.32)

∫
Sn−1

(
‖ · ‖−p

K

)∧
(ξ)

(
‖ · ‖−n+p

L

)∧
(ξ) = (2π)n

∫
Sn−1

‖x‖−p
K ‖x‖−n+p

L dx.

It was proved in [20, Theorem 1] that an origin-symmetric convex body K in
R

n is an intersection body if and only if the function ‖ · ‖−1
K represents a positive

definite distribution. In the case where K is infinitely smooth, this means that the
function (‖ · ‖−1

K )∧ is non-negative on the sphere.
We also need a result from [21] (see also [22, Theorem 3.8]) expressing volume

of central hyperplane sections in terms of the Fourier transform. For any origin-
symmetric star body K in R

n, the distribution (‖·‖−n+1
K )∧ is a continuous function

on the sphere extended to a homogeneous function of degree −1 on the whole of
R

n, and for every ξ ∈ Sn−1,

(2.33) |K ∩ ξ⊥| = 1

π(n− 1)
(‖ · ‖−n+1

K )∧(ξ).

In particular, if K = Bn
2 , then for every ξ ∈ Sn−1,

(2.34) (‖ · ‖−n+1
2 )∧(ξ) = π(n− 1)|Bn−1

2 |.
Note that every non-intersection body can be approximated in the radial metric

by infinitely smooth non-intersection bodies with strictly positive curvature; see
[22, Lemma 4.10]. Different examples of convex bodies that are not intersection
bodies (in dimensions five and higher, as in dimensions up to four such examples
do not exist) can be found in [22, Chapter 4]. In particular, the unit balls of the
spaces �nq , q > 2, n ≥ 5, are not intersection bodies.

Proof of Theorem 1.9. Since L is infinitely smooth, the Fourier transform of ‖ · ‖−1
L

is a continuous function on the sphere Sn−1. Also, L is not an intersection body,
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so
(
‖ · ‖−1

L

)∧
< 0 on an open set Ω ⊂ Sn−1. Let φ ∈ C∞(Sn−1) be an even non-

negative, not identically zero, infinitely smooth function on Sn−1 with support in
Ω∪−Ω. Extend φ to an even homogeneous of degree −1 function φ ·r−1 on R

n\{0}.
The Fourier transform of this function in the sense of distributions is ψ · r−n+1,
where ψ is an infinitely smooth function on the sphere.

Let ε be a number such that |Bn−1
2 | ·‖θ‖−n+1

L > ε > 0 for every θ ∈ Sn−1. Define
a star body K by

(2.35) ‖θ‖−n+1
K = ‖θ‖−n+1

L − δψ(θ) +
ε

|Bn−1
2 |

, θ ∈ Sn−1,

where δ > 0 is small enough so that for every θ,

|δψ(θ)| < min

{
‖θ‖−n+1

L − ε

|Bn−1
2 |

,
ε

|Bn−1
2 |

}
.

The latter condition implies that L ⊂ K. Since L has strictly positive curvature,
by an argument from [22, p. 96], we can make ε, δ smaller (if necessary) to ensure
that the body K is convex.

Now we extend the functions in (2.35) from the sphere to Rn\{0} as homogeneous
functions of degree −n+ 1 and apply the Fourier transform. We get that for every
ξ ∈ Sn−1,

(2.36)
(
‖ · ‖−n+1

K

)∧
(ξ) =

(
‖ · ‖−n+1

L

)∧
(ξ)− (2π)nδφ(ξ) + π(n− 1)ε.

Here, we used (2.34) to compute the last term. By (2.36), (2.33), and the fact that
the function φ is non-negative and is equal to zero at some points, we have

(2.37) ε = max
ξ∈Sn−1

(|K ∩ ξ⊥| − |L ∩ ξ⊥|).

Multiplying both sides of (2.36) by
(
‖ · ‖−1

L

)∧
(ξ), integrating over Sn−1, and using

Parseval’s formula on the sphere, we get

(2π)n
∫
Sn−1

‖θ‖−1
L ‖θ‖−n+1

K dθ = (2π)nn|L| − (2π)nδ

∫
Sn−1

φ(θ)
(
‖ · ‖−1

L

)∧
(θ)dθ

+ π(n− 1)ε

∫
Sn−1

(
‖ · ‖−1

L

)∧
(θ)dθ.

Since φ is a non-negative function supported in Ω, where
(
‖ · ‖−1

L

)∧
is negative, the

latter equality implies that

(2π)nn|L|+ π(n− 1)ε

∫
Sn−1

(
‖ · ‖−1

L

)∧
(θ)dθ < (2π)n

∫
Sn−1

‖θ‖−1
L ‖θ‖−n+1

K dθ

≤ (2π)n
(∫

Sn−1

‖θ‖−n
K dθ

)n−1
n

(∫
Sn−1

‖θ‖−n
L dθ

) 1
n

= (2π)nn|L| 1
n |K|

n−1
n .
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Finally, by (2.34), Parseval’s formula, and Jensen’s inequality,

π(n− 1)

∫
Sn−1

(
‖ · ‖−1

L

)∧
(θ)dθ =

1

|Bn−1
2 |

∫
Sn−1

(
‖ · ‖−1

L

)∧
(θ)

(
‖ · ‖−n+1

2

)∧
(θ)dθ

=
(2π)n|Sn−1|

|Bn−1
2 |

∫
Sn−1

‖θ‖−1
L dσ(θ)

≥ (2π)n|Sn−1|
|Bn−1

2 |
1

M(L)
|L| 1

n

≥ c
(2π)n

√
n|L| 1

n

M(L)
.

Combining these estimates we get

(2π)nn|L|+ cε
(2π)n

√
n|L| 1

n

M(L)
≤ (2π)nn|L| 1

n |K|
n−1
n .

The result follows after we recall (2.37). �

3. Volume difference inequalities for projections

The support function of a convex body K in R
n is defined by

hK(x) = max{〈x, y〉 : y ∈ K}, x ∈ R
n.

If K is origin-symmetric, then hK is a norm on R
n.

The surface area measure S(K, ·) of a convex body K in R
n is defined as follows.

For every Borel set E ⊂ Sn−1, S(K,E) is equal to Lebesgue measure of the part of
the boundary of K where normal vectors belong to E. We usually consider bodies
with absolutely continuous surface area measures. A convex body K is said to have
the curvature function

fK : Sn−1 → R

if its surface area measure S(K, ·) is absolutely continuous with respect to Lebesgue
measure σn−1 on Sn−1 and

dS(K, ·)
dσn−1

= fK ∈ L1(S
n−1),

so fK is the density of S(K, ·).
By the approximation argument of [39, Theorem 3.3.1], we may assume in

the formulation of Shephard’s problem that the bodies K and L are such that
their support functions hK , hL are infinitely smooth functions on R

n \ {0}. Using

[22, Lemma 3.16] we get in this case that the Fourier transforms ĥK , ĥL are the
extensions of infinitely differentiable functions on the sphere to homogeneous dis-
tributions on R

n of degree −n−1. Moreover, by a similar approximation argument
(see e.g. [17, Section 5]), we may assume that our bodies have absolutely contin-
uous surface area measures. Therefore, in the rest of this section, K and L are
convex symmetric bodies with infinitely smooth support functions and absolutely
continuous surface area measures.

The following version of Parseval’s formula was proved in [32] (see also [22,
Lemma 8.8]):

(3.1)

∫
Sn−1

ĥK(ξ)f̂L(ξ) dξ = (2π)n
∫
Sn−1

hK(x)fL(x) dx.
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The volume of a body can be expressed in terms of its support function and
curvature function:

(3.2) |K| = 1

n

∫
Sn−1

hK(x)fK(x) dx.

If K and L are two convex bodies in R
n the mixed volume V1(K,L) is equal to

V1(K,L) =
1

n
lim

ε→+0

|K + εL| − |K|
ε

.

We use the following first Minkowski inequality (see [39] or [22, p. 23]): for any
convex bodies K,L in R

n,

(3.3) V1(K,L) ≥ |K|
n−1
n |L| 1

n .

The mixed volume V1(K,L) can also be expressed in terms of the support and
curvature functions:

(3.4) V1(K,L) =
1

n

∫
Sn−1

hL(x)fK(x) dx.

Let K be an origin-symmetric convex body in R
n. The projection body ΠK of

K is defined as an origin-symmetric convex body in R
n whose support function in

every direction is equal to the volume of the hyperplane projection of K to this
direction: for every ξ ∈ Sn−1,

(3.5) hΠK(ξ) = |K|ξ⊥|.

If L is the projection body of some convex body, we simply say that L is a projection
body. The Minkowski (vector) sum of projection bodies is also a projection body.
Every projection body is the limit in the Hausdorff metric of Minkowski sums of
symmetric intervals. An origin-symmetric convex body in R

n is a projection body
if and only if its polar body is the unit ball of an n-dimensional subspace of L1; see
[12, 22, 39] for proofs and more properties of projection bodies.

Proof of Theorem 1.11. By approximation (see [39, Theorem 3.3.1]), we can assume
that K,L are infinitely smooth. We have

(3.6) |L|ξ⊥| − |K|ξ⊥| ≥ min
η∈Sn−1

(|L|η⊥| − |K|η⊥|).

It was proved in [32] that

(3.7) |K|ξ⊥| = − 1

π
f̂K(ξ), ξ ∈ Sn−1,

where fK is extended from the sphere to a homogeneous function of degree −n− 1
on the whole R

n. Therefore, (3.6) can be written as

(3.8) − 1

π
f̂L(ξ) +

1

π
f̂K(ξ) ≥ min

η∈Sn−1
(|L|η⊥| − |K|η⊥|), ξ ∈ Sn−1.

Let D be a projection body such that D ⊂ L; then hD ≤ hL in every direction.
It was proved in [32] that an infinitely smooth origin-symmetric convex body D in
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R
n is a projection body if and only if ĥD ≤ 0 on the sphere Sn−1. Integrating (3.8)

with respect to this negative density, we get

−
∫
Sn−1

ĥD(ξ)f̂L(ξ) dξ +

∫
Sn−1

ĥD(ξ)f̂K(ξ) dξ

≤ π

∫
Sn−1

ĥD(ξ)dξ min
η∈Sn−1

(|L|η⊥| − |K|η⊥|).

Using Parseval’s formula (3.1), we get
(3.9)

(2π)n
∫
Sn−1

hD(ξ)(fL(ξ)− fK(ξ))dξ ≥ −π

∫
Sn−1

ĥD(ξ)dξ min
η∈Sn−1

(|L|η⊥| − |K|η⊥|).

We estimate the left-hand side of (3.9) from above using (3.2) and (3.4) (recall that
fK ≤ fL):

(2π)n
∫
Sn−1

hD(ξ)(fL(ξ)− fK(ξ))dξ ≤ (2π)n
∫
Sn−1

hL(ξ)(fL(ξ)− fK(ξ))dξ

(3.10)

≤ (2π)nn(|L| − |K|
n−1
n |L| 1

n ).

To estimate the right-hand side of (3.10) from below, note that, by (3.7), the
Fourier transform of the curvature function f2 of the unit Euclidean ball is equal
to

f̂2(ξ) = −π|Bn−1
2 |, ξ ∈ Sn−1.

Therefore, by (3.1) and (3.4) (recall that f2 ≡ 1) ,

−π

∫
Sn−1

ĥD(ξ) dξ =
1

|Bn−1
2 |

∫
Sn−1

ĥD(ξ)f̂2(ξ) dξ =
(2π)n

|Bn−1
2 |

∫
Sn−1

hD(x)f2(x) dx

=
(2π)n

|Bn−1
2 |

nV1(B
n
2 , D) ≥ (2π)nn

|Bn−1
2 |

|D| 1
n |Bn

2 |
n−1
n

= (2π)nn cn,1|D| 1
n .

Now for δ > 0 choose D so that (1 + δ) dvr(L,Π) |D| 1
n ≥ |L| 1

n . Combine the
resulting inequality with (3.9) and (3.10) and send δ to zero. �

Proof of Theorem 1.10. Putting K = δBn
2 in (1.20) and sending δ to zero, we get

β|L|
n−1
n ≥ min

ξ∈Sn−1
|L|ξ⊥|.

By a result of Ball [3], there exists an absolute constant c1 so that for each n ∈ N

there is an origin-symmetric convex body Ln in R
n satisfying

min
ξ∈Sn−1

|Ln|ξ⊥| ≥ c1
√
n|Ln|

n−1
n .

This shows that βn ≥ c1
√
n. On the other hand, since ellipsoids are projection

bodies, we have dvr(L,Π) ≤ √
n for every origin-symmetric convex body L in R

n. By
approximation (see [17]), one can assume that each of the bodies Ln has a curvature
function, so we can apply Theorem 1.11 to the bodies Ln and K = δBn

2 , δ → 0, to
see that βn ≤ (1/cn,1)

√
n <

√
en. �
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Remark 3.1. From Theorem 1.11 we see that the bodies Ln defined in the proof of
Theorem 1.10 satisfy

dvr(Ln,Π)|Ln|
n−1
n ≥ cn,1 min

ξ∈Sn−1
|L|ξ⊥| ≥ cn,1 c1

√
n|Ln|

n−1
n .

This shows that dvr(Ln,Π) ≥ c1
√
n/e, and hence

sup
L

dvr(L,Πn) �
√
n,

where the supremum is over all origin-symmetric convex bodies L in R
n.

Proof of Theorem 1.12. Again, by approximation, we can assume that K,L are
infinitely smooth. Let D be a projection body such that K ⊂ D; then hK ≤ hD in
every direction. Similarly to the proof of Theorem 1.11,
(3.11)

(2π)n
∫
Sn−1

hD(ξ)(fL(ξ)− fK(ξ))dξ ≤ −π

∫
Sn−1

ĥD(ξ)dξ max
η∈Sn−1

(|L|η⊥| − |K|η⊥|).

We estimate the left-hand side of (3.11) from below using (3.2) and (3.4) (recall
that fK ≤ fL and hK ≤ hD):

(2π)n
∫
Sn−1

hD(ξ)(fL(ξ)− fK(ξ))dξ ≥ (2π)n
∫
Sn−1

hK(ξ)(fL(ξ)− fK(ξ))dξ

(3.12)

≥ (2π)nn(|L|
n−1
n |K| 1

n − |K|).
Now for δ > 0 choose D so that

w(D) ≤ (1 + δ)dw(K,Π)w(K)|K| 1
n .

As in the proof of Theorem 1.11,

−π

∫
Sn−1

ĥD(ξ) dξ =
(2π)n

|Bn−1
2 |

∫
Sn−1

hD(x) dx =
(2π)n|Sn−1|

|Bn−1
2 |

w(D)

≤ (1 + δ)(2π)nc dw(K,Π)
√
n w(K)|K| 1

n .

We get the result combining the latter with (3.11) and (3.12) and sending δ to
zero. �

Finally, we show that the distance dw can be of the order
√
n, up to a logarith-

mic term. We will use the fact that projection bodies have positions with “small
diameter”. More precisely, we have the following statement: For every D ∈ Π there
exists T ∈ GL(n) such that

(3.13) R(T (D)) ≤
√
n

2
|T (D)|1/n.

In particular, this holds true if T is chosen so that T (D) in Lewis or Löwner or
minimal mean width position (see e.g. [9, Chapter 4]). Let K = Bn

1 be the cross-
polytope, and consider a projection body D such that Bn

1 ⊆ D. We may find T
so that (3.13) is satisfied. We will use the next well-known result of Bárány and
Füredi from [5]: if x1, . . . , xN ∈ RBn

2 , then

|conv{x1, . . . , xN}|1/n ≤ c3R
√
log(1 +N/n)

n
.
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Since

T (Bn
1 ) = conv{±Te1, . . . ,±Ten} ⊆ R(T (D))Bn

2 ,

we get

|T (Bn
1 )|1/n ≤ c4√

n
|T (D)|1/n.

It follows that

|Bn
1 |1/n ≤ c4√

n
|D|1/n.

From Urysohn’s inequality (see [1]) we know that w(D) ≥ c5
√
n |D|1/n, and a direct

computation shows that w(Bn
1 ) ≤ c6

√
n log n|Bn

1 |1/n. This shows that

w(D) ≥ c7
√
n/ lognw(Bn

1 ).

Since D ⊃ Bn
1 was arbitrary, we conclude that

(3.14) dw(B
n
1 ) ≥ c

√
n/ logn,

where c > 0 is an absolute constant.
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