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EXAMPLES OF HOLOMORPHIC FUNCTIONS

VANISHING TO INFINITE ORDER AT THE BOUNDARY

JONAS HIRSCH

Abstract. We present examples of holomorphic functions that vanish to in-
finite order at points at the boundary of their domain of definition. They
give rise to examples of Dirichlet minimizing Q-valued functions indicating
that “higher”-regularity boundary results are difficult. Furthermore we dis-
cuss some implication to branching and vanishing phenomena in the context
of minimal surfaces, Q-valued functions, and unique continuation.

Introduction

In general branching phenomena are of interest in geometric measure theory,
geometry, and are strongly related to vanishing phenomena in the context of PDE’s.
There is a vast literature on branching results in the interior, and one has plenty of
unique continuation results for PDE’s in the interior of their domains of definition.

One of the most fundamental examples is the following: two holomorphic func-
tions that agree to infinite order at one point in the interior have to be identi-
cal. Almgren’s frequency function provides a quite robust tool in order to capture
branching (e.g. [1]) and unique continuation properties (e.g. [8], [9]). Its monotone
behaviour is crucial.

In this paper we construct examples which show that these interior results do
not carry over to the boundary case: there are holomorphic functions that vanish to
infinite order at boundary points but which are not identically zero. Furthermore,
Almgren’s frequency functions fail to be monotone at these points.

A further property of Almgren’s frequency functions is that they enable a strat-
ification procedure (compare the “dimension reduction” argument of Federer [7]).
As an outcome one is able to bound the Hausdorff dimension of the singular set of
solutions to various PDE’s. For instance [1], [5, sections 3.4 - 3.6], [16], [13] consider
geometric problems; [2], [14] analyse the singular set of elliptic PDE’s.

Our examples suggest that such an upper bound fails to hold up to the boundary.
For instance there is a Q-valued function (Q ≥ 2) on the half plane R

2
+ that is

Dirichlet minimizing with respect to compact deformations. It has a “smooth” trace
on ∂R2. Nevertheless the Hausdorff dimension of the closure of the singular set is 1.
In contrast the singular set of an arbitrary Q-valued Dirichlet minimizer consists of
isolated points in any proper subset of its domain of definition; compare [5, Theorem
0.12]. More details and the precise statement can be found in section 3.2.
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The main ingredient of the presented examples to branching phenomena of min-
imal surfaces, Q-valued Dirichlet minimizers, and unique continuation results con-
sists of examples of holomorphic functions on the half plane C+ = {z ∈ C : �(z) >
0} that admit C∞-extensions to C+ with the following additional properties.

Lemma 0.1. Let 0 < s ≤ 1 be given. There exist

(i) a nowhere dense compact Cantor type subset Es ⊂ [0, 1] with Hs(Es) = 1
if 0 < s < 1 and dimH(E1) = 1;

(ii) holomorphic functions F (z), G(z) on C+ with the property that f(z) =
e−F (z) and g(z) = G(z)e−F (z) admit C∞-extensions to C+. Moreover, f, g
vanish to infinite order at any z ∈ −iEs, and for every z ∈ −iEs there is a
sequence zk ∈ C+ with zk → z and g(zk) = 0 for all k.

These functions are constructed similarly to the Weierstrass function, an example
of a continuous but nowhere differentiable function. Instead of an infinite series we
use infinite products of the following holomorphic building blocks :

a(z) = e−z−α

for 0 < α < 1,(0.1)

b(z) = cos(ln(z))e−z−α

for 0 < α < 1.

The paper is organized as follows: In section 1 we present a Cantor type set Es

that will be the “singular”/“vanishing” set of the holomorphic functions. In sec-
tion 2 the holomorphic functions are constructed, and their claimed properties are
proven. Finally in section 3 we present applications of these functions to branch-
ing results of minimal surfaces, Q-valued functions, and unique continuation type
results.

1. Construction and properties of the set Es

The construction of Es is a classical Cantor type construction. Nonetheless for
the sake of completeness and to fix certain parameters we present the construction
in detail. We follow closely an approach of Falconer in [6, Theorem 1.15]. We will
use the following definition of the (“unnormalised”) Hausdorff measure [6, section
1.2]: Given a subset E ⊂ Rn, a (countable) family U = {Uj}j∈J is called the
δ-cover of E if E ⊂

⋃
U∈U U and diam(U) < δ. We define

Hs
δ(E) :=

{∑
U∈U

diam(U)s : U δ-cover of E

}
.

Hs
δ defines an outer measure on R

n, and the s-dimensional Hausdorff measure is
defined to be

Hs(E) := sup
δ>0

Hs
δ(E).

A subset E is said to have Hausdorff dimension s if s = sup{σ > 0: Hσ(E) = +∞}.

Lemma 1.1. Let 0 < s ≤ 1 be given. Then there is a nowhere dense compact
subset Es ⊂ [0, 1] s.t. Hs(Es) = 1 if 0 < s < 1 and dim(E1) = 1.

Proof. The set Es is obtained classically as the intersection of a decreasing family
of compact sets

Es =
∞⋂
k=1

2k⋃
l=1

Ek,l.
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The compact subintervals Ek,l are defined inductively.
We fix a sequence of parameters by

1

σk
=

{
1
s if 0 < s < 1,

1 + k
2
3 − (k − 1)

2
3 if s = 1.

In both cases we have σk ≤ σk+1 and σk < 1 all all k . If s = 1 we have 1
σk+1

− 1
σk

=

(k+1)
2
3 +(k− 1)

2
3 − 2k

2
3 < 0 due to concavity of t 	→ t

2
3 and so σk ↗ 1 as k → ∞.

We choose E0,1 = [0, 1] and proceed inductively. Suppose Ek−1,l, l = 1, . . . , 2k−1,
defined. Then Ek,2l−1, Ek,2l are the closed disjoint subintervals obtained by remov-
ing an open interval in the middle of Ek−1,l with

(1.1) |Ek,2l−1|σk = |Ek,2l|σk =
1

2
|Ek−1,l|σk

(which is possible since σk < 1). We obtained 2k closed intervals Ek,l of equal
length

(1.2) |Ek,l| = 2
− 1

σk |Ek−1,l′ | =
{
2−

k
s if 0 < s < 1,

2−k−k
2
3 if s = 1,

where we used that
∑k

l=1 σ
−1
k = k

s if 0 < s < 1 and
∑k

l=1 σ
−1
k = k + k

2
3 if s = 1.

In a first step we will check that Hs(Es) ≤ 1 (H1(E1) = 0). To do so, let δ > 0

be given. Due to (1.2) there is k0 > 0 with |Ek0,l| < δ. Hence {Ek,l}2
k

l=1 is an
admissible δ-cover for Es for any k ≥ k0. With (1.2) in mind we have

(1.3) Hs
δ(Es) ≤

2k∑
l=1

|Ek,l|s =

⎧⎨
⎩2k

(
2−

k
s

)s

= 1 if 0 < s < 1,

2k2−k−k
2
3 → 0 if s = 1, k → ∞.

Now in the second step we check that Hs(Es) ≥ 1 if s < 1 and Hσ(E1) = +∞ for
all σ < 1 if s = 1. Equivalently we have to show that for any given ε > 0, σ < 1
there is a δ > 0 with the property that for any δ-cover U of Es:∑

C∈U
diam(C)s ≥ Hs

δ(Es) > 1− ε if 0 < s < 1,(1.4)

∑
C∈U

diam(C)σ ≥ Hσ
δ (E1) >

1

ε
if s = 1, i.e., σ < 1.

Let ε > 0, σ < 1 be given. We fix k0 > 0 large, determined later s.t. at least
σk0

> σ and 0 < δ < |Ek0,l|.
Fix an admissible δ-cover U by intervals Ek,l. Hence k > k0 for any of these

intervals. The compact intervals Ek,l are relatively open to the compact set Es,
so that the cover can be assumed to be finite. Removing all intervals that are
contained in some other part of the collection we can even assume that they are
mutually disjoint. Let Ek,2l−1 (or Ek,2l) be one of the shortest intervals in U . Its
companion Ek,2l (respectively Ek,2l−1) has to be in U as well because all intervals
are disjoined and they are one of the shortest. The sums in (1.4) do not increase if
we replace these two intervals by their predecessor Ek−1,l ⊃ Ek,2l−1∪Ek,2l because

|Ek,2l−1|s + |Ek,2l|s = |Ek−1,l|s if 0 < s < 1,

|Ek,2l−1|σ + |Ek,2l|σ = 2
1− σ

σk |Ek−1,l|σ ≥ |Ek−1,l|σ if s = 1, i.e., σ < 1,
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where we used (1.1) and σk ≥ σk0
> σ. We may proceed in this way, replacing the

shortest intervals by larger ones without increasing the value of the sums until we

reach that all intervals are of the same size, i.e., U → {Ek1,l}2
k1

l=1 for some k1 > k0.
We conclude that

∑
C∈U

diam(C)s ≥
2k1∑
l=1

|Ek1,l|s = 1 if 0 < s < 1,

∑
C∈U

diam(C)σ ≥
2k1∑
l=1

|Ek1,l|σ = 2(1−σ)k1−σk
2
3
1 >

1

ε
if s = 1, i.e., σ < 1,

where we used (1.3) and 2(1−σ)k1−σk
2
3
1 → ∞ as k1 → ∞.

It remains to argue that the assumption that the δ-cover is made out of intervals
Ek,l is no restriction. Fix any δ-cover V . We can assume that it consists of open
intervals without changing the value in (1.4) significantly. Since Es is compact the
cover can be assumed to be finite.

Firstly let us argue for E1. Any interval I ∈ V intersects at most three intervals
EkI ,l with |EkI ,l| ≤ |I| < |EkI−1,l|. Otherwise I would need to contain an interval
of length at least |EkI−1,l| due to the Cantor type construction. This is impossible
by the choice of kI . Replacing I by these at most three intervals EkI ,· and the same
for any other interval in V we obtain an open cover U by intervals Ek,l. Furthermore∑

Ek,l∈U
|Ek,l|σ ≤ 3

∑
I∈V

|I|σ.

We have just shown that the left-hand side is larger then 1
ε , so (1.4) holds for s = 1.

Secondly, we argue for Es, 0 < s < 1, as follows: Recursively we will change V
into a δ-cover U by sets Ek,l without increasing the sum in (1.4). Since R \ Es is
open dense, we may assume that ∂I∩Es = ∅ for all I ∈ V without changing the sum
in (1.4) significantly. Replacing each I by J = I ∩ [0, 1] we obtain a finite cover by
closed sets, with the additional properties: for each I we have ∂J∩(Es \ {0, 1}) = ∅,
J ⊂ [0, 1] = E0,1, and for all k sufficiently large (depending on I) we have

(1.5) Ek,l ∩ J = Ek,l or Ek,l ∩ J = ∅.
Given one of these intervals J , let J ⊂ Ek−1,l for some k, l. Then

(1.6) |J ∩ Ek,2l−1|s + |J ∩ Ek,2l|s ≤ |J ∩Ek−1,l|s

because |Ek,2l−1|s + |Ek,2l|s = |Ek−1,l|s and the left-hand side of (1.6) increases
faster then the right-hand side. If either J ∩Ek,2l−1 �= Ek,2l−1 or J ∩Ek,2l �= Ek,2l,
we repeat the process, replacing J ∩Ek,2l−1 and J ∩Ek,2l by smaller intervals. This
process terminates after finitely many steps due to (1.5). Finally we obtain the
desired cover U . By construction we ensure that

∑
J∈V1

|J |s ≥
∑

Ek,l∈U |Ek,l|s = 1.

This proves (1.4) if 0 < s < 1. �

2. Construction of the holomorphic functions

The Cantor set Es was obtained as

Es =
∞⋂
k=1

2k⋃
l=1

Ek,l.
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Based on this construction, we define the index set:

I =
{
(k, l) : k = 1, . . . ,∞, l = 1, . . . , 2k

}
with τ = (k, l) ∈ I.

Recall that the enumeration has been chosen s.t. Ek,2l−1 ∪ Ek,2l ⊂ Ek−1,l ∀(k, l).
The Cantor set Es constructed in Lemma 1.1 has the property (1.2)

|Eτ | = |Ek,l| =
{
2−

k
s if 0 < s < 1

2−k−k
2
3 if s = 1

∀τ ∈ I.

We denote with yτ the left boundary point of the compact interval Eτ . Note that
the construction of Es ensures that ∀z ∈ Es there exists a sequence {yτ(k)}k∈N such
that yτ(k) → z; i.e., {yτ}τ∈I is dense in Es.

Furthermore it is useful to fix some terminology. R− = {z = x + i0: x < 0}
denotes the negative real axis. We will use z + iyτ = rτe

iθτ for any τ ∈ I, and
for any y ∈ R, let R− − iy be the −iy translated negative real axis, i.e., the set
{x− iy : x < 0}. We will use

R− − iEs =
⋃

y∈Es

(R− − iy) = {x− iy : x ∈ R−, y ∈ Es}.

The proof of Lemma 0.1 is split into two parts. In the next paragraph we
construct holomorphic functions F,G based on the Cantor set Es, and then in the
subsequent paragraph the C∞-extension is proven.

2.1. Holomorphy. On the split plane C\R− the principal value of the logarithmic
function ln : C \R− → C ∩ {−π < �(z) < π} is single valued and holomorphic. So
will all roots for α ∈ R defined as zα = eα ln(z).

As composition of holomorphic functions on C \ R− the building blocks a(z) =

e−z−α

, b(z) = cos(ln(z))e−z−α

are clearly holomorphic on C \R−, and (z + iyτ )
−α

= rτe
−iαθτ is single valued and holomorphic on C \ (R− − iyτ ) ⊂ C \ (R− − iEs)

for every τ ∈ I, αk ∈ R.

Lemma 2.1. Given a sequence of complex numbers ak ∈ C with
∑∞

k=0 2
k|ak| < ∞

and a sequence of real numbers 0 < αk ≤ 1, we get that

F (z) =
∑
τ∈I

ak(z + iyτ )
−αk

is holomorphic on C \ {R− − iEs} and so is e−F (z).

Proof. For a fixed 0 < d < 1 we have that any z ∈ {z ∈ C : dist(z,−iEs) > d}
satisfies |(z + iyτ )

−αk | = r−αk
τ ≤ d−1, so that the sum

∑
τ∈I |ak(z + iyτ )

−αk | ≤
d−1

∑∞
k=1 2

k|ak| < ∞ converges absolutely. F is therefore the uniform limit of
holomorphic functions on {z ∈ C : dist(z,−iEs) > d} and so is itself holomorphic.
d has been arbitrary, and therefore F is holomorphic on C \ (R− − iEs). e

−F (z) is
the composition of two holomorphic functions and so is itself holomorphic on the
same set. �

Lemma 2.2. Given a sequence of non-negative real numbers bk ∈ R+ that satisfies∑∞
k=0 2

kbk < ∞, for any subset J ⊂ I, we get that

(2.1) GJ (z) =
∏
τ∈J

cos(bk ln(z + iyτ ))
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is holomorphic on C \ (R− − iEs) and uniformly bounded by

|GJ (z)| ≤ e
∑

τ∈J bk|θτ | ≤ eπ
∑∞

k=0 2kbk .

Proof. As a composition of holomorphic functions cos(bk ln(z+iyτ )) is holomorphic
on C \ (R− − iEs) for every τ ∈ I. Using the expansion

(2.2) cos(x+ iy) = cos(x) cosh(y)− i sin(x) sinh(y)

we have

(2.3) cos(bk ln(z + iyτ )) = cos(bk ln(rτ )) cosh(bkθτ ) + i sin(−bk ln(rτ )) sinh(bkθτ ).

For every τ ∈ I we have therefore

|cos(bk ln(rτ )) cosh(bkθτ )| ≤ |cos(bk ln(z + iyτ ))| ≤ cosh(bkθτ ),(2.4)

�(cos(bk ln(z + iyτ )))

�(cos(bk ln(z + iyτ )))
= tan(−bk ln(rτ )) tanh(bkθτ ).(2.5)

To show that (2.1) is well-defined and holomorphic, fix 0 < d < 1
2 and k0 ∈ N

sufficiently large s.t. 0 ≤ −2bk ln(d) ≤ π
4 for all k ≥ k0. This ensures that for any

z ∈ {d < dist(z,−iEs) <
1
d} and τ ∈ I∩{k ≥ k0} we have d ≤ rτ ≤ 1

d+diam(Es) ≤
1
d2 . Hence −π

4 < bk ln(rτ ) < π
4 and so � (cos(bk ln(z + iyτ ))) > 0. This implies

that ln(cos(bk ln(z+ iyτ ))) is a holomorphic function on {d < dist(z,−iEs) <
1
d} if

τ ∈ I ∩ {k ≥ k0}. Using (2.4) we obtain
(2.6)

ln(cosh(bkθτ )) + ln(cos(bk ln(rτ ))) ≤ ln(|cos(bk ln(z + iyτ ))|) ≤ ln(cosh(bkθτ )).

This is the real part of ln(cos(bk ln(z + iyτ ))). Its imaginary part, the argument of
cos(bk ln(z + iyτ )), can be estimated by |bk ln(rτ )|. This follows from (2.5) taking
into account that |tanh| < 1 and that tan(x) is convex on [0, π

4 ], hence tan(s) ≤ s.
Combining both we deduce that

|ln(|cos(bk ln(z + iyτ ))|)| ≤ ln(cosh(bkθτ ))− ln(cos(bk ln(rτ ))) + |bk ln(rτ )|.

Furthermore we can use cosh(x) ≤ ex and that − ln(cos(x)) ≤ C|x| for some C > 0
for |x| ≤ π

4 to estimate further:1

|ln(|cos(bk ln(z + iyτ ))|)| ≤ bk|θτ |+ (C + 1)|bk ln(rτ )| ≤ (π − 2 ln(d)(C + 1))bk;∑
τ∈I∩{k≥k0}|ln(cos(bk ln(z + iyτ )))| < (π − 2 ln(d)(C + 1))

∑∞
k=k0

2kbk converges

uniformly on {d < dist(z,−iEs) <
1
d} so that

G1(z) = e
∑

τ∈J ,k≥k0
ln(cos(bk ln(z+iyτ )))

is holomorphic on {d < dist(z,−iEs) <
1
d}. In (2.6) we observed that

�(ln(cos(bk ln(z + iyτ )))) ≤ ln(cosh(bkθτ )) ≤ bk|θτ |

and therefore

|G1(z)| = e
∑

τ∈J ,k≥k0
�(ln(cos(bk ln(z+iyτ )))) ≤ e

∑
τ∈J ,k≥k0

bk|θτ |.

1This can be seen as follows: ψ(x) = ln( 1
cos(x)

) as a composition of non-decreasing convex

functions is convex on ]0, π
2
[. So h(x) =

ψ(x)
x

is monotone increasing. Therefore we have h(x) ≤
h(π

4
)x.
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Since G2(z) =
∏

τ∈J
k<k0

cos(bk ln(z+iyτ )) is the product of finitely many holomorphic

functions on C \ (R− − iEs) it is itself holomorphic with

|G2(z)| ≤
∏
τ∈J
k<k0

|cos(bk ln(z + iyτ ))| ≤
∏
τ∈J
k<k0

cosh(bkθτ ) ≤ e
∑

τ∈J ,k<k0
bk|θτ |,

where we used (2.4). Multiplication of G1 and G2 closes the argument. �

We note that cos(bk ln(z+iyτ )) = 0 for z = −iyτ+e
−mπ−π

2
bk for any τ = (k, l) ∈ I

and m ∈ N, so that

(2.7) G(z) = GI(z) = 0 for all z = −iyτ + e
−mπ−π

2
bk , τ = (k, l) ∈ I,m ∈ N.

Consequently we get the following:

Corollary 2.3. Let αk, ak, bk be sequences of non-negative real numbers that satisfy
0 ≤ αk ≤ 1 and

∑∞
k=1 2

kak,
∑∞

k=1 2
kbk < ∞. Then

f(z) = e−F (z), g(z) = G(z)e−F (z)

are holomorphic on C \ (R− − iEs). For the dense subset {yτ}τ∈I of Es we have

g(z) = 0 for z = −iyτ + e
−mπ−π

2
bk , τ = (k, l) ∈ I,m ∈ N.

2.2. C∞-extension. In this section we will show that one can choose sequences
ak, bk, αk appropriately (satisfying the conditions of Corollary 2.3) such that f, g

are holomorphic on C+ and admit a C∞-extension to C+ = {z ∈ C : �(z) > 0}).
First we check that the building blocks a, b, introduced in (0.1), admit such a

C∞-extension to C+ and are vanishing to infinite order in 0, i.e.,

(2.8) lim
|z|↘0

z∈C+

∣∣∣∣ dmdzm
a(z)

∣∣∣∣ ,
∣∣∣∣ dmdzm

b(z)

∣∣∣∣ = 0.

By induction one shows that there are constants C = C(m), D = D(m) > 0,
and μ = μ(m), ν = ν(m) ∈ R (depending only on m) s.t. for any 0 < α < 1,
z = reiθ ∈ C \ R−, r < 1,∣∣∣∣ dmdzm

e−z−α

∣∣∣∣ ≤ C
∣∣z−2m

∣∣ |e−z−α | = Cr−2me−�(z−α),

and using (2.3) and the equivalence for sin(z), z ∈ C,∣∣∣∣ dmdzm
cos(ln(z))

∣∣∣∣ =
∣∣∣∣μ cos(ln(z))

zm
+ ν

sin(ln(z))

zm

∣∣∣∣ ≤ D r−m cosh(θ).

Hence (2.8) holds if r−me−�(z−α) → 0 as r → 0 for every m ∈ N. This is equivalent
to �(z−α) +m ln(r) → +∞ as r → 0. For z ∈ C+ \ {0} we have −π

2 ≤ θ ≤ π
2 and

so for r → 0 we have

�(z−α) +m ln(r) = r−α cos(αθ) +m ln(r) ≥ r−α cos(α
π

2
) +m ln(r) → ∞.
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Similarly we can conclude the extension for f, g:

Lemma 2.4. Let the sequences be ak = bk = 2−k

k2 and

αk =

{
α if 0 < s < 1 for some s < α < 1,

1− 1
2k

− 1
3 if s = 1.

Then the function f, g of Corollary 2.3 is holomorphic on C\(R−−iEs) and admits
C∞-extensions to C+ with

lim
dist(z,−iEs)→0

z∈C+

∣∣∣∣ dmdzm
f(z)

∣∣∣∣ ,
∣∣∣∣ dmdzm

g(z)

∣∣∣∣ = 0.

Proof. That f, g are well-defined and holomorphic is the content of Corollary 2.3.
It remains to check the C∞-extension.

Due to the general Leibniz rule dm

dzm f(z) =
∑m

n=0

(
m
n

)
G(m−n)(z)(e−F (z))(n) it is

sufficient to check that for any m,n ∈ N,

lim
dist(z,−iEs)→0

z∈C+

|G(m)(z)(e−F (z))(n)| = 0.

First we note that F is holomorphic on C+, (e
−F (z))′ = −F ′(z)e−F (z), and

|F (m)(z)| ≤
∑
τ∈I

ak

∣∣∣∣ dmdzm
(z + iyτ )

−αk

∣∣∣∣ ≤ m!d−m−1
∞∑
k=1

ak2
k =

π2

6
m!d−m−1

for z ∈ C+, dist(z,−iEs) ≥ d, so that by induction and the Leibniz rule we deduce
that

(2.9)

∣∣∣∣ dmdzm
e−F (z)

∣∣∣∣ ≤ Cd−m−1|e−F (z)| for z ∈ {dist(z,−iEs) ≥ d}

for a constant C > 0 that depends only on m. Second, Cauchy’s integral formula

G(m)(z) =
m!

2πi

˛
∂Bd(z)

G(w)

(w − z)m+1
dw

applies since G is holomorphic on Bd(z). Combining it with the uniform bound on
|G| (Lemma 2.2) gives

(2.10) |G(m)(z)| ≤ m!

dm
sup

w∈Bd(z)

|G(w)| ≤ Cm!

dm
.

Considering (2.9), (2.10), and the general Leibniz rule the C∞ lemma follows if for
every m ∈ N,

d−m|e−F (z)| = e−(�(F (z))+m ln(d)) → 0 for d = dist(z,−iEs) → 0.

This is equivalent to

(2.11) �(F (z)) +m ln(d) → +∞ as d → 0.

To check it, let z ∈ C+ with d = dist(z,−iEs) > 0 be given. Fix y ∈ Es with
d = |z − iy| and τk = (k, l) ∈ I with y ∈ Eτk for each k ∈ N. Take k0 ∈ N with

(2.12) |Ek0+1,·| < d ≤ |Ek0,·|.
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Hence for k ≤ k0 we have rτk ≤ d+ |Eτk | ≤ 2|Eτk |, and so

�(F (z)) =
∑
τ∈I

ak cos(αkθτ )r
−αk
τ ≥

k0∑
k=1

ak cos(αk
π

2
)r−αk

τk

≥ 1

2

k0∑
k=1

ak cos(αk
π

2
)|Eτk |−αk .

We will consider 0 < s < 1 and s = 1 separately.
If 0 < s < 1 we have ak cos(αk

π
2 )|Eτk |−αk = k−2 cos(απ

2 )ζ
k where ζ = 2

α
s −1 > 1.

We combine this with

(ζ − 1)

k0∑
k=1

k−2ζk = k−2
0 ζk0+1 − ζ +

k0−1∑
k=1

(k−2 − (k + 1)−2)ζk+1 ≥ k−2
0 ζk0+1 − ζ

to conclude that

�(F (z)) +m ln(d) ≥ ck−2
0 ζk0+1 +m ln(d)− cζ

≥ ck−2
0 ζk0+1 − m ln(2)

s
(k0 + 1)− cζ → +∞ (k0 → ∞),

where c =
cos(α π

2 )

2(ζ−1) . This is equivalent to (2.11) since due to (2.12), − ln(2)
s (k0+1) <

ln(d) ≤ − ln(2)
s k0.

If s = 1, we have

(2.13) ak cos(αk
π

2
)|Eτk |−αk ≥ 1

2

2
1
4k

2
3

k
7
3

for k ≥ 9.

(2.13) holds because firstly |Eτk | = 2−k−k2/3

, αk = 1− 1
2k

− 1
3 , and therefore

ln(2−k|Eτk |−αk)

ln(2)
= (1− 1

2
k−

1
3 )(k + k

2
3 )− k =

1

2
k

2
3 (1− k

1
3 ) ≥ k

2
3

4
for k ≥ 8.

Secondly, cos(αk
π
2 ) ≥ (1 − αk) = k− 1

3

2 because cos((1 − t)π2 ) ≥ t for 0 ≤ t ≤ 1.2

Similarly as before we have

(2.14) (2
1
6 −1)

k0∑
k=9

2
k

2
3
4

k
7
3

=
2

k

2
3
0 + 2

3
4

k
7
3
0

− 2
9
2
3
4

9
7
3

+

k0−1∑
k=9

2
k

2
3 + 2

3
4

k
7
3

− 2
(k+1)

2
3

4

(k + 1)
7
3

≥ 2
(k0+1)

2
3

4

k
7
3
0

−1,

where we used that k
2
3 + 2

3 ≥ (k + 1)
2
3 to conclude that the sum in the middle is

non-negative.3 We combine (2.13) and (2.14) to conclude that

�(F (z)) +m ln(d) ≥
k0∑
k=9

ak cos(αk
π

2
)|Eτk |−αk +m ln(d)

≥ c
2

(k0+1)
2
3

4

k
7
3
0

− c−m ln(2)(k0 + 1 + (k0 + 1)
2
3 ) → +∞ (k0 → ∞),

2Holds true because cos(x) is concave on |x| ≤ π
2
.

3By the mean value theorem we have (k + 1)
2
3 − k

2
3 ≤ supx∈[k,k+1]

d
dx

x
2
3 ≤ 2

3
.
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where c = 1

4(2
1
6 −1)

. As before it is equivalent to (2.11) because of (2.12), which is

equivalent to − ln(2)(k0 + 1 + (k0 + 1)
2
3 ) < ln(d) ≤ − ln(2)(k0 + k

2
3
0 ). �

3. Applications

3.1. Minimal surfaces. Given a holomorphic function h on Ω ⊂ C open, Q ∈ N,
one defines the irreducible holomorphic variety V ⊂ Ω× C by

(3.1) V = {(z, u) ∈ Ω× C : uQ = h(z)}.
Following Federer we associate to V an integer rectifiably current of real dimension
two denoted by �V�. It is given by integration over the manifold part of V , Vreg.,
i.e., Vreg. = {(z, u) : uQ = h(z), h(z) �= 0}. Federer observed that �V� is a mass-
minimizing cycle, since V , as a complex submanifold of C2, is calibrated by the
Kähler form (Wirtinger’s form).

If we take h = g, Ω = C+ in (3.1) we get the following example.

Example 1. Given 0 < s ≤ 1 and an integer Q ≥ 2 there is a mass-minimizing
cycle V ⊂ C+×C with the additional property that if s < 1, then Hs(V \ Vreg.) = 1,

and if s = 1, then dimH(V \ Vreg.) = 1.

The additional property holds since V \Vreg. = {(z, 0) ∈ C+×C : G(z) = 0} and

therefore V \ Vreg. = {(z, 0) ∈ C+×C : G(z) = 0}∪−iEs. {(z, 0) ∈ C+×C : G(z) =
0} is countable so that the claim follows by the properties of Es.

Remark 2. For two dimensional minimal surfaces in R3, R. Ossermann showed in
[15] that true branching points can be ruled out in the interior. If the boundary
curve is real analytic the existence branching points at the boundary can be ruled
out as well. This was shown by R. Gulliver and F. Leslie in [11] for two dimensional
surfaces in R3.

Gulliver presents in [10, Theorem 1.6] the following example.

Theorem 3.1. There is a smooth minimal immersion X(Ω) ⊂ R3, Ω ⊂ C+ simply
connected with the following property: X maps ∂Ω diffeomorphically onto a regular
C∞ Jordan curve Γ ⊂ R

3 and has a true branch point at z = 0 ∈ Γ. The set of
self intersections of X consists of the union of an infinite sequence of disjoint real
analytic arcs, each of which joins two points of Γ lying on opposite sides of the
branch point.

His construction uses the Weierstrass representation with a holomorphic vector
field that comes from a perturbation of the building block a(z) = e−zα

, (0.1), with
α = 1

7 . It could be of interest to see if one can follow his analysis using one of
the holomorphic functions f or g (Lemma 0.1) to construct a minimal immersion
X in R3 with C∞ boundary curve and a large set of true branching points on the
boundary.

3.2. Dirichlet minimizing Q-valued functions. One of the implications of Lem-
ma 0.1 in the context of Q-valued functions was stated heuristically in the intro-
duction.

Almgren developed in his pioneering work [1] the theory of multivalued func-
tions to prove a regularity result on area minimizing rectifiable currents. He intro-
duced them as Q-valued functions. Q ∈ N, fixed, indicates the number of values
the function takes, counting multiplicity. We will refer to them from now on as



EXAMPLES OF HOLOMORPHIC FUNCTIONS 4259

Q-valued functions. We assume that the reader is familiar with the most basic
definitions and results concerning the theory of Q-valued functions with a focus on
Dirichlet minimizers. We follow mainly the notation and terminology introduced
by C. De Lellis and E. Spadaro in [5]. It differs slightly from Almgren’s original
one; e.g., (AQ(R

n),G) denotes the metric space of unordered Q-tuples in Rn, and
W 1,2(Ω,AQ(R

n)) denotes the Sobolev space of Q-valued functions on a domain
Ω ⊂ RN . A recollection of the most general definitions and results omitting the
actual proofs can be found in [12, section 1]. De Lellis and Spadaro gave a modern
revision of Almgren’s original theory and results concerning Dirichlet minimizers
in [5].

The holomorphic functions f, g generate examples of Q-valued functions that
are Dirichlet minimizing with respect to compact perturbations. Furthermore these
examples are defined on R2

+ = {(x, y) ∈ R2 : x > 0} � C+ and have “large” singular
set towards the boundary. As we mentioned before the classical theory of Dirichlet
minimizing Q-valued functions had been developed in [1] and revisited with modern
methods in [5].

Before we state the precise properties of the examples we recall the definition of
the singular set and related results, and thereafter the definition of Ck(Ω,AQ(R

m)
for a domain Ω ⊂ Rn.
Definition of the singular set: Given a Dirichlet minimizer u ∈ W 1,2(Ω,AQ(R

m)),
Ω ⊂ RN open, a point y ∈ Ω is called a regular point of u if ∃U ⊂ Ω open
neighborhood of y, ui ∈ C∞(U,Rm) harmonic with

u(x) =

Q∑
i=1

�ui(x)� for a.e. x ∈ U

and ui(x) �= uj(x), ∀x ∈ U or ui ≡ uj . The open set (by definition) of all regular
points is denoted by reg(u). sing(u) then denotes the relative closed complement
Ω \ reg(u).

An outcome of Almgren’s original work is an estimate on the size of the singular
set in the interior; compare [5, Theorem 0.11].

Theorem 3.2. u ∈ W 1,2(Ω,AQ(R
m)) Dirichlet minimizing has dimH(sing(u)) ≤

N − 2. In the case of N = 2, sing(u) is countable.

This estimate had been improved by De Lellis and Spadaro [5, Theorem 0.12].

Theorem 3.3. Given u as above and N = 2, then sing(u) consists of isolated
points.

That the upper bound on the Hausdorff dimension is sharp is a consequence of
the following:

Theorem 3.4. Let V ⊂ C
N × C

m � R
2N × R

2m be an irreducible holomorphic
variety with the property that ∃Ω ⊂ CN open, C1-regular, V is a Q : 1 cover
of Ω under the orthogonal projection and M(V ∩ (Ω × Cm)) < ∞. Then ∃u ∈
W 1,2(Ω,AQ(R

2m) Dirichlet minimizing with graph(u) = V ∩ (Ω× Cm).

This was originally proven by Almgren [1, Theorem 2.20]. Spadaro found a very
elegant, more elementary proof [17, Theorem 0.1].
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Hence the holomorphic varieties V = Vh defined in (3.1) generate examples of
Dirichlet minimizers:

(3.2) uh(z) =
∑
v∈C

vQ=h(z)

�v� for z ∈ Ω.

Definition of Ck(Ω,AQ(R
m)): Letting k ∈ N and Ω ⊂ R

N , u ∈ C0(Ω,AQ(R
m)) is

said to be Ck(Ω,AQ(R
m)) if there exists a Q-valued map U ,

x 	→ Ux(y) =

Q∑
i=1

�P i
x(y)�, P i

x is a polynomial with degree ≤ k,

such that the following properties hold:

(a) Ux(x) =
∑Q

i=1�P
i
x(x)� = u(x) for all x ∈ Ω;

(b) P i
x = P j

x if ui(x) = uj(x);
(c) whenever K � Ω, compact, δ > 0 let

ρK(δ) = sup
x,y∈K
|x−y|≤δ

inf
σ∈PQ

Q∑
i=1

⎛
⎝ ∑

|α|≤k

|DαP i
y(y)−DαP σ(i)

x (y)||x− y||α|−k(k − |α|)!

⎞
⎠

2

;

then ρK(δ) → 0 as δ → 0.

We want to remark that condition (b) is not always assumed; compare [4, Def-
inition 3.6] and [5, Definition 1.9]. Let u1, . . . , uQ be a collection of single valued
Ck-functions on Ω. Then

(3.3) u(x) =

Q∑
i=1

�ui(x)�

defines a Q-valued Ck-function (including property (b)) if Dαui(x) = Dαuj(x) for
all |α| ≤ k whenever ui(x) = uj(x). The function Ux is given by

Ux(y) =

Q∑
i=1

�P i
x(y)�,

where P i
x(y) =

∑
|α|≤k

1
α!D

αui(x)(y−x)α is the kth-order Taylor polynomial of ui.

Property (c) follows from the properties of the Taylor polynomials and (b) by the
assumption on the order of contact.

Now we are able to state properly the properties of the examples.

Corollary 3.5. Let 0 < s ≤ 1 and an integer Q ≥ 2 be given. Then there is
u ∈ W 1,2

loc.(R+,AQ(R
2)), Dirichlet minimizing with respect to compact perturbations

of R2 and the additional properties:

(i) u
∣∣
∂R

2
+

∈ Ck(∂R2
+,AQ(R

2)) for all k ∈ N;

(ii) if s < 1, then Hs(sing(u)) = 1, and if s = 1, then dimH(sing(u)) = 1.

Proof. Let 0 < s ≤ 1 be fixed and let g(z) = G(z)e−F (z) be the holomorphic
function on C+ constructed in Lemma 0.1. Then

u(z) =
∑
v∈C

vQ=g(z)

�v�, z ∈ C+,
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is Dirichlet minimizing and an element of W 1,2(Ω,AQ(R
2)) for any C1-regular

bounded subset Ω ⊂ C+ as a consequence of Theorem 3.4.
It remains to check the C∞-regularity at the boundary and the property of the

singular set.
We start with the regularity of the trace. By construction we have that g(z) =

G(z)e−F (z) is holomorphic on C \ (R− − iEs) and g
∣∣
C+

has a C∞-extension to

C+. Furthermore G(z) �= 0 for all z ∈ C \ (R − iEs), |G(z)| < C uniformly on
C \ (R− − iEs), so that for any z0 /∈ R − iEs there exists r > 0 sufficiently small
such that G(Br(z0)) is contained in a holomorphic branch ψ : G(Br(z0)) → C of
the Qth root. Then u is explicitly given by

u(z) =

Q−1∑
l=0

�ξl (ψ ◦G)(z) e−
1
QF (z)� ∀z ∈ Br(z0), ξ = ei

2π
Q .

Note that (ξl− ξk)ψ ◦ g(z) �= 0 for k �= l, z ∈ Br(z0), so that we are in the situation
of (3.3). The k-jet of u is

Uk
z =

Q∑
l=0

�(ξl (ψ ◦ g)(z), ξl (ψ ◦ g)(1)(z), . . . , ξl (ψ ◦ g)(k)(z))�,

where we write ψ ◦ g(z) for (ψ ◦G)(z) e−
1
QF (z). The C∞-regularity will follow from

(3.4) |(ψ ◦ g)(m)(−iy)| = O(dist(y, Es)) for all m ∈ N.

The same arguments used in the proof to Lemma 2.4 show that∣∣∣∣ dmdzm
e−

1
QF (z)

∣∣∣∣ ≤ C d−m−1|e− 1
QF (z)| = C

(
d−Q(m+1)e−�(F (z))

) 1
Q

for all z ∈ {dist(z,−iEs) ≥ d} and a constant C = C(m) > 0. Let

z ∈ {dist(z,R− iEs) > d}
be given; then ψ ◦G is holomorphic on Bd(z). So Cauchy’s integral formula gives

(ψ ◦G)(m) =
m!

2πi

˛
∂Bd(z)

ψ ◦G(w)

(w − z)m+1
dw,

and therefore

|(ψ ◦G)(m)(z)| ≤ m!

dm
sup

w∈Bd(z)

|G(w)| 1
Q ≤ Cm!d−m.

We used the uniform bound on |G|. Combining both bounds with the Leibniz rule
we deduce that∣∣∣∣ dmdzm

(ψ ◦G)(z)e−
1
QF (z)

∣∣∣∣ ≤ C
(
d−Qme−�(F (z))

) 1
Q ∀z ∈ {dist(z,R− iEs) > d}.

So (3.4) follows from (2.11), where we showed that for any m ∈ N,

�(F (z)) +m ln(d) → +∞ as d → 0.

It remains to check the properties of the singular set. By construction of u we
have

sing(u) = {z ∈ C+ : g(z) = 0} ∪ −iES

because g has the property that to any z ∈ −iEs there exist zk ∈ C+, zk → 0, and
g(zk) = 0. Set Ak = {z ∈ C+ : g(z) = 0, 2k ≤ �(z) < 2k+1} for any k ∈ Z. Ak
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consists of isolated points since g is holomorphic on C+, and therefore Hs(Ak) = 0
for all k ∈ Z and s > 0. Hence we deduce that

Hs(−iEs) ≤ Hs(sing(u)) ≤ Hs(−iEs) +
∑
k∈Z

Hs(Ak) = Hs(−iEs).

�

This example, Corollary 3.5, shows that the singular set can behave very badly
towards the boundary. In the interior a blow-up analysis together with a Federer
reduction argument is used to study the singular set; compare [5, section 3]. With
the following calculation we want to show that this procedure cannot directly be
transferred to the boundary.

Almgren’s celebrated frequency function is the major tool to carry out the blow-
up analysis. For u ∈ W 1,2(Ω,AQ(R

m)) with Ω ⊂ RN open it is defined as

(3.5) I(u, y, r) =
D(u, y, r)

H(u, y, r)
=

r2−N
´
Br(y)∩Ω

|Du|2

r1−N
´
∂Br(y)

|u|2 .

It has the following esssential property (compare [5, Theorem 3.15]):

Theorem 3.6. Let u ∈ W 1,2(Ω,AQ(R
m)) be Dirichlet minimizing. Then for any

y ∈ Ω either ∃0 < R < dist(y, ∂Ω) s.t. u
∣∣
BR(y)

≡ 0 or r ∈]0, dist(y, ∂Ω)[	→ I(u, y, r)

is absolutely continuous, non-decreasing, and positive.

Consequently the following limit is well-defined in the interior of Ω:

(3.6) I(u, y) = lim
r→0

I(u, y, r) :

In the planar case De Lellis and Spadaro determined the spectrum of y 	→ I(u, y).

If u(x) =
∑Q

i=1�ui(x)� satisfies
∑Q

i=1 ui(x) = 0 at almost every point, then I(u, y)

takes values in the set {P ′

Q′ : P
′, Q′ ∈ N divisor free, Q′ ≤ Q} ∪ {0} [5, Proposition

5.1].
The following examples show that this may fail at boundary points.

Corollary 3.7. Let Q ≥ 2, P > 0 be two divisor free integers. Then there exists a
Dirichlet minimizer u ∈ W 1,2

loc (R
2
+,AQ(R

2)) with the properties:

(i) u
∣∣
∂R

2
+

∈ Ck(∂R2
+,AQ(R

2)) for all k ∈ N;

(ii) for all k ∈ N, zk = (e−kπ+π
2 , 0) is a branch point of “order” P

Q , i.e.,

I(u, zk) =
P
Q ;

(iii) limr→0 I(u, 0, r) = +∞.

Corollary 3.8. Letting Q > 2 be an integer, and letting 0 < s < 1 be given, there
is a Dirichlet minimizer u ∈ W 1,2

loc.(R
2
+,AQ(R

2) with the properties:

(i) u
∣∣
∂R

2
+

∈ Ck(∂R2
+,AQ(R

2)) for all k ∈ N;

(ii) sing(u) = ∅, but u(z) = Q�0� ∀z ∈ −iEs with Hs(Es) = 1;
(iii) limn→∞ I(u,−iyk, Rn) = +∞ for a countable subset {yk}k∈N ⊂ Es and a

sequence Rn → 0.

Before we give the proofs, we collect two observations to calculate energy and
L2-norm for multivalued functions arising from the holomorphic varieties defined
in (3.4).
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AQ(C) � AQ(R
2) enables us to define a Q-root “globally”, i.e., an “inverse” to

the holomorphic function z 	→ zQ, by

(3.7) Π(w) =
∑

vQ=w

�v� =

Q∑
l=0

�ξlv0�

for ξ = ei
2π
Q and an arbitrary choice of v0 ∈ C with vQ0 = w. Furthermore we

observed already that for y ∈ Ω with h(y) �= 0 there is an open neighbourhood U
with |h(z)−h(y)| < |h(y)|, ∀z ∈ U . There is a holomorphic branch ψ of the Q-root

on |w − h(y)| < |h(y)| so that Π(w) =
∑Q−1

l=0 �ξlψ(w)� on B|h(y)|(h(y)), showing
that Π is continuous on all of C. Furthermore

(3.8) u(z) = Π ◦ h(z) =
Q−1∑
l=0

�ξl(ψ ◦ h)(z)� ∀z ∈ U.

Hence u ∈ Ck(U,AQ(R
2)) for all k since we are in the situation mentioned in (3.3)

with

(3.9) Uk
z =

Q−1∑
l=0

�(ξl(ψ ◦ h)(z), ξl(ψ ◦ h)(1)(z), . . . , ξl(ψ ◦ h)(k)(z))� ∀z ∈ U.

We note that Uk does not depend on the particular choice of the branch.
As an immediate consequence of (3.8) the L2-norm of u is given by

(3.10)

ˆ
V ∩Ω

|u|2 = Q

ˆ
V ∩Ω

|h| 2
Q

for any V ⊂ C. The energy of u on V ∩ Ω due to (3.9) is then

(3.11)

ˆ
V ∩Ω

|Du|2 = 2Q

ˆ
V ∩Ω\{h �=0}

|(ψ ◦ h)′|2 =
2

Q

ˆ
V ∩Ω\{h �=0}

|h| 2
Q−2|h′|2,

where ψ is any local choice of a branch ψ to the Q-root. For instance we can use it
to calculate the value of the frequency at interior branch points.

Example 3. Let h be holomorphic on Ω ⊂ C and let u be the related Dirchlet
minimizer (see (3.2)). Let z0 ∈ Ω be a zero of order P ≥ 1; then

I(u, z0) =
P

Q
.

Since z0 is a zero of order P , there is k holomorphic on {z : |z| < δ}, k0 = k(0) �= 0
s.t. h(z0 + z) = zP k(z). We may assume that |k(z)| > 1

2 |k0|2 for all |z| < δ.

Since h′(z0 + z) = PzP−1k(z)(1 + zk′(z)
Pk(z) ) = P

z h(z0 + z)(1 + O(z)) we may use

|h| 1
Q−1|h′|(z0 + z) = P |z|PQ−1|k0|

1
Q (1 +O(z)) in (3.11) to deduce that

ˆ
Br(z0)

|Du|2 =
2P 2

Q

ˆ
Br(0)

|z| 2PQ −2|k0|
2
Q (1 +O(z)) = 2πP |k0|

2
Q r

2P
Q (1 +O(r))

for any 0 < r < δ. Similarly, using (3.10) we have

1

r

ˆ
∂Br(z0)

|u|2 =
Q

r

ˆ
∂Br

|z| 2PQ |k0|
2
Q (1 +O(z)) = 2πQ|k0|

2
Q r

2P
Q (1 +O(r)).
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We conclude the claim:

I(u, z0, r) =
P

Q
(1 +O(r)).

For boundary points z0 ∈ ∂Ω we face two problems in estimating I(u, z0, r) and
possible limits. Firstly r 	→ I(u, z0, r) is a priori not a monotone quantity as it is
in the interior. Secondly, even restricting ourselves to minimizers of the type (3.2),
h(z) does not necessarily have a convergent Taylor series at z0.

The strategy will be to use the mean value theorem for integration in the ra-
dial variable to estimate D(u, z0, r) =

´
Br(z0)∩Ω

|Du|2 from below by a multiple of

H(u, z0, r) =
1
r

´
∂Br(z0)∩Ω

|u|2. The strategy is motivated by the following observa-

tion. Given a function k holomorphic in a neighbourhood of z ∈ C and k(z) �= 0,
γ > 0, for any ξ = eiθ one has

Dξ|k|2 = 2�
(
kk′ξ

)
= 2|k|2�

(
k′

k
ξ

)
,

Dξ|k|γ =
γ

2
|k|γ−2Dξ|k|2 = γ|k|γ�

(
k′

k
ξ

)
.(3.12)

We observe that Dξ|k|γ ≥ 0 if �
(

k′

k ξ
)
≥ 0 and

(3.13) γ|k|γ−2|k′|2 = γ|k|γ
∣∣∣∣k′k

∣∣∣∣
2

≥ γ|k|γ�
(
k′

k
ξ

)2

= �
(
k′

k
ξ

)
Dξ|k|γ .

The strategy is illustrated in the following example.

Example 4. Let h(z) = e−z−α

, 0 < α < 1, (h(z) = a(z) of (0.1)) in (3.2), i.e.,
u(z) =

∑
v∈C

vQ=h(z)

�v� with z ∈ Ω = C+. Then u satisfies

lim
R→0

I(u, 0, R) = +∞.

We will use the classic radial notation z = reiθ. We define

ϕ(z) = r�
(
h′(z)

h(z)
eiθ

)
= α�(z−α) = αr−α cos(αθ).

Combining (3.11) with (3.13) (h(z) �= 0 ∀z ∈ C+) givesˆ
BR∩C+

|Du|2 =

ˆ
BR∩C+

2

Q
|h(z)| 2

Q−2|h′|2 ≥
ˆ
BR∩C+

ϕ(z)

r

∂

∂r
|h| 2

Q

=

ˆ π
2

−π
2

ˆ R

0

ϕ(reiθ)

(
∂

∂r
|h| 2

Q

)
(reiθ)drdθ.

Since ϕ(z) ≥ αr−θ cos(απ
2 ) > 0, (3.12) implies that ∂

∂r |h|
2
Q ≥ 0. Thus we apply

the one dimensional mean value theorem to deduce that to every |θ| ≤ π
2 there is

0 < rθ ≤ R withˆ π
2

−π
2

ˆ R

0

ϕ(reiθ)

(
∂

∂r
|h| 2

Q

)
(reiθ)drdθ =

ˆ π
2

−π
2

ϕ(rθe
iθ)

ˆ R

0

(
∂

∂r
|h| 2

Q

)
(reiθ)drdθ

≥ αR−α cos(α
π

2
)

ˆ π
2

−π
2

|h| 2
Q (Reiθ)dθ.
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(Although it is not needed for the argument that the map θ 	→ ϕ(rθe
iθ) is measur-

able, since it is sufficient that it is pointwise bounded, we included a short remark
below on the measurability.) We conclude using (3.10) thatˆ

BR∩C+

|Du|2 ≥ α

Q
R−α cos(α

π

2
)
1

R

ˆ
∂BR∩C+

|u|2,

i.e., I(u, 0, R) ≥ α
QR−α cos(απ

2 ) → +∞ (R → 0).

As we mentioned in the proof we give a short comment concerning the measur-
ability.

Remark 5. We will prove the following claim:
Let μ be a Borel regular measure on a path-connected spaceX, let ν be a measure

on some space Y , and let μ× ν be the product measure on X × Y . Given f, g with
the properties that

(i) f , g, fg are μ× ν summable, i.e., f, g, fg ∈ L1(X × Y, μ× ν);
(ii) x 	→ f(x, y) is continuous for a.e. y and g ≥ 0,

There exists a map χ : Y → X s.t.

y 	→ f(χ(y), y)

ˆ
X

g(x, y) dμ(x) =

ˆ
X

fg(x, y) dμ(x) is ν-integrable and(3.14)

f(χ(y), y)

ˆ
X

g(x, y) dμ(x) =

ˆ
X

fg(x, y) dμ(x) for a.e. y.(3.15)

Indeed, let A ⊂ Y be the set of y ∈ Y s.t.

(a) x 	→ f(x, y) is continuous and |f | is finite;
(b) x 	→ g(x, y), fg(x, y) are μ-summable (g(·, y), fg(·, y) ∈ L1(X,μ)).

We have ν(Y \ A) = 0 since (a) holds for a.e. y by assumption and (b) holds for
a.e. y by general measure theory. The one dimensional mean value theorem tells
us that for y ∈ A there exists χ(y) ∈ X s.t. the identity (3.15) holds. Indeed
let y ∈ A be fixed. Then z 	→ f(z, y)

´
X
g(x, y) dμ(x) is continuous, and since∣∣´

X
f(x, y)g(x, y) dμ(x)

∣∣ < ∞ we can find x0, x1 ∈ X s.t.

inf
z∈X

f(z, y)

ˆ
X

g(x, y) dμ(x) ≤ f(x0, y)

ˆ
X

g(x, y) dμ(x)

≤
ˆ
X

f(x, y)g(x, y) dμ(x)

≤ f(x1, y)

ˆ
X

g(x, y) dμ(x) ≤ sup
z∈X

f(z, y)

ˆ
X

g(x, y) dμ(x).

By assumption there is a continuous path γ connecting x0 with x1. Now we may
apply the one dimensional mean value theorem to t 	→ f(γ(t), y)

´
X
g(x, y) dμ(x)

to find a point χ(y). Since
´
X
(fg)(x, y) dμ(x) is ν-integrable and for all y ∈ A

(3.15) is satisfied, (3.14) holds. If in addition
´
X
g(x, y) dμ(x) �= 0 for a.e. y, then

y 	→ f(χ(y), y) is ν-measurable.

Proof of Corollary 3.7. We claim that the minimizer u(z) =
∑

v∈C

vQ=bP (z)

�v� with

b(z) = cos(ln(z))e−z−α

(compare (0.1)) has the desired properties.
(i) follows from the same arguments presented in the proof of Corollary 3.5, so

we omit the details here.
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(ii) corresponds to Example 3. Since {z ∈ C+ : b(z) = 0} = {eπ(2k+1)
2 : k ∈ Z},

b′(e
π(2k+1)

2 ) = (−1)k+1e−
π(2k+1)

2 −e−α
π(2k+1)

2 �= 0, and so e−
π(2k+1)

2 is a zero of order
P to b(z)P .

(iii) remains to be proven. We want to do it similarly to Example 4. As before
we define

ϕ(z) = �
(
b′(z)

b(z)
z

)
= �

(
αz−α − sin(ln(z))

cos(ln(z))

)
.

Since �(tan(ln(reiθ))) is not uniformly bounded as |θ| → 0, we cannot conclude
directly that ϕ(reiθ) ≥ 0 for r > 0 sufficiently small. But4 |tan(ln(reiθ))|2 ≤ 1

tanh(θ)2

is bounded on π
4 ≤ |θ| ≤ π

2 , and so

(3.16) ϕ(reiθ) ≥ αr−α cos(α
π

2
)− 1

tanh(π4 )
≥ 0

for π
4 ≤ |θ| ≤ π

2 and 0 < r ≤ R, R > 0 sufficiently small. The map

λ 	→ |b(reiλθ)|2 = |cos(ln(reiλθ))|2e−2r−α cos(αλθ)

as a product of two monotone increasing functions is monotone increasing on |λθ| ≤
π
2 .

5 We can combine it with (3.10) ( |h|2 = |b|2P ) to

1

R

ˆ
∂BR∩C+

|u|2 = Q

ˆ π
2

−π
2

|b(Reiθ)| 2PQ dθ ≤ Q

ˆ
π
4 <|θ|<π

2

|b(Reiθ)| 2PQ dθ(3.17)

+Q

ˆ
|θ|< π

4

|b(Rei(θ+
π
4 ))| 2PQ dθ = 2Q

ˆ
π
4 <|θ|<π

2

|b(Reiθ)| 2PQ dθ.

We use (3.11) together with (3.13) and h = bP , h′ = PbP−1b′, and |h| 2
Q−2|h′|2 =

P 2|b| 2PQ −2|b′|2 to obtainˆ
BR∩C+

|Du|2 ≥
ˆ
BR∩{π

4 ≤|θ|<π
2 }
|Du|2 = P

ˆ
BR∩{π

4 ≤|θ|<π
2 }

2P

Q
|b| 2PQ −2|b′|2

≥ P

ˆ
BR∩{ π

4 ≤|θ|<π
2 }

ϕ(z)

r

∂

∂r
|b| 2PQ .

The estimate (3.16) applied to (3.13) (i.e., ∂
∂r |b|

2P
Q = 2P

Q
ϕ(z)
r |b| 2PQ ) shows that

∂
∂r |b|

2P
Q (reiθ) ≥ 0 for π

4 ≤ |θ| ≤ π
2 , 0 < r < R, and R > 0 sufficiently small.

Hence we apply the one dimensional mean value theorem to deduce that to every
π
4 ≤ |θ| ≤ π

2 there is 0 < rθ ≤ R with
ˆ
BR∩{π

4 ≤|θ|<π
2 }

ϕ(z)

r

∂

∂r
|b| 2PQ =

ˆ
π
4 ≤|θ|≤π

2

ϕ(rθe
iθ)

ˆ R

0

∂

∂r
|b| 2PQ (reiθ) drdθ

≥
(
αR−α cos(α

π

2
)− 1

tanh(π4 )

) ˆ
π
4 ≤|θ|≤π

2

|b| 2PQ (Reiθ) dθ.

4Using the expansions for cos(x+ iy), (2.2), and sin(x+ iy) = cos(x) sinh(y) + i sin(x) cosh(y)
we have |cos(x + iy)|2 ≥ sinh(y)2, |sin(x + iy)|2 ≤ cosh(y)2. Combining both gives the claimed
bound.

5λ �→ e−r−α cos(αλθ) is monotone increasing since cos(αλθ) is decreasing on |λαθ| ≤ π
2
; by

(2.3) one has |cos(ln(reıλθ))|2 = cos(ln(r))2 cosh(λθ)2+sin(ln(r))2 sinh(λθ)2. Differentiating gives
∂
∂λ

|cos(ln(reiλθ))|2 = sinh(2λθ)θ ≥ 0.
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(Again we can avoid measurability questions using the bound (3.16); nonetheless
compare the previous Remark 5.) Recall (3.17) to deduce (iii) in total since for
R > 0 sufficiently small

I(u, 0, R) ≥ P

2Q

(
αR−α cos(α

π

2
)− 1

tanh(π4 )

)
→ ∞ (R → 0).

�

Proof of Corollary 3.8. We claim that for the choice f(z) = e−F (z) of Lemma 0.1
with a fixed 0 < s < 1 the minimizer u(z) =

∑
v∈C

vQ=f(z)

�v� has the desired properties.

(i) follows as before by similar arguments presented in the proof of Corollary 3.5,
and so we omit the details.

(ii) corresponds with f(z) �= 0 for all z ∈ C+.
(iii) remains to be proven. We define

Rn = |En,·|+
2

3
(|En−1,·| − 2|En,·|) =

2

3
|En−1,·| −

1

3
|En,·| =

1

3
(21+

1
s − 1)2−

n
s ,

Rn = |En,·|+
1

3
(|En−1,·| − 2|En,·|) =

1

3
|En−1,·|+

1

3
|En,·| =

1

3
(2

1
s + 1)2−

n
s

and set δ = 1
3 (

|En−1,·|
|En,·| − 2) = 1

3 (2
1
s − 2) > 0. We will show that (iii) holds for the

countable set {yτ}τ∈I and the sequence Rn.
Let yτ0 be given and fixed from now on. Set

I0 = {τ ∈ I : yτ = yτ0};
hence for any !∃k0 ∈ N s.t. ∀τ = (k, l) with k < k0, yτ �= yτ0 , and ∀k > k0
!∃τ = (k, l) ∈ I0. We may assume that τ0 = (k0, l0). We partition I \ I0 as follows:

I1 = {τ ∈ I : yτ /∈ Eτ0}
and for any τ = (k, l) ∈ I0 \ {τ0} (i.e., l is odd and k > k0) set

Iτ = {τ ′ ∈ I : yτ ′ ∈ Ek,l+1 ∩ Eτ0}.

Observe that then for each such τ = (k, l) ∈ I0, k̃ ≥ k > k0 one has

|{τ ′ = (k′, l′) ∈ Iτ : k′ = k̃}| = 2k̃−k.

Define

ϕ(z + iyτ0) = �(−F ′(z) (z + iyτ0)).

To simplify notation we will set r = rτ0 , θ = θτ0 , i.e., z + iyτ0 = reiθ. In this case
(3.13) corresponds to

(3.18)
∂

∂r
|f | 2

Q =
2

Q

ϕ(reiθ)

r
|f | 2

Q .

Recall from Lemma 0.1 that −1
α F ′(z)(z + iyτ0) =

∑
τ∈I ak(z + iyτ )

−α−1(z + iyτ0)

converging absolutely and that �((z+iyτ )
−α−1(z+iyτ0)) = r−α−1

τ r cos((α+1)θτ −
θ). For τ ∈ I0 we have z + iyτ = z + iyτ0 = reiθ, and so

�
(∑

τ∈I0

ak(z + iyτ )
−α−1(z + iyτ0)

)
= r−α cos(αθ)

∑
τ∈I0

ak ≥ c0r
−α

with c0 = cos(απ
2 )

∑∞
k=k0

ak > 0.
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For τ ∈ I1, 0 < r < R, R > 0 sufficiently small we have rτ ≥ δ|Ek0,·| because
rτ ≥ |Ek0−1,·| − 2|Ek0,·| − r. Therefore we have found

�
(∑

τ∈I1

ak(z + iyτ )
−α−1(z + iyτ0)

)
≥ −(δ|Ek0,·|)−α−1r

∑
τ∈I1

ak ≥ −c1r.

In the rest of the argument we restrict ourselves to Rn ≤ r ≤ Rn and n > N
for some large N ∈ N. If τ = (k, l) ∈ I0 with k0 < k ≤ n and τ ′ ∈ Iτ , then
rτ ′ ≥ |yτ ′ − yτ | − r ≥ |Ek−1,·| − |Ek,·| −Rn ≥ δ|Ek,·|, so that 6

∑
τ=(k,l)∈I0

k0<k≤n

∑
τ ′∈Iτ

ak′r−α−1
τ ′ r cos((α+ 1)θτ ′ − θ) ≥ −

∑
k0<k≤n

(δ|Ek,·|)−α−1r
∞∑

k′=k

2−k′

(k′)2

≥ − 2r

δα+1

∑
k0<k≤n

Mk

k2
≥ − 2r

δα+1

Mn+1 −Mk0+1

k20(M − 1)
≥ − c′2

k20
rMn,

where M = (2
α+1
s −1) > 1, and so 2−k|Ek,·|−α−1 = Mk. If τ = (k, l) ∈ I0 with

n < k and τ ′ ∈ Iτ , then rτ ′ ≥ r−|yτ ′ −yτ | ≥ Rn−|Ek−1,·| ≥ Rn−|En,·| = δ|En,·|.
Hence∑
τ=(k,l)∈I0

n<k

∑
τ ′∈Iτ

ak′r−α−1
τ ′ r cos((α+ 1)θτ ′ − θ) ≥ −(δ|En,·|)−α−1r

∞∑
k=n+1

∞∑
k′=k

2−k

(k′)2

≥ −(δ|En,·|)−α−1r
∞∑

k=n+1

2
2−k

k2
≥ −r

2

δα+1n2
Mn = − c′′2

n2
rMn.

Summarising for Rn ≤ r ≤ Rn and n ≥ N = N(k0), we have

(3.19)
1

α
ϕ(re−iθ) ≥ r−α

(
c0 − c1r

1+α −
(
c′2
k20

+
c′′2
n2

)
Mnr1+α

)
≥ c0

2
r−α

because Mnr1+α ≤ MnR1+α
n =

(
1
3 (2

1+ 1
s − 1)

)1+α

2−n → 0 (as n → ∞).

(3.18) and (3.19) give for Rn ≤ r ≤ Rn

∂

∂r
ln(|f | 2

Q (−iyτ0 + reiθ)) =
2α

Q
ϕ(reiθ) ≥ c0α

Q
r−α

or integrated

(3.20) ln

(
|f | 2

Q (−iyτ0 +Rne
iθ)

|f | 2
Q (−iyτ0 + Rne

iθ)

)
≥ cR−α

n

with c = c0
Q

((
Rn

Rn

)α

− 1
)
> 0 (independent of n).

Now we combine the estimate (3.20) with the estimate (3.11) to obtain:ˆ
BRn (−iyτ0

)∩C+

|Du|2 ≥
ˆ
{Rn≤|z+iyτ0

|≤Rn}∩C+

|Du|2

=
2

Q

ˆ
{Rn≤r≤Rn}∩C+

|−F ′|2|f | 2
Q ≥

ˆ
{Rn≤r≤Rn}∩C+

2

Q

ϕ(reiθ)

r

∂

∂r
|f | 2

Q .

6We use the simple estimate
∑

l≥k
2−l

l2
≤ 2−k

k2

∑∞
l=0 2

−l ≤ 2 2−k

k2 .
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As before (3.18) and (3.19) show that ∂
∂r |f |

2
Q > 0 for Rn ≤ r ≤ Rn. We apply as

before the one dimensional mean value theorem to deduce that to every |θ| ≤ π
2

there is 0 < rθ ≤ R withˆ
{Rn≤r≤Rn})∩C+

2

Q

ϕ(reiθ)

r

∂

∂r
|f | 2

Q =

ˆ π
2

−π
2

ϕ(rθe
iθ)

ˆ Rn

Rn

∂

∂r
|f | 2

Q drdθ

=

ˆ π
2

−π
2

ϕ(rθe
iθ)

(
|f | 2

Q (−iyτ0 +Rne
iθ)− |f | 2

Q (−iyτ0 +Rne
iθ)

)
dθ

≥ αc0
2

R−α
n

(
1− e−cR−α

n

) ˆ π
2

−π
2

|f | 2
Q (−iyτ0 +Rne

iθ) dθ.

(With the same observations as before, we can avoid measurability questions by
(3.19).) We used in the last line (3.19) and (3.20). Finally remembering (3.10) we
conclude (iii) since we have found

I(u,−iyτ0 , Rn) ≥
αc0
2Q

R−α
n

(
1− e−cR−α

n

)
→ ∞ (as n → ∞).

�

3.3. Unique continuation. Consider an elliptic operator L in divergence form

(3.21) Lu = Di(a
ij(x)Dju) + bi(x)Diu+ c(x)u.

A function u ∈ L2
loc.(Ω) is said to vanish of infinite order at a point x0 ∈ Ω if

(3.22)

ˆ
BR(x0)∩Ω

|u|2 = O(Rk) for every k ∈ N.

An elliptic operator L as in (3.21) is said to have the strong unique continuation

property in Ω if the only H1,2
loc.(Ω) solution of Lu = 0 on Ω which vanishes of infinite

order at a point x0 ∈ Ω is u ≡ 0.
Garofalo and Lin showed in [9, Theorem 1.1] that L has the unique continuation

property under certain assumptions on the regularity and ellipticity of the coeffi-
cients aij(x), bi(x), c(x). They were able to deduce their result proving a doubling
theorem like the following, which they proved using the frequency function. (The
quoted version can be found in [3, Theorem 6.1].)

Theorem 3.9. Let L be as in (3.21) with aij(x) symmetric, uniformly elliptic,

and Lipschitz, bi(x), c(x) continuous. Then if u ∈ H1,2
loc.(B2R0

(x0)) non-constant

solves Lu = 0 on B2R0
(x0), there exist 0 < R = R(aij , bi, c, x0) < R0 and d =

d(aij , bi, c, x0, u) > 0 s.t.ˆ
B2r(x0)

u2 ≤ 22d
ˆ
Br(x0)

u2 ∀0 < r < R.

A consequence of Lemma 0.1 is that a strong unique continuation theorem fails
for boundary points.

Example 6. Given 0 < s ≤ 1 there exist u ∈ C∞(R2
+), u �= 0, with

Δu = 0 on R
2
+ (i.e., harmonic)

and a set Es ⊂ ∂R2
+ with Hs(Es) = 1 (0 < s < 1), dimH(Es) = 1 (s = 1) such that

u vanishes to infinite order for all z ∈ −iEs.
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Observe that Δ satisfies the conditions of Theorem 3.9 and therefore has the
strong unique continuation property in the interior of R2

+.

Proof of Example 6. Let 0 < s ≤ 1 be given and let f be the related holomorphic
function of Lemma 0.1. Since f is C∞ on C+ (2.4) and C+ convex we have by one
dimensional analysis
(3.23)

f(z) =

k−1∑
l=1

1

l!
f (l)(z0)(z−z0)

l+
1

(k − 1)!

ˆ 1

0

(1−s)k−1f (k)(z0+s(z−z0))(z−z0)
k ds.

The function

u(z) = �(f(z))
is harmonic and non-constant on R2

+, C
∞ on R2, and has the desired property since

for z0 ∈ −iEs, f
(l)(z0) = 0∀l, and therefore by (3.23)

|u(z)| ≤ 1

k!
sup

w∈C+∩B1(z0)

|f (k)(w)| |z − z0|k ∀z ∈ C+ ∩B1(z0).

This implies that u satisfies (3.22). �
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