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ON SELF-AFFINE MEASURES WITH EQUAL HAUSDORFF
AND LYAPUNOV DIMENSIONS

ARIEL RAPAPORT

ABSTRACT. Let u be a self-affine measure on R associated to a self-affine IF'S
{ex(x) = Axz +vr}rea and a probability vector p = (px)x > 0. Assume the
strong separation condition holds. Let v1 > --- > 4 and D be the Lyapunov
exponents and dimension corresponding to {A)}xeca and PN, and let G be
the group generated by {Ax}xea. We show that if vmi1 > ym = -+ = 74,
if G acts irreducibly on the vector space of alternating m-forms, and if the
Furstenberg measure pp satisfies dimg pp + D > (m + 1)(d — m), then p is
exact dimensional with dim pu = D.

1. INTRODUCTION

Let d > 2 and let A be a finite index set. Fix a family of matrices {Ax}ren =
A C GI(d,R) with [|[Ay]| < 1 for A € A, let {vx}rea C R? and fix a probability
vector p = {px}trea > 0. Let {¢©x}rea be the self-affine IFS with

(1.1) or(z) = Az + vy for A€ Aand z € R?.

Denote by u the self-affine measure on R? which corresponds to {¢x}rea and p,
i.e., i is the unique probability measure with

= Z Px - PR
AEA
The Lyapunov dimension D of p (see Section [2] below) is an upper bound for the
dimension of p, but it is in general difficult to verify whether there is equality. The
purpose of this paper is to present verifiable conditions under which

(1.2) u is exact dimensional with dimu =D .

1.1. Background for the problem. Let us mention some notable results regard-
ing self-affine measures and sets. From Theorem 1.9 in [JPS] it follows that D is the
‘typical’ value of dimpg p, where dimpy stands for the Hausdorff dimension. More
precisely, it is shown that if |Ax|| < 1 for A € A and if the translations {v)}rea
are drawn according to the Lebesgue measure, then dimy g = min{D,d} almost
surely. The inequality dimg u < D is always satisfied.

Analogous to this is the following classical result, due to Falconer, regarding the
typical dimension of self-affine sets. Let K be the attractor of {¢x}rea. In [F3] it
is shown that if [|A,[| < & for A € A, then

dimy K = min{dim4 K, d} for Lebesgue almost all {vy}xen -
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Here dim4 K stands for the affinity dimension of K, which is defined in terms of
the matrices in A. This was later improved in [S] by replacing the constant % by
%. The inequality dimy K < dim4 K is always true.

For fixed translations {vy}xea the exact value of dimy K has been found for
several specific classes of self-affine sets. See the survey [F'4] and the references
therein. Much attention has been given to fractal carpets, where members of A
preserve horizontal and vertical directions (see [M1] for instance).

Here we establish (L2) in the opposite situation, in which there is no proper
subspace invariant under all members of A. This makes it possible to consider the
Furstenberg measure pp on the Grassmannian manifold (see Section2below). The
measure pp allows us to control the distribution of the orientation of cylinder sets
at small scale.

For d = 2 this idea was already used in [FK] and [B1], in order to obtain (2]
under assumptions different from ours. In Section [I.4] below we describe these
results and compare them with the work presented here. A notable advantage in
our result is that we do not require a lower bound on dimg p, but rather only on
D which is at least as large and independent of the translations {vy}aca.

1.2. The main result. We shall consider only the case where the IFS {©x}reca
satisfies the strong separation condition (SSC). Denote by 73 > -+ > 74 the Lya-
punov exponents corresponding to the Bernoulli measure p" and the matrices A,
and set
m=max{1<i<d: Yg—it1 =" =74} -

If m = d and the SSC is satisfied, then (I2)) follows directly from Theorem 2.6 in
[FH]. Hence assume m < d. Let G C Gi(d,R) be the closure of the group generated
by A. We assume that G is m-irreducible, which means that it acts irreducibly on
the vector space of alternating m-forms. A precise definition is given in Section
When m =1 or d — 1, and in particular when d = 2 or 3, this condition reduces to
the absence of a proper subspace of R¢ which is invariant under all members of A
(see Remark 2] below).

Let G4, denote the Grassmannian manifold of all m-dimensional linear sub-
spaces of R%. Each M € Gl(d,R) defines a map from G 4,m onto itself, which takes
W e Ggm to M(W). From m < d, the irreducibility assumption, and results found
in [BL2], it follows that there exists a unique probability measure pp on Gg ., with

HE = ZPA A,
AEA

and moreover that dimg pp > 0 (see Proposition B in Section 2]). The measure pp
is called the Furstenberg measure on Gy, corresponding to A~! := {A;l} aea and
p. The following theorem is our main result.

Theorem. Assume the following conditions:
(i) {©x}tren satisfies the SSC,
(ii) m is strictly smaller than d,
(ili) G is m-irreducible, and
(iv) the measure up satisfies
dimg prp+D > (m+1)(d—m).

Then ([L2) holds true, i.e., u is exact dimensional with dim p = D.
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1.3. Explicit examples. The theorem just stated can be used to compute the
dimension of many concrete self-affine measures. In order to do so one needs to
bound dimpg pp from below, which is not a trivial problem. Let us mention some
results which are relevant for this task. Here we assume the elements of A are
distinct, i.e., Ay, # Ay, for A, e € A with Ay # Xo. Also, we shall have no
need for the matrices in A to be contractions. Indeed, the Furstenberg measure is
unaffected if we multiply members of A by non-zero scalars.

In [HS] it is shown that if A C GI(2,R) and p are such that elements in A have
algebraic entries and determinant 1, A generates a free group, ; is strictly greater
than o, and G acts irreducibly on R2, then

H(p)
—2-m

1}

Here H(p) stands for the entropy of p. For example, this can be applied when p > 0
and

(1.3) AZ{((g?)(; (1))}

In Section VL5 of [BL2] it is shown that dimp pup = 22 whenever |A| > 1,

2m
p >0, and
AIC{<(1) i) :nZl}.

For E,L € R with |E| + |L| < 2, denote by ug’L the Furstenberg measure
corresponding to

(1.4) Al_{(E;L _01>,<E1LL —01)} andp:(%,%).

In [B2] it is shown that there exists a constant § > 0 with

dimpg pr = min{

lim dimg pe” =1 forall § <|E|<2-4.
L—0

In [B3] an example is given, for the case d = 2, of A and p for which v; > 7o,
the action of G is irreducible, and pp is absolutely continuous with respect to the
Lebesgue measure. For d > 3 an example of A and p with these properties is
obtained in [BQ2].

1.4. Comparison with recent work. As mentioned above, for d = 2 the validity
of (I2) was established in two recent papers under conditions different from ours.
From the arguments found in [FK], it follows that if the matrices in A have strictly
positive entries, {px}ren satisfies the SSC, and

dim g Hr + dimHu > 2,

then (L2 holds. This is actually done more generally, in the sense that the self-
affine measure p can be replaced by the projection of a Gibbs measure into R2.

Given M € GI(2,R) let ay (M) > as(M) > 0 denote the singular values of M.
It is said that A satisfies the dominated splitting condition if there exist constants
0<C,§ < oo with

al(Ala' o 7A7l)

2 T s Oeforalln > 1 and Aq,..., A, €A.
O[Q(Al,"' ,An) - - !
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For example, this is satisfied when the matrices in A have strictly positive entries.
It is shown in [BI] that if A satisfies dominated splitting, {px}rca satisfies the
SSC, and

dimg pr + dimg p > 2 or dimy pup > min{l, D},

then (L2) holds.

Note that since D > dimy u, the condition dimg pur + D > 2, which appears in
our result when d = 2, is weaker than dimpg pur + dimg p > 2. This is important
because D, as opposed to dimpg u, is independent of the choice of translations
{var}area. Observe also, that if the closure of the set

{Ala"'7An : nZlandAl,...,AnEA}

contains an element A € GI(2,R) for which z;gﬁzg

fast as n — oo, then the results from [Bl] and [FK] don’t apply but our result can.
This is in fact the case in examples ([3]) and (L4]) mentioned above. This is also
true for the example obtained in [B3], since in that case A~! € A whenever A € A.

By using the aforementioned results about measures, results about the dimension
of certain self-affine sets are obtained in [B1] and [FK]. More precisely, conditions
for dimy K = dim 4 K are given, where we recall that K is the attractor of {¢x}aea
and dimy K is the affinity dimension of K. We do not pursue this here, although
it seems reasonable to believe that our work can also be applied in order to obtain
this equality for new classes of self-affine sets.

does not increase exponentially

Remark. In the last stages of writing up this research the author became aware of
preprint [BK]. When d = 2 it is shown in [BK] that p is always exact dimensional,
and that dim g = D if the SSC holds and

dimpg pp > min{dim g, 2 — dimpu} .

As mentioned above, since D > dimpg p our result may be easier to use in some
cases. For d > 2 results are proven in [BK] under an assumption on A, termed
totally dominated splitting, which is a multi-dimensional analogue of the dominated
splitting condition previously mentioned. Hence for d > 2 our work applies in many
situations that are untreated by [BK].

1.5. About the proof. We now make the dependency in the translations explicit.
Given (vy)aea = v € RUAI denote by {¢, 2 }aea the TFS satisfying (IZI)), and let p,
be the self-affine measure corresponding to {¢, »}rea and p. Let V C R4 be the
set of all v € R¥UAI for which {, x }aea satisfies the SSC. In the proofs found in [B1]
and [FK], some v € V is fixed and linear projections and sections of the measure
1, are studied. In our proof we shall also examine linear sections of measures, but
we shall consider the entire collection {u, }vey at once.

More precisely, it will be shown that there exists an upper semi-continuous func-
tion F : V — [0, 00), such that for every v € V and p, x pp-a.e. (z,W) € REX Gy
the sliced measure, obtained from g, and supported on z+ W, has exact dimension
F(v). The proof of this uses ergodic theory and results from the random matrix
theory presented in [BL2]. From the result of [JPS| mentioned above, and from
results found in [M2] regarding the dimension of exceptional sets of sections, it will
follow that F'(v) > D —d+m for Leb-a.e. v € V. The semi-continuity of F' implies
that this inequality holds in fact for all v € V. Now by fixing v € V and using
estimates on the dimension of exceptional sets of projections, it will follow that
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dimpy p, > D. The inequality dim @, < D in not hard to prove, and completes the
proof.

1.6. Outline of the paper. In Section [2] we give some necessary definitions and
state Theorem M which is our main result. Is Section [3] we carry out the proof,
while relying on Proposition [6] and Lemmas [7] to [2, whose proofs are deferred to
subsequent sections. In Section [4] we state and prove some required results, which
follow from the theory of random matrices. In Section Bl we prove Proposition (]
which is the main ingredient in the proof of Theorem [l In Section [f] we prove all
auxiliary lemmas which were priorly used without proof.

2. STATEMENT OF THE MAIN RESULT

Fix some integer d > 2 and for € R? denote by |z| the euclidean norm of x.
For a d x d matrix M (or operator on R?) denote by ||M]|| the operator norm of
M with respect to the euclidean norm. Let A be a finite set with |[A| > 1, and
fix {Ax}rea C GI(d,R) with [|Ax|| < 1 for each A € A. Let G C GI(d,R) be the
closure of the group generated by {Ax}xea. For (vx)xea = v € RUM Tet {@uv.r}ren
be the self-affine IFS with ¢, \(z) = Axz + vy for A € A and = € R, Let K, C R?
be the attractor of {¢, x}rea, i-e., K, is the unique non-empty compact subset
of R? with K, = Usea Poa(y). We say that the strong separation condition
(SSC) holds for {@y a}rea if the union (Jyp o,x(Ky) is disjoint, and we denote
by V € Rl the set of all v € RUA for which the SSC holds. It is easy to see that
V is an open subset of RUA! and we assume it to be non-empty.

Let p = (px)xea be a probability vector with py > 0 for each A € A. Set Q = AN,
equip A with the discrete topology, and equip §2 with the product topology. Let F
be the Borel o-algebra of €, and let p be the Bernoulli measure on (€2, ) which
corresponds to p (i.e., = pV). For each v € R¥Al and w € Q set

To(w) = Hm @y 0y © -+ © Py, (0) -

Since the mappings {¢y }rea are contractions this limit always exists and m, :
Q0 — R? is continuous. Note that 7m,u := o m, ! is the unique Borel probability
measure on R¢ for which the relation 7,u = ZAEAPA Py ATyt is satisfied.

Given M € GI(d,R) let a1 (M) > -+ > aq(M) > 0 be the singular values of M.
Let 0 > v, > -+ > 74 > —o0 be the Lyapunov exponents corresponding to x and
{Ax}ren (see chapter IIL5 in [BL2]), i.e., for p-a.e. w €

1
(2.1) v = lim—log a; (A, - -+ Aw,,_,) for 1 <i < d.
non

Denote the entropy of p by hy, (i.e., hy, = ycp —pa - logpy), set
(2.2) k(p) =max{0<i<d: 0<h,+v+-+7%}

and set

() — M if () <
D(M) = { h

Vr(p)+1
—d- ’YlJr--l'LJr’Yd if k(u) = d.

The number D(p) is called the Lyapunov dimension of 1 with respect to the family
{Ax}aen.
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Given a metric space X we denote the collection of all compactly supported
Borel probability measures on X by M(X). For § € M(X) we write

dimyg 6 = inf{dimy E : E C X is a Borel set with §(E) > 0}
and
dimy; @ = inf{dimy F : E C X is a Borel set with (X \ E) = 0},

where dimy F stands for the Hausdorff dimension of the set E. For z € R% and
€ > 0 denote by B(z,¢€) the closed ball in R? with centre = and radius e. Given
6 € M(R?) we say that 0 has exact dimension s > 0 if

mw = s for f-a.e. z € RY,
el0 log e

in which case we write dim 6 = s. Tt is well known (see chapter 10 of [F1]) that
log 0(B(z,¢€))

:z e R},
log e . !

(2.3) dimgy 6 = essinfe{limﬁ)nf

Given 1 <m <d let G4, denote the Grassmannian manifold of all m-dimensional
linear subspaces of R%. For a subspace W C R% let Py : R* — R be the orthogonal
projection onto W. For W,U € Ga, set dg,,,(W,U) = ||[Pw — Py|; then dg, .
is a metric on Gg,,, which we shall use. For M € Gi(d,R) and W € Gg, set
M -W = M(W) € Gg,m, which defines an action of Gi(d,R) on Gg .

For 1 < m < d let A™(R%) denote the vector space of alternating m-linear forms
on (RY)*. Given z1,...,2, € Relet 1 A -+ Az, € A™(R?) be such that

T A AT (fro- o f) = det[{ fi(a) 1] for fi,. .., frn € (R
If {e1,...,e,} is a basis for R%, then
{ei, NoooNey,, 2 1<y <o <y, < d}
is a basis for A™(R?). For M € GI(d,R) we define an automorphism A™M of
A™(R?) by
A"M(zy A Axp) = Mzy A--- A Mz, for zq,..., 2, € RY.
Definition 1. Given 1 < m < d and S C GI(d,R) we say that S is m-irreducible

if there does not exist a proper linear subspace W of A™(R?) with AmM (W) = W
for each M € S. When m =1 we say that S is irreducible.

Remark 2. Clearly S is irreducible if and only if there does not exist a proper linear
subspace W of R? with M (W) = W for each M € S. It is also easy to show that S
is m-irreducible if and only if it is d — m-irreducible (see page 86 in [BL2]). Hence
when d = 2 or 3 the m-irreducibility condition reduces to the absence of a proper
subspace of R? which is M-invariant for all M € S.

The following proposition follows from results found in [BL2], and shall be proven
in Section @l From now on we set

m:max{lgigd . 'ydfiJrl:...:/yd}.

Proposition 3. Assume m < d and that G is m-irreducible; then there exists a
unique pp € M(Ggm) with up = Z)\EAP)\'A;\l,UtF- It also holds that dimg pp > 0.

The measure pr is called the Furstenberg measure on Gg,,, corresponding to
{A "} aea and p. We can now state our main result.



SELF-AFFINE MEASURES 4765

Theorem 4. If m < d, if G is m-irreducible, and if
dimy i + D(2) > (m+1)(d = m),
then m,p is exact dimensional with dimm,u = D(u) for each v € V.

Remark 5. As mentioned in the introduction, if m = d, then it follows from Theo-
rem 2.6 in [FH] that dimm,pu = D(p) for all v € V.

3. PROOF OF THE MAIN RESULT

For the remainder of this paper we assume m < d, G is m-irreducible, and
dimj; pup + D(p) > (m +1)(d — m).

3.1. Disintegration of measures. For the proof of Theorem Ml we shall need to
disintegrate the measures p and {m,p}t,cy. We now define these disintegrations
and state some of their properties; for further details see chapter 3 of [FH].

Let B be the Borel o-algebra of R?, let X be a metric space, let § € M(X), let
K be the support of #, and let f : X — R? be continuous. Then there exists a
family {0, },ex C M(X), which will be called the disintegration of 6 with respect
to f~1B, such that:

(a) For f-a.e. x € X the measure 0, is supported on K N f~1(f(x)).

(b) For each g € L' () and f-a.e. x € X we have

1 1 . _ d(f6) .
/gd@m_lsﬁ)lfe(B(f%E)) /fl(B(fx,e))gde d(f0) (fo),

where 09(E) = [, g df for each Borel set E C X. Here % stands for the
Radon—Nikodym derivative of f69 with respect to f6.

(¢) For each g € L*(#) the map that takes x € X to [ gdf, is f~'B measurable
and

/gdﬁx = Fplg | f'B](x) for f-ae. z € X .

Here Eglg | f~1B] is the conditional expectation of g given f~1B with respect to 6.

We shall use the following notation for the disintegrations of u and {m,u},ecy. For
a subspace W C R? set By = Pv;ll (B), and for § € M(R?) let {Ow .. }ycre be the
disintegration of 6 with respect to By . Given v € R¥ set F, 1y = 7, o Pﬁ/ll (B)
and let {py wwweq be the disintegration of p with respect to F,, w .

3.2. Statement of auxiliary claims. We now state some auxiliary claims which

will be used in the proof of Theorem [ The proofs are deferred to subsequent

sections in order to make the argument for Theorem (] more transparent. First we

state Proposition [Gl whose proof, which is given in Section [§] below, requires ergodic

theory and some results from the random matrix theory presented in [BL2].
Define F' : V — [0, 00) by

1
F(v)=——" H,(P| Fow) dur(W) forveV,
Yd JGam

where
P={{weQ:w=AeF : XeA}
and H,(P | F,,w) is the conditional entropy of P given F, w with respect to p.

Proposition 6. For eachv € V and for px pup-a.e. (w,W) € QxGqr, the measure
Tolby, W 15 exact dimensional with dim(m,p, ww) = F(v).
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The rest of the auxiliary lemmas will be proven in Section

Lemma 7. Let v € RUA agnd W e Gam; then (Ty ) wr, (w) = Tolbo,W,w for p-a.e.
w € Q.

The following semi-continuity lemma makes it possible to utilize Proposition
Lemma 8. The function F is upper semi-continuous.

Lemma 9. For v € V we have w,u L Leby, where Leby is the Lebesque measure
of R<.

The proof of the following lemma relies on results found in [M2], which are
obtained by the use of Fourier analytic techniques. This lemma makes it possible
to use the assumption dimy; pp + D(p) > (m+1)(d — m).

Lemma 10. Let § € M(R?), let 1 <1 < d be an integer, and set s = dimg 0.
(a) If s < d —1, then for 0 <t <'s

dimy{W € Gq, : essinfo{dimy(Ow,.) : = € Rd} >s—tp<(I-1)(d-1)+t.
(b) If s > d —1, then for s —l(d—1) <t <d-—1
dimp{W € Gq, : essinfp{dimy(Ow,) :  €RY} >s—t} <U(d—1)+t—s.
(c) If s> d—1, then
dimy{W € Gg, : essinfe{dimg(Oy,) : t €R} <s—d+1} < (+1)(d—1)—s.

The proof for the following lemma is an adaptation of an argument given in the
proof of part (a) of Theorem 4.3 from [JPS].

Lemma 11. For each v € RU4M and for myp-a.e. x € RE

lim sup BT B@ ) by

€l0 log e

Let A* be the set of finite words over A. Given a set of transformations (or
matrices) { fa}aea, that can be composed with one another, we set f,, = fx,0---of,

for k > 1 and A1,--- , A = w € A*. Given a set of real numbers {ay}rca we set
Gy = Qxps- -y, We also set f = Id and ay = 1, where ) € A* is the empty
word.

Lemma 12. Letn > 1, let G’ C GI(d,R) be the closure of the group generated by
{Awbwenn, set P = (pu)wenn, sel i = (), and let 0 > 7} > -+ > 7 > —oc
be the Lyapunov exponents corresponding to ' and {Ay}wear. Then G’ is m-
irreducible, v, = n-~; for 1 <i <d, and py = pr, where p'p is the Furstenberg
measure corresponding to { Ay }wean and p' (see Proposition Bl above).

3.3. Proof of Theorem 4l By using Proposition [f] and Lemmas [7] to [[2] we shall
now prove Theorem [El

Lemma 13. If [|[A,|| < § for each X\ € A, then D(u) € (d —m,d] and F(v) >
D(p) —d+m for eachv € V.

Proof of Lemma [[3 Since V is non-empty (by assumption) and since it is an open
subset of RYAI it follows that Lebgja((V) > 0. From part (b) of Theorem 1.9 in
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[TPS] it follows that if D(u) > d, then for Lebgaj-a.e. v € V we have m,u < Lebg.
This together with Lemma [0 shows that D(u) < d. Since
dlm;] HF S dimH Gd,m = m(d — m)
and
dimy; pp + D(p) > m(d —m) +d —m,

it follows that D(u) € (d — m,d]. From this and from part (a) of Theorem 1.9 in
[TPS] we get that dimy m,p = D(p) for Lebya-a.e. v € RUAL Since V is open it
follows that the set

Q={veV : dimgmu=D(u)}
is dense in V.

Fix v € Q; then from Proposition [0, from Lemma [7 and from (23]), it follows
that for pp-a.e. W € G, we have for m,p-a.e. € R? that dimy (7, ) w.. = F(v).
Set

E={W € Gy : essinf,  dimg(m,p)w. : v € R} < D(u) —d+m};
then from dimg m,p = D(p) > d —m and from part (c) of Lemma [0 we get

dimy () < (m +1)(d — m) — D().
Since dimy; pp > (m + 1)(d —m) — D(p) it follows that pp(Gam \ €) > 0, and so
there exist W € Gg,,, and x € R with
F(v) =dimg (myp)w,s > D(n) —d+m.

Since this holds for each v € Q and since Q is dense in V, it follows from Lemma [
that F(v) > D(u) — d + m for each v € V. O

Proof of Theorem . Let v € V be given. Assume first that |A,|| < 1 for each
A € A; then from Lemma [[3 we get F(v) > D(u) —d+m € (0, m]. From this, from
Proposition [ and from Lemma [7it follows that

(3.1) dimpg (mp)w,e > D(p) —d+m for myp X pp-ae. (z, W).
Set s = dimpg (myp). If s < D(u) — d + m, then clearly
essinf,, , {dimpg (T, )w. @ © € R} < D(p) —d+m

for each W € Gy, and so we must have s > D(p)—d+m. Assume by contradiction
that D(u) —d+m < s < D(u), let

D(p) —d+m,
0 < e < min D(u) — s, ,
dimy; pr + D(p) — (m+ 1)(d — m)
set
‘ {min{2(d—m) —D(p)+est ifs<d—m,
d—m+s—D(p)+e ifs>d—m,
and set

E={W € Gy : essinfr,, {dimg(m,p)w, : © € RY} > 5 —1}.
If s <d—m, then
D(p)—d+m<s<d-—m,
s0 0 <t <s, and so from part (a) of Lemma [0

dimg (&) < (m—-1)(d—=m)+t < (m+1)(d—m)— D(u) + e < dimp pup .
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If s > d — m, then
t—(s—=m(d—m))>d—m—D(u)+m(d—m)>m(d—m)—m>0
and
d—m—t=D(u)—s—e>0,
so s —m(d—m) <t <d-—m, and so from part (b) of Lemma [I{]
dimg (&) <m(d—m)+t—s=(m+1)(d—m)— D(un) + € < dim} pr .
In any case we have dimg (£) < dimy; pr, so prp(Gam \ €) > 0, and so

Tt X pp{(z, W) : dim(m,p)w <s—t+ %} >0.
But this gives a contradiction to ([B.J) since if s < d — m, then
s—t—l—%:max{s—(2(d—m)—D(u)+e),0}—|—§
gmax{D(,u)—d+m—e,O}+§:D(u)—d+m—§,
and if s > d — m, then
s—t+§:D(u)—d+m—§.

It follows that we must have dimg (m,u) = s > D(u), and so from Lemma [I1] and
[23) we obtain that m,u is exact dimensional with dim7,u = D(u). This proves
the theorem if || Ay | < § for each A € A.

Now we prove the general case. Let n > 1 be such that [|A,| < 3 for each
w € A™. Since the SSC holds for {¢, x}rea it clearly holds for {¢, }wean. For
w € (A" set m, (w) = Hm y,u © -+ 0 P, (0), st p' = (Puw)wear, set 1/ = (p')",
let 0 >~ > --- >4/ > —oo be the Lyapunov exponents corresponding to '
and {Ay }wean, and let G’ C GI(d,R) be the closure of the group generated by
{Ay}wear. From Lemmal[l2we get that G’ is m-irreducible, v, = n-y; for 1 < i < d,
and pp = pp, where pn is the Furstenberg measure corresponding to {Ay ' byean
and p'. Let h, be the entropy of p’ (i.e., by = Y, can —Pw - 10gPw), and let D(p')
be the Lyapunov dimension of p’ with respect to the family {A, }wean (see the
definition in Section [ above). Since h, = n - h, it follows from the definition of
the Lyapunov dimension that D(u') = D(u), hence

dim}; pp + D(i') = dimpy pp + D(p) > (m +1)(d —m).
Now from the first part of the proof we get that «, u’ is exact dimensional with
dim 7, ' = D(u') = D(p). This completes the proof since m,pu = 7, u'. O
4. AUXILIARY RESULTS FROM THE THEORY OF RANDOM MATRICES

In this section we translate results found in [BL2] to suit our needs. These results
will be used in the proofs of Propositions [3] and

Definition 14. Given ¢ > 2,1 <[ < ¢, and S C Gi(¢,R), we say that S is I-
strongly irreducible if there does not exist a finite family of proper linear subspaces
Wi,..., Wy of A(R?) with

AMWU---UW,) =W U---UWj, for each M €8S .
When [ = 1 we say that S is strongly irreducible.
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Remark 15. Given ¢ > 2, 1 <[ < g, and linear subspaces Wy, ..., W}, of AY(RY),
the set

{MeGl(q,R) : AMWLU---UWg) =W, U---UWyi}

is a closed subgroup of Gi(q,R).

Definition 16. Given ¢ > 2, 1 <1 < ¢, and S C Gl(q,R), we say that S is
l-contracting if there exists a sequence {M,,}32; C S such that

-1
{HAanH A, n > 1)
converges to a rank-one matrix. When [ = 1 we say that S is contracting.

Throughout this section T C Gi(d,R) will denote the closure of the semigroup
generated by {A;'}rea. Let ¢ > 1 be the dimension of A™(R?); then given

M € Gi(d,R) we may view A™M as a member of Gl(¢q,R). Let T C Gl(q,R)
be the closure of the semigroup generated by {A’”A;\l} areA- Recall that we assume
m < d and G is m-irreducible.

Lemma 17. T is contracting and strongly irreducible, and T is m-contracting and
m-strongly irreducible.

Proof of Lemma [l Since G is m-irreducible it follows from Remark that
{A"}aen is m-irreducible, and so T is irreducible. Let oo > 7f > -+ >/, > 0 be
the Lyapunov exponents corresponding to p and {A;l},\eA; then v, = —vy4—;41 for
1 <i<d. Let 1 > 12 be the the two upper Lyapunov exponents corresponding to
1 and {.AmA;l} acA- From an argument given in the proof of Theorem I1V.1.2 in
[BL2] we get

m m—1
m=>_7 and =Y Y+ Vi1,
=1 =1

hence from the definition of m

m m m—1 m—1
m = Z% = —Z%HH > = Z Yd—i+1 = Vd—m = Z Vit Vi1 =172
i=1 i=1 i=1 i=1

From this, from the irreducibility of 'T, and from Theorem II1.6.1 in [BL2], we get
that T is contracting and strongly irreducible. From this and Remark [I5]it follows
that {AmAxl} aea is strongly irreducible, and so T is m-strongly irreducible. Since

T is contracting and since {A™A_ ! : w € A*} is dense in T, it follows that
{A™AY © w € A*} is contracting. This shows that T is m-contracting. O

Let (-, -) be the usual scalar product on R?. As in Section I11.5 of [BL2] we define
a scalar product on A™(R?) by the formula

(LN ATy Y1 Ao A Y) = det [{<xi7yj>}£7j:1} .

Let P(A™(R?)) be the projective space of A™(R?). Given &, € P(A™(RY)) set

B 1/2
dpammray)(&,1) = (1 - <§,77>2) ,
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where ¢ and 7 are unit vectors in A™(R?) with directions £ and 7. As shown in
Section I11.4 of [BL2], dp(4m(ray) is a metric on P(A™(R?)).

Given independent sets {z1,...,Zm}, {y1,...,ym} C R? there exists a constant
a € R\ {0} with

yl/\/\ym:axl/\/\xm
if and only if
span{yi, ..., Ym} = span{z1,...,Tm} .

Define a map 9 : Ggm — P(A™(R?)) by

YW)=R-x1 A--- A&y, if span{zy,...,2n} =W € Gam -
It is not hard to check that there exists a constant C' € (1, 00) with
_ 2
(41)  C7'dg,,,(W,U) < (dpeam @y (W), ¢ (V)" < C-dg,,, (W,U)

for all W,U € Gg,m, where dg, ,, is the metric defined above in Section 2l Hence
1 is an embedding of Gy, into P(A™(R?)). Now we can prove Proposition [

Proof of Proposition 8l From Lemma [I7 and Theorem IV.1.2 in [BL2] it follows
that there exists a unique § € M(P(A™(RY))) with 0 = >, pa - A™AL0.
Since ¥(Ga,m) is compact and A™M (Y(Gam)) = ¥(Ga,m) for each M € GI(d,R),
it follows from Lemma 1.3.5 in [BL2] that there exists 8 € M(¥(Gg4m)) with
0= \cAPr- A™AT1¢'. By the uniqueness of 6 it follows that § = ¢, and so 6 is
supported on Y(Gg.m)-

Set pp = ¥~ 10; then

pe=9710=Y pa-uT o ATATI =) py - Ao T = pa - AL e
A€A AEA AEA

Since ¢ is an embedding the uniqueness of ppg follows from the uniqueness of 6.
From Corollary VI.4.2 in [BL2] and the remarks following it it follows that dimy 6 >
0. From this and from (&I we obtain dimg pur > 0. This completes the proof of
the lemma. O

Given ay,...,aq € R let diag(ay,...,aq) denote the d x d matrix D with

0 ifi;
Given M € Gi(d,R) there exist orthogonal matrices U,V € Gi(d,R) with M =
UDV, where D = diag(a1(M),...,aq(M)). We call the product UDV a singular
value decomposition of M. Note that V*e; is an eigenvector of M*M with eigen-
value a;(M)? for each 1 < i < d. Here {e;}{_, is the standard basis of R and M*
is the transpose of M.

i ifi=j .
Diyj—{a ne jforlgz,jgd.

Lemma 18. For ecach w € Q and n > 1 set D, ., = diag(a1(Ay),), - -, aa(Ay|,))s
let Up wDnwVinw be a singular value decomposition of Aw\,,; and set Wy (w) =
span{Up wed—m+1,---sUnwea}. Then for p-a.e. w € Q there exists W(w) € Ggm,
such that {W,(w)}5, converges to W(w) in Gy, m.

Proof of Lemma [I8. From Lemma [I7 we get that Tis a contracting and strongly
irreducible subset of Gi(q,R). Hence we may apply proposition I11.3.2 in [BL2]
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on the iid. sequence {A™A;'}>° (. For each w € Q and n > 1 set M, , =
AL ,Aojol, set &nw = Upwed—m+1 A -+ AUy weq, and set

Wn—1"?
Wa(w) = {n € A™(RY) © A™M;  Mywn = a1 (A" My M) -0}
From part (b) of proposition II1.3.2 it follows that for p-a.e. w € Q
(A" My M, ) > ag(A™ My, My.)

for all n large enough, and so Wn(w) is 1-dimensional for all n large enough.
From part (a) of proposition IT1.3.2 it follows that for p-a.e. w € Q the sequence
{W,(w)}2; converges to some element in P(A™(R?)). For each w € Q and n > 1
we have

M;;.an.wUn,w = (A_l )*A_l Un,w

Wln Wn

= (Voo Dy LU ) (Vo b Dy LU,

'D LU = Un D2

n,w?

and also from Lemma 5.3 in [BL2]

al(AmM:;,an.w) = Hai(M:;,an.w) = Hai(Mww)z
1=1 1=1
m

m
= Hal(Ab_Jlln)Q = H ad—i+1(Aw|n)72 .
i=1 i=1
It follows that

AmM;.an‘w(gn,w) = Un,wD;ied,mH A A Un,wD;z,ed

= Had7i+1(Aw|n)_2 : fn,w = al(AmM;:_an.w) . gn,wa
=1

hence &, ,, € Wn(w), and so for p-a.e. w € Q we have R- &, = Wn(w) for all n
large enough. This shows that for p-a.e. w € Q the sequence {R-&, ., }22; converges
in P(A™(R?)). Now since {R &, ,}22; C ¥(Gam), since 1(Gq,y,) is compact, and
since v is an embedding, it follows that

{Wn(@)hhiy = {7 (R-&w)lnt
converges to some W (w) in Gg . This completes the proof of the lemma. ]
Lemma 19. Let U € Gg,p, be given and set
Su={W€Gagm : U-+W £R%};
then pr(Sy) = 0.

Proof of Lemma [[9. Set 6 = ¢up; then € M(P(A™(R%))) and
0=> pr-A"A'0.
AEA

From the strong irreducibility of T and from proposition I11.2.3 in [BL2], it follows
that

O{R-z: 2€ Q\{0}} =0
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for every proper subspace Q of A™(R?). Let {x1,...,24_m} be a basis for U, set
E=x1 N ANXg_m, and set

Q={zc A"R?) : EAz=0};
then Q is a proper subspace of A™(R?). Now since

wr(Su)
=up{W € Gam : EANwy A -+ ANwyy, =0 where {ws,...,w,,} is a basis for W}
= pp{W € Ggpm : (W) =R -z where z € A™(R?) and £ A 2 = 0}
=0{R-2z:2€ Q\{0}}=0

the lemma follows. O

5. PROOF OF PROPOSITION

Fix some v € V and set m = 7, K = Ky, ox = @y » for A € A, and Fyy = Fy.w
and {pw.wtweq = {fo,ww twea for W € Gapm. For k> 1 and Ao, -+, A\gm1 =w €
AF let

[w] ={w e Q : w; =\ for 0 <i <k},
and let [)] = Q. Given w € Q and k > 1 set w|j, = wo, -+ ,wr_1 € A¥ and w|y = 0.

In the proof of Proposition [f]we shall make use of the following dynamical system.
Let 0 : Q — Q be the left shift, i.e., (cw); = wi41 for w € Q and k£ > 0. Set X =
QX Gqm, for each (w, W) € X set T( W) = (o(w), A, - W), and set v = X pup.
Since pp is the unique member in M(Gd m) With fip = 3 ca Pa A;l,up, it follows
from Proposition 1.14 in [BQ1] that (X, T, v) is measure preserving and ergodic.

Lemma 20. Let E C Q be a Borel set, let M € GI(d,R), let W € Gq,,,, and set
B = Py, o M(B(0,1)); then for p-a.e. w € Q
_u(r o Py, (PWL om(w)+46-B)NE)
pww(E) = lim — .
50 (Lo Pyl (Ps om(w) + 0 B))
Proof of Lemma [20. Let p|g be the restriction of p to E, i.e., u|p(F) = p(FNE)
for F € F. For . € Wt set ||z]|53 = inf{t >0 : t'-2 € B}, ie., [||5 is the

Minkowski functional corresponding to the convex and balanced set B. Clearly
|l 5 is a norm on W+, and

§-B={zeW' : |z||5<d} for6>0.

Now from Theorem 4.2 in [BL1] and the discussion preceding it, and from property
(b) in Section Bl above, we get that for u-a.e. w € Q

VG Lo Py, (PWLM( )+4-B)NE)
50 y(m=1o Pyl (Pyr om(w) + 4 - B))
Pyomp|g(Pys o w(w) + 6 - B)

= lim =
30 Py omp(Pyy v om(w) +6 - B)
dPwmule
= CWTHE = pww(E),
Tt E (B o w(w)) = ol )

which proves the lemma. O
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Lemma 21. For each W € G4, and k > 0

P Wk 1]
1w W] k]

Proof of Lemma 211 For each A € A and w € Q set fa(w) = A - w, ie., fa(w) is
the concatenation of A with w. Let W € Gy, k > 0, and w € A* be given, and
set U = (A,)~t - W. From property (b) stated in Section B.I] above and since
w(fw(E)) = pw - w(E) for each E € F, it follows that for p-a.e. w € Q

= (A, )1 Wokw|Wk] for p-a.e. w € Q.

wlg

T o Pri(B(Pys oo ot (w),8)) N [(0"w)1])
(5.1)  pyokelwr] = 151331 N(Wﬁ]l o P(;i (B(Py. omoak(w),d)))
o A o B (BB 070 04(w),9) N (o)1)
b a(uon o Py (B(Py: om0 0h(@),0)))

Fix w € [w] and § > 0, and set B = Pyr1 o A,(B(0,1)). Since f, o 7 1(z) =
7t o,(z) for v € K,
(5.2) fwom 'oP;(B(Pyiomoct(w),d))
— 1 0 (K N PG (B(Pys oo at(w), )
=71 o, (K)Na o p,(mod®(w)+ U+ B(0,9))
= [wlk] N7 0 pu (o o*(w) + U + B(0,4)) .

From ¢, o7 = 7o f, and w|, = w we get

pu(m o d*(w) + U + B(0,9))
=70 fyoot(w)+ Ay U+ Ayu(B(0,9))
=m(w)+W+4§-A4,(B(0,1))
S W+ Pyt om(w) + 8 Py (Au(B(0,1)))
= Pyl (Pyiom(w)+d-B).
From this and from (5.2)) we obtain
foon to PrH(B(Pyromod®(w),d)) = wh]Na o Py (Pyrom(w)+d- B),
for each w € [w] and 6 > 0. It now follows from (E.I) and Lemma 20l that for p-a.e.
w € [w]
A 170 P (B o76) +9-B) 0 u(04)1)
50 p(wl] N7t o PRl (Pys o w(w) +6 - B))
k

_ twe (W] N ful(@®w)h]) _ pwwlwlre]
I w]k] pwewle]

:U'U,akw[wk] =

This proves the lemma since U = (A,,,)"" - W for w € [w], and since w is an
arbitrary element of A¥, ]

Proof of Proposition [0l Recall that P = {[A\] : A € A}. For w € A* set K,, =
0w (K). Define I : X — R by I(w, W) = —log pw,[wo] for (w,W) € X. It follows
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from property (c) stated in Section BI] from the ergodic theorem, and from Lemma
21l that for v-a.e. (w,W) e X

®S)l/HAP|fwdmﬂU)
= [ [ ~1o8 Byl | Folo duto) de0)
// log puw,y[mo] dp(n) dpr(U) = /I(n7U)dV(17,U)

1
—hmn E IOT’f W)—hm—— E IOgN(Aw‘ )1 W0k W]
k=0 =0

-1
—lim— Zl pwwl@li] _ . —1og ww[w]n]
Pw,w [w] k] n n
. log WﬂW,w(Kw\")
= lim .

n n
Let 0 < € < —v; then there exists a Borel set 0y € Q with u(Q\ Qp) = 0, such
that for w € Qg there exists N, > 1 for which

a;i(Ay),) € (en0i=9) enite)) for n > N, and 1 <i < d.
Since v € V there exists p > 0 with
p < min{d(px, (K), pr, (K)) @ A1, A2 € A with Ay # A2}

Let w € Q9, n > N, and A, -+, Ap—1 = w € A"\ {w|,}. Let 0 < k < n be
such that Ay # wp with A\; = w; for 0 < j < k. Since 7(c*w) € K, we have
B(n(c*w),p) N Ky, =0, and so

@ = Sow\k(B(ﬂ-(Ukw)a p) n K)\k) o pr|k(B(7T(O'kw),p)) N Kw .

Now since

pr\k(B(ﬂ-(Ukw)’p)) ) B(‘Pw|k © W(Ukw)a O‘d(Aw\k) : p)

B B(W(w)vad(Aw\n) 'p) ) B(W(w)7 en(’m_e) . P)7
we get B(m(w), e . p)N K,, = 0. We have thus shown that
B(m(w),e" ™9 . p) N K, = 0 for w € Qy, n > N,,, and w € A"\ {w|,} .

It follows from this, from the fact that wuw,., is supported on K for v-a.e. (w,W) €
X, and from (&3], that for v-a.e. (w, W) e X

log(mpw..(B(m(w), 6)))

(5.4) liminf
510

log &
. en(va—e)
— liminf log(mpw,u(B(m(w),p-e )N K))
g log(p - "G
> lim log(ﬂ-ﬂW,w(KwLn)) _ fH/A(P | FU) d/LF‘(U) )
n n-(va—€) €—7d

For each w € Q and n>1set D,, ., =diag(ai(Ay), ), - @a(Auy, ), 1et UnwDn oV
be a singular value decomposition of A, , and set

Ln,w = Span{Un,wedferh ceey Un,wed}~
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From Lemma [I§ it follows that for u-a.e. w € € there exists L,, € Gg,, such that
{Ln W}, converges to L, in Ggm. Set

Xo={(w,W) e X : we Qq, the limit L, = lim L, ,, exists, and LL +W =R%Y,
and for U € Gg,, set
Su={We€Gqm : Ut +W £R%}.

From Fubini’s theorem and Lemma [I9 we get

V(X \ Xo) < / e (Se.) da(w) = 0.

{L,, exists}

Let b € (0,00) be such that K C B(0,b). Fix (w, W) € Xo; then L N W = {0}, so
Pr(z) # 0 for each x € W\ {0}, and so

ag,w =min{|Pr,(z)| : x € Wand |z|=1} > 0.
Since {Ly, ., }22, converges to L, it follows that there exists N, w > N, with

A W

min{|Pr, (z)| : * € W and |z| = 1} > for every n > Ny, w .
Let n > N, w, and set
R=mn(w)+ Lﬂ;w + {2 € Ly ¢ |z| < 2b-enOata}
For d —m + 1 < < d we have 7; = 74, hence a;(4,,,) < e"ate) and so
A, (B(0,2b)) = Up D o Vi,w(B(0,2b)) = Uy D o, (B(0, 2))
C Upw(spanies,...,eq—m} + {z € span{eq—m+1,...,ea}t : |z| < 2b- e"('yd“)})
= Lﬂ;w +{x € Ly ¢ |z| < 2b-enata}
It follows that for y € K
Pl (y) = T(w) = Pu), (Y) = P, ©To 0" (W)
= Ay, (y —moo"(w)) € Ay, (B(0,20))
CLy,+{x€Ln, : |z|<2b- eI}
which shows that K, C R. Given z € W with |z > % -4t we have

T

) > ] - ZoW s gp. gnate)

\Pr,. ()| =[] - |PL, . ( 5

||

It follows that x + w(w) ¢ R, and so

4b
(m(w) + W)N Ky, C (r(w) +W)N R C B(r(w), ——- ety
w,W
We have thus shown that
(5.5)
4b
K, N(m(w)+W) C B(r(w), —— "t for every (w, W) € Xo and n > N,, .

Qu W
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From property (a) stated in Section Bl it follows that muw,, is supported on
7(w) 4+ W for v-a.e. (w,W) € X. From this, from (5.3]), and from (5.3]), we get that
for v-a.e. (w,W) e X

log(mpw .. (B(m(w), 0)))

(5.6) limsup

510 log &
, log (7 puw, (B(m(w), 22 - en(reta))))
= hmnsup log(ajbw .en('yd+é))
. IOg(ﬂ-NWM(len N (71'(&)) + W)))
< lim
n n- (’Yd + 6)
g 8w (Ka,)) [ Hu(P ] Fu) dpe(U)
n n-(ya+e€) —Yg — € '

Now since € > 0 can be chosen arbitrarily small the proposition follows from (54)

and (B.4). O

6. PROOFS OF AUXILIARY LEMMAS

Proof of Lemma [0 Given a continuous g : R* — R with compact support it holds
for p-a.e. w that

. 1
/gd(m,u)wm)(w) = lim

: gdmyp
310 Py mpp(B(Pyy 1y (w), 6)) /Pwl(B(PWMU(w),a))

1
= lim / gom,du
510 PwLWUM(B(PWLWU(W),(S)) ﬂ;lop‘:‘/l (B(Pyy 1 70 (w),5))

L w

= /g O Ty d,va,W,w = /g d’fr'u,ufv,W,wa

which proves the lemma. (Il

Proof of Lemma 8 Fix W € Gg. and vy € V, and for each v € V set Fyy(v) =
H, (P | Fy,w); then it suffices to show that Fy : V — R is upper semi-continuous
at vo. Let {uy,...,uq_m} be an orthonormal basis for W+, and for 1 <i < d —m
set U; = span{u;} and
Q; = {t eER : PU,;’]T'UO,U/{t . ul} = 0} .

Clearly R\ Q; is at most countable. For each 1 < i < d—m and n > 1 let
{al w322 oo = T C Qi be such that 27"' </ .\ —al, <27" for k € Z, and
such that J¢ C Ji . For n > 1 and (ki,...,ks_m) =k € Z4™ set

d—m
Snjc :PI;/li { Z tl-ui . (tl, ‘e 7td7m) € [Gi,kl B a’il,kl-i-l) XX [ai;::im, a’rdL;cZL,m-i-l)}'
i=1

For n > 1 and v € V let G, ,, be the o-algebra on ) generated by
{71 (Sup) « kezi™™},
and set Fyy,(v) = H,(P | Gun). For veV we have G, 1 C G, C ... and F,w =

V"1 Gu.n, hence from Theorem 6 on page 38 of [P] we get that Fy1 > Fiyo > ...
and Fy = lim Fyy,,,. It follows that it is enough to prove that Fy,, : V — R is

continuous at vp for n > 1. Let n > 1, (k1,...,kg—m) = k € Z¥™ and X € A be
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given, and for v € V set f(v) = p([AJN7; (S, 7). From the way Fy,, is defined it
follows that it suffices to show that f is continuous at vg. From a;’ki,a;’kiﬂ € Q;
for each 1 < i < d—m it follows that u(m, ' (95, 1)) = 0, and for w € Q\ 7, 1(dS,, )
we have

lim 1[/\]07r171(5'

Jm 0@ = Ipaniis, o @),

hence from the dominated convergence theorem lim f(v) = f(vg). This completes

v—>V0

the proof of the lemma. |

Proof of Lemma [ Since 7, u is supported on K, it suffices to show that Leby(K,)
= 0. Let p > 0 be such that

1 . .
p< 5 'mln{d(@v,)q (Kv)a Pu, Ay (Kv)) : )‘1; >\2 € A with )\1 7& >‘2}

andset U = {z € R? : d(z, K,) < p}; then ¢, x, (U) C U and @, », (U)Npy 2, (U) =
0 for A1, Ao € A with Ay # Xo. Also it is easy to see that the set U \ [Jycp 0o r(U)

has a non-empty interior, hence

Lebg(U) > Leba( | por(U)) =D Leba(pua(U)) = Leba(U) - > |det(Ay)],
AEA AEA AEA

and s0 )y, |det(Ay)| < 1. In addition, for each n > 1 we have

Leba(Ky) < Leba( | pow(U)) = Y Lebalppw(U))

wEA™ weEA™
= Lebg(U) - Y |det(Ay)| = Leba(U) - Y []Idet(Ax,)]
wEA™ A1, An €A i=1
= Leba(U) - (Y [det(AN)])",
AEA
which shows that Lebg(K,) = 0. O

For the proof of Lemma [I0] we shall first need the following lemma regarding
the dimension of exceptional sets of projections. Given § € M(R?) and t > 0 let
I,(6) be the t-energy of 6 (see Section 2.5 of [M2]), and let dimg 6 be the Sobolev
dimension of § (see Section 5.2 of [M2]). Given a Borel set E C R? we denote the
restriction of 6 to E by 0|g.

Lemma 22. Let § € M(R?) and 1 <1 < d be given and set s = dimg 0; then:
(a) If s <1, then for 0 <t <s

dimg {W € Ga; : dimp(Pyw) <t} <i(d—1—1)+t.
(b) If s > 1, then for s —I(d—1) <t <l
dimyg{W € Gq; : dimy(Pw0) <t} <Il(d—-1)+t—s.
(c) If s > 1, then
dimp (G \{W € Gay : Pwd <HY}) <I(d—1+1) —s,

where H' is the l-dimensional Hausdorff measure.
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Proof of Lemma 22], part (a). Let 0 < tg < t; < t, and for each n > 1 set
E,={z€R?: §(B(x,0)) <n-6" for each § > 0} .

From dimgy 6 > t; and [23) we get (R?\ |J,, E,) = 0. From an argument as the
one given on page 19 of [M2] it follows that I, (0|g,) < oo for each n > 1. From
this, from Theorem 5.10 in [M2], and since dimg ¢ < dimg ¢ for each ¢ € M(R?)
with dimy & < d, we get

dlmH{W S GdJ : dlmH(PWG) < to}

= sup dimp{W € Gy : dimy(Pw(0]p,)) <to} <l(d—1—1)+t.
n>1

As this holds for every 0 < ty < t we obtain (a). O
Proof of part (b). Let | < tg < t; < s, and for each n > 1 let E,, be as in the proof
of (a). Since I, (0|g,) < oo for each n > 1, it follows from Theorem 5.10 in [M2]
that

dlmH{W S Gd,l : dlmH(PWH) < t}

= sup dlmH{W S Gd,l : dlmH(Pw(e
n>1

Now by letting ¢ tend to s we obtain (b). O

B)) <t} <ld-1)+t—to.

Proof of part (c). Let | <ty < tg < t; < s, and for each n > 1 let F,, be as in the
proof of (a). Since I1,(0|g,) < oo for each n > 1, it follows from Theorems 5.4.b
and 5.10 in [M2] that

dimy (Gg  \{W € Gq,; : Pwb < Hl})

= Sl;}i dimpg (Gay \ {W € Ga, : Py (0|, < Hl})
< sup dimg{W € Gaq, - dimS(PW(mEn)) <t} <Ud—1)+ta—to.
n>1

Now by letting ¢2 tend to | and ty tend to s we obtain (c). O

For the proof of Lemma [I0] we shall also need the following proposition, which

follows directly from Theorem 5.8 in [F2]. The proof is actually given in [F'2] for
the case d = 2, but extends to higher dimensions without difficulty.

Proposition 23. Let 1 <l <d, ECRY, W e Gqy, 0 #ACWL, andt > 0 be
given. If dimpy(E N (x +W)) >t for each x € A, then dimpy E >t + dimpy A.

Proof of Lemma [0, part (a). Assume by contradiction that the claim is false for
some 0 < t < s; then

(6.1) dimy{W € Gq, : essinfe{dimy (Oy.) : © € R} > s—t} > (1-1)(d—1)+t.
Since the map that sends W € Gy, to wt e Gq,4—; is an isometry with respect
to the metric on the Grassmannian defined in Section 2 we get from part (a) of
Lemma [22] that
dlmH{W S GdJ : dlmH(PWLQ) < t}
= dlmH{W S Gd,dfl : dlmH(PWH) < t} < (l — 1)(d — l) +t1.
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From this and (6.1]) it follows that there exists 0 < ¢ < ¢t and W € G4, such that
dimp (Py,10) >t and

essinfg{dimy (fw,) : T € R} > s —t+e.

Let E C R? be a Borel set with §(E) > 0, for x € Wt set E, = EN (z + W), and
set

A={zeWt : 0w.(E,) >0and dimy(Owe) >s—t+e}.
From properties stated in Section Bl it follows that Py 1 0(A) > 0, hence
dimyg A > dimg (Py10) > t.
For x € A we have
dimg E, > dimy(Ow,,) > s —t + ¢,

and so from Proposition 23] we obtain dimyg E > s+e¢. As this holds for every Borel
set £ C R? with §(E) > 0, it follows that s = dimg 6 > s+ e. This is clearly a
contradiction, and so we obtain part (a) of the lemma. The proof of part (b) is the
same, except we need to use part (b) of Lemma 22] instead of part (a). O

Proof of part (c). Set
S={WeGq : Py <M,
then from part (c) of Lemma 22 we get
(6.2) dimy (Gay \S) < (d—-1)(1+1) —s.
Let d—1 <ty <t; <sandforn>1set
E,={zeR?: (B(x,0)) <n-6" for each § > 0};

then as in the proof of part (a) of Lemma 22 we have (R \ |, E,) =
L, (0|, ) < oo for each n > 1. Since for each W € G4, we have Oy, (R\,, E )
0 for f-a.e. x € R?, it follows that

(6.3) dimg{W € S : essinfp{dimy (fw,) : © € R} <tg—d+1}

= sup dimy{W € S : essinfyo{dimpy( B,) xR <tg—d+1}.

n>1

As described in Section 2 of [JM], given W € G4, and a Radon measure £ on R?

with compact support, there exist Radon measures {¢"**}, 0 on R? such that
for H4 lae. z € Wt

1
de™® = lim _-/ gd¢ for g € C(RY).
/ 810 (20)" Jp-1 (B(z,s)) ®

For z € R? we set ¢W® .= ¢WPwaiz,

Fix some n > 1 with 0(E,,) > 0, and let W € S. From property (b) in Section
B above and from Theorem 2.12 in [M3], it follows that for #-a.e. x € R¢ we have
for each g € C(RY)

/g e _ i P 0B(P2,0) ko a9 9
it (20)4-1 Py~ 0(B(Pyy+7,0))
APy 0

= W(Pwlx)/gdaw7m,
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which shows that

dPyy .0
= #(PwLx) . QW@ .
dPy, 1 0

From this, from 0 < —=r (P 12) < oo for f-a.e. x € R?, and from Lemma 3.2
in [JM], we get that for f-a.e. x € R¢

0W,z

0" g,) = dimg ((0]p,)"") -

Now from Lemma 2.22 in [JM], from I, (0|g,) < 0o, and from Theorem 6.5 in [M2],
we obtain

dimH(QW@ |E7,) = dlmH(

dimg{W € S : essinfo{dimy (Ow|g,) : = € Rd} <tg—d+1}
= dimg{W € S : essinfp{dimy((0|z,)"*) : z € R} < to —d+1}

< dimp{W € S : /WL T ara(01.)) dHE (2) = o0} < (d—1)(I+1) —to .

This together with (2] and (63) proves part (c) of the lemma, since we can let g
tend to s. g

Proof of Lemma [[II. Fix v € RUA and set 7 = 7,, K = K,, and ¢, = @y, z for
A€ A. Let k:=k(n) > 0 be as defined in (Z2)). If D(p) > d, then there is nothing
to prove (see Proposition 10.3 in [F]), hence we can assume D(p) < d, and so

k<d. For1<i<kandweA*set d;, = [%—‘,andset

g i itk >0,
Y if k=0.

There exists a constant a > 0 such that for each w € A* there exists a rectangle
R, C R? with ¢, (K) C R, and with side lengths sy, ..., sq > 0, where

a - Olk+1(Aw) . di,w if 1 S ) S k,
8; =
e arsi(Aw) ifk+1<i<d.
For w € A* let Ry = {Ruw1,---,Ruwd,} be a partition of R, into disjoint squares

of side length a - a11(Ay). For w € Q and n > 1 let R, ,, be the unique member
of R, which contains 7(w). For each n > 1 set

flwln]
E,={we: Ron) < ——5h
{UJ '/TM( s ) dw‘n . nQ}
then
< 1
p(En) < Z ZW'M(R“’J) ' 1{”#(Rw‘j)g df;[f‘gfz} = n2’
weA™ j=1

and so Y., u(E,) < oo. From this and the Borel-Cantelli Lemma it follows that
(6.4) plw : #{n>1:weE,}=00}=0.

There exists a constant a’ > a such that

Ryn C B(n(w),d" - ags1(Ayp,)) forwe Qandn > 1,

|Tl,
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hence for w €

lim sup 2 Tu(B(w(w), )
810 10g5

oy BB 0 s (4,)
n— o0 lOg(a/ . akJrl(Aw\n))

n—o00 IOg(akJrl(Aw\n))

Now from (6.4)) it follows that for p-a.e. w € Q

lim sup log mu(B(m(), 9)) < limsup M
610 log5 T n—oo 10g(ak+1(14w‘n))
k ai(Ayl,)
iy 2Bl — 2 loe 5 T
= limsu
n%oop IOg(O‘k+1(Aw|n))

This together with ([2.I)) and the Shannon-McMillan-Breiman theorem gives

log Tu(B(r(w),8)) _ ,  hu+m+-+m

lim su <k =D
S Togd < o (1)
for p-a.e. w € Q, which proves the lemma. O

Proof of Lemma [[2l Assume by contradiction that G’ is not m-irreducible; then
there exists a proper linear subspace W of A™(R?) such that A™M (W) = W for
all M € G’. Let Wq,..., W}, be an enumeration of the set

{A™AL,(W) : w= Ay, , A\ for some 0 <l <nand Aj,...,\ € A}
and define
H={MecGIdR): Y1<i<k 31<;j<k with A"M(W;) = W,};

then H is a closed subgroup of Gi(d,R). Let T denote the closure of the semigroup
generated by {A}'}rea. Since A™M (W) =W for each M € G’ it follows that H
contains the semigroup generated by {Ax}aca, and so T C H. This implies that
T is not m-strongly irreducible which contradicts Lemma [I7] and so it must hold
that G’ is m-irreducible.

From Proposition I11.5.6 in [BL2| it follows that for each 1 <7 <d

1

I 12 _ . !/
i = llj{fn N /(An)N log o (A ) dp/ (w)

o1
= hjrvn N /AN log @i (Ayy, ) dp(w) =n - i,
hence

max{1<i<d: 7, ;1= =v=m<d.
From this, from the m-irreducibility of G’, and from Proposition B it follows that
there exists a unique pf € M(Gam) with pfp = 3 a0 Pw - Ayt pp. Clearly we
also have pip = >, cpn Puw - Ayt pr, hence pfp = pp. O
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