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COMPUTING LOCAL ZETA FUNCTIONS OF GROUPS,

ALGEBRAS, AND MODULES

TOBIAS ROSSMANN

Abstract. We develop a practical method for computing local zeta functions
of groups, algebras, and modules in fortunate cases. Using our method, we
obtain a complete classification of generic local representation zeta functions

associated with unipotent algebraic groups of dimension at most six. We also
determine the generic local subalgebra zeta functions associated with gl2(Q).
Finally, we introduce and compute examples of graded subobject zeta func-
tions.

1. Introduction

Zeta functions counting subobjects and representations. By considering
associated Dirichlet series, various algebraic counting problems give rise to a global
zeta function Z(s) which admits a natural Euler product factorisation Z(s) =∏

p Zp(s) into local zeta functions Zp(s) indexed by rational primes p. For example,

Z(s) could be the Dirichlet series enumerating subgroups of finite index within a
finitely generated nilpotent group, and Zp(s) might enumerate those subgroups of
p-power index only (see [26]). In the special case of the infinite cyclic group, we
then recover the classical Euler factorisation ζ(s) =

∏
p 1/(1−p−s) of the Riemann

zeta function.
This article is concerned with three types of counting problems and associated

zeta functions; all of these problems arose from (and remain closely related to)
enumerative problems for nilpotent groups.

• Enumerate subalgebras of finite additive index of a possibly non-associative
algebra, e.g., a Lie algebra (possibly taking into account an additive grad-
ing). (See [26].)

• Enumerate submodules of finite additive index under the action of an
integral matrix algebra. (See [43].)

• Enumerate twist-isoclasses of finite-dimensional complex representations
of a finitely generated nilpotent group. (See [27, 46].)

Generic local zeta functions. Each of the preceding three counting problems
provides us with a global zeta function Z(s) (namely, the associated Dirichlet series)
and a factorisation Z(s) =

∏
p Zp(s) as above. The goal of this article is to compute

the generic local zeta functions Zp(s) at least in favourable situations—that is,

Received by the editors February 2, 2016, and, in revised form, September 29, 2016.
2010 Mathematics Subject Classification. Primary 11M41, 20F69, 20G30, 20F18, 20C15.
Key words and phrases. Subgroup growth, representation growth, zeta functions, unipotent

groups, Lie algebras.
This work was supported by the DFG Priority Programme “Algorithmic and Experimental

Methods in Algebra, Geometry and Number Theory” (SPP 1489).

c©2017 American Mathematical Society

4841

http://www.ams.org/tran/
http://www.ams.org/tran/
http://dx.doi.org/10.1090/tran/7361


4842 TOBIAS ROSSMANN

we seek to simultaneously determine Zp(s) for almost all p using a single finite
computation. To see why this is a sensible problem, we first recall some theory.

In the cases of interest to us, each Zp(s) will be a rational function in p−s over
Q. In particular, the task of computing one local zeta function Zp(s) using exact
arithmetic is well-defined. Regarding the behaviour of Zp(s) under variation of p,
in all three cases from above, sophisticated results from p-adic integration imply
the existence of schemes V1, . . . ,Vr and rational functions W1, . . . ,Wr ∈ Q(X,Y )
such that for almost all primes p,

(1.1) Zp(s) =

r∑
i=1

#Vi(Fp) ·Wi(p, p
−s);

for more details, see Theorem 4.1 below. While constructive proofs of (1.1) are
known, they are generally impractical due to their reliance on resolution of singu-
larities.

Previous work: Computing topological zeta functions. In [35–37], the au-
thor developed practical methods for computing so-called topological zeta functions
associated with the above counting problems; these zeta functions are derived from
generic local ones by means of a termwise limit “p → 1” applied to a formula
(1.1). Due to their reliance on non-degeneracy conditions for associated families of
polynomials, the author’s methods for computing topological zeta functions do not
apply in all cases. However, whenever they are applicable, as we will explain below,
they come close to producing an explicit formula (1.1).

Computing generic local zeta functions. In general, we understand the task
of computing Zp(s) for almost all p to be the explicit construction of Vi and Wi as
in (1.1). While this seems to be the only adequate general notion of “computing”
generic local zeta functions, we will often be more ambitious in practice.

Uniformity problem. Decide if there exists W ∈ Q(X,Y ) such that Zp(s) =
W (p, p−s) for almost all primes p; in that case, we call (Zp(s))p prime uniform. Find
W if it exists.

The term “uniformity” is taken from [18, §1.2.4]. In practice, a weaker, non-con-
structive form of the Uniformity Problem which merely asks for the existence of W
as above is often easier to solve. For example, if Zp(s) is the zeta function enumer-
ating subgroups (or normal subgroups) of finite index in the free nilpotent pro-p
group of some fixed finite rank (independent of p) and class 2, then (Zp(s))p prime

is shown to be uniform in [26, Thm. 2] even though no explicit construction of a
rational function W is given.

For many cases of interest, a rational function W as in the Uniformity Problem
exists; see e.g. most examples in [18]. However, no conceptual explanation as to
why this is so seems to be known beyond explicit computations.

Woodward [50] used computer-assisted calculations to solve the Uniformity Prob-
lem for a large number of subalgebra and ideal zeta functions of nilpotent Lie alge-
bras. Unfortunately, few details on his computations are available, rendering them
rather difficult to reproduce.

Results. While explicit formulae (1.1) have been obtained for specific examples
and even certain infinite families of these, all known general constructions of Vi

and Wi as in (1.1) are impractical. In full generality, we thus regard the Uniformity
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Problem as too ambitious a task. In the present article, we extend the author’s
work on explicit, combinatorially defined formulae (1.1) (see [35–37]) in order to
provide practical solutions to the Uniformity Problem in fortunate cases. We will
also consider computations of generic local zeta functions in cases where no W as
above exists.

As the following list illustrates, the method developed here can be used to com-
pute a substantial number of interesting new examples of generic local zeta func-
tions:

• We completely determine the generic local representation zeta functions
associated with unipotent algebraic groups of dimension at most six (§8,
Table 1).

• We compute the generic local subalgebra zeta functions associated with
gl2(Q); this constitutes only the second instance (after sl2(Q)) where such
zeta functions associated with an insoluble Lie algebra have been computed
(§9.1, Theorem 9.1).

• We compute the generic local submodule zeta functions for the natural
action of the group of upper unitriangular integral n × n-matrices (or,
equivalently, the nilpotent associative algebra of strictly upper triangular
integral n× n-matrices) for n � 5 (§9.4, Theorem 9.5).

• We compute the graded subalgebra and ideal zeta functions associated
with specific Q-forms of each of the 26 “fundamental graded” Lie algebras
of dimension at most six over C (§10, Tables 2–3).

Outline. In §2, we recall definitions of the subobject and representation zeta func-
tions of concern to us. In §3, as a variation of established subalgebra and ideal zeta
functions, we discuss graded versions of these zeta functions. In §4, we consider for-
mulae such as (1.1) both in theory and as provided by the author’s previous work.
Our work on the Uniformity Problem then proceeds in two steps. First, in §5, we
consider the symbolic determination of numbers such as the #Vi(Fp) in (1.1) as a
function of p. Thereafter, in §6, we discuss the explicit computation of the rational
functions Wi as provided by [35–37]; a key role will be played by algorithms of
Barvinok et al. [5–7] surrounding generating functions of rational polyhedra. In §7,
we consider “reduced representation zeta functions” in the spirit of Evseev’s work
[20]; while these functions turn out to be trivial, they provide us with a simple
necessary condition for the correctness of calculations. Finally, examples of generic
local zeta functions are the subject of §§8–10.

Notation. The symbol “⊂” indicates not necessarily proper inclusion. For the
remainder of this article, let k be a number field with ring of integers o. We write
Vk for the set of non-Archimedean places of k. For v ∈ Vk, we denote by kv the v-
adic completion of k and by ov the valuation ring of kv. We further let pv ∈ Spec(o)
denote the prime ideal corresponding to v ∈ Vk and write qv = |o/pv|. Finally, we
let | · |v denote the absolute value on kv with |π|v = q−1

v for π ∈ pv\ p2v.
We let Qp and Zp denote the field of p-adic numbers and ring of p-adic integers,

respectively. By a p-adic field, we mean a finite extension of Qp. For a p-adic field
K, let OK denote the valuation ring of K and let PK denote the maximal ideal of
OK . We write qK = |OK/PK |.
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2. Established zeta functions of groups, algebras, and modules

2.1. Subalgebra and ideal zeta functions. Following [26] (cf. [35, §2.1]), for
a commutative ring R and a (possibly non-associative) R-algebra A, we formally
define the subalgebra zeta function of A to be

ζ�A (s) =
∑
U

|A : U|−s,

where U ranges over the R-subalgebras of A such that the R-module quotient A/U
has finite cardinality |A : U|. Additional hypotheses (which are satisfied in our
applications below) ensure that the number an(A) of R-subalgebras of index n of
A is finite for every n � 1 and, in addition, an(A) grows at most polynomially as a

function of n. Under these assumptions, ζ�A (s) defines an analytic function in some
complex right half-plane.

Now let A be a finite-dimensional possibly non-associative k-algebra, where k
is a number field as above. Choose an o-form A of A whose underlying o-module
is free. For v ∈ Vk, let Av := A ⊗o ov, regarded as an ov-algebra. We then have

an Euler product ζ�A (s) =
∏

v∈Vk
ζ�Av

(s); see [35, Lem. 2.3]. While the global zeta

function ζ�A (s) is an analytic object, as we will recall below, the local zeta functions

ζ�Av
(s) are algebro-geometric in nature. Note that up to discarding finitely many

elements, the family
(
ζ�Av

(s)
)
v∈Vk

of local zeta functions only depends on A and

not on the o-form A.
If, instead of enumerating subalgebras, we consider ideals, we obtain the global

and local ideal zeta functions ζ�A(s) and ζ�Av
(s) of A, respectively; these are also

linked by an Euler product as above.

2.2. Submodule zeta functions. Submodule zeta functions were introduced by
Solomon [43] in the context of semisimple associative algebras. In the following
generality (based upon [35, §2.1]), they also generalise ideal zeta functions of al-
gebras. For a commutative ring R, an R-module V, and a set Ω ⊂ EndR(V), we
formally define the submodule zeta function of Ω acting on V to be

ζΩ�V(s) =
∑
U

|V : U|−s,

where U ranges over the Ω-invariant R-submodules of V with finite R-module quo-
tients V/U. The name “submodule zeta function” is justified by the observation
that we are free to replace Ω by its enveloping unital associative algebra within
EndR(V).

Let V be a finite-dimensional vector space over k and let Ω ⊂ Endk(V ) be given.
Choose an o-form V of V which is free as an o-module. Furthermore, choose a finite
set Ω ⊂ Endo(V) which generates the same unital subalgebra of Endk(V ) as Ω.
Writing Vv = V⊗o ov, we obtain an Euler product ζΩ�V(s) =

∏
v∈Vk

ζΩ�Vv
(s). As

in §2.1, up to discarding finitely many factors, the collection of local zeta functions
on the right-hand side of this product only depends on (Ω, V ) and not on the choice
of (Ω,V).

2.3. Representation zeta functions associated with unipotent groups. Fol-
lowing [27, 44], for a topological group G, we let r̃n(G) denote the number of con-
tinuous irreducible representations G → GLn(C) counted up to equivalence and
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tensoring with continuous 1-dimensional complex representations. We formally de-
fine the (twist) representation zeta function of G to be

ζ ĩrrG (s) =

∞∑
n=1

r̃n(G)n−s.

Let G be a unipotent algebraic group over k; see [10, Ch. IV] for background.
Let Un denote the group scheme of upper unitriangular n×n-matrices. We choose
an embedding of G into some Un ⊗k and let G � Un ⊗o be the associated o-form
of G (viz. the scheme-theoretic closure of G within Un ⊗o). By [44, Prop. 2.2], the

Euler product ζ ĩrrG(o)(s) =
∏

v∈Vk
ζ ĩrrG(ov)

(s) connects the representation zeta function

of the discrete group G(o) and those of the pro-pv groups G(ov), where pv is the
rational prime contained in pv.

2.4. Motivation: Zeta functions of nilpotent groups. We briefly recall the
original motivation for the study of subalgebra and ideal zeta functions from [26]
and representation zeta functions in [27,46] (cf. [44]). For any topological group G,

the subgroup zeta function ζ�G (s) (resp. the normal subgroup zeta function ζ�G(s))
of G is formally defined to be

∑
H |G : H|−s, where H ranges over the closed

subgroups (resp. closed normal subgroups) of G of finite index. Let G be a discrete

torsion-free finitely generated nilpotent group. Then ζ�G (s) =
∏

p ζ
�
Ĝp

(s), where

p ranges over primes and Ĝp denotes the pro-p completion of G. Moreover, the

global and local zeta functions ζ�G (s) and ζ�
Ĝp

(s) all converge in some complex right

half-plane. Analogous statements hold for the normal subgroup and representation
zeta functions of G.

Apart from finitely many exceptions, the local subobject and representation
zeta functions attached to G are special cases of those in §§2.1–2.3. Recall that
the Mal’cev correspondence attaches a finite-dimensional nilpotent Lie Q-algebra,
L say, to G. As explained in [26], if L is a Z-form of L which is finitely generated

as a Z-module, then ζ�
Ĝp

(s) = ζ�L⊗Zp
(s) and ζ�

Ĝp
(s) = ζ�L⊗Zp

(s) for almost all p.

Moreover, if G is the unipotent algebraic group over Q with Lie algebra L and if
G is a Z-form of G arising from an embedding G � Un ⊗Q, then Ĝp = G(Zp) for
almost all primes p (see [44]).

3. Graded subalgebra and ideal zeta functions

In this section, we introduce variations of the subalgebra and ideal zeta functions
from §2.1 which take into account a given additive grading of the algebra under
consideration.

3.1. Definitions. Let R be a commutative ring and let A be a possibly non-
associative R-algebra. Further suppose that we are given a direct sum decom-
position

(3.1) A = A1 ⊕ · · · ⊕ Ar

of R-modules. As usual, an R-submodule U � A is homogeneous if it decomposes
as U = U1⊕· · ·⊕Ur for R-submodules Ui � Ai for i = 1, . . . , r. We formally define
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the graded subalgebra zeta function of A with respect to the decomposition (3.1) to
be

ζgr�A (s) =
∑
U

|A : U|−s,

where U ranges over the homogeneous R-subalgebras of A such that the R-module
quotient A/U is finite. We also define the graded ideal zeta function ζgr �A (s) in
the evident way. Note that we do not require (3.1) to be compatible with the
given multiplication in A. As in the non-graded context, given a finite-dimensional
possibly non-associative k-algebra A together with a vector space decomposition
A = A1 ⊕ · · · ⊕ Ar, we obtain associated global and local graded subalgebras and
ideal zeta functions generalising those from §2.1 by choosing appropriate o-forms.

Example 3.1. Let A = Zn1 ⊕ · · · ⊕ Znr be regarded as an abelian Lie Z-algebra
for n1, . . . , nr � 1. It follows from the well-known non-graded case (r = 1; see

[26, Prop. 1.1]) that ζgr�A (s) =
∏r

i=1

∏ni−1
j=0 ζ(s− j), where ζ denotes the Riemann

zeta function.

Remark 3.2. Let R, V, and Ω ⊂ EndR(V) be as in §2.2. Fix an R-module de-
composition V = V1 ⊕ · · · ⊕ Vr. In analogy to the above, we define the graded
submodule zeta function ζgrΩ�V(s) of Ω by enumerating homogeneous Ω-invariant
R-submodules of V.

3.2. Reminder: Graded Lie algebras. Let R be a commutative Noetherian
ring. All Lie R-algebras in the following are assumed to be finitely generated as
R-modules. Recall that an (N-)graded Lie algebra over R is a Lie R-algebra g

together with a decomposition g =
⊕∞

i=1 gi into R-submodules gi � g such that
[gi, gj ] � gi+j for all i, j � 1. Since g is Noetherian as an R-module, gi = 0 for
sufficiently large i, whence such an algebra g is nilpotent. Following [31, §2, Def. 1],
we say that g is fundamental if [g1, gi] = gi+1 for all i � 1. If R = R or R = C, then
the fundamental graded Lie R-algebras of dimension at most 7 have been classified
in [31]. In the case of dimension at most 5, the classification in [31] is in fact valid
over any field of characteristic zero; see [31, §2.2, Rem. 1].

Let g be a finite-dimensional Lie algebra over a field. Let g = g1 ⊃ g2 ⊃
· · · be the lower central series of g. As is well-known, commutation in g endows
gr(g) :=

⊕∞
i=1 g

i/gi+1 with the structure of a graded Lie algebra; note that gr(g) is
fundamental by construction. We call gr(g) the graded Lie algebra associated with
g.

The study of graded zeta functions seems quite natural in the context of nilpotent
Lie algebras. It would be interesting to find group-theoretic interpretations, in the
spirit of §2.4, of such zeta functions associated with graded nilpotent Lie algebras.

3.3. Graded subobject zeta functions as p-adic integrals. In order to carry
out explicit computations of local graded subobject zeta functions, we will use the
following straightforward variation of [15, §5]; we only spell out the enumeration of
graded subalgebras, the case of ideals being analogous.

Theorem 3.3. Let O be the valuation ring of a non-Archimedean local field. Let
A be a (possibly non-associative) O-algebra whose underlying O-module is free with
basis a = (a1, . . . , ad). Let 0 = β1 < · · · < βr+1 = d and decompose A = A1⊕· · ·⊕Ar

by setting Ai = Oa1+βi
⊕ · · · ⊕Oaβi+1

.
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Let T denote the O-module of block diagonal upper triangular d×d-matrices over
O with block sizes β2 − β1, . . . , βr+1 − βr. Let M(X) be the generic matrix of the
same shape over O; in other words,

M(X) = diag

⎛
⎜⎝
⎡
⎢⎣
X1,1 . . . X1,β2

. . .
...

Xβ2,β2

⎤
⎥⎦ , . . . ,

⎡
⎢⎣
X1+βr,1+βr

. . . X1+βr,d

. . .
...

Xd,d

⎤
⎥⎦
⎞
⎟⎠ .

Let R = O[X] and let � : Rd × Rd → Rd be induced via base extension by
multiplication in A with respect to a. Let F ⊂ R consist of all entries of all d-
tuples (Mi(X) � Mj(X)) adj(M(X)) for 1 � i, j � d, where adj(M(X)) denotes
the adjugate matrix of M(X) and Mi(X) the ith row of M(X). Define V = {x ∈
T : det(M(x)) | f(x) for all f ∈ F}. Let q denote the residue field size of O, let μ

denote the normalised Haar measure on T ≈ O
∑r

i=1 (
βi+1−βi+1

2 ), and let | · | denote
the absolute value on K such that |π| = q−1 for any uniformiser π. Then

(3.2) ζgr�A (s) = (1− q−1)−d

∫
V

r∏
i=1

βi+1−βi∏
j=1

|xj+βi,j+βi
|s−j

dμ(x).

Remark 3.4. As in [15, §5], a matrix x ∈ T belongs to the set V in Theorem 3.3 if
and only if its row span is a subalgebra of Od, regarded as an algebra via the given
identification A = Od.

The following illustrates Theorem 3.3 for an infinite family of graded algebras.

Proposition 3.5. Let n � 1 and let m(n) = m1(n)⊕ · · ·⊕mn(n) be the graded Lie
Z-algebra of additive rank n + 1 and nilpotency class n with m1(n) = Ze0 ⊕ Ze1,
mi(n) = Zei for i = 2, . . . , n, and non-trivial commutators [e0, ei] = ei+1 for
1 � i � n − 1. Let k be a number field with ring of integers o. Then for each
v ∈ Vk,

ζgr �
m(n)⊗ov

(s) = 1/
(
(1− q−s

v )(1− q1−s
v )(1− q−3s

v )(1− q−4s
v ) · · · (1− q−(n+1)s

v )
)
,

where m(n)⊗ ov is regarded as an ov-algebra. Denoting the Dedekind zeta function
of k by ζk(s), we thus have

ζgr �
m(n)⊗o

(s) = ζk(s)ζk(s− 1)ζk(3s)ζk(4s) · · · ζk
(
(n+ 1)s

)
.

Proof. It is an elementary consequence of Theorem 3.3 and Remark 3.4 (both ap-
plied to the enumeration of ideals instead of subalgebras) that for any v ∈ Vk,

ζgr �
m(n)⊗ov

(s) = (1− q−1
v )−n−1

×
∫
V

|x1|s−1
v |x3|s−2

v |y1|s−1
v · · · |yn−1|s−1

v dμ(x1, x2, x3, y1, . . . , yn−1),

where V =
{
(x1, x2, x3, y1, . . . , yn−1) ∈ on+2

v : yn−1 | yn | · · · | y1 | x1, x2, x3

}
;

indeed, (x1, . . . , yn−1) ∈ V if and only if the row span of diag(
[
x1 x2

x3

]
, y1, . . . , yn−1)is
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an ideal of m(n) ⊗ ov (identified with on+1
v via (e0, . . . , en)). Define a bianalytic

bijection

ϕ : (k×v )
n+2 → (k×v )

n+2, (x1, x2, x3, y1, . . . , yn−1) 	→ (x1y1 · · · yn−1, x2y1 · · · yn−1,

x3y1 · · · yn−1,

y1 · · · yn−1,

y2 · · · yn−1, . . . , yn−1).

Note that the Jacobian determinant of ϕ is detϕ′(x1, x2, x3, y1, . . . , yn−1) =
y31y

4
2 · · · yn+1

n−1. Since V ∩ (k×v )
n+2 = ϕ(on+2

v ∩ (k×v )
n+2) and μ(knv \ (k×v )

n) = 0,
by performing a change of variables using ϕ and using the well-known fact that∫
ov
|z|sv dμ(z) = (1− q−1

v )/(1− q−1−s
v ), we obtain

ζgr �
m(n)⊗ov

(s)

= (1− q−1
v )−n−1

∫
o
n+2
v

|x1|s−1
v |x3|s−2

v |y1|3s−1
v · · · |yn−1|(n+1)s−1

v dμ(x1, . . . , yn−1)

= 1/
(
(1− q−s

v )(1− q1−s
v )(1− q−3s

v )(1− q−4s
v ) · · · (1− q−(n+1)s

v )
)
.

The final claim follows by taking the product over all v ∈ Vk. �
Remark. To the author’s knowledge, not a single example of a non-graded subobject
zeta function of a nilpotent Lie algebra of nilpotency class � 5 is known explicitly.

Integrals such as those in (3.2) are special cases of those associated with “toric
data” in [36, §3]. Hence, the author’s methods for manipulating such integrals as de-
veloped in [36] apply directly without modification, as do the techniques explained
below.

4. Explicit formulae

4.1. Theory: Local zeta functions of Denef type. The following is a variation
of the terminology employed in [35, §5.2]. As before, we assume that k is a fixed
number field. Suppose that we are given a collection Z = (ZK(s))K of analytic
functions of a complex variable s (each defined in some right half-plane) indexed
by p-adic fields K ⊃ k (up to k-isomorphism). We say that Z is of Denef type
if there exist a finite set S ⊂ Vk, k-varieties V1, . . . , Vr, and rational functions
W1, . . . ,Wr ∈ Q(X,Y ) such that for all v ∈ Vk \ S and all finite extensions K/kv,

(4.1) ZK(s) =
r∑

i=1

#V̄i(OK/PK) ·Wi(qK, q−s
K )

is an identity of analytic functions; here, we write V̄i = Vi ⊗o o/pv for a fixed but
arbitrary o-model Vi of Vi.

The following result formalises our discussion surrounding (1.1) from the intro-
duction; it summarises [15, §§2–3] (cf. [35, Thm. 5.16]) and [44, Thm. A].

Theorem 4.1. Let
(
ZK(s)

)
K

be one of the following collections of local zeta func-
tions indexed by p-adic fields K ⊃ k (up to k-isomorphism).

(i) ZK(s) = ζ�A⊗oOK
(s) or ZK(s) = ζ�A⊗oOK

(s) (resp. ZK(s) = ζgr�A⊗oOK
(s)

or ZK(s) = ζgr �A⊗oOK
(s)), where A is an o-form of a finite-dimensional

(possibly non-associative) k-algebra as in §2.1 or §3.1, respectively.
(ii) ZK(s) = ζΩ�(V⊗oOK)(s), where Ω and V are as in §2.2.
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(iii) ZK(s) = ζ ĩrrG(OK)(s), where G is an o-form of a unipotent algebraic group

over k as in §2.3.
Then

(
ZK(s)

)
K

is of Denef type.

The known proofs of Theorem 4.1 are constructive but impractical due to their
reliance on resolution of singularities. We note that the exclusion of finitely many
primes implicit in Theorem 4.1 is one of the main reasons for our focus on generic
local zeta functions.

4.2. By-products of the computation of topological zeta functions. The
computation of topological zeta functions is often considerably easier than that
of local ones. In [35–37], the author developed practical methods for computing
topological zeta functions associated with the local zeta functions in Theorem 4.1;
these methods are not algorithms because they may fail if certain non-degeneracy
conditions are violated. While we will recall the specific notion of non-degeneracy
in question in §4.3, we will essentially treat the methods from [35–37] as “black
boxes”. In particular, from now on, we will assume the validity of the following.

Assumption 4.2. In the setting of Theorem 4.1, the method from [36, §4] (resp.
[37, §5.4]) for computing topological subalgebra and submodule zeta functions (resp.
topological representation zeta functions) succeeds.

Remark 4.3. The author is unaware of a useful intrinsic characterisation of those
groups, algebras, and modules such that Assumption 4.2 is satisfied. The local zeta
functions in Theorem 4.1 can be described in terms of p-adic integrals associated
with a collection of polynomials; see, in particular, Theorem 3.3. A sufficient
condition for the validity of Assumption 4.2 is (global) non-degeneracy of said
collection of polynomials in the sense of [35, §4.2] (cf. [36, Lem. 5.7] and [37, §5.4.1]);
see §4.3 below for a definition.

The first stages of the methods for computing topological zeta functions asso-
ciated with the local zeta functions in Theorem 4.1, as described in [36, 37], come
close to constructing an explicit formula (4.1). In detail, using [35, Thm. 4.10] (see
[36, Thm. 5.8] and [37, Thm. 5.9]), whenever they succeed, these methods derive a
formula (4.1) such that the following Assumptions 4.4–4.5 are satisfied.

We write Tn := Spec(Z[X±1
1 , . . . , X±1

n ]). For a commutative ring R, we write
Tn

R := Tn ⊗ R and we identify Tn(R) = (R×)n. In particular, Tn
k is the split

algebraic torus of dimension n over k.

Assumption 4.4. Each Vi in (4.1) is given as an explicit subvariety of some Tni

k

defined by the vanishing of a finite number of Laurent polynomials and the non-
vanishing of a single Laurent polynomial.

The appearance of tori is closely related to the previously mentioned concept of
non-degeneracy; some further details will again be given in §4.3.

Assumption 4.5. Up to multiplication by explicitly given rational functions of the
form (X − 1)aXb (for suitable a, b ∈ Z), each Wi in (4.1) is described explicitly in
terms of generating functions associated with half-open cones and convex polytopes.

We will clarify the deliberately vague formulation of Assumption 4.5 in §6.



4850 TOBIAS ROSSMANN

In summary, whenever they apply, the methods for computing topological zeta
functions in [36, 37] fall short of “constructing” an explicit formula (4.1) only in
the sense that the Wi are characterised combinatorially instead of being explicitly
given, say as fractions of polynomials.

In §§5–6, assuming the validity of Assumptions 4.2, 4.4, and 4.5, we will de-
velop techniques for performing further computations with a formula of the form
(4.1) with a view towards solving the Uniformity Problem from the introduction in
fortunate cases.

4.3. Reminder: Non-degeneracy. In order to shed some light on Assumptions
4.2 (via Remark 4.3) and 4.4, we now briefly recall the notion of non-degeneracy
from [35, §4.2].

Initial forms. Let f ∈ k[X±1] := k[X±1
1 , . . . , X±1

n ], say f =
∑

α∈Zn cαX
α, where

cα ∈ k, cα = 0 for almost all α ∈ Zn, and Xα := Xα1
1 · · ·Xαn

n . The Newton
polytope of f is the convex hull of {α ∈ Zn : cα �= 0} within Rn. Suppose that
f �= 0. Let 〈 ·, ·〉 denote the standard inner product on Rn. Given ω ∈ Rn, let
m(f, ω) ∈ R be the minimal value attained by 〈α, ω〉 for α ∈ Zn with cα �= 0.
Define the initial form inω(f) ∈ k[X±1] of f in the direction ω to be the sum of
those cαX

α (α ∈ Zn) with cα �= 0 and 〈α, ω〉 = m(f, ω).

Non-degeneracy. Fix an algebraic closure k̄ of k. We say that a collection
(f1, . . . , fr) of non-zero elements of k[X±1] is (globally) non-degenerate [35, Def.
4.2] if the following holds: for all ω ∈ Rn and all J ⊂ {1, . . . , r}, if x ∈ Tn(k̄)
satisfies inω(fj)(x) = 0 for all j ∈ J , then the rank of[

∂inω(fj)(x)

∂Xi

]
i=1,...,n,

j∈J

is |J |.

Remark.

(i) The author’s computations in [35–37] actually rely on a slightly less restric-
tive relative notion of non-degeneracy; see [35, Def. 4.2(i)]. For a discussion
of related notions of non-degeneracy in the literature, see [35, §§4.2, 4.4].

(ii) The different tuples of the form (inω(f1), . . . , inω(fr)) for ω ∈ Rn cor-
respond naturally to the faces of the Newton polytope of f1 · · · fr; see
[35, §4.1].

Subvarieties of tori. We may now indicate the origin of Assumption 4.4. Suppose
that the ZK(s) in (4.1) are all given by a “suitable” (see [35, Def. 4.6]) type of p-adic
integral defined in terms of a fixed family (f1, . . . , fr) of (non-zero) Laurent poly-
nomials fi ∈ k[X±1]; examples of such integrals are e.g. provided by Theorem 3.3.
Given ω ∈ Rn and J ⊂ {1, . . . , r}, let Vω,J be the subvariety of Tn

k defined by the
vanishing of inω(fj) for all j ∈ J and the non-vanishing of

∏
i �∈J inω(fi). Then, as-

suming non-degeneracy of (f1, . . . , fr), the varieties Vi in a formula (4.1) produced
using [35–37] are all of the form Vω,J and hence satisfy Assumption 4.4.
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5. Counting rational points on subvarieties of tori

Assuming the validity of Assumption 4.4, this section is devoted to “computing”
the numbers #V̄i(OK/PK) in (4.1). Using the inclusion-exclusion principle, we
may reduce to the case that each Vi is a closed subvariety of an algebraic torus
Tni

k . Note that the non-constructive version of the Uniformity Problem from §1
has a positive solution whenever each #V̄i(OK/PK) is a polynomial in qK (after
excluding finitely many places of k). The following method is based on the heuristic
observation that the latter condition is often satisfied for examples of interest.

Setup. As in §4.3, we write Tn = Spec(Z[X±1
1 , . . . , X±1

n ]) and Tn
R = Tn ⊗R. For

a finite set S ⊂ Vk, let oS := {x ∈ k : x ∈ ov for all v ∈ Vk \ S} denote the usual
ring of S-integers of k. For f1, . . . , fr ∈ oS [X

±1
1 , . . . , X±1

n ], define

(f1, . . . , fr)
n
S := Spec(oS [X

±1
1 , . . . , X±1

n ]/〈f1, . . . , fr〉) ⊂ Tn
oS
.

For v ∈ Vk \S and a finite extension K of o/pv, let |f1, . . . , fr|nK denote the number
of K-rational points of (f1, . . . , fr)

n
S .

Objective: Symbolic enumeration. From now on, let f1, . . . , fr ∈ oS [X
±1
1 , . . . ,

X±1
n ] be given as above. Our goal in the following is to symbolically “compute” the

numbers |f1, . . . , fr|nK as a function of K. More precisely, the procedure described
below constructs a polynomial, H(X, c1, . . . , c�) say, over Z such that, after possibly
enlarging S, for all v ∈ Vk \ S and all finite extensions K of o/pv,

(f1, . . . , fr)
n
K = H(|K|,#U1(K), . . . ,#U�(K)),

where each Ui is an explicitly given closed subscheme of some Tni
oS
. We could of

course simply takeH = c1 and U1 = (f1, . . . , fr)
n
S, but we seek to do better. Indeed,

in many cases of interest, H can be taken to be a polynomial in X only. In the
following, we describe a method which has proven to be quite useful for handling
such cases.

Dimension � 1. We first describe two base cases of our method. Namely, if
n = 0, then, after possibly enlarging S, (f1, . . . , fr)

n
S is either ∅ or T0

oS
= Spec(oS)

depending on whether some fi �= 0 or not; thus, |f1, . . . , fr|nK ∈ {0, 1} for K as
above.

Secondly, if n = 1, then we use the Euclidean algorithm over k (thus possibly
enlarging S) to compute a single square-free polynomial f ∈ oS [X1] such that
(f1, . . . , fr)

1
S = (f)1S. If f splits completely over k, then, after possibly enlarging S

once again, |f |1
K
= deg(f) for all K as above. If f does not split completely over k,

then we introduce a new variable, cf say, corresponding to the number of solutions
of f = 0 in K×.

Simplification. It is often useful to “simplify” the given Laurent polynomials
f1, . . . , fr; while this step was sketched in [36, §6.6], here we provide some further
details. As before, the set S may need to be enlarged at various points in the
following. First, we discard any zero polynomials among the fi. We then clear
denominators so that each fi ∈ k[X1, . . . , Xn] is an actual (not just Laurent) poly-
nomial. Next, we replace each fi by its square-free part in k[X1, . . . , Xn]. For
each pair (i, j) of distinct indices, we then compute the (square-free part of the)
remainder, r say, of fi after multivariate polynomial division by fj with respect to
some term order (see e.g. [1, §1.5]). If r consists of fewer terms than fi, we replace
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fi by r. Next, for each pair (i, j) as above and each term ti of fi and tj of fj , we

are free to replace fi by (the square-free part of)
tj
g fi −

ti
g fj , where g = gcd(ti, tj)

(computed over k), which we again do whenever it reduces the total number of
terms. After finitely many iterations of the above steps, f1, . . . , fr will stabilise, at
which point we conclude the simplification step.

We next describe two procedures which, if applicable, allow us to express
|f1, . . . , fr|nK in terms of the numbers of rational points of subschemes of lower-
dimensional tori. We then recursively attempt to solve the symbolic enumeration
problem from above for these.

Reduction of dimension I: Torus factors. As explained in [36, §6.3], using
the natural action of GLn(Z) on Tn, a Smith normal form computation allows us
to effectively construct g1, . . . , gr ∈ oS [X

±1
1 , . . . , X±1

d ] and an explicit isomorphism

(f1, . . . , fr)
n
S ≈ (g1, . . . , gr)

d
S ×oS

Tn−d
oS

, where d is the dimension of the Newton

polytope of f1 · · · fr (see §4.3). It follows that for all K as above, |f1, . . . , fr|nK =

|g1, . . . , gr|dK · (|K| − 1)n−d. In the following, we may thus assume that n = d.

Reduction of dimension II: Solving for variables. Whenever it is applicable
(after first suitably permuting the variables, if required), the following lemma allows
us to replace the problem of symbolically computing |f1, . . . , fr|nK by four instances
of the same problem in dimension n− 1.

Lemma 5.1. Let F ⊂ oS [X
±1
1 , . . . , X±1

n−1]. Further let f = u − wXn for non-zero

u,w ∈ oS [X
±1
1 , . . . , X±1

n−1]. Then for all v ∈ Vk \ S and all finite extensions K of
o/pv,

|F, f |n
K
= |F |n−1

K
− |F, u|n−1

K
− |F,w|n−1

K
+ |K| · |F, u, w|n−1

K
.

Proof. Projection onto the first n − 1 coordinates induces an isomorphism of oS-
schemes (F, f)nS \ (F, f, w)nS ≈ (F )n−1

S \ (F, uw)n−1
S . As (F, f, w)nS = (F, u, w)nS ≈

(F, u, w)n−1
S ×oS

T1
oS
, the claim follows since for all v ∈ Vk\S and all finite extensions

K of o/pv,

|((F )n−1
S \ (F, uw)n−1

S )(K)| = |F |n−1
K

− |F, u|n−1
K

− |F,w|n−1
K

+ |F, u, w|n−1
K

. �

The evident analogue of Lemma 5.1 for Euler characteristics of closed subvari-
eties of Tn

k has already been used in the author’s software package Zeta [40] for
computing topological zeta functions. The same is true of the following straight-
forward generalisation of the special case that w ∈ o

×
S in Lemma 5.1 (cf. [36, §6.6]).

Lemma 5.2. Let F ⊂ oS [X
±1
1 , . . . , X±1

n−1, Xn ]. Further let f = u − wXn for

u ∈ oS [X
±1
1 , . . . , X±1

n−1] and w ∈ o
×
S . Let F̃ :=

{
f(X1, . . . , Xn−1, w

−1u) : f ∈ F
}
.

Then for all v ∈ Vk \ S and all finite extensions K of o/pv,

|F, f |n
K
= |F̃ |n−1

K
− |F̃ , u|n−1

K
.

Final case. Finally, if none of the above techniques for computing or decomposing
(f1, . . . , fr)

n
S applies, we introduce a new variable corresponding to |f1, . . . , fr|nK.

In order to avoid this step whenever possible, we first attempt to apply the above
steps (including all possible applications of Lemmas 5.1–5.2) without ever invoking
this final case.
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Example 5.3. We illustrate the symbolic enumeration of rational points using an
example which features in the author’s calculation of the generic local subalgebra
zeta functions associated with gl2(Q) (see §9.1). Let R := Z[1/2] and let V ⊂ T10

R

be defined by f = 0, where

f := 2X4X
2
5X8−2X2X5X7X8+X1X6X7X8−4X3X

2
5X9+4X2X5X6X9−X1X

2
6X9.

We will now compute #V (Fq), where q > 1 is an arbitrary odd prime power,
as a polynomial in q. Note that X10 does not appear in f so that #V (Fq) is
certainly divisible by q − 1. Less obviously, one can check (e.g. using Sage [13])
that the Newton polytope of f has dimension 4, whence V admits T6

R as a direct
factor. Indeed, by performing a change of coordinates using the automorphism of
R[X±1

1 , . . . , X±1
10 ] given by

X1 	→X1X6X
−1
7 X−2

8 X2
9X10, X5 	→X9, X8 	→X7,

X2 	→X2X9X
−1
8 X10, X6 	→X4X

−1
6 X7X8, X9 	→X6,

X3 	→X3X
−1
6 X7X10, X7 	→X8, X10 	→X5,

X4 	→X10,

the polynomial f is transformed into X7X
2
9X10 · f ′(X1, X2, X4, X3),

1 where

f ′ = −X1X
2
3 +X1X3 + 4X2X3 − 2X2 − 4X4 + 2 ∈ R[X±1

1 , . . . , X±1
4 ].

Hence, if V ′ ⊂ T4
R is defined by f ′ = 0, then V ≈ T6

R ×R V ′.
Regarding V ′, we observe that f ′ = 0 is equivalent to X4 = g(X1, X3, X2)/4,

where

g = −X1X
2
2 +X1X2 + 4X2X3 − 2X3 + 2.

Lemma 5.2 thus shows that for all odd prime powers q > 1, #V ′(Fq) = (q − 1)3 −
#V ′′(Fq), where V ′′ ⊂ T3

R is defined by g = 0.
In order to determine #V ′′(Fq), we write g = u − wX3, where u := −X1X

2
2 +

X1X2 + 2 and w := 2 − 4X2, and invoke Lemma 5.1. We thus find that for odd
prime powers q > 1,

#V ′′(Fq) = (q − 1)2 −#A(Fq)−#B(Fq) + q ·#C(Fq),

where A, B, and C are the subschemes of T2
R defined by u = 0, w = 0, and

u = w = 0, respectively. By rewriting w = 0 as X2 = 1/2, Lemma 5.2 shows that
#B(Fq) = q − 1. Moreover, #C(Fq) = #D(Fq), where D ⊂ T1

R is defined by
0 = u(X1, 1/2) = X1/4 + 2, so that #C(Fq) = 1.

Finally, in order to compute #A(Fq), we write u = u′−w′(X2)X1, where u
′ := 2

and w′(X2) := X2
2 −X2, and use Lemma 5.1 once more. Since the numbers of Fq-

rational points of the subschemes of T1
R defined by u′ = 0 and w′(X1) = 0 are 0

and 1, respectively, we thus find that #A(Fq) = q − 2.

1The variables are renumbered in order to be able to invoke Lemmas 5.1–5.2 verbatim later
on.



4854 TOBIAS ROSSMANN

In summary, if q > 1 is an odd prime power, then

#V (Fq) = (q − 1)6 ·#V ′(Fq) = (q − 1)6 ·
(
(q − 1)3 −#V ′′(Fq)

)
= (q − 1)6 ·

(
(q − 1)3 −

(
(q − 1)2 −#A(Fq)−#B(Fq) + q ·#C(Fq)

))
= (q − 1)6 ·

(
(q − 1)3 −

(
(q − 1)2 − (q − 2)− (q − 1) + q

))
= (q − 1)6 · (q3 − 4q2 + 6q − 5).

6. Local zeta functions as sums of rational functions

Suppose that Assumptions 4.2, 4.4, and 4.5 are satisfied. Our first task in this
section is to rewrite (4.1) as a sum of explicitly given rational functions. With the
method from §5 at our disposal, this problem reduces to finding such an expression
for each Wi. We will see that Barvinok’s algorithm from convex geometry solves
this problem. Our second task then concludes the computation of the generic
local zeta functions in Theorem 4.1; it is concerned with adding a potentially large
number of multivariate rational functions. We describe a method aimed towards
improving the practicality of this step, which, while mathematically trivial, often
vastly dominates the run-time of our computations.

6.1. Barvinok’s algorithm: Generating functions and substitutions. Let
P ⊂ Rn

�0 be a rational polyhedron and let λ = (λ1, . . . , λn) be algebraically inde-

pendent over Q. It is well-known that the generating function |P| :=
∑

α∈P∩Zn λα

is rational in the sense that within the field of fractions of Q[[λ1, . . . , λn]], it belongs
to Q(λ1, . . . , λn). The standard proof of this fact (see e.g. [4, Ch. 13]) proceeds
by reducing to the case that P is a cone, in which case an explicit formula for |P|
can be derived from a triangulation of P via the inclusion-exclusion principle. This
strategy for computing |P| is, however, of rather limited practical use.

A far more sophisticated approach is given by “Barvinok’s algorithm”; see [5,7]
for details and [49] for a high-level overview. Barvinok’s algorithm computes |P| for
each (suitably encoded) rational polyhedron P ⊂ Rn

�0 as a sum of rational functions

of the form cλα0/((1− λα1) · · · (1− λαn)) for suitable α0, . . . , αn ∈ Zn and c ∈ Q.
For a fixed ambient dimension n � 1, his algorithm runs in polynomial time so that
|P| is computed as a short sum of short rational functions in a precise technical
sense. Beyond its theoretical strength, Barvinok’s algorithm is also powerful in
practice as demonstrated by the software implementation LattE [3].

In the setting of Assumption 4.5, we are not primarily interested in generating
functions associated with polyhedra themselves but in rational functions derived
from such generating functions via monomial substitutions. In detail, let ξ =
(ξ1, . . . , ξm) be algebraically independent over Q and let σ1, . . . , σn ∈ Zm. Suppose
that P ⊂ Rn

�0 is a rational polyhedron such that W := |P|(ξσ1 , . . . , ξσn) is well-
defined on the level of rational functions. In principle, we could compute W by
first using the output of Barvinok’s algorithm in order to write |P| in lowest terms,
followed by an application of the given substitution. This method is, however,
often impractical due to the computational cost of (multivariate) rational function
arithmetic.

A theoretically favourable and also practical alternative is developed in [6, §2]
(cf. [5, §5]). There, a polynomial time algorithm is described which takes as input a
short representation of |P| (as, in particular, provided by Barvinok’s algorithm) and
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constructs a similar short representation for W . The important point to note here
is that while we assumed the substitution λi 	→ ξσi to be valid for |P| itself, it may
be undefined for some of the summands in the expression provided by Barvinok’s
algorithm.

6.2. Computing the Wi in (4.1). We may now clarify the vague formulation of
Assumption 4.5. Namely, up to a factor (X−1)aXb, the Wi in (4.1) are obtained by
applying suitable monomial substitutions (see [35, Rem. 4.12] and [37, Thm. 5.5]) to
rational functions of the form ZC0,P1,...,Pm(ξ0, . . . , ξm) from [35, Def. 3.6]. The latter
functions can, by their definitions, be written as sums of rational functions obtained
by applying suitable monomial substitutions to generating functions enumerating
lattice points inside rational half-open cones; as explained in [36, §8.4], we may
replace these half-open cones by rational polyhedra. We may thus use Barvinok’s
algorithm as well as the techniques for efficient monomial substitutions from [6, §2]
in order to write each Wi as a sum of bivariate rational functions of the form

(6.1) f(X,Y )/
(
(1−Xa1Y b1) · · · (1−XamY bm)

)
for suitable integers ai, bi ∈ Z, m � 0, and f(X,Y ) ∈ Q[X,Y ].

6.3. Final summation. In the following, we allow f(X,Y ) in (6.1) to be an ele-
ment of Q[X,Y, c1, c2, . . . ]. By taking into account the polynomials obtained using
§5, at this point, we may thus assume that we constructed a finite sum of ex-
pressions (6.1) such that, after excluding finitely many places of k, the local zeta
functions in Theorem 4.1 are obtained by specialising X 	→ qK , Y 	→ q−s

K , and
ci 	→ #Ui(OK/PK) for certain explicit subschemes Ui of tori over o (or over oS).
All that remains to be done in order to recover the local zeta functions of interest
is to write the given sum of expressions (6.1) in lowest terms.

While our intended applications of Barvinok’s algorithm lie well within the prac-
tical scope of LattE [3], it will often be infeasible to pass the rational functions (6.1)
to a computer algebra system in order to carry out the final summation. In ad-
dition to the sheer number of rational functions to be considered, a key problem
is due to the fact that the number of distinct pairs (ai, bi) arising from summands
(6.1) often obscures the relatively simple shape of the final sum (i.e., the local
zeta function to be computed). This is consistent with the well-known observation
(see e.g. [11, §2.3]) that few candidate poles of local zeta functions as provided by
explicit formulae (4.1) survive cancellation.

In order to carry out the final summation, we proceed in two stages. First, we use
an idea due to Woodward [50, §2.5] and add and simplify those summands (6.1) such
that distinguished pairs 1−XcY d occur in their written denominators; our hope here
is that some rays (ai, bi) will be removed via cancellations. While this step is not
essential, it might improve the performance and memory requirements of the final
stage. Here, we first construct a common denominator of all the remaining rational
functions (6.1). We then compute the final result by summing (6.1) rewritten over
our common denominator, followed by one final division. In addition to being
trivially parallelisable, by adding only numerators, we largely avoid costly rational
function arithmetic.

6.4. Implementation issues. The method for computing generic local subobject
or representation zeta functions described above has been implemented (for k = Q)
by the author as part of his package Zeta [40] for Sage [13]. The program LattE [3]
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(which implements Barvinok’s algorithm) plays an indispensable role. Moreover,
the computer algebra system Singular [25] features essentially in the initial stages
of our method (as described in [36, 37]).

The author’s implementation is primarily designed to find instances of positive
solutions to the Uniformity Problem; its functionality and practicality are both
quite restricted in non-uniform cases. Furthermore, the author’s method supple-
ments Woodward’s approach [50] for computing local (subalgebra and ideal) zeta
functions as well as various ad hoc computations carried out by others without
replacing them. In particular, various examples of local zeta functions computed
by Woodward cannot be reproduced using the present method. In addition to the
theoretical limitations of the techniques from [35–37], this is also partially due to
practical obstructions: while some computations of topological zeta functions in
[35–37] were already fairly involved, the present method is orders of magnitude
more demanding.

6.5. An example: “Graded” subalgebras of Z[T ]/T 3. Many of the techniques
developed in the present article as well as many of those described in [35–37] can be
traced back to the computation of the (previously known) subalgebra zeta function
of sl2(Zp) for p �= 2 in [35, §7.1]. Said computation, in particular, illustrates
the overall structure of the present method while avoiding the more sophisticated
ingredients. For instance, we may regard the ad hoc enumeration of rational points
in [35, §7.1] as a simple application of §5. While the use of LattE is mentioned in
[35, §7.1], subsequent computations with rational functions are not spelled out there

as they are ill-suited for manual work. Zeta computes ζ�
sl2(Zp)

(s) (for sufficiently

large p) by adding about 400 rational functions in p and p−s.
We now discuss a non-trivial example of an application of the method developed

here in which the final summation of rational functions can be performed by hand.
For n � 4, the subalgebra zeta function of Zp[T ]/T

n (for sufficiently large p) is given
in Theorem 9.2 below. While the case n = 2 is essentially trivial, Zeta computes the
formula for n = 3 by evaluating a sum of about 60 rational functions in p and p−s.
In order to obtain an easier calculation, we fix a suitable additive decomposition of
Z[T ]/T 3 and consider the associated graded local subalgebra zeta functions.

Let t denote the image of T in Z[T ]/T 3. Define A to be Z[T ]/T 3 together with
the additive decomposition A = 〈1, t〉 ⊕ 〈t2〉; note that this decomposition is not a
grading of the Z-algebra A in the usual sense. Using Theorem 3.3 (with O = Zp),
for all primes p,

ζgr�A⊗Zp
(s) = (1− p−1)−3

∫
Vp

|x1|s−1|x3|s−2|x4|s−1
dμ(x),

where Vp =
{
x ∈ Z4

p : x3 | x1x2, x4 | x2
2, x4 | x2

3

}
. It follows (see e.g. [35, Prop. 3.9])

that if C denotes the polyhedral cone

C = {α ∈ R4
�0 : α3 � α1 + α2, α4 � 2α2, α4 � 2α3},

then ζgr�A⊗Zp
(s) can be expressed in terms of the generating function |C| ∈ Q(λ1, . . . ,

λ4) (see §6.1) as

(6.2) ζgr�A⊗Zp
(s) = (1− p−1) · |C|(p−s, p−1, p1−s, p−s).
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Using Barvinok’s algorithm via LattE, we obtain

|C| = 1

(1− λ−1
3 )(1− λ−1

4 )(1− λ2λ3λ2
4)(1− λ1λ3)

(6.3)

+
1

(1− λ1λ3)(1− λ2λ3)(1− λ−1
3 )(1− λ4)

− 1

(1− λ1)(1− λ2λ3λ2
4)(1− λ−1

3 )(1− λ−1
4 )

+
1

(1− λ1)(1− λ2λ3λ2
4)(1− λ−1

3 λ−2
4 )(1− λ−1

4 )

+
1

(1− λ1)(1− λ2)(1− λ3λ2
4)(1− λ−1

4 )
+

1

(1− λ1)(1− λ2)(1− λ3)(1− λ4)
.(6.4)

Observe that while each summand in (6.3) is (up to a sign) the generating func-
tion associated with a (unimodular) cone, these cones are not contained in C—this
is typical for formulae obtained using Barvinok’s algorithm.

In this specific example, the substitution in (6.2) can actually be applied to each
of the summands in (6.3). The final summation is then easily carried out, even
without the techniques from §6.3, and yields

ζgr�A⊗Zp
(s) =

1− p−4s

(1− p−s)2(1− p−3s)(1− p1−2s)
.

7. Interlude: Reduced representation zeta functions

Reduced zeta functions arising from the enumeration of subalgebras and ideals
were introduced by Evseev [20]. They constitute a limit “p → 1” of suitable local
zeta functions distinct from but related to the topological zeta functions of Denef
and Loeser [12] (which were later adapted to the case of subobject zeta functions
by du Sautoy and Loeser [16]). Informally, Evseev’s definition can be summarised
as follows in our setting. Let A be an o-form of a k-algebra as in §2.1. For each

v ∈ Vk, we may regard ζ�A⊗oov
(s) as a (rational) formal power series in Y = q−s

v .

The reduced subalgebra zeta function of A (an invariant of A ⊗o C, in fact) is

obtained by taking a limit “qv → 1” applied to the coefficients of ζ�A⊗oov
(s) as a

series in Y . The rigorous definition of reduced zeta function in [20] involves the
motivic subobject zeta functions introduced by du Sautoy and Loeser [16].

In this section, we show that “reduced representation zeta functions” associated
with unipotent groups are always identically 1. In addition to imposing restrictions
on the shapes of generic local representation zeta functions of such groups, this fact
provides a simple necessary condition for the correctness of explicit calculations of
local zeta functions such as those documented below.

We begin with a variation of a result from [39]. Let V be a separated k-scheme of
finite type. For any embedding k ⊂ C, the topological Euler characteristic χ(V (C))
is defined and well-known to be independent of the embedding; cf. [29].

Lemma 7.1. Let V1, . . . ,Vr be separated o-schemes of finite type and W1, . . . ,Wr ∈
Q(X,Y1. . . . , Ym). Suppose that for almost all v ∈ Vk and all integers f � 0, each
Wi is regular at (qfv , Y1, . . . , Ym). Let P ⊂ Vk have natural density 1 and suppose



4858 TOBIAS ROSSMANN

that
r∑

i=1

#Vi(o/pv) ·Wi(qv, Y1, . . . , Ym) = 0

for all v ∈ P . Then
r∑

i=1

χ(Vi(C)) ·Wi(1, Y1, . . . , Ym) = 0.

Proof. Using [41, Ch. 4], in the setting of [39, Thm. 2.8], we may assume that
α(1ΓS

) = χ(V (C)). The claim is now an immediate consequence of [39, Thm. 2.3]
and its proof. �
Remark 7.2. Given a formula (4.1) for local subalgebra or ideal zeta functions
such that the regularity conditions in Lemma 7.1 are satisfied, we may read off the
associated reduced zeta function as

∑r
i=1 χ(Vi(C)) ·Wi(1, Y ) without using motivic

zeta functions.

The following is a consequence of the explicit formulae in [19].

Theorem 7.3. Let G be a unipotent algebraic group over k. Let G be an o-form
of G as an affine group scheme of finite type. There are separated o-schemes
U1, . . . ,U� of finite type and rational functions W1, . . . ,W� ∈ Q(X,Y ) such that

(i) for almost all v ∈ Vk, ζ
ĩrr
G(ov)

(s)− 1 =
�∑

i=1

#Ui(o/pv) ·Wi(qv, q
−s
v ),

(ii) each Wi is regular at each point (q, Y ) for q � 1, and
(iii) Wi(1, Y ) = 0 for i = 1, . . . , �.

Proof. We adopt the notation of [19]. By [19, Props. 2.2 and 3.4], for almost all
v ∈ Vk,

ζ ĩrrG(ov)
(s)− 1 =

∑
i∈W ′

ci(o/pv) ·Wi(qv, q
−s
v ),

where

(7.1) Wi(X,Y ) := X |Ui|−(d2) ·
d−1∏
u=1

1−X−1

1−X−u
· (1−X−1)|Ui|+1 ·

∏
j∈Mi

X−BjY Aj

1−X−BjY Aj
.

The numbers ci(o/pv) are already of the form #Ui(o/pv) for suitable Ui (cf. [19,
§3.1]). Next, we may assume that the rational numbers Aj and Bj in [19, Prop.
3.4] and in (7.1) are actually integers so that Wi(X,Y ) ∈ Q(X,Y ). This follows
e.g. by taking square roots of principal minors and rewriting the integral [19, (2.3)]
similarly to [37, (4.3)] (so that, in particular, the fraction “−s/2” in [19, (2.2)] is
replaced by “−s”).

Clearly, each Wi(X,Y ) is regular at each point (q, Y ) with q > 1. Moreover, it
follows from the definitions of Mi and Ui in [19, §3.1] that |Mi| � |Ui|+ 1 for each
i ∈ W ′. As each (1 −X−1)/(1 −X−u) and (1 −X−1)/(1 −X−BjY Aj ) is regular
at (1, Y ), the same is true of each Wi(X,Y ). Moreover, (1−X−1)/(1−X−BjY Aj )
vanishes at (1, Y ) whenever Aj �= 0. Finally, by [19, Rem. 3.6], for each i ∈ W ′,
there exists j0 ∈ Mi with Aj0 > 0, whence Wi(1, Y ) = 0. �
Remark 7.4. Theorem 7.3 refines the simple observation that for almost all v ∈ Vk,

the coefficients of ζ ĩrrG(ov)
(s)− 1 as a series in q−s

v are non-negative integers divisible

by qv − 1, a simple consequence of the Kirillov orbit method. (Indeed, (o/pv)
×

acts freely on non-trivial characters while preserving the two types of radicals in
[44, Thm. 2.6].)
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By combining Lemma 7.1 and Theorem 7.3, we obtain the following.

Corollary 7.5. Let G be as in Theorem 7.3. Let V1, . . . ,Vr be separated o-schemes
of finite type and let W1, . . . ,Wr ∈ Q(X,Y ) such that for almost all v ∈ Vk,

ζ ĩrrG(ov)
(s) =

r∑
i=1

#Vi(o/pv) ·Wi(qv, q
−s
v ).

If each Wi is regular at (q, Y ) for each q � 1, then
r∑

i=1

χ(Vi(C)) ·Wi(1, Y ) = 1.

Corollary 7.6. Let G be as in Theorem 7.3. Let W (X,Y ) ∈ Q(X,Y ) such that

(i) W (X,Y ) can be written over a denominator which is a product of non-zero
factors of the form 1−XaY b for integers a � 0 and b � 1 and

(ii) ζ ĩrrG(ov)
(s) = W (qv , q

−s
v ) for almost all v ∈ Vk.

Then W (1, Y ) = 1.

The assumptions in Corollary 7.6 are satisfied for many examples of interest; see
Table 1. In fact, even the following much stronger assumptions are often satisfied.

Corollary 7.7. Let G be as in Theorem 7.3. Suppose that there are integers ai � 0,
bi � 1, and εi ∈ {±1} for i = 1, . . . ,m such that for almost all v ∈ Vk,

ζ ĩrrG(ov)
(s) =

m∏
i=1

(1− qai−bis
v )εi .

Then
m∑
i=1

εi = 0 and the multisets {{bi : εi = 1}} and {{bi : εi = −1}} coincide.

Proof. Corollary 7.6 shows that 1 =
∏m

i=1(1−Y bi)εi . By considering the vanishing
order of this function in Y at 1, we see that

∑m
i=1 εi = 0. Let c = max(bi : εi = 1)

and d = max(bi : εi = −1). If ξ ∈ C is a primitive cth root of unity, then 1−ξbi = 0
for some i with εi = −1, whence c � bi � d. Dually, d � c, and the final claim
follows by induction. �
Remark 7.8. The above results carry over verbatim to the case of representation
zeta functions of “principal congruence subgroups” Gm(ov) := exp(pmv g ⊗o ov) at-
tached to an o-form of a perfect Lie k-algebra in [2]. For example, by [2, Thm. E],
the ordinary representation zeta function of SL1

3(Zp) (p �= 3) is W (p, p−s) for

W (X,Y ) =
(X2Y 2 +XY 2 + Y 3 +X2 +XY + Y )× (X2 − Y )(X − Y )X3

(1−X2Y 3)(1−XY 2)

and indeed W (1, Y ) = 1.

8. Applications I: Representation zeta functions

of unipotent groups

In this and the following two sections, we record explicit examples of generic local
zeta functions of groups, algebras, and modules of interest which were computed
using the method developed in the present article and its implementation Zeta [40].
The explicit formulae given below, as well as others, are also included with Zeta.

It is well-known that, up to isomorphism, unipotent algebraic groups over k
correspond 1–1 to finite-dimensional nilpotent Lie k-algebras; see [10, Ch. IV].
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Nilpotent Lie algebras of dimension at most 6 over any field of characteristic zero
were first classified by Morozov [32]; various alternative versions of this classification
have been obtained.

As one of the main applications of the techniques developed in the present ar-
ticle, for an arbitrary number field k, we can compute the generic local (twist)
representation zeta functions associated with all unipotent algebraic groups of di-
mension at most 6 over k. The results of these computations are documented in
Table 1 (p. 4862). The structure of Table 1 mimics the list of associated topological
representation zeta functions in [37, Table 1]. In detail, the first column lists the
relevant Lie algebras using de Graaf’s notation [9]; an algebra Ld,i has dimension d.
For each Lie algebra g, we choose an o-form G of the unipotent algebraic group over
k associated with g. The second column in Table 1 contains formulae for the rep-
resentation zeta functions of the groups G(ov) which are valid for almost all v ∈ Vk

(depending on G). Note that Corollary 7.7 applies to the majority of examples in
Table 1. As we previously documented in [37, §6], generic local representation zeta
functions associated with various Lie algebras in Table 1 were previously known
(but sometimes only recorded for k = Q), as indicated in the third column. For
the convenience of the reader, the more detailed references to the literature from
[37, Table 1] are reproduced in Remark 8.3.

Remark 8.1 (From Q to k). Apart from the four infinite families (see the following
remark), all Lie algebras in Table 1 are defined over Q. By the invariance of (4.1)
under local base extensions (Theorem 4.1), it thus suffices to compute associated
generic local representation zeta functions for k = Q.

Remark 8.2 (Computations for infinite families). The method for computing generic
local zeta functions developed in this article takes as input a global object such as
a nilpotent Lie k-algebra. In order to carry out computations for the four infinite
families L6,19(a), L6,21(a), L6,22(a), and L6,24(a) in Table 1, additional arguments
are required.

First, as explained in [9], we are free to multiply the parameters a from above
by elements of (k×)2 � k× without changing the k-isomorphism type of the Lie
algebra, g(a) say, in question. We may thus assume that 0 �= a ∈ o in the following.
The definition of g(a) in [9] then provides us with a canonical o-form, g(a) say,
of g(a) which is in fact defined over Z[a]. Let Ga be an o-form of the unipotent
algebraic group over k associated with g(a). As explained in [44, §2], the structure
constants of g(a) (with respect to its defining basis from [9]) give rise to a formula

for ζ ĩrrGa(ov)
(s) in terms of certain explicit o-defined p-adic integrals (see [44, Cor.

2.11]); this formula is valid for almost all v ∈ Vk.
It is an elementary exercise to verify that if g = L6,19(a) or g = L6,21(a), then

the polynomials featured in the aforementioned integral formulae for ζ ĩrrGa(ov)
(s) are

all monomials in a and the variables Y1, . . . , Yd (in the notation of [44, §2.2] and up

to signs). It follows that up to excluding finitely many v ∈ Vk, ζ
ĩrr
Ga(ov)

(s) does not

depend on a. We may therefore simply carry out our calculation for k = Q and
a = 1, say.

Let g(a) be L6,22(a) or L6,24(a). Another simple calculation reveals that (again
up to signs) a single non-monomial polynomial occurs in the associated integral
formulae from above, namely Y 2

1 −aY 2
2 . For any fixed a, by applying the procedure

from [37, §5.4] as well as the steps described in the present article, we produce a
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rational function Wa(X,Y, Z) such that ζ ĩrrGa(ov)
(s) = Wa(qv, q

−s
v , ca(v)) for almost

all v ∈ Vk, where ca(v) denotes the number of roots of X2 − a in o/pv. It is
well-known that if a �∈ (k×)2, then for almost all v ∈ Vk, ca(v) = 0 or ca(v) = 2
according to whether pv remains inert or splits in k(

√
a), respectively. The critical

observation (which follows easily from [37, §5.4]) is that W := Wa is independent
of a and also of k. We may thus compute W explicitly by e.g. taking k = Q and
a = 2.

Remark 8.3. Explicit references for the known instances of generic local represen-
tation zeta functions in Table 1 are as follows (cf. [37, Table 1]):

algebra reference algebra reference
L3,2 [34, Thm. 5]) L4,3 M3 [21, (4.2.24)]
L5,4 B4 [42, Ex. 6.3]) L5,5 G5,3 [21, Tab. 5.2])
L5,7 M4 [21, (4.2.24)] L5,8 M3,3 [21, (5.3.7)]
L5,9 F3,2 [21, Tab. 5.2]) = G3 [42, Ex. 6.2])
L6,10 G6,12 [21, Tab. 5.2]) L6,18 M5 [21, (4.2.24)]
L6,19(0) G6,7 [21, Tab. 5.2]) L6,19(a) (a ∈ k×) G6,14 [21, Tab. 5.2]
L6,22(0) [42, Ex. 6.5] L6,22(a) (a ∈ k×\(k×)2)[22]
L6,25 M4,3 [21, (5.3.7)] L6,26 F1,1 [44, Thm. B].

The author would like to emphasise that all the formulae in Table 1 were ob-
tained using the method developed here. In particular, our computations provide
independent confirmation of the aforementioned (sometimes computer-assisted but
predominantly manual and ad hoc) calculations found in the literature.

For an example in dimension > 6, recall from §2.3 that Un denotes the group
scheme of upper unitriangular n × n-matrices. Using the notation from [9] as in
Table 1, U3 ⊗Q (the Heisenberg group) and U4 ⊗Q are the unipotent algebraic
groups over Q associated with the Lie algebras L3,2 and L6,19(−1), respectively.
The following result obtained using the method from the present article illustrates
that the simple shapes of the corresponding local representation zeta functions in
Table 1 may mislead.

Theorem 8.4. For almost all primes p and all finite extensions K/Qp,

ζ ĩrrU5(OK)(s) = W (qK , q−s
K ),

where

W =
(
X10Y 10 −X9Y 9 − 2X9Y 8 +X9Y 7 +X8Y 8 −X7Y 7 − 2X7Y 6 +X7Y 5

+ 6X6Y 6 − 4X5Y 6 − 4X5Y 4 + 6X4Y 4 +X3Y 5 − 2X3Y 4 −X3Y 3

+X2Y 2 +XY 3 − 2XY 2 −XY + 1
)
×
(
1− Y 3

)
×
(
1− Y

)
/(

(1−X6Y 4)(1−X3Y 3)(1−XY 3)(1−X2Y 2)(1−X2Y )2
)
.

The topological representation zeta function of U6 cannot be computed using
[37]. Consequently, the corresponding local zeta functions cannot be computed
using the method developed here.

Observe that the numerator of each W (X,Y ) in Table 1 is divisible by a poly-
nomial of the form 1−Y e. Experimental evidence provided by these examples and
those in Zeta suggests that the following p-adic version of [37, Ques. 7.4] might have
a positive answer.
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Question 8.5. Let G be an o-form of a non-abelian unipotent algebraic group

over k. Does the meromorphic continuation of ζ ĩrrG(ov)
(s) always vanish at zero for

almost all v ∈ Vk?

Remark. By [24, Cor. 2], if p is odd, then the meromorphic continuation of the
ordinary (= non-twisted) representation zeta function of a compact FAb p-adic
analytic group vanishes at −2.

Table 1. Generic local representation zeta functions associated
with all indecomposable unipotent algebraic groups of dimension
at most six over a number field.

Lie algebra W (X, Y ) s.t. ζ ĩrrG(ov)
(s) = W (qv, q

−s
v ) for almost all v ∈ Vk known

abelian 1 �
L3,2 (1− Y )/(1−XY ) �
L4,3 (1− Y )2/(1−XY )2 �
L5,4 (1− Y 2)/(1−XY 2) �
L5,5 (1−XY 2)(1− Y )/

(
(1−X2Y 2)(1−XY )

)
�

L5,6 (1−X2Y 2)(1− Y )2/
(
(1−X3Y 2)(1−XY )2

)

L5,7 (1− Y )2/
(
(1−X2Y )(1−XY )

)
�

L5,8 (1− Y )/(1−X2Y ) �
L5,9 (1− Y )2/

(
(1−X2Y )(1−XY )

)
�

L6,10 (1− Y 2)(1− Y )/
(
(1−XY 2)(1−XY )

)
�

L6,11
(−X3Y 4+X3Y 3−2X2Y 3+3X2Y 2−3XY 2+2XY−Y +1)(1−Y )

(1−X4Y 3)(1−X2Y 2)

L6,12 (1−X2Y 2)(1− Y )2/
(
(1−X3Y 2)(1−XY )2

)

L6,13
(X4Y 6+X4Y 5−X3Y 4−2X2Y 3−XY 2+Y +1)(1−Y )2

(1−X3Y 3)(1−X2Y 2)(1−XY 2)(1−XY )

L6,14
(X4Y 6−X4Y 4+X3Y 5−2X2Y 3+XY −Y 2+1)(1−Y )2

(1−X3Y 3)(1−X3Y 2)(1−XY 2)(1−XY )

L6,15
(−X5Y 4−X4Y 3+X3Y 2−X2Y 2+XY +1)(1−Y )2

(1−X5Y 3)(1−X3Y 2)(1−XY )

L6,16 (1− Y 2)(1− Y )2/
(
(1−X2Y )(1−XY 2)(1−XY )

)

L6,17 (1−X3Y 2)(1− Y )2/
(
(1−X4Y 2)(1−X2Y )(1−XY )

)

L6,18 (1− Y )2/
(
(1−X3Y )(1−XY )

)
�

L6,19(0) (1− Y )2/
(
(1−X2Y )(1−XY )

)
�

L6,19(a) (a ∈ k×) (1− Y 2)(1− Y )/
(
(1−X2Y )(1−XY 2)

)
�

L6,20 (1−XY 2)(1− Y )/
(
(1−X2Y 2)(1−X2Y )

)

L6,21(0) (1− Y )2/(1−X2Y )2

L6,21(a) (a ∈ k×) (1−X2Y 2)(1− Y )2/
(
(1−X3Y 2)(1−X2Y )(1−XY )

)

L6,22(0) (1−X2Y 2)(1− Y )/
(
(1−X3Y 2)(1−XY )

)
�

L6,22(a) if pv splits in k(
√
a): (1− Y )2/(1−XY )2 �

(a ∈ k×\(k×)2)2 if pv is inert in k(
√
a): (1− Y 2)/(1−X2Y 2) �

L6,23 (1−X3Y 2)(1− Y )/
(
(1−X4Y 2)(1−X2Y )

)

L6,24(0)
(X4Y 4−X4Y 3+X3Y 3−2X2Y 2+XY −Y +1)(1−Y )

(1−X3Y 2)2(1−XY )

L6,24(a) if a ∈ (k×)2 or pv splits in k(
√
a): (−XY 2+2XY −2Y +1)(1−Y )

(1−X3Y 2)(1−XY )

(a ∈ k×) if a �∈ (k×)2 and pv is inert in k(
√
a): (1−XY 2)(1−Y )

(1−X3Y 2)(1−XY )

L6,25 (1−XY )(1− Y )/(1−X2Y )2 �
L6,26 (1− Y )/(1−X3Y ) �

2For a ∈ (k×)2, L6,22(a) ≈ L2
3,2 decomposes.
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9. Applications II: Classical subobject zeta functions

9.1. Subalgebras: gl2(Q). The first computations of the subalgebra zeta func-
tions of sl2(Zp) are due, independently, to du Sautoy [14] (for p �= 2, relying heavily
on [28]) and White [48]. These zeta functions have later been confirmed by dif-
ferent means in [17], [30, §4.2], and [35, §7.1] (for p �= 2). Up until now, sl2(Q)
has remained the sole example of an insoluble Lie Q-algebra whose generic local
subalgebra zeta functions have been computed. Using the method developed in the
present article, we obtain the following.

Theorem 9.1. For almost all primes p and all finite extensions K/Qp,

ζ�
gl2(OK)(s) = W (qK, q−s

K ),

where

W (X,Y ) =
(
−X8Y 10 −X8Y 9 −X7Y 9 − 2X7Y 8 +X7Y 7 −X6Y 8

−X6Y 7 + 2X6Y 6 − 2X5Y 7 + 2X5Y 5 − 3X4Y 6 + 3X4Y 4

− 2X3Y 5 + 2X3Y 3 − 2X2Y 4 +X2Y 3 +X2Y 2 −XY 3

+ 2XY 2 +XY + Y + 1
)
/
(
(1−X7Y 6)(1−X3Y 3)(1−X2Y 2)2(1− Y )

)
.

The topological subalgebra zeta function

ζ�
gl2(Q),top(s) = (27s− 14)/(6(6s− 7)(s− 1)3s)

of gl2(Q) was first recorded in [35, §7.3] (relying on techniques from [36]); the result
given there is consistent with Theorem 9.1. Theorem 9.1 is particularly interesting

since the simple shape of ζ�
gl2(Q),top(s) might seem indicative of a local zeta function

which is a product of “cyclotomic factors” 1 − qa−bs
K or their inverses, which is in

fact not the case.
We note that the computations underpinning Theorem 9.1 used that gl2(R) ≈

sl2(R)⊕R for any commutative ring R in which 2 is invertible; here we regarded R
as an abelian Lie R-algebra. Theorem 9.1 therefore also illustrates the potentially
wild effect of direct sums on subalgebra zeta functions. In contrast, [18] contains ex-
amples of subalgebra and ideal zeta functions associated with nilpotent Lie algebras
which are very well-behaved under this operation.

The rational function W (X,Y ) in Theorem 9.1 satisfies the functional equation

W (X−1, Y −1) = X6Y 4W (X,Y )

predicted by [46, Thm. A] (cf. [39, §5]). Moreover, the reduced subalgebra zeta
function of gl2(Q) is W (1, Y ) = (1 − Y 3)/

(
(1 − Y )3(1 − Y 2)2

)
, as predicted by

[20, Thm. 3.3] (using the fact that the reduced subalgebra zeta function of sl2(Z)
is (1− Y 3)/

(
(1− Y )2(1− Y 2)2

)
(by [20, Prop. 4.1])).

9.2. Subalgebras: k[T ]/Tn for n � 4. Most examples of local subalgebra zeta
functions in the literature are concerned with (often nilpotent) Lie algebras. An
important exception is given by the subalgebra zeta functions of Zn

p endowed with
component-wise multiplication; explicit formulae for these zeta functions are known
for n � 3 (see [33]). In the following, we consider another natural family of asso-
ciative, commutative algebras, k[T ]/Tn, for n � 4.

Due to the simplicity of the associated “cone integrals” as in [15], the formulae
for n = 2, 3 recorded in the following can be obtained by hand with little difficulty.
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Using a substantially more involved computation, the techniques developed in the
present article also allow us to consider the case n = 4. For n = 5, the author’s
techniques for computing topological subalgebra zeta functions do not apply; i.e.,
Assumption 4.2 is violated.

Theorem 9.2. For almost all primes p and all finite extensions K/Qp, writing
q = qK ,

ζ�
OK [T ]/T 2(s) =

1− q−2s

(1− q−s)2(1− q1−2s)
,

ζ�
OK [T ]/T 3(s) = FQ[T ]/T 3(q, q−s)× 1− q2−4s

(1− q4−5s)(1− q2−3s)2(1− q1−2s)(1− q−s)
,

ζ�
OK [T ]/T 4(s) = FQ[T ]/T 4(q, q−s)/

(
(1− q13−13s)(1− q9−9s)(1− q8−8s)(1− q6−6s)2

× (1− q5−6s)(1− q5−5s)(1− q3−4s)(1− q−s)
)
,

where FQ[T ]/T 3 = −X4Y 7 − X4Y 6 − X3Y 5 + X3Y 4 − X2Y 4 + X2Y 3 − XY 3 +

XY 2+Y +1 and FQ[T ]/T 4 = 1+ · · ·−X49Y 54 ∈ Q[X,Y ] are given in Appendix A.

The topological subalgebra zeta function of Q[T ]/T 4 can be found in [36, §9.2].
As in §9.1, the zeta functions in Theorem 9.2 satisfy the functional equations pre-
dicted by [46, Thm. A], and the associated reduced subalgebra zeta functions co-
incide with those computed using [20]. While Evseev only considered reduced
zeta functions of Lie algebras, his reasoning also applies to more general, pos-
sibly non-associative, algebras. For example, using Theorem 9.2, after consider-
able cancellation, we find the reduced subalgebra zeta function of Q[T ]/T 4 to be
(Y 6 + Y 4 + 2Y 3 + Y 2 + 1)/

(
(1 − Y 6)(1 − Y 2)(1 − Y )2

)
, as predicted by Evseev’s

results.

9.3. Subalgebras: Soluble, non-nilpotent Lie algebras. Taylor [45, Ch. 6]
computed local subalgebra zeta functions associated with soluble, non-nilpotent Lie
algebras of the form kd�k (semidirect sum) for d = 2, 3, where kd and k are regarded
as abelian Lie algebras. In particular, he (implicitly) computed the subalgebra zeta
function of the Lie algebra tr2(Zp) of upper triangular 2× 2-matrices over Zp (see
[18, §3.4.2]). Klopsch and Voll [30] computed subalgebra zeta functions of arbitrary
3-dimensional Lie Zp-algebras in terms of Igusa’s local zeta functions attached to
associated quadratic forms. Regarding the enumeration of ideals of soluble, non-
nilpotent Lie algebras, Woodward [51] computed local ideal zeta functions of trd(Zp)
and certain combinatorially defined quotients of these algebras.

Since, to the author’s knowledge, no examples of generic local subalgebra zeta
functions associated with soluble, non-nilpotent Lie algebras of dimension 4 have
been recorded in the literature, we now include some examples.

Theorem 9.3. Let Mi denote an arbitrary but fixed Z-form of the soluble Lie Q-
algebra M i of dimension 4 from [8]. Then for almost all primes p and all finite
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extensions K/Qp, writing q = qK ,

ζ�
M6

0,0⊗OK
=

(
q8−7s − q7−5s + q6−5s − 2q5−4s + q4−4s + q4−3s − 2q3−3s + q2−2s

− q1−2s + 1
)
/
(
(1− q6−4s)(1− q3−2s)2(1− q1−s)2(1− q−s)

)
,

ζ�M8⊗OK
=

(
q5−7s − 3q4−5s + q4−4s + 2q3−5s − 2q3−4s + q3−3s + q2−4s

− 2q2−3s + 2q2−2s + q1−3s − 3q1−2s + 1
)
/(

(1− q6−5s)(1− q2−2s)(1− q1−s)3(1− q−s)
)
,

ζ�M12⊗OK
=

1− q2−3s

(1− q3−2s)(1− q2−2s)(1− q2−s)(1− q1−s)(1− q−s)
,

ζ�
M13

0 ⊗OK
=

−q4−5s − q3−4s + q3−3s − 2q2−3s + 2q2−2s − q1−2s + q1−s + 1

(1− q4−3s)(1− q3−2s)(1− q2−2s)(1− q1−s)(1− q−s)
.

Remark 9.4. Let g be the non-abelian Lie Q-algebra of dimension 2. Define a Z-
form g of g by g = Zx⊕Zy and [x, y] = y. Then it is easy to see that for all p-adic

fields K, ζ�
g⊗OK

(s) = 1/
(
(1 − q−s

K )(1 − q1−s
K )

)
. Using the notation from [8] as in

Theorem 9.3, M8 ≈ g⊕ g and M13
0 ≈ g⊗Q Q[X]/X2.

9.4. Submodules: Un for n � 5 and relatives. For any commutative ring R,
we consider

Un(R) =

⎡
⎢⎢⎢⎢⎣
1 R · · · R

0
. . .

. . .
...

...
. . .

. . . R
0 · · · 0 1

⎤
⎥⎥⎥⎥⎦

together with its natural action on Rn by right-multiplication. For n � 4, the
determination of submodule zeta functions associated with Un in the following is
quite straightforward, even without the techniques developed here. The case n = 5,
however, is rather more complicated, as is the resulting formula.

Theorem 9.5. For almost all primes p and all finite extensions K/Qp, writing
q = qK ,

ζU2(OK)�O2
K
(s) =

1

(1− q1−2s)(1− q−s)
,

ζU3(OK)�O3
K
(s) =

1− q1−4s

(1− q2−4s)(1− q1−3s)(1− q1−2s)(1− q−s)
,

ζU4(OK)�O4
K
(s) = FU4(q, q

−s)/
(
(1− q4−8s)(1− q3−7s)(1− q2−6s)(1− q2−5s)

× (1− q2−4s)(1− q1−4s)(1− q1−2s)(1− q1−3s)(1− q−s)
)
,

ζU5(OK)�O5
K
(s) = FU5

(q, q−s)/
(
(1− q6−13s)(1− q6−12s)(1− q4−11s)

× (1− q4−10s)(1− q3−10s)(1− q4−9s)(1− q3−9s)(1− q4−8s)

× (1− q3−8s)(1− q2−8s)(1− q3−7s)(1− q2−7s)(1− q2−6s)

× (1− q2−5s)(1− q1−5s)(1− q2−4s)(1− q1−4s)(1− q1−2s)

× (1− q−s)
)
,
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where

FU4
= −X10Y 30+X9Y 26+X9Y 25+X9Y 24−X9Y 23+2X8Y 23−X8Y 22

+ 2X7Y 22−2X7Y 21−2X7Y 20+X6Y 21−2X7Y 19+X6Y 20−X6Y 18−X6Y 17

−X5Y 18−X5Y 17+2X6Y 15−X5Y 16+X5Y 14−2X4Y 15+X5Y 13+X5Y 12

+X4Y 13+X4Y 12−X4Y 10+2X3Y 11−X4Y 9+2X3Y 10+2X3Y 9−2X3Y 8

+X2Y 8−2X2Y 7+XY 7−XY 6−XY 5−XY 4+1

and FU5
= 1 + · · · + X43Y 124 is given in Appendix A. These formulae for n � 5

satisfy the functional equation

ζUn(OK)�On
K
(s)

∣∣∣
q→q−1

= (−1)nq(
n
2)−(

n+1
2 )s · ζUn(OK)�On

K
(s).

Despite the increasing complexity of the formulae in Theorem 9.5, we note that
the “reduced submodule zeta function” of Un(Z) acting on Zn (defined and com-
puted using a straightforward variation of [20]) is given by the simple formula
1/((1− Y )(1− Y 2) · · · (1− Y n)) for all n � 1.

Remark 9.6.

(i) Let g be an n-dimensional nilpotent Lie k-algebra. By Engel’s theorem,
after choosing a suitable basis, we may regard ad(g) as a subset of the
enveloping associative algebra k[Un(k)] of Un(k) within Mn(k). Suppose
that n > 1. It is easy to see that the minimal number of generators
of k[Un(k)] as a unital, associative k-algebra is n − 1 (use, for instance,
[23, p. 263]). Let z denote the centre of g. Then, as a Lie algebra, ad(g) ≈
g/z is generated by dimk(g/([g,g] + z)) many elements. Hence, if g has
class � 3, then ad(g) is generated by fewer than n − 1 elements. If, on
the other hand, g has class 2, then n � 3 and ad(g) is an abelian Lie
algebra while k[Un(k)] is non-commutative. We conclude that ad(g) never
generates all of k[Un(k)] for n > 1.

(ii) We may sharpen the final statement of (i) as follows. Let n > 1. By [38,
Prop. 6.1], the abscissa of convergence of ζUn(o)�on(s) is 1. It follows that
there does not exist a nilpotent Lie o-algebra g which is finitely generated
as an o-module such that ζUn(ov)�on

v
(s) = ζ�g⊗oov

(s) for almost all v ∈
Vk. Indeed, it is easy to see that for every finite S ⊂ Vk, the abscissa
of convergence of

∏
v∈Vk\S ζ�g⊗oov

(s) is at least d := dimk(g/[g, g] ⊗o k)

(cf. [26, Prop. 1]), and we may clearly assume d > 1.

For another illustration of the generally wild effect of direct products of algebraic
structures on associated zeta functions, we now consider generic local submodule
zeta functions associated with products Un1

× · · ·×Unr
, diagonally embedded into

Un1+···+nr
.
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Theorem 9.7. For almost all primes p and all finite extensions K/Qp, writing
q = qK ,

ζU2
2(OK)�O4

K
(s) = (1− q2−3s)/

(
(1− q3−3s)(1− q2−2s)2(1− q1−s)(1− q−s)

)
,

ζU3
2(OK)�O6

K
(s) = FU3

2
(q, q−s)/

(
(1−q8−5s)(1−q5−4s)(1−q4−3s)(1−q3−2s)3

×(1− q2−s)(1− q1−s)(1− q−s)
)
,

ζ(U3 ×U2)(OK)�O5
K
(s) = FU3 ×U2

(q, q−s)/
(
(1− q6−6s)(1− q4−5s)(1− q3−4s)

×(1− q3−3s)(1− q2−3s)(1− q2−2s)2(1− q1−s)(1− q−s)
)
,

ζU2
3(OK)�O6

K
(s) = FU2

3
(q, q−s)/

(
(1−q9−9s)(1−q8−8s)(1−q6−7s)(1−q5−7s)

×(1− q6−6s)(1− q4−6s)(1− q4−5s)(1− q3−5s)(1− q3−4s)

×(1− q3−3s)(1− q2−3s)(1− q2−2s)2(1− q1−s)(1− q−s)
)
,

where

FU3
2
= −X14Y 12 + 3X11Y 9 −X11Y 8 − 2X10Y 9 + 2X10Y 8 −X8Y 7 + 2X7Y 7

− 2X7Y 5 +X6Y 5 − 2X4Y 4 + 2X4Y 3 +X3Y 4 − 3X3Y 3 + 1,

FU3 ×U2
= X13Y 18−X11Y 15−2X11Y 14+X11Y 13+X10Y 14−2X10Y 13+X9Y 12

− 2X8Y 12 + 3X8Y 11 − 2X7Y 11 +X8Y 9 +X7Y 10 +X6Y 8 +X5Y 9

− 2X6Y 7 + 3X5Y 7 − 2X5Y 6 +X4Y 6 − 2X3Y 5 +X3Y 4 +X2Y 5

− 2X2Y 4 −X2Y 3 + 1,

and FU2
3
= −X43Y 57 + · · ·+ 1 is given in Appendix A.

These generic local zeta functions satisfy the following functional equations:

ζU2
2(OK)�O4

K
(s)

∣∣∣
q→q−1

= q6−6s · ζU2
2(OK)�O4

K
(s),

ζU3
2(OK)�O6

K
(s)

∣∣∣
q→q−1

= q15−9s · ζU3
2(OK)�O6

K
(s),

ζ(U3 ×U2)(OK)�O5
K
(s)

∣∣∣
q→q−1

= −q10−9s · ζ(U3 ×U2)(OK)�O5
K
(s),

ζU2
3(OK)�O6

K
(s)

∣∣∣
q→q−1

= q15−12s · ζU2
3(OK)�O6

K
(s).

Further examples of the above form are included with Zeta; here, we only record
the following functional equations.

Theorem 9.8. For almost all primes p and all finite extensions K/Qp, writing
q = qK ,

ζ(U5 ×U1)(OK)�O6
K
(s)

∣∣∣
q→q−1

= q15−16s · ζ(U5 ×U1)(OK)�O6
K
(s),

ζ(U3 ×U2 ×U1)(OK)�O6
K
(s)

∣∣∣
q→q−1

= q15−10s · ζ(U3 ×U2 ×U1)(OK)�O6
K
(s),

ζ(U4 ×U2)(OK)�O6
K
(s)

∣∣∣
q→q−1

= q15−13s · ζ(U4 ×U2)(OK)�O6
K
(s),

ζ(U3 ×U2
2)(OK)�O7

K
(s)

∣∣∣
q→q−1

= −q21−12s · ζ(U3 ×U2
2)(OK)�O7

K
(s).
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We note that the Uniformity Problem has a positive solution for each of the four
families of local zeta functions in Theorem 9.8. We further note that the functional
equations recorded in Theorems 9.5, 9.7, and 9.8 are explained by [47, Thm. 5.5].

10. Applications III: Graded subobject zeta functions

By [31, §5.1], up to isomorphism, there are exactly 26 non-abelian fundamental
graded Lie C-algebras (see §3.2) of dimension at most six. All of these algebras
are defined in terms of integral structure constants which thus provide us with
“natural” Q-forms. It turns out that for each of the resulting 26 graded Lie Q-
algebras, we can use the techniques developed here to compute their associated
generic local graded subalgebra and graded ideal zeta functions. We note that for
various of these Lie algebras, the associated non-graded subalgebra and ideal zeta
functions are unknown.

Examples of graded ideal zeta functions. Table 2 lists the generic local ideal
zeta functions associated with the aforementioned 26 graded Lie Q-algebras. The
first column contains the names of the associated C-algebras as in [31]; here, an
algebra called “md c i” has dimension d and nilpotency class c.

Given a Z-form g of a graded Lie algebra g as indicated by an entry in the first
column, the rational function W (X,Y ) in the corresponding entry of the second
column satisfies the following property: for almost all rational primes p and all finite
extensions K/Qp, ζ

gr �
g⊗OK

(s) = W (qK , q−s
K ). An entry ±XaY b in the third column

of Table 2 indicates that the corresponding W (X,Y ) satisfies W (X−1, Y −1) =
±XaY b ·W (X,Y ); an entry “�” signifies the absence of such a functional equation.

The algebras m6 3 2 and m6 3 3 are precisely the graded Lie algebras associated
with L(3,2) in [18, Thm. 2.32] (also called LW [50, Thm. 3.4] and L6,25 [9]) and g6,7

in [18, Thm. 2.45] (called L6,19(0) in [9]), respectively. The non-graded local ideal
zeta functions of these algebras do not satisfy functional equations of the above form
either. The algebra m6 4 1 is the graded Lie algebra associated with L6,21(0) from
[9]; to the author’s knowledge, the non-graded local (and topological) subalgebra
and ideal zeta functions of this algebra are unknown.

We note that the formulae for m3 2, m4 3, m5 4 1, and m6 5 1 in Table 2 are
consistent with and explained by Proposition 3.5.

Examples of graded subalgebra zeta functions. While the methods developed
here can be used to compute the generic local graded subalgebra zeta functions of all
26 algebras in Table 2, we chose to only include the smaller ones of these examples
in Table 3 (and Appendix B); for a complete list, we refer to Zeta [40].

Open questions. Voll [46, Thm. A] established local functional equations under
“inversion of p” for generic local subalgebra zeta functions without any further
assumptions on the algebra in question. It is reasonable to expect the following
question to have a positive answer; the precise form of (10.1) below was suggested
to the author by Voll.

Question 10.1. Let A = A1 ⊕ · · · ⊕ Ar be an o-form of a possibly non-associative
finite-dimensional k-algebra together with a direct sum decomposition into free
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Table 2. Examples of generic local graded ideal zeta functions.

g W (X, Y ) s.t. ζgr �
g⊗OK

(s) = W (qK , q−s
K ) FEqn

m3 2 1/
(
(1−XY )

(
1− Y 3

)
(1− Y )

)
−XY 5

m4 2 1/
((
1−X2Y

)
(1−XY )

(
1− Y 3

)
(1− Y )

)
X3Y 6

m4 3 1/
(
(1−XY )

(
1− Y 4

)(
1− Y 3

)
(1− Y )

)
XY 9

m5 2 1 1−Y 6

(1−XY 3)(1−X2Y )(1−XY )(1−Y 5)(1−Y 3)(1−Y )
−X4Y 8

m5 2 2 1/
((
1−X3Y

)(
1−X2Y

)
(1−XY )

(
1− Y 3

)
(1− Y )

)
−X6Y 7

m5 2 3 1/
((
1−X3Y

)(
1−X2Y

)
(1−XY )

(
1− Y 5

)
(1− Y )

)
−X6Y 9

m5 3 1 1−Y 8

(1−XY 4)(1−XY )(1−Y 5)(1−Y 4)(1−Y 3)(1−Y )
−X2Y 10

m5 3 2 1/
((
1−X2Y

)
(1−XY )

(
1− Y 4

)(
1− Y 3

)
(1− Y )

)
−X3Y 10

m5 4 1 1/
(
(1−XY )

(
1− Y 5

)(
1− Y 4

)(
1− Y 3

)
(1− Y )

)
−XY 14

m6 2 1 XY 8+XY 5+Y 5+XY 3+Y 3+1

(1−X2Y 5)(1−X2Y 3)(1−X2Y )(1−XY )(1−Y 6)(1−Y )
X6Y 9

m6 2 2 1−Y 6

(1−XY 3)(1−X3Y )(1−X2Y )(1−XY )(1−Y 5)(1−Y 3)(1−Y )
X7Y 9

m6 2 3 Y 4+Y 3+Y 2+Y +1

(1−XY 5)(1−X3Y )(1−X2Y )(1−XY )(1−Y 3)2
X7Y 10

m6 2 4 1−XY 8

(1−XY 6)(1−XY 5)(1−X3Y )(1−X2Y )(1−XY )(1−Y 3)(1−Y )
X7Y 10

m6 2 5 1

(1−X4Y )(1−X3Y )(1−X2Y )(1−XY )(1−Y 3)(1−Y )
X10Y 8

m6 2 6 1

(1−X4Y )(1−X3Y )(1−X2Y )(1−XY )(1−Y 5)(1−Y )
X10Y 10

m6 3 1 1−Y 8

(1−XY 4)(1−X2Y )(1−XY )(1−Y 5)(1−Y 4)(1−Y 3)(1−Y )
X4Y 11

m6 3 2 Y 8+Y 7+2Y 6+2 Y 5+2Y 4+2Y 3+Y 2+Y +1

(1−XY 3)(1−X2Y )(1−XY )(1−Y 6)(1−Y 5)(1−Y 4)
�

m6 3 3 same as for m6 3 2 �

m6 3 4 1/
((
1−XY 3

)(
1−X2Y

)
(1−XY )

(
1− Y 5

)(
1− Y 3

)
(1− Y )

)
X4Y 14

m6 3 5 same as for m6 3 4 X4Y 14

m6 3 6 1/
((
1−X3Y

)(
1−X2Y

)
(1−XY )

(
1− Y 4

)(
1− Y 3

)
(1− Y )

)
X6Y 11

m6 4 1 Y 3−Y +1

(1−XY 4)(1−XY )(1−Y 6)(1−Y 5)(1−Y )2
�

m6 4 2 1−Y 8

(1−XY 4)(1−XY )(1−Y 6)(1−Y 5)(1−Y 4)(1−Y 3)(1−Y )
X2Y 16

m6 4 3 1/
((
1−X2Y

)
(1−XY )

(
1− Y 5

)(
1− Y 4

)(
1− Y 3

)
(1− Y )

)
X3Y 15

m6 5 1 1/
(
(1−XY )

(
1− Y 6

)(
1− Y 5

)(
1− Y 4

)(
1− Y 3

)
(1− Y )

)
XY 20

m6 5 2 same as for m6 5 1 XY 20

o-submodules. Let n = rko(A) and m =
r∑

i=1

(
rko(Ai)

2

)
. Is it always the case that

(10.1) ζgr�A⊗oov
(s)

∣∣∣
qv→q−1

v

= (−1)nqm−ns
v · ζA⊗oov

(s)

for almost all v ∈ Vk?

The following three questions are graded analogues of conjectures due to Voll
(cf. [47, §1.3]).
Question 10.2. Let g = g1⊕· · ·⊕gc be a finite-dimensional graded Lie k-algebra
of class c. Let di = dim(gi) and d = dim(g). Let 0 = z0 ⊂ · · · ⊂ zc = g be the
upper central series of g and write ei = dim(g/zi). Let g be an o-form of g as a
graded Lie algebra.

(i) Does ζgr �g⊗oov
(s) have degree −(e0+ · · ·+ec−1) in q−s

v for almost all v ∈ Vk?

(ii) Suppose that there exists W ∈ Q(X,Y ) such that ζgr �g⊗oov
(s) = W (qv, q

−s
v )

for almost all v ∈ Vk. Does W have degree −
((

d1

2

)
+ · · ·+

(
dc

2

))
in X?
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(iii) Suppose that for almost all v ∈ Vk,

ζgr �g⊗oov
(s)

∣∣∣
qv→q−1

v

= εqa−bs
v · ζgr �g⊗oov

(s),

where ε = ±1 and a, b ∈ Z. Do we have ε = (−1)d, a =
(
d1

2

)
+ · · ·+

(
dc

2

)
,

and b = e0 + · · ·+ ec−1?

Finally, the following is closely related to the questions raised in [35, §8.2].
Question 10.3. Let g = g1⊕· · ·⊕gc be a graded nilpotent Lie o-algebra of class c,

where each gi is free and of finite rank as an o-module. Do ζgr�g⊗oov
(s) and ζgr �g⊗oov

(s)
always have a pole of order c at zero for v ∈ Vk?

As in [35, §8.2], a natural follow-up question would be to interpret or predict
the leading coefficients of the zeta functions in Question 10.3 expanded as Laurent
series in s. However, perhaps unexpectedly, the examples in Tables 2–3 show that
these leading coefficients are not functions of v and the numbers rko(g1), . . . , rko(gc)
alone.

Table 3. Examples of generic local graded subalgebra zeta functions.

g W (X,Y ) s.t. ζgr�
g⊗OK

(s) = W (qK , q−s
K ) FEqn

m3 2 1−XY 3

(1−XY 2)(1−XY )(1−Y 2)(1−Y )
−XY 3

m4 2 1−XY 3

(1−X2Y )(1−XY 2)(1−XY )(1−Y 2)(1−Y )
X3Y 4

m4 3 X2Y 9+X2Y 7+X2Y 6−XY 6−2XY 5−2XY 4−XY 3+Y 3+Y 2+1

(1−XY 3)(1−XY 2)(1−XY )(1−Y 4)(1−Y 2)(1−Y )
XY 4

m5 2 1 −X2Y 5−X2Y 3−XY 3+XY 2+Y 2+1

(1−X2Y )(1−XY 2)(1−X2Y 2)(1−XY )(1−Y 3)(1−Y )
−X4Y 5

m5 2 2 1−XY 3

(1−XY 2)(1−X3Y )(1−X2Y )(1−XY )(1−Y 2)(1−Y )
−X6Y 5

m5 2 3 −X4Y 7−X3Y 6−X3Y 4−X2Y 5+X3Y 3−XY 4+X2Y 2+XY 3+XY +1

(1−X3Y 3)(1−X2Y 3)(1−X3Y )(1−X2Y )(1−Y 3)(1−Y )
−X6Y 5

m5 3 1 W531 (B.1) −X2Y 5

m5 3 2 X2Y 9+X2Y 7+X2Y 6−XY 6−2XY 5−2XY 4−XY 3+Y 3+Y 2+1

(1−XY 3)(1−XY 2)(1−X2Y )(1−XY )(1−Y 4)(1−Y 2)(1−Y )
−X3Y 5

m5 4 1 W541 (B.2) −XY 5

m6 2 1 W621 (B.3) X6Y 6

m6 2 2 −X2Y 5−X2Y 3−XY 3+XY 2+Y 2+1

(1−X2Y 2)(1−XY 2)(1−X3Y )(1−X2Y )(1−XY )(1−Y 3)(1−Y )
X7Y 6

m6 2 3 W623 (B.4) X7Y 6

m6 2 5 1−XY 3

(1−XY 2)(1−X4Y )(1−X3Y )(1−X2Y )(1−XY )(1−Y 2)(1−Y )
X10Y 6

m6 2 6 −X4Y 7−X3Y 6−X3Y 4−X2Y 5+X3Y 3−XY 4+X2Y 2+XY 3+XY +1

(1−X3Y 3)(1−X2Y 3)(1−X4Y )(1−X3Y )(1−X2Y )(1−Y 3)(1−Y )
X10Y 6

m6 3 1 W631 (B.5) X4Y 6

m6 3 2 W632 (B.6) X4Y 6

m6 3 3 W633 (B.7) X4Y 6

m6 3 6 X2Y 9+X2Y 7+X2Y 6−XY 6−2XY 5−2XY 4−XY 3+Y 3+Y 2+1

(1−XY 3)(1−XY 2)(1−X3Y )(1−X2Y )(1−XY )(1−Y 4)(1−Y 2)(1−Y )
X6Y 6

m6 4 3 W643 (B.8) X3Y 6

Appendix A. Large numerators of local subobject zeta functions

FU5 = X
43

Y
124

+ X
42

Y
121 − X

42
Y

120 − X
42

Y
119 − 2X

42
Y

118
+ 2X

41
Y

118 − 3X
41

Y
117

+ X42Y 115 − 2X41Y 116 + X42Y 114 − 3X41Y 115 − 2X40Y 116 − X42Y 113 − X41Y 114

+ 2X
40

Y
115

+ 4X
41

Y
113 − 2X

40
Y

114 − X
39

Y
115 − 2X

40
Y

113 − 2X
39

Y
114

+ X
41

Y
111

+ 6X40Y 112 − 3X39Y 113 − X41Y 110 + X40Y 111 − 4X39Y 112 + 5X40Y 110 + 6X39Y 111

+ X
38

Y
112

+ 3X
39

Y
110 − 6X

38
Y

111 − X
40

Y
108

+ 8X
39

Y
109

+ 2X
38

Y
110 − 2X

40
Y

107

+ 4X39Y 108 + 5X38Y 109 − 3X37Y 110 + X39Y 107 + 9X38Y 108 − 4X39Y 106 + 8X38Y 107
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+ X37Y 108 − 4X39Y 105 + 3X38Y 106 + 6X37Y 107 − 2X36Y 108 − X39Y 104 − 5X38Y 105

+ 13X
37

Y
106

+ 2X
36

Y
107 − 8X

38
Y

104
+ 9X

37
Y

105
+ 3X

36
Y

106 − X
35

Y
107

+ 2X
39

Y
102

− 7X38Y 103 − 3X37Y 104 + 8X36Y 105 + X35Y 106 − 6X38Y 102 − 15X37Y 103 + 5X36Y 104

− X
35

Y
105

+ 4X
38

Y
101 − 15X

37
Y

102
+ 6X

36
Y

103
+ 12X

35
Y

104 − X
38

Y
100 − 16X

37
Y

101

− 10X36Y 102 + 7X35Y 103 − 2X34Y 104 + 3X38Y 99 + 4X37Y 100 − 22X36Y 101 + 8X35Y 102

+ 5X
34

Y
103

+ X
38

Y
98 − 28X

36
Y

100 − 8X
35

Y
101

+ 8X
37

Y
98 − 8X

36
Y

99 − 19X
35

Y
100

+ 13X34Y 101 + 2X33Y 102 + X37Y 97 − 2X36Y 98 − 30X35Y 99 + X34Y 100 + X33Y 101

− X
37

Y
96

+ 17X
36

Y
97 − 19X

35
Y

98 − 16X
34

Y
99

+ 6X
33

Y
100

+ 17X
36

Y
96 − 6X

35
Y

97

− 34X34Y 98 + 2X33Y 99 + X32Y 100 − X37Y 94 + 7X36Y 95 + 16X35Y 96 − 32X34Y 97

+ 2X
32

Y
99 − X

36
Y

94
+ 32X

35
Y

95 − 15X
34

Y
96 − 21X

33
Y

97
+ 2X

32
Y

98 − 5X
36

Y
93

+ 16X35Y 94 + 4X34Y 95 − 32X33Y 96 − 2X32Y 97 − X36Y 92 + 17X35Y 93 + 56X34Y 94

− 22X
33

Y
95 − 13X

32
Y

96
+ 3X

31
Y

97 − X
36

Y
91 − 5X

35
Y

92
+ 30X

34
Y

93 − 13X
33

Y
94

− 22X32Y 95 − 7X35Y 91 + 37X34Y 92 + 59X33Y 93 − 25X32Y 94 − 5X31Y 95 − 3X35Y 90

− 5X
34

Y
91

+ 41X
33

Y
92 − 29X

32
Y

93 − 17X
31

Y
94 − X

35
Y

89 − 17X
34

Y
90

+ 69X
33

Y
91

+ 41X32Y 92 − 22X31Y 93 + X30Y 94 − 11X34Y 89 + 18X33Y 90 + 48X32Y 91 − 26X31Y 92

− 5X30Y 93 − 12X34Y 88 − 26X33Y 89 + 89X32Y 90 + 13X31Y 91 − 10X30Y 92 − X29Y 93

+ 2X34Y 87 − 26X33Y 88 + 52X32Y 89 + 33X31Y 90 − 23X30Y 91 − 3X29Y 92 + 3X34Y 86

− 34X33Y 87 − 24X32Y 88 + 82X31Y 89 − 4X29Y 91 + X34Y 85 − 10X33Y 86 − 38X32Y 87

+ 88X31Y 88 + 24X30Y 89 − 11X29Y 90 − 3X33Y 85 − 69X32Y 86 + 4X31Y 87 + 66X30Y 88

− 6X29Y 89 − 2X28Y 90 + 7X33Y 84 − 30X32Y 85 − 31X31Y 86 + 101X30Y 87 − 5X28Y 89

+ 4X
33

Y
83 − 11X

32
Y

84 − 103X
31

Y
85

+ 28X
30

Y
86

+ 37X
29

Y
87 − 4X

28
Y

88
+ 10X

32
Y

83

− 77X31Y 84 − 5X30Y 85 + 91X29Y 86 − 2X28Y 87 + X33Y 81 + 9X32Y 82 − 40X31Y 83

− 99X
30

Y
84

+ 53X
29

Y
85

+ 21X
28

Y
86 − 2X

27
Y

87
+ 4X

32
Y

81
+ 9X

31
Y

82 − 115X
30

Y
83

+ 20X29Y 84 + 53X28Y 85 − 6X27Y 86 + 4X32Y 80 + 32X31Y 81 − 78X30Y 82 − 80X29Y 83

+ 56X
28

Y
84

+ 5X
27

Y
85 − 2X

32
Y

79
+ 22X

31
Y

80 − 18X
30

Y
81 − 148X

29
Y

82
+ 44X

28
Y

83

+ 30X27Y 84 − X26Y 85 + 11X31Y 79 + 42X30Y 80 − 114X29Y 81 − 25X28Y 82 + 46X27Y 83

+ 3X
31

Y
78

+ 56X
30

Y
79 − 64X

29
Y

80 − 138X
28

Y
81

+ 32X
27

Y
82

+ 6X
26

Y
83 − X

31
Y

77

+ 36X30Y 78 + 35X29Y 79 − 143X28Y 80 + 10X27Y 81 + 22X26Y 82 − 3X31Y 76 + 14X30Y 77

+ 89X
29

Y
78 − 118X

28
Y

79 − 100X
27

Y
80

+ 29X
26

Y
81

+ 4X
25

Y
82

+ X
31

Y
75 − 3X

30
Y

76

+ 76X29Y 77 − 130X27Y 79 + 33X26Y 80 + 10X25Y 81 − 7X30Y 75 + 50X29Y 76 + 107X28Y 77

− 152X
27

Y
78 − 62X

26
Y

79
+ 13X

25
Y

80
+ X

30
Y

74
+ 6X

29
Y

75
+ 121X

28
Y

76 − 71X
27

Y
77

− 99X26Y 78 + 23X25Y 79 + X24Y 80 − 3X30Y 73 − 19X29Y 74 + 100X28Y 75 + 88X27Y 76

− 137X
26

Y
77 − 16X

25
Y

78
+ 8X

24
Y

79 − 12X
29

Y
73

+ 34X
28

Y
74

+ 145X
27

Y
75 − 119X

26
Y

76

− 53X25Y 77 + 16X24Y 78 − 7X29Y 72 − 16X28Y 73 + 167X27Y 74 + 47X26Y 75 − 107X25Y 76

− 3X
24

Y
77

+ X
23

Y
78 − X

29
Y

71 − 28X
28

Y
72

+ 84X
27

Y
73

+ 118X
26

Y
74 − 132X

25
Y

75

− 29X24Y 76 + 4X23Y 77 − 2X29Y 70 − 27X28Y 71 − 12X27Y 72 + 209X26Y 73 + 6X25Y 74

− 55X
24

Y
75

+ 5X
23

Y
76 − 13X

28
Y

70 − 54X
27

Y
71

+ 156X
26

Y
72

+ 80X
25

Y
73 − 117X

24
Y

74

− 6X23Y 75 + X22Y 76 − X28Y 69 − 57X27Y 70 + 38X26Y 71 + 213X25Y 72 − 39X24Y 73

− 19X
23

Y
74

+ X
22

Y
75

+ 2X
28

Y
68 − 33X

27
Y

69 − 51X
26

Y
70

+ 208X
25

Y
71

+ 28X
24

Y
72

− 77X23Y 73 − 4X22Y 74 − 13X27Y 68 − 114X26Y 69 + 107X25Y 70 + 164X24Y 71 − 41X23Y 72

− 2X
22

Y
73 − 80X

26
Y

68 − 11X
25

Y
69

+ 221X
24

Y
70 − 5X

23
Y

71 − 35X
22

Y
72 − X

21
Y

73

+ 6X27Y 66 − 35X26Y 67 − 132X25Y 68 + 154X24Y 69 + 87X23Y 70 − 36X22Y 71 − X21Y 72

+ 3X
27

Y
65 − 131X

25
Y

67
+ 44X

24
Y

68
+ 200X

23
Y

69 − 22X
22

Y
70 − 14X

21
Y

71
+ 10X

26
Y

65
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− 97X25Y 66 − 124X24Y 67 + 176X23Y 68 + 33X22Y 69 − 21X21Y 70 + 11X26Y 64 − 18X25Y 65

− 177X
24

Y
66

+ 109X
23

Y
67

+ 135X
22

Y
68 − 15X

21
Y

69 − X
20

Y
70

+ 7X
26

Y
63

+ 21X
25

Y
64

− 162X24Y 65 − 73X23Y 66 + 144X22Y 67 − 3X21Y 68 − 8X20Y 69 + 2X26Y 62 + 35X25Y 63

− 62X
24

Y
64 − 189X

23
Y

65
+ 145X

22
Y

66
+ 71X

21
Y

67 − 8X
20

Y
68

+ X
26

Y
61

+ 16X
25

Y
62

− X24Y 63 − 216X23Y 64 − 7X22Y 65 + 101X21Y 66 − 9X20Y 67 − 2X19Y 68 + 5X25Y 61

+ 63X
24

Y
62 − 131X

23
Y

63 − 155X
22

Y
64

+ 132X
21

Y
65

+ 36X
20

Y
66

+ 5X
25

Y
60

+ 51X
24

Y
61

− 32X23Y 62 − 241X22Y 63 + 48X21Y 64 + 53X20Y 65 − 8X19Y 66 − 2X25Y 59 + 21X24Y 60

+ 76X
23

Y
61 − 205X

22
Y

62 − 92X
21

Y
63

+ 86X
20

Y
64

+ 10X
19

Y
65

+ 10X
24

Y
59

+ 86X
23

Y
60

− 92X22Y 61 − 205X21Y 62 + 76X20Y 63 + 21X19Y 64 − 2X18Y 65 − 8X24Y 58 + 53X23Y 59

+ 48X
22

Y
60 − 241X

21
Y

61 − 32X
20

Y
62

+ 51X
19

Y
63

+ 5X
18

Y
64

+ 36X
23

Y
58

+ 132X
22

Y
59

− 155X21Y 60 − 131X20Y 61 + 63X19Y 62 + 5X18Y 63 − 2X24Y 56 − 9X23Y 57 + 101X22Y 58

− 7X
21

Y
59 − 216X

20
Y

60 − X
19

Y
61

+ 16X
18

Y
62

+ X
17

Y
63 − 8X

23
Y

56
+ 71X

22
Y

57

+ 145X21Y 58 − 189X20Y 59 − 62X19Y 60 + 35X18Y 61 + 2X17Y 62 − 8X23Y 55 − 3X22Y 56

+ 144X
21

Y
57 − 73X

20
Y

58 − 162X
19

Y
59

+ 21X
18

Y
60

+ 7X
17

Y
61 − X

23
Y

54 − 15X
22

Y
55

+ 135X21Y 56 + 109X20Y 57 − 177X19Y 58 − 18X18Y 59 + 11X17Y 60 − 21X22Y 54 + 33X21Y 55

+ 176X20Y 56 − 124X19Y 57 − 97X18Y 58 + 10X17Y 59 − 14X22Y 53 − 22X21Y 54 + 200X20Y 55

+ 44X19Y 56 − 131X18Y 57 + 3X16Y 59 − X22Y 52 − 36X21Y 53 + 87X20Y 54 + 154X19Y 55

− 132X18Y 56 − 35X17Y 57 + 6X16Y 58 − X22Y 51 − 35X21Y 52 − 5X20Y 53 + 221X19Y 54

− 11X18Y 55 − 80X17Y 56 − 2X21Y 51 − 41X20Y 52 + 164X19Y 53 + 107X18Y 54 − 114X17Y 55

− 13X16Y 56 − 4X21Y 50 − 77X20Y 51 + 28X19Y 52 + 208X18Y 53 − 51X17Y 54 − 33X16Y 55

+ 2X
15

Y
56

+ X
21

Y
49 − 19X

20
Y

50 − 39X
19

Y
51

+ 213X
18

Y
52

+ 38X
17

Y
53 − 57X

16
Y

54

− X15Y 55 + X21Y 48 − 6X20Y 49 − 117X19Y 50 + 80X18Y 51 + 156X17Y 52 − 54X16Y 53

− 13X
15

Y
54

+ 5X
20

Y
48 − 55X

19
Y

49
+ 6X

18
Y

50
+ 209X

17
Y

51 − 12X
16

Y
52 − 27X

15
Y

53

− 2X14Y 54 + 4X20Y 47 − 29X19Y 48 − 132X18Y 49 + 118X17Y 50 + 84X16Y 51 − 28X15Y 52

− X
14

Y
53

+ X
20

Y
46 − 3X

19
Y

47 − 107X
18

Y
48

+ 47X
17

Y
49

+ 167X
16

Y
50 − 16X

15
Y

51

− 7X14Y 52 + 16X19Y 46 − 53X18Y 47 − 119X17Y 48 + 145X16Y 49 + 34X15Y 50 − 12X14Y 51

+ 8X
19

Y
45 − 16X

18
Y

46 − 137X
17

Y
47

+ 88X
16

Y
48

+ 100X
15

Y
49 − 19X

14
Y

50 − 3X
13

Y
51

+ X19Y 44 + 23X18Y 45 − 99X17Y 46 − 71X16Y 47 + 121X15Y 48 + 6X14Y 49 + X13Y 50

+ 13X
18

Y
44 − 62X

17
Y

45 − 152X
16

Y
46

+ 107X
15

Y
47

+ 50X
14

Y
48 − 7X

13
Y

49
+ 10X

18
Y

43

+ 33X17Y 44 − 130X16Y 45 + 76X14Y 47 − 3X13Y 48 + X12Y 49 + 4X18Y 42 + 29X17Y 43

− 100X
16

Y
44 − 118X

15
Y

45
+ 89X

14
Y

46
+ 14X

13
Y

47 − 3X
12

Y
48

+ 22X
17

Y
42

+ 10X
16

Y
43

− 143X15Y 44 + 35X14Y 45 + 36X13Y 46 − X12Y 47 + 6X17Y 41 + 32X16Y 42 − 138X15Y 43

− 64X
14

Y
44

+ 56X
13

Y
45

+ 3X
12

Y
46

+ 46X
16

Y
41 − 25X

15
Y

42 − 114X
14

Y
43

+ 42X
13

Y
44

+ 11X12Y 45 − X17Y 39 + 30X16Y 40 + 44X15Y 41 − 148X14Y 42 − 18X13Y 43 + 22X12Y 44

− 2X
11

Y
45

+ 5X
16

Y
39

+ 56X
15

Y
40 − 80X

14
Y

41 − 78X
13

Y
42

+ 32X
12

Y
43

+ 4X
11

Y
44

− 6X16Y 38 + 53X15Y 39 + 20X14Y 40 − 115X13Y 41 + 9X12Y 42 + 4X11Y 43 − 2X16Y 37

+ 21X
15

Y
38

+ 53X
14

Y
39 − 99X

13
Y

40 − 40X
12

Y
41

+ 9X
11

Y
42

+ X
10

Y
43 − 2X

15
Y

37

+ 91X14Y 38 − 5X13Y 39 − 77X12Y 40 + 10X11Y 41 − 4X15Y 36 + 37X14Y 37 + 28X13Y 38

− 103X
12

Y
39 − 11X

11
Y

40
+ 4X

10
Y

41 − 5X
15

Y
35

+ 101X
13

Y
37 − 31X

12
Y

38 − 30X
11

Y
39

+ 7X10Y 40 − 2X15Y 34 − 6X14Y 35 + 66X13Y 36 + 4X12Y 37 − 69X11Y 38 − 3X10Y 39

− 11X
14

Y
34

+ 24X
13

Y
35

+ 88X
12

Y
36 − 38X

11
Y

37 − 10X
10

Y
38

+ X
9
Y

39 − 4X
14

Y
33

+ 82X12Y 35 − 24X11Y 36 − 34X10Y 37 + 3X9Y 38 − 3X14Y 32 − 23X13Y 33 + 33X12Y 34

+ 52X
11

Y
35 − 26X

10
Y

36
+ 2X

9
Y

37 − X
14

Y
31 − 10X

13
Y

32
+ 13X

12
Y

33
+ 89X

11
Y

34
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− 26X10Y 35 − 12X9Y 36 − 5X13Y 31 − 26X12Y 32 + 48X11Y 33 + 18X10Y 34 − 11X9Y 35

+ X
13

Y
30 − 22X

12
Y

31
+ 41X

11
Y

32
+ 69X

10
Y

33 − 17X
9
Y

34 − X
8
Y

35 − 17X
12

Y
30

− 29X11Y 31 + 41X10Y 32 − 5X9Y 33 − 3X8Y 34 − 5X12Y 29 − 25X11Y 30 + 59X10Y 31

+ 37X
9
Y

32 − 7X
8
Y

33 − 22X
11

Y
29 − 13X

10
Y

30
+ 30X

9
Y

31 − 5X
8
Y

32 − X
7
Y

33

+ 3X12Y 27 − 13X11Y 28 − 22X10Y 29 + 56X9Y 30 + 17X8Y 31 − X7Y 32 − 2X11Y 27

− 32X
10

Y
28

+ 4X
9
Y

29
+ 16X

8
Y

30 − 5X
7
Y

31
+ 2X

11
Y

26 − 21X
10

Y
27 − 15X

9
Y

28

+ 32X8Y 29 − X7Y 30 + 2X11Y 25 − 32X9Y 27 + 16X8Y 28 + 7X7Y 29 − X6Y 30

+ X
11

Y
24

+ 2X
10

Y
25 − 34X

9
Y

26 − 6X
8
Y

27
+ 17X

7
Y

28
+ 6X

10
Y

24 − 16X
9
Y

25

− 19X8Y 26 + 17X7Y 27 − X6Y 28 + X10Y 23 + X9Y 24 − 30X8Y 25 − 2X7Y 26

+ X
6
Y

27
+ 2X

10
Y

22
+ 13X

9
Y

23 − 19X
8
Y

24 − 8X
7
Y

25
+ 8X

6
Y

26 − 8X
8
Y

23

− 28X7Y 24 + X5Y 26 + 5X9Y 21 + 8X8Y 22 − 22X7Y 23 + 4X6Y 24 + 3X5Y 25

− 2X
9
Y

20
+ 7X

8
Y

21 − 10X
7
Y

22 − 16X
6
Y

23 − X
5
Y

24
+ 12X

8
Y

20
+ 6X

7
Y

21

− 15X6Y 22 + 4X5Y 23 − X8Y 19 + 5X7Y 20 − 15X6Y 21 − 6X5Y 22 + X8Y 18

+ 8X
7
Y

19 − 3X
6
Y

20 − 7X
5
Y

21
+ 2X

4
Y

22 − X
8
Y

17
+ 3X

7
Y

18
+ 9X

6
Y

19

− 8X5Y 20 + 2X7Y 17 + 13X6Y 18 − 5X5Y 19 − X4Y 20 − 2X7Y 16 + 6X6Y 17

+ 3X5Y 18 − 4X4Y 19 + X6Y 16 + 8X5Y 17 − 4X4Y 18 + 9X5Y 16 + X4Y 17 − 3X6Y 14

+ 5X5Y 15 + 4X4Y 16 − 2X3Y 17 + 2X5Y 14 + 8X4Y 15 − X3Y 16 − 6X5Y 13 + 3X4Y 14

+ X5Y 12 + 6X4Y 13 + 5X3Y 14 − 4X4Y 12 + X3Y 13 − X2Y 14 − 3X4Y 11 + 6X3Y 12 + X2Y 13

− 2X4Y 10 − 2X3Y 11 − X4Y 9 − 2X3Y 10 + 4X2Y 11 + 2X3Y 9 − X2Y 10 − XY 11 − 2X3Y 8

− 3X2Y 9 + XY 10 − 2X2Y 8 + XY 9 − 3X2Y 7 + 2X2Y 6 − 2XY 6 − XY 5 − XY 4 + XY 3 + 1

FQ[T ]/T4 = − X49Y 54 − X49Y 53 − 2X48Y 52 − X47Y 52 − 3X47Y 51 − 2X46Y 51 − 3X46Y 50

− 4X45Y 50 + X46Y 48 − 4X45Y 49 + X45Y 48 − 4X44Y 49 + X45Y 47 − 2X44Y 48

+ 3X44Y 47 − 8X43Y 48 + X44Y 46 − X43Y 47 + 8X43Y 46 − 9X42Y 47 + X43Y 45

+ 3X42Y 46 + 9X42Y 45 − 12X41Y 46 + X42Y 44 + 10X41Y 45 + 10X41Y 44 − 13X40Y 45

+ 23X
40

Y
44

+ 7X
40

Y
43 − 19X

39
Y

44 − 3X
40

Y
42

+ 35X
39

Y
43

+ 3X
39

Y
42 − 19X

38
Y

43

− 3X39Y 41 + 54X38Y 42 − 15X38Y 41 − 24X37Y 42 − 6X38Y 40 + 74X37Y 41 − 31X37Y 40

− 25X
36

Y
41 − 5X

37
Y

39
+ 95X

36
Y

40−55X
36

Y
39−30X

35
Y

40−4X
36

Y
38

+110X
35

Y
39

− X36Y 37−85X35Y 38−28X34Y 39+10X35Y 37+131X34Y 38−3X35Y 36−127X34Y 37

− 31X
33

Y
38

+ 22X
34

Y
36

+ 143X
33

Y
37 − 4X

34
Y

35 − 160X
33

Y
36 − 29X

32
Y

37

+ 46X33Y 35 + 154X32Y 36 − 8X33Y 34 − 204X32Y 35 − 30X31Y 36 + 73X32Y 34

+ 159X
31

Y
35 − 11X

32
Y

33 − 246X
31

Y
34 − 26X

30
Y

35
+ X

32
Y

32
+ 113X

31
Y

33

+ 169X30Y 34 − 19X31Y 32 − 290X30Y 33 − 27X29Y 34 + X31Y 31 + 148X30Y 32

+ 166X
29

Y
33 − 26X

30
Y

31 − 314X
29

Y
32 − 23X

28
Y

33
+ 3X

30
Y

30
+ 193X

29
Y

31

+ 162X28Y 32 − 39X29Y 30 − 344X28Y 31 − 22X27Y 32 + 3X29Y 29 + 230X28Y 30

+ 153X
27

Y
31 − 49X

28
Y

29 − 354X
27

Y
30 − 17X

26
Y

31
+ 6X

28
Y

28
+ 271X

27
Y

29

+ 142X26Y 30 − 68X27Y 28 − 359X26Y 29 − 16X25Y 30 + 6X27Y 27 + 301X26Y 28

+ 121X
25

Y
29 − 85X

26
Y

27 − 344X
25

Y
28 − 11X

24
Y

29
+ 10X

26
Y

26
+ 332X

25
Y

27

+ 104X24Y 28 − 104X25Y 26 − 332X24Y 27 − 10X23Y 28 + 11X25Y 25 + 344X24Y 26

+ 85X
23

Y
27 − 121X

24
Y

25 − 301X
23

Y
26 − 6X

22
Y

27
+ 16X

24
Y

24
+ 359X

23
Y

25

+ 68X22Y 26 − 142X23Y 24 − 271X22Y 25 − 6X21Y 26 + 17X23Y 23 + 354X22Y 24

+ 49X
21

Y
25 − 153X

22
Y

23 − 230X
21

Y
24 − 3X

20
Y

25
+ 22X

22
Y

22
+ 344X

21
Y

23

+ 39X20Y 24 − 162X21Y 22 − 193X20Y 23 − 3X19Y 24 + 23X21Y 21 + 314X20Y 22



4874 TOBIAS ROSSMANN

+ 26X19Y 23 − 166X20Y 21 − 148X19Y 22 − X18Y 23 + 27X20Y 20 + 290X19Y 21

+ 19X
18

Y
22 − 169X

19
Y

20 − 113X
18

Y
21 − X

17
Y

22
+ 26X

19
Y

19
+ 246X

18
Y

20

+ 11X17Y 21 − 159X18Y 19 − 73X17Y 20 + 30X18Y 18 + 204X17Y 19 + 8X16Y 20

− 154X
17

Y
18 − 46X

16
Y

19
+ 29X

17
Y

17
+ 160X

16
Y

18
+ 4X

15
Y

19 − 143X
16

Y
17

− 22X15Y 18 + 31X16Y 16 + 127X15Y 17 + 3X14Y 18 − 131X15Y 16 − 10X14Y 17

+ 28X
15

Y
15

+ 85X
14

Y
16

+ X
13

Y
17 − 110X

14
Y

15
+ 4X

13
Y

16
+ 30X

14
Y

14
+ 55X

13
Y

15

− 95X13Y 14 + 5X12Y 15 + 25X13Y 13 + 31X12Y 14 − 74X12Y 13 + 6X11Y 14 + 24X12Y 12

+ 15X
11

Y
13 − 54X

11
Y

12
+ 3X

10
Y

13
+ 19X

11
Y

11 − 3X
10

Y
12 − 35X

10
Y

11
+ 3X

9
Y

12

+ 19X10Y 10 − 7X9Y 11 − 23X9Y 10 + 13X9Y 9 − 10X8Y 10 − 10X8Y 9 − X7Y 10

+ 12X
8
Y

8 − 9X
7
Y

9 − 3X
7
Y

8 − X
6
Y

9
+ 9X

7
Y

7 − 8X
6
Y

8
+ X

6
Y

7 − X
5
Y

8
+ 8X

6
Y

6

− 3X5Y 7 + 2X5Y 6 − X4Y 7 + 4X5Y 5 − X4Y 6 + 4X4Y 5 − X3Y 6

+ 4X
4
Y

4
+ 3X

3
Y

4
+ 2X

3
Y

3
+ 3X

2
Y

3
+ X

2
Y

2
+ 2XY

2
+ Y + 1.

F
U2
3
= − X43Y 57 + 4X41Y 53 − X41Y 52 − 3X40Y 53 − 2X41Y 51 + 4X40Y 52 + X41Y 50 + 4X40Y 51

− X
39

Y
52 − 3X

40
Y

50 − 3X
39

Y
51

+ 5X
39

Y
50

+ 4X
38

Y
51 − 4X

38
Y

50 − X
37

Y
51 − 2X

39
Y

48

− 3X38Y 49 + 3X37Y 50 + X39Y 47 − X38Y 48 + 5X37Y 49 − 3X38Y 47 − 3X37Y 48 − X36Y 49

+ 3X
38

Y
46

+ 4X
36

Y
48 − 6X

37
Y

46 − 2X
36

Y
47

+ X
35

Y
48 − X

37
Y

45 − X
36

Y
46 − 2X

35
Y

47

+ 2X37Y 44 + 4X36Y 45 − 4X35Y 46 + 3X34Y 47 − 3X36Y 44 − 6X35Y 45 + X34Y 46 − X36Y 43

+ 8X
35

Y
44 − 6X

34
Y

45
+ X

33
Y

46
+ 6X

35
Y

43 − 9X
34

Y
44

+ 4X
33

Y
45 − X

35
Y

42 − 4X
34

Y
43

− 6X33Y 44 − X32Y 45 − 2X35Y 41 + 13X34Y 42 + 4X33Y 43 − 2X32Y 44 + 7X34Y 41− 11X33Y 42

− 6X32Y 43 + 3X31Y 44 − 4X34Y 40 − 2X33Y 41 + 10X32Y 42 − 4X31Y 43 + 10X33Y 40

+19X32Y 41−8X31Y 42+X30Y 43−2X33Y 39−16X32Y 40−21X31Y 41−2X30Y 42 − 7X32Y 39

+40X31Y 40+6X30Y 41−X29Y 42+8X32Y 38+19X31Y 39−14X30Y 40−3X32Y 37−30X31Y 38

−9X30Y 39−9X29Y 40−2X28Y 41+2X31Y 37+32X30Y 38+32X29Y 39+2X28Y 40+2X30Y 37

−10X29Y 38−19X28Y 39−13X30Y 36−26X29Y 37+18X28Y 38−X27Y 39+18X29Y 36+42X28Y 37

+X
26

Y
39

+X
30

Y
34−3X

29
Y

35−31X
28

Y
36−15X

27
Y

37−5X
26

Y
38−23X

28
Y

35
+29X

27
Y

36

+14X26Y 37+X29Y 33+2X28Y 34+17X27Y 35−5X25Y 37+3X28Y 33−30X27Y 34−20X26Y 35

+5X
25

Y
36

+3X
28

Y
32−X

27
Y

33
+20X

26
Y

34
+33X

25
Y

35−2X
24

Y
36−12X

26
Y

33−20X
25

Y
34

−9X24Y 35−X27Y 31−4X26Y 32−34X25Y 33+15X24Y 34+2X23Y 35+3X27Y 30+12X26Y 31

+9X
25

Y
32

+34X
24

Y
33

+X
23

Y
34−7X

26
Y

30
+X

25
Y

31−48X
24

Y
32−17X

23
Y

33
+X

22
Y

34

+ X26Y 29 + 13X25Y 30 − 14X24Y 31 + 18X23Y 32 + 10X22Y 33 + 4X25Y 29 + 13X24Y 30

−4X
23

Y
31

+5X
22

Y
32−5X

25
Y

28−4X
24

Y
29−20X

23
Y

30−36X
22

Y
31−3X

21
Y

32
+15X

24
Y

28

+ 20X23Y 29 + 3X22Y 30 + 26X21Y 31 + X20Y 32 − 4X24Y 27 − 8X23Y 28 − 2X22Y 29

− 21X
21

Y
30 − 3X

20
Y

31
+ 22X

22
Y

28 − 22X
21

Y
29

+ 3X
23

Y
26

+ 21X
22

Y
27

+ 2X
21

Y
28

+ 8X20Y 29 + 4X19Y 30 − X23Y 25 − 26X22Y 26 − 3X21Y 27 − 20X20Y 28 − 15X19Y 29

+ 3X
22

Y
25

+ 36X
21

Y
26

+ 20X
20

Y
27

+ 4X
19

Y
28

+ 5X
18

Y
29 − 5X

21
Y

25
+ 4X

20
Y

26

− 13X19Y 27 − 4X18Y 28 − 10X21Y 24 − 18X20Y 25 + 14X19Y 26 − 13X18Y 27 − X17Y 28

− X
21

Y
23

+ 17X
20

Y
24

+ 48X
19

Y
25 − X

18
Y

26
+ 7X

17
Y

27 − X
20

Y
23 − 34X

19
Y

24

− 9X18Y 25 − 12X17Y 26 − 3X16Y 27 − 2X20Y 22 − 15X19Y 23 + 34X18Y 24 + 4X17Y 25

+ X
16

Y
26

+ 9X
19

Y
22

+ 20X
18

Y
23

+ 12X
17

Y
24

+ 2X
19

Y
21 − 33X

18
Y

22 − 20X
17

Y
23

+ X16Y 24 − 3X15Y 25 − 5X18Y 21 + 20X17Y 22 + 30X16Y 23 − 3X15Y 24 + 5X18Y 20

− 17X
16

Y
22 − 2X

15
Y

23 − X
14

Y
24 − 14X

17
Y

20 − 29X
16

Y
21

+ 23X
15

Y
22

+ 5X
17

Y
19

+ 15X16Y 20 + 31X15Y 21 + 3X14Y 22 − X13Y 23 − X17Y 18 − 42X15Y 20 − 18X14Y 21
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+ X16Y 18 − 18X15Y 19 + 26X14Y 20 + 13X13Y 21 + 19X15Y 18 + 10X14Y 19 − 2X13Y 20

− 2X
15

Y
17 − 32X

14
Y

18 − 32X
13

Y
19 − 2X

12
Y

20
+ 2X

15
Y

16
+ 9X

14
Y

17
+ 9X

13
Y

18

+ 30X12Y 19 + 3X11Y 20 + 14X13Y 17 − 19X12Y 18 − 8X11Y 19 + X14Y 15 − 6X13Y 16

−40X
12

Y
17

+7X
11

Y
18

+2X
13

Y
15

+21X
12

Y
16

+16X
11

Y
17

+2X
10

Y
18−X

13
Y

14
+8X

12
Y

15

− 19X11Y 16 − 10X10Y 17 + 4X12Y 14 − 10X11Y 15 + 2X10Y 16 + 4X9Y 17 − 3X12Y 13

+ 6X
11

Y
14

+ 11X
10

Y
15 − 7X

9
Y

16
+ 2X

11
Y

13 − 4X
10

Y
14 − 13X

9
Y

15
+ 2X

8
Y

16
+ X

11
Y

12

+ 6X10Y 13 + 4X9Y 14 + X8Y 15 − 4X10Y 12 + 9X9Y 13 − 6X8Y 14 − X10Y 11 + 6X9Y 12

−8X
8
Y

13
+X

7
Y

14−X
9
Y

11
+6X

8
Y

12
+3X

7
Y

13−3X
9
Y

10
+4X

8
Y

11−4X
7
Y

12−2X
6
Y

13

+ 2X8Y 10 + X7Y 11 + X6Y 12 − X8Y 9 + 2X7Y 10 + 6X6Y 11 − 4X7Y 9 − 3X5Y 11 + X7Y 8

+3X
6
Y

9
+3X

5
Y

10−5X
6
Y

8
+X

5
Y

9−X
4
Y

10−3X
6
Y

7
+3X

5
Y

8
+2X

4
Y

9
+X

6
Y

6
+4X

5
Y

7

−4X5Y 6−5X4Y 7+3X4Y 6+3X3Y 7+X4Y 5−4X3Y 6−X2Y 7−4X3Y 5+2X2Y 6+3X3Y 4

+ X
2
Y

5 − 4X
2
Y

4
+ 1.

Appendix B. Formulae for local graded subalgebra

zeta functions

(B.1)

W531 =
(
−X5Y 18 −X5Y 16 −X5Y 15 −X4Y 16 −X5Y 14 −X4Y 15 + 2X4Y 13 +X3Y 14

+X4Y 12 + 2X3Y 13 +X4Y 11 +X3Y 12 +X2Y 13 +X4Y 10 +X3Y 11 +X4Y 9

+ 3X3Y 10 + 2X3Y 9 +X2Y 10 −X3Y 8 − 2X2Y 9 − 3X2Y 8 −XY 9 −X2Y 7

−XY 8 −X3Y 5 −X2Y 6 −XY 7 − 2X2Y 5 −XY 6 −X2Y 4 − 2XY 5 +XY 3

+ Y 4 +XY 2 + Y 3 + Y 2 + 1
)
/
((
1−XY 5)

×
(
1−X2Y 3)(1−X2Y 4)(1−XY 2)(1−XY )

(
1− Y 5)(1− Y 2)(1− Y )

)

(B.2)

W541 =
(
−X3Y 21 −X3Y 20 − 3X3Y 19 − 5X3Y 18−7X3Y 17+X2Y 18−8X3Y 16+4X2Y 17

− 7X3Y 15 + 9X2Y 16 − 6X3Y 14 + 16X2Y 15 − 6X3Y 13 + 19X2Y 14 −XY 15

− 4X3Y 12 + 21X2Y 13 − 4XY 14 − 3X3Y 11 + 21X2Y 12 − 8XY 13 −X3Y 10

+ 20X2Y 11 − 14XY 12 + 18X2Y 10 − 18XY 11 + 14X2Y 9 − 20XY 10 + Y 11

+ 8X2Y 8 − 21XY 9 + 3Y 10 + 4X2Y 7 − 21XY 8 + 4Y 9 +X2Y 6 − 19XY 7 + 6Y 8

−16XY 6+6Y 7−9XY 5+7Y 6−4XY 4+8Y 5−XY 3+7Y 4+5Y 3+3Y 2+Y +1
)
/

((
1−XY 4)(1−XY 3)(1−XY 2)(1−XY )

(
1− Y 7)(1− Y 4)(1− Y 3)(1− Y 2))

(B.3)

W621 =
(
X4Y 8 +X4Y 6 +X3Y 6 −X3Y 5 +X2Y 6 −X3Y 4 −X2Y 5 −X3Y 3 −XY 5

−X2Y 3 −XY 4 +X2Y 2 −XY 3 +XY 2 + Y 2 + 1
) (

XY 2 + 1
)
/

((
1−X2Y 3)(1−XY 3)(1−X3Y 2)(1−X2Y 2)(1−X2Y

)
(1−XY )

×
(
1− Y 3)(1− Y )

)
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(B.4)

W623 =
(
X9Y 14 +X9Y 13 +X9Y 12 − 3X8Y 11 − 2X8Y 10 −X6Y 11 −X6Y 10 +X7Y 8

− 3X6Y 9 −X5Y 9 −X4Y 10 +X6Y 7 + 2X5Y 8 +X6Y 6 + 2X5Y 7 + 2X4Y 8

+2X5Y 6+2X4Y 7+X3Y 8+2X4Y 6+X3Y 7−X5Y 4−X4Y 5−3X3Y 5+X2Y 6

−X3Y 4 −X3Y 3 − 2XY 4 − 3XY 3 + Y 2 + Y + 1
)
/
((
1−X4Y 3)(1−X3Y 3)

×
(
1−XY 3)(1−XY 2)2(1−X3Y

)(
1−X2Y

)
(1−XY )

(
1− Y 2)2)

(B.5)

W631 =
(
−X5Y 18 −X5Y 16 −X5Y 15 −X4Y 16 −X5Y 14 −X4Y 15 + 2X4Y 13 +X3Y 14

+X4Y 12 + 2X3Y 13 +X4Y 11 +X3Y 12 +X2Y 13 +X4Y 10 +X3Y 11 +X4Y 9

+ 3X3Y 10 + 2X3Y 9 +X2Y 10 −X3Y 8 − 2X2Y 9 − 3X2Y 8 −XY 9 −X2Y 7

−XY 8 −X3Y 5 −X2Y 6 −XY 7 − 2X2Y 5 −XY 6 −X2Y 4 − 2XY 5 +XY 3

+ Y 4 +XY 2 + Y 3 + Y 2 + 1
)
/
((
1−XY 5)(1−X2Y 4)(1−X2Y 3)(1−XY 2)

×
(
1−X2Y

)
(1−XY )

(
1− Y 5)(1− Y 2)(1− Y )

)

(B.6)

W632 =
(
X3Y 16 + 2X3Y 15 + 4X3Y 14 + 7X3Y 13 +X2Y 14 + 10X3Y 12 + 2X2Y 13

+ 11X3Y 11 −XY 13 + 10X3Y 10 − 3X2Y 11 − 3XY 12 + 7X3Y 9 − 8X2Y 10

− 6XY 11 + 4X3Y 8 − 11X2Y 9 − 9XY 10 + 2X3Y 7 − 11X2Y 8 − 10XY 9 + Y 10

+X3Y 6−10X2Y 7−11XY 8+2Y 9−9X2Y 6−11XY 7+4Y 8−6X2Y 5−8XY 6

+7Y 7−3X2Y 4−3XY 5+10Y 6−X2Y 3+11Y 5+2XY 3+10Y 4+XY 2+7Y 3

+ 4Y 2 + 2Y + 1
)
× (1− Y )/

((
1−XY 3)(1−X2Y 2)(1−XY 2)(1−X2Y

)

× (1−XY )
(
1− Y 5)(1− Y 4)(1− Y 3)(1− Y 2))

(B.7)

W633 =
(
X3Y 14 +X3Y 13 + 3X3Y 12 + 4X3Y 11 +X2Y 12 + 5X3Y 10 + 4X3Y 9 −X2Y 10

−XY 11 + 3X3Y 8 − 3X2Y 9 −XY 10 +X3Y 7 − 5X2Y 8 − 4XY 9 +X3Y 6

− 5X2Y 7 − 4XY 8 − 4X2Y 6 − 5XY 7 + Y 8 − 4X2Y 5 − 5XY 6 + Y 7 −X2Y 4

− 3XY 5 + 3Y 6 −X2Y 3 −XY 4 + 4Y 5 + 5Y 4 +XY 2 + 4Y 3 + 3Y 2 + Y + 1
)
/

((
1−XY 3)(1−X2Y 2)(1−XY 2)(1−X2Y

)
(1−XY )

(
1− Y 3)(1− Y 4)2)
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(B.8)

W643 =
(
−X3Y 21 −X3Y 20 − 3X3Y 19 − 5X3Y 18 − 7X3Y 17 +X2Y 18 − 8X3Y 16

+ 4X2Y 17 − 7X3Y 15 + 9X2Y 16 − 6X3Y 14 + 16X2Y 15 − 6X3Y 13 + 19X2Y 14

−XY 15−4X3Y 12+21X2Y 13−4XY 14−3X3Y 11+21X2Y 12−8XY 13−X3Y 10

+20X2Y 11−14XY 12+18X2Y 10−18XY 11+14X2Y 9−20XY 10+Y 11+8X2Y 8

− 21XY 9 + 3Y 10 + 4X2Y 7 − 21XY 8 + 4Y 9 +X2Y 6 − 19XY 7 + 6Y 8 − 16XY 6

+ 6Y 7 − 9XY 5 + 7Y 6 − 4XY 4 + 8Y 5 −XY 3 + 7Y 4 + 5Y 3 + 3Y 2 + Y + 1
)
/

((
1−XY 4)(1−XY 3)(1−XY 2)(1−X2Y

)
(1−XY )

×
(
1− Y 7)(1− Y 4)(1− Y 3)(1− Y 2))
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