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ON SELF-AFFINE MEASURES WITH EQUAL HAUSDORFF

AND LYAPUNOV DIMENSIONS

ARIEL RAPAPORT

Abstract. Let μ be a self-affine measure on R
d associated to a self-affine IFS

{ϕλ(x) = Aλx+ vλ}λ∈Λ and a probability vector p = (pλ)λ > 0. Assume the
strong separation condition holds. Let γ1 ≥ · · · ≥ γd and D be the Lyapunov
exponents and dimension corresponding to {Aλ}λ∈Λ and pN, and let G be
the group generated by {Aλ}λ∈Λ. We show that if γm+1 > γm = · · · = γd,
if G acts irreducibly on the vector space of alternating m-forms, and if the
Furstenberg measure μF satisfies dimH μF + D > (m + 1)(d − m), then μ is
exact dimensional with dimμ = D.

1. Introduction

Let d ≥ 2 and let Λ be a finite index set. Fix a family of matrices {Aλ}λ∈Λ =
A ⊂ Gl(d,R) with ‖Aλ‖ < 1 for λ ∈ Λ, let {vλ}λ∈Λ ⊂ R

d, and fix a probability
vector p = {pλ}λ∈Λ > 0. Let {ϕλ}λ∈Λ be the self-affine IFS with

(1.1) ϕλ(x) = Aλx+ vλ for λ ∈ Λ and x ∈ R
d .

Denote by μ the self-affine measure on R
d which corresponds to {ϕλ}λ∈Λ and p,

i.e., μ is the unique probability measure with

μ =
∑
λ∈Λ

pλ · ϕλμ .

The Lyapunov dimension D of μ (see Section 2 below) is an upper bound for the
dimension of μ, but it is in general difficult to verify whether there is equality. The
purpose of this paper is to present verifiable conditions under which

(1.2) μ is exact dimensional with dimμ = D .

1.1. Background for the problem. Let us mention some notable results regard-
ing self-affine measures and sets. From Theorem 1.9 in [JPS] it follows that D is the
‘typical’ value of dimH μ, where dimH stands for the Hausdorff dimension. More
precisely, it is shown that if ‖Aλ‖ < 1

2 for λ ∈ Λ and if the translations {vλ}λ∈Λ

are drawn according to the Lebesgue measure, then dimH μ = min{D, d} almost
surely. The inequality dimH μ ≤ D is always satisfied.

Analogous to this is the following classical result, due to Falconer, regarding the
typical dimension of self-affine sets. Let K be the attractor of {ϕλ}λ∈Λ. In [F3] it
is shown that if ‖Aλ‖ < 1

3 for λ ∈ Λ, then

dimH K = min{dimA K, d} for Lebesgue almost all {vλ}λ∈Λ .
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Here dimAK stands for the affinity dimension of K, which is defined in terms of
the matrices in A. This was later improved in [S] by replacing the constant 1

3 by
1
2 . The inequality dimH K ≤ dimA K is always true.

For fixed translations {vλ}λ∈Λ the exact value of dimH K has been found for
several specific classes of self-affine sets. See the survey [F4] and the references
therein. Much attention has been given to fractal carpets, where members of A
preserve horizontal and vertical directions (see [M1] for instance).

Here we establish (1.2) in the opposite situation, in which there is no proper
subspace invariant under all members of A. This makes it possible to consider the
Furstenberg measure μF on the Grassmannian manifold (see Section 2 below). The
measure μF allows us to control the distribution of the orientation of cylinder sets
at small scale.

For d = 2 this idea was already used in [FK] and [B1], in order to obtain (1.2)
under assumptions different from ours. In Section 1.4 below we describe these
results and compare them with the work presented here. A notable advantage in
our result is that we do not require a lower bound on dimH μ, but rather only on
D which is at least as large and independent of the translations {vλ}λ∈Λ.

1.2. The main result. We shall consider only the case where the IFS {ϕλ}λ∈Λ

satisfies the strong separation condition (SSC). Denote by γ1 ≥ · · · ≥ γd the Lya-
punov exponents corresponding to the Bernoulli measure pN and the matrices A,
and set

m = max{1 ≤ i ≤ d : γd−i+1 = · · · = γd} .
If m = d and the SSC is satisfied, then (1.2) follows directly from Theorem 2.6 in
[FH]. Hence assume m < d. Let G ⊂ Gl(d,R) be the closure of the group generated
by A. We assume that G is m-irreducible, which means that it acts irreducibly on
the vector space of alternating m-forms. A precise definition is given in Section 2.
When m = 1 or d− 1, and in particular when d = 2 or 3, this condition reduces to
the absence of a proper subspace of Rd which is invariant under all members of A
(see Remark 2 below).

Let Gd,m denote the Grassmannian manifold of all m-dimensional linear sub-
spaces of Rd. Each M ∈ Gl(d,R) defines a map from Gd,m onto itself, which takes
W ∈ Gd,m to M(W ). From m < d, the irreducibility assumption, and results found
in [BL2], it follows that there exists a unique probability measure μF on Gd,m with

μF =
∑
λ∈Λ

pλ ·A−1
λ μF ,

and moreover that dimH μF > 0 (see Proposition 3 in Section 2). The measure μF

is called the Furstenberg measure on Gd,m corresponding to A−1 := {A−1
λ }λ∈Λ and

p. The following theorem is our main result.

Theorem. Assume the following conditions:

(i) {ϕλ}λ∈Λ satisfies the SSC,
(ii) m is strictly smaller than d,
(iii) G is m-irreducible, and
(iv) the measure μF satisfies

dimH μF +D > (m+ 1)(d−m) .

Then (1.2) holds true, i.e., μ is exact dimensional with dimμ = D.
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1.3. Explicit examples. The theorem just stated can be used to compute the
dimension of many concrete self-affine measures. In order to do so one needs to
bound dimH μF from below, which is not a trivial problem. Let us mention some
results which are relevant for this task. Here we assume the elements of A are
distinct, i.e., Aλ1

�= Aλ2
for λ1, λ2 ∈ Λ with λ1 �= λ2. Also, we shall have no

need for the matrices in A to be contractions. Indeed, the Furstenberg measure is
unaffected if we multiply members of A by non-zero scalars.

In [HS] it is shown that if A ⊂ Gl(2,R) and p are such that elements in A have
algebraic entries and determinant 1, A generates a free group, γ1 is strictly greater
than γ2, and G acts irreducibly on R

2, then

dimH μF = min{ H(p)

−2 · γ1
, 1} .

Here H(p) stands for the entropy of p. For example, this can be applied when p > 0
and

(1.3) A =

{(
1 2
0 1

)
,

(
1 0
2 1

)}
.

In Section VI.5 of [BL2] it is shown that dimH μF = H(p)
−2·γ1

whenever |A| > 1,

p > 0, and

A−1 ⊂
{(

0 1
1 n

)
: n ≥ 1

}
.

For E,L ∈ R with |E| + |L| < 2, denote by μE,L
F the Furstenberg measure

corresponding to

(1.4) A−1 =

{(
E − L −1

1 0

)
,

(
E + L −1

1 0

)}
and p = (

1

2
,
1

2
) .

In [B2] it is shown that there exists a constant δ > 0 with

lim
L→0

dimH μE,L
F = 1 for all δ < |E| < 2− δ .

In [B3] an example is given, for the case d = 2, of A and p for which γ1 > γ2,
the action of G is irreducible, and μF is absolutely continuous with respect to the
Lebesgue measure. For d ≥ 3 an example of A and p with these properties is
obtained in [BQ2].

1.4. Comparison with recent work. As mentioned above, for d = 2 the validity
of (1.2) was established in two recent papers under conditions different from ours.
From the arguments found in [FK], it follows that if the matrices in A have strictly
positive entries, {ϕλ}λ∈Λ satisfies the SSC, and

dimH μF + dimH μ > 2,

then (1.2) holds. This is actually done more generally, in the sense that the self-
affine measure μ can be replaced by the projection of a Gibbs measure into R

2.
Given M ∈ Gl(2,R) let α1(M) ≥ α2(M) > 0 denote the singular values of M .

It is said that A satisfies the dominated splitting condition if there exist constants
0 < C, δ < ∞ with

α1(A1, · · · , An)

α2(A1, · · · , An)
≥ C · eδn for all n ≥ 1 and A1, . . . , An ∈ A .
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For example, this is satisfied when the matrices in A have strictly positive entries.
It is shown in [B1] that if A satisfies dominated splitting, {ϕλ}λ∈Λ satisfies the
SSC, and

dimH μF + dimH μ > 2 or dimH μF ≥ min{1, D},
then (1.2) holds.

Note that since D ≥ dimH μ, the condition dimH μF +D > 2, which appears in
our result when d = 2, is weaker than dimH μF + dimH μ > 2. This is important
because D, as opposed to dimH μ, is independent of the choice of translations
{vλ}λ∈Λ. Observe also, that if the closure of the set

{A1, · · · , An : n ≥ 1 and A1, . . . , An ∈ A}

contains an element A ∈ Gl(2,R) for which α1(A
n)

α2(An) does not increase exponentially

fast as n → ∞, then the results from [B1] and [FK] don’t apply but our result can.
This is in fact the case in examples (1.3) and (1.4) mentioned above. This is also
true for the example obtained in [B3], since in that case A−1 ∈ A whenever A ∈ A.

By using the aforementioned results about measures, results about the dimension
of certain self-affine sets are obtained in [B1] and [FK]. More precisely, conditions
for dimH K = dimA K are given, where we recall that K is the attractor of {ϕλ}λ∈Λ

and dimAK is the affinity dimension of K. We do not pursue this here, although
it seems reasonable to believe that our work can also be applied in order to obtain
this equality for new classes of self-affine sets.

Remark. In the last stages of writing up this research the author became aware of
preprint [BK]. When d = 2 it is shown in [BK] that μ is always exact dimensional,
and that dimμ = D if the SSC holds and

dimH μF > min{dimμ, 2− dimμ} .
As mentioned above, since D ≥ dimH μ our result may be easier to use in some
cases. For d > 2 results are proven in [BK] under an assumption on A, termed
totally dominated splitting, which is a multi-dimensional analogue of the dominated
splitting condition previously mentioned. Hence for d > 2 our work applies in many
situations that are untreated by [BK].

1.5. About the proof. We now make the dependency in the translations explicit.
Given (vλ)λ∈Λ = v ∈ R

d|Λ| denote by {ϕv,λ}λ∈Λ the IFS satisfying (1.1), and let μv

be the self-affine measure corresponding to {ϕv,λ}λ∈Λ and p. Let V ⊂ R
d|Λ| be the

set of all v ∈ R
d|Λ| for which {ϕv,λ}λ∈Λ satisfies the SSC. In the proofs found in [B1]

and [FK], some v ∈ V is fixed and linear projections and sections of the measure
μv are studied. In our proof we shall also examine linear sections of measures, but
we shall consider the entire collection {μv}v∈V at once.

More precisely, it will be shown that there exists an upper semi-continuous func-
tion F : V → [0,∞), such that for every v ∈ V and μv×μF -a.e. (x,W ) ∈ R

d×Gd,m

the sliced measure, obtained from μv and supported on x+W , has exact dimension
F (v). The proof of this uses ergodic theory and results from the random matrix
theory presented in [BL2]. From the result of [JPS] mentioned above, and from
results found in [M2] regarding the dimension of exceptional sets of sections, it will
follow that F (v) ≥ D− d+m for Leb-a.e. v ∈ V . The semi-continuity of F implies
that this inequality holds in fact for all v ∈ V . Now by fixing v ∈ V and using
estimates on the dimension of exceptional sets of projections, it will follow that
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dimH μv ≥ D. The inequality dimμv ≤ D in not hard to prove, and completes the
proof.

1.6. Outline of the paper. In Section 2 we give some necessary definitions and
state Theorem 4 which is our main result. Is Section 3 we carry out the proof,
while relying on Proposition 6 and Lemmas 7 to 12, whose proofs are deferred to
subsequent sections. In Section 4 we state and prove some required results, which
follow from the theory of random matrices. In Section 5 we prove Proposition 6,
which is the main ingredient in the proof of Theorem 4. In Section 6 we prove all
auxiliary lemmas which were priorly used without proof.

2. Statement of the main result

Fix some integer d ≥ 2 and for x ∈ R
d denote by |x| the euclidean norm of x.

For a d × d matrix M (or operator on R
d) denote by ‖M‖ the operator norm of

M with respect to the euclidean norm. Let Λ be a finite set with |Λ| > 1, and
fix {Aλ}λ∈Λ ⊂ Gl(d,R) with ‖Aλ‖ < 1 for each λ ∈ Λ. Let G ⊂ Gl(d,R) be the
closure of the group generated by {Aλ}λ∈Λ. For (vλ)λ∈Λ = v ∈ R

d|Λ| let {ϕv,λ}λ∈Λ

be the self-affine IFS with ϕv,λ(x) = Aλx+ vλ for λ ∈ Λ and x ∈ R
d. Let Kv ⊂ R

d

be the attractor of {ϕv,λ}λ∈Λ, i.e., Kv is the unique non-empty compact subset
of R

d with Kv =
⋃

λ∈Λ ϕv,λ(Kv). We say that the strong separation condition
(SSC) holds for {ϕv,λ}λ∈Λ if the union

⋃
λ∈Λ ϕv,λ(Kv) is disjoint, and we denote

by V ⊂ R
d|Λ| the set of all v ∈ R

d|Λ| for which the SSC holds. It is easy to see that
V is an open subset of Rd|Λ|, and we assume it to be non-empty.

Let p = (pλ)λ∈Λ be a probability vector with pλ > 0 for each λ ∈ Λ. Set Ω = ΛN,
equip Λ with the discrete topology, and equip Ω with the product topology. Let F
be the Borel σ-algebra of Ω, and let μ be the Bernoulli measure on (Ω,F) which
corresponds to p (i.e., μ = pN). For each v ∈ R

d|Λ| and ω ∈ Ω set

πv(ω) = lim
n

ϕv,ω0
◦ · · · ◦ ϕv,ωn

(0) .

Since the mappings {ϕv,λ}λ∈Λ are contractions this limit always exists and πv :
Ω → R

d is continuous. Note that πvμ := μ ◦ π−1
v is the unique Borel probability

measure on R
d for which the relation πvμ =

∑
λ∈Λ pλ · ϕv,λπvμ is satisfied.

Given M ∈ Gl(d,R) let α1(M) ≥ · · · ≥ αd(M) > 0 be the singular values of M .
Let 0 > γ1 ≥ · · · ≥ γd > −∞ be the Lyapunov exponents corresponding to μ and
{Aλ}λ∈Λ (see chapter III.5 in [BL2]), i.e., for μ-a.e. ω ∈ Ω

(2.1) γi = lim
n

1

n
logαi(Aω0

· · ·Aωn−1
) for 1 ≤ i ≤ d .

Denote the entropy of μ by hμ (i.e., hμ =
∑

λ∈Λ −pλ · log pλ), set

(2.2) k(μ) = max{0 ≤ i ≤ d : 0 < hμ + γ1 + · · ·+ γi},

and set

D(μ) =

{
k(μ)− hμ+γ1+···+γk(μ)

γk(μ)+1
if k(μ) < d,

−d · hμ

γ1+···+γd
if k(μ) = d.

The number D(μ) is called the Lyapunov dimension of μ with respect to the family
{Aλ}λ∈Λ.
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Given a metric space X we denote the collection of all compactly supported
Borel probability measures on X by M(X). For θ ∈ M(X) we write

dimH θ = inf{dimH E : E ⊂ X is a Borel set with θ(E) > 0}
and

dim∗
H θ = inf{dimH E : E ⊂ X is a Borel set with θ(X \ E) = 0},

where dimH E stands for the Hausdorff dimension of the set E. For x ∈ R
d and

ε > 0 denote by B(x, ε) the closed ball in R
d with centre x and radius ε. Given

θ ∈ M(Rd) we say that θ has exact dimension s ≥ 0 if

lim
ε↓0

log θ(B(x, ε))

log ε
= s for θ-a.e. x ∈ R

d,

in which case we write dim θ = s. It is well known (see chapter 10 of [F1]) that

(2.3) dimH θ = essinfθ{lim inf
ε↓0

log θ(B(x, ε))

log ε
: x ∈ R

d} .

Given 1≤m<d let Gd,m denote the Grassmannian manifold of allm-dimensional
linear subspaces of Rd. For a subspace W ⊂ R

d let PW : Rd → R
d be the orthogonal

projection onto W . For W,U ∈ Gd,m set dGd,m
(W,U) = ‖PW − PU‖; then dGd,m

is a metric on Gd,m which we shall use. For M ∈ Gl(d,R) and W ∈ Gd,m set
M ·W = M(W ) ∈ Gd,m, which defines an action of Gl(d,R) on Gd,m.

For 1 ≤ m ≤ d let Am(Rd) denote the vector space of alternating m-linear forms
on (Rd)∗. Given x1, . . . , xm ∈ R

d let x1 ∧ · · · ∧ xm ∈ Am(Rd) be such that

x1 ∧ · · · ∧ xm(f1, . . . , fm) = det[{fi(xj)}mi,j=1] for f1, . . . , fm ∈ (Rd)∗ .

If {e1, . . . , en} is a basis for Rd, then

{ei1 ∧ · · · ∧ eim : 1 ≤ i1 < · · · < im ≤ d}
is a basis for Am(Rd). For M ∈ Gl(d,R) we define an automorphism AmM of
Am(Rd) by

AmM(x1 ∧ · · · ∧ xm) = Mx1 ∧ · · · ∧Mxm for x1, . . . , xm ∈ R
d .

Definition 1. Given 1 ≤ m < d and S ⊂ Gl(d,R) we say that S is m-irreducible
if there does not exist a proper linear subspace W of Am(Rd) with AmM(W ) = W
for each M ∈ S. When m = 1 we say that S is irreducible.

Remark 2. Clearly S is irreducible if and only if there does not exist a proper linear
subspace W of Rd with M(W ) = W for each M ∈ S. It is also easy to show that S
is m-irreducible if and only if it is d−m-irreducible (see page 86 in [BL2]). Hence
when d = 2 or 3 the m-irreducibility condition reduces to the absence of a proper
subspace of Rd which is M -invariant for all M ∈ S.

The following proposition follows from results found in [BL2], and shall be proven
in Section 4. From now on we set

m = max{1 ≤ i ≤ d : γd−i+1 = · · · = γd} .

Proposition 3. Assume m < d and that G is m-irreducible; then there exists a
unique μF ∈ M(Gd,m) with μF =

∑
λ∈Λ pλ·A−1

λ μF . It also holds that dimH μF > 0.

The measure μF is called the Furstenberg measure on Gd,m corresponding to

{A−1
λ }λ∈Λ and p. We can now state our main result.
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Theorem 4. If m < d, if G is m-irreducible, and if

dim∗
H μF +D(μ) > (m+ 1)(d−m),

then πvμ is exact dimensional with dimπvμ = D(μ) for each v ∈ V.
Remark 5. As mentioned in the introduction, if m = d, then it follows from Theo-
rem 2.6 in [FH] that dimπvμ = D(μ) for all v ∈ V .

3. Proof of the main result

For the remainder of this paper we assume m < d, G is m-irreducible, and
dim∗

H μF +D(μ) > (m+ 1)(d−m).

3.1. Disintegration of measures. For the proof of Theorem 4 we shall need to
disintegrate the measures μ and {πvμ}v∈V . We now define these disintegrations
and state some of their properties; for further details see chapter 3 of [FH].

Let B be the Borel σ-algebra of Rd, let X be a metric space, let θ ∈ M(X), let
K be the support of θ, and let f : X → R

d be continuous. Then there exists a
family {θx}x∈X ⊂ M(X), which will be called the disintegration of θ with respect
to f−1B, such that:

(a) For θ-a.e. x ∈ X the measure θx is supported on K ∩ f−1(f(x)).
(b) For each g ∈ L1(θ) and θ-a.e. x ∈ X we haveˆ

g dθx = lim
ε↓0

1

fθ(B(fx, ε))
·
ˆ
f−1(B(fx,ε))

g dθ =
d(fθg)

d(fθ)
(fx),

where θg(E) =
´
E
g dθ for each Borel set E ⊂ X. Here d(fθg)

d(fθ) stands for the

Radon–Nikodym derivative of fθg with respect to fθ.
(c) For each g ∈ L1(θ) the map that takes x ∈ X to

´
g dθx is f−1B measurable

and ˆ
g dθx = Eθ[g | f−1B](x) for θ-a.e. x ∈ X .

Here Eθ[g | f−1B] is the conditional expectation of g given f−1B with respect to θ.
We shall use the following notation for the disintegrations of μ and {πvμ}v∈V . For

a subspace W ⊂ R
d set BW = P−1

W⊥(B), and for θ ∈ M(Rd) let {θW,x}x∈Rd be the

disintegration of θ with respect to BW . Given v ∈ R
d|Λ| set Fv,W = π−1

v ◦ P−1
W⊥(B)

and let {μv,W,ω}ω∈Ω be the disintegration of μ with respect to Fv,W .

3.2. Statement of auxiliary claims. We now state some auxiliary claims which
will be used in the proof of Theorem 4. The proofs are deferred to subsequent
sections in order to make the argument for Theorem 4 more transparent. First we
state Proposition 6 whose proof, which is given in Section 5 below, requires ergodic
theory and some results from the random matrix theory presented in [BL2].

Define F : V → [0,∞) by

F (v) = − 1

γd
·
ˆ
Gd,m

Hμ(P | Fv,W ) dμF (W ) for v ∈ V ,

where
P = {{ω ∈ Ω : ω0 = λ} ∈ F : λ ∈ Λ}

and Hμ(P | Fv,W ) is the conditional entropy of P given Fv,W with respect to μ.

Proposition 6. For each v ∈ V and for μ×μF -a.e. (ω,W ) ∈ Ω×Gd,m the measure
πvμv,W,ω is exact dimensional with dim(πvμv,W,ω) = F (v).



4766 ARIEL RAPAPORT

The rest of the auxiliary lemmas will be proven in Section 6.

Lemma 7. Let v ∈ R
d|Λ| and W ∈ Gd,m; then (πvμ)W,πv(ω) = πvμv,W,ω for μ-a.e.

ω ∈ Ω.

The following semi-continuity lemma makes it possible to utilize Proposition 6.

Lemma 8. The function F is upper semi-continuous.

Lemma 9. For v ∈ V we have πvμ ⊥ Lebd, where Lebd is the Lebesgue measure
of Rd.

The proof of the following lemma relies on results found in [M2], which are
obtained by the use of Fourier analytic techniques. This lemma makes it possible
to use the assumption dim∗

H μF +D(μ) > (m+ 1)(d−m).

Lemma 10. Let θ ∈ M(Rd), let 1 ≤ l < d be an integer, and set s = dimH θ.
(a) If s ≤ d− l, then for 0 ≤ t ≤ s

dimH{W ∈ Gd,l : essinfθ{dimH(θW,x) : x ∈ R
d} > s− t} ≤ (l − 1)(d− l) + t .

(b) If s > d− l, then for s− l(d− l) ≤ t ≤ d− l

dimH{W ∈ Gd,l : essinfθ{dimH(θW,x) : x ∈ R
d} > s− t} ≤ l(d− l) + t− s .

(c) If s > d− l, then

dimH{W ∈ Gd,l : essinfθ{dimH(θW,x) : x ∈ R
d} < s− d+ l} ≤ (l+ 1)(d− l)− s .

The proof for the following lemma is an adaptation of an argument given in the
proof of part (a) of Theorem 4.3 from [JPS].

Lemma 11. For each v ∈ R
d|Λ| and for πvμ-a.e. x ∈ R

d

lim sup
ε↓0

log πvμ(B(x, ε))

log ε
≤ D(μ) .

Let Λ∗ be the set of finite words over Λ. Given a set of transformations (or
matrices) {fλ}λ∈Λ, that can be composed with one another, we set fw = fλ1

◦· · ·◦fλk

for k ≥ 1 and λ1, · · · , λk = w ∈ Λ∗. Given a set of real numbers {aλ}λ∈Λ we set
aw = aλ1

, · · · , aλk
. We also set f∅ = Id and a∅ = 1, where ∅ ∈ Λ∗ is the empty

word.

Lemma 12. Let n ≥ 1, let G′ ⊂ Gl(d,R) be the closure of the group generated by
{Aw}w∈Λn , set p′ = (pw)w∈Λn , set μ′ = (p′)N, and let 0 > γ′

1 ≥ · · · ≥ γ′
d > −∞

be the Lyapunov exponents corresponding to μ′ and {Aw}w∈Λn . Then G′ is m-
irreducible, γ′

i = n · γi for 1 ≤ i ≤ d, and μ′
F = μF , where μ′

F is the Furstenberg
measure corresponding to {A−1

w }w∈Λn and p′ (see Proposition 3 above).

3.3. Proof of Theorem 4. By using Proposition 6 and Lemmas 7 to 12 we shall
now prove Theorem 4.

Lemma 13. If ‖Aλ‖ < 1
2 for each λ ∈ Λ, then D(μ) ∈ (d − m, d] and F (v) ≥

D(μ)− d+m for each v ∈ V.

Proof of Lemma 13. Since V is non-empty (by assumption) and since it is an open
subset of Rd|Λ|, it follows that Lebd|Λ|(V) > 0. From part (b) of Theorem 1.9 in
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[JPS] it follows that if D(μ) > d, then for Lebd|Λ|-a.e. v ∈ V we have πvμ � Lebd.
This together with Lemma 9 shows that D(μ) ≤ d. Since

dim∗
H μF ≤ dimH Gd,m = m(d−m)

and
dim∗

H μF +D(μ) > m(d−m) + d−m,

it follows that D(μ) ∈ (d −m, d]. From this and from part (a) of Theorem 1.9 in
[JPS] we get that dimH πvμ = D(μ) for Lebd|Λ|-a.e. v ∈ R

d|Λ|. Since V is open it
follows that the set

Q = {v ∈ V : dimH πvμ = D(μ)}
is dense in V .

Fix v ∈ Q; then from Proposition 6, from Lemma 7, and from (2.3), it follows
that for μF -a.e. W ∈ Gd,m we have for πvμ-a.e. x ∈ R

d that dimH(πvμ)W,x = F (v).
Set

E = {W ∈ Gd,m : essinfπvμ{dimH(πvμ)W,x : x ∈ R
d} < D(μ)− d+m};

then from dimH πvμ = D(μ) > d−m and from part (c) of Lemma 10 we get

dimH(E) ≤ (m+ 1)(d−m)−D(μ) .

Since dim∗
H μF > (m+ 1)(d−m)−D(μ) it follows that μF (Gd,m \ E) > 0, and so

there exist W ∈ Gd,m and x ∈ R
d with

F (v) = dimH(πvμ)W,x ≥ D(μ)− d+m .

Since this holds for each v ∈ Q and since Q is dense in V , it follows from Lemma 8
that F (v) ≥ D(μ)− d+m for each v ∈ V . �
Proof of Theorem 4. Let v ∈ V be given. Assume first that ‖Aλ‖ < 1

2 for each
λ ∈ Λ; then from Lemma 13 we get F (v) ≥ D(μ)−d+m ∈ (0,m]. From this, from
Proposition 6, and from Lemma 7 it follows that

(3.1) dimH(πvμ)W,x ≥ D(μ)− d+m for πvμ× μF -a.e. (x,W ) .

Set s = dimH(πvμ). If s < D(μ)− d+m, then clearly

essinfπvμ{dimH(πvμ)W,x : x ∈ R
d} < D(μ)− d+m

for eachW ∈ Gd,m, and so we must have s ≥ D(μ)−d+m. Assume by contradiction
that D(μ)− d+m ≤ s < D(μ), let

0 < ε < min

⎧⎨⎩
D(μ)− d+m,

D(μ)− s,
dim∗

H μF +D(μ)− (m+ 1)(d−m)

⎫⎬⎭ ,

set

t =

{
min{2(d−m)−D(μ) + ε, s} if s ≤ d−m,

d−m+ s−D(μ) + ε if s > d−m,

and set

E = {W ∈ Gd,m : essinfπvμ{dimH(πvμ)W,x : x ∈ R
d} > s− t} .

If s ≤ d−m, then
D(μ)− d+m ≤ s ≤ d−m,

so 0 ≤ t ≤ s, and so from part (a) of Lemma 10

dimH(E) ≤ (m− 1)(d−m) + t ≤ (m+ 1)(d−m)−D(μ) + ε < dim∗
H μF .
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If s > d−m, then

t− (s−m(d−m)) > d−m−D(μ) +m(d−m) ≥ m(d−m)−m ≥ 0

and

d−m− t = D(μ)− s− ε > 0,

so s−m(d−m) ≤ t ≤ d−m, and so from part (b) of Lemma 10

dimH(E) ≤ m(d−m) + t− s = (m+ 1)(d−m)−D(μ) + ε < dim∗
H μF .

In any case we have dimH(E) < dim∗
H μF , so μF (Gd,m \ E) > 0, and so

πvμ× μF {(x,W ) : dim(πvμ)W,x ≤ s− t+
ε

2
} > 0 .

But this gives a contradiction to (3.1) since if s ≤ d−m, then

s− t+
ε

2
= max{s− (2(d−m)−D(μ) + ε), 0}+ ε

2

≤ max{D(μ)− d+m− ε, 0}+ ε

2
= D(μ)− d+m− ε

2
,

and if s > d−m, then

s− t+
ε

2
= D(μ)− d+m− ε

2
.

It follows that we must have dimH(πvμ) = s ≥ D(μ), and so from Lemma 11 and
(2.3) we obtain that πvμ is exact dimensional with dimπvμ = D(μ). This proves
the theorem if ‖Aλ‖ < 1

2 for each λ ∈ Λ.

Now we prove the general case. Let n ≥ 1 be such that ‖Aw‖ < 1
2 for each

w ∈ Λn. Since the SSC holds for {ϕv,λ}λ∈Λ it clearly holds for {ϕv,w}w∈Λn . For
ω ∈ (Λn)N set π′

v(ω) = lim
n

ϕv,ω0
◦ · · · ◦ ϕv,ωn

(0), set p′ = (pw)w∈Λn , set μ′ = (p′)N,

let 0 > γ′
1 ≥ · · · ≥ γ′

d > −∞ be the Lyapunov exponents corresponding to μ′

and {Aw}w∈Λn , and let G′ ⊂ Gl(d,R) be the closure of the group generated by
{Aw}w∈Λn . From Lemma 12 we get thatG′ ism-irreducible, γ′

i = n·γi for 1 ≤ i ≤ d,
and μ′

F = μF , where μ′
F is the Furstenberg measure corresponding to {A−1

w }w∈Λn

and p′. Let hμ′ be the entropy of μ′ (i.e., hμ′ =
∑

w∈Λn −pw · log pw), and let D(μ′)
be the Lyapunov dimension of μ′ with respect to the family {Aw}w∈Λn (see the
definition in Section 2 above). Since hμ′ = n · hμ it follows from the definition of
the Lyapunov dimension that D(μ′) = D(μ), hence

dim∗
H μ′

F +D(μ′) = dim∗
H μF +D(μ) > (m+ 1)(d−m) .

Now from the first part of the proof we get that π′
vμ

′ is exact dimensional with
dimπ′

vμ
′ = D(μ′) = D(μ). This completes the proof since πvμ = π′

vμ
′. �

4. Auxiliary results from the theory of random matrices

In this section we translate results found in [BL2] to suit our needs. These results
will be used in the proofs of Propositions 3 and 6.

Definition 14. Given q ≥ 2, 1 ≤ l < q, and S ⊂ Gl(q,R), we say that S is l-
strongly irreducible if there does not exist a finite family of proper linear subspaces
W1, . . . ,Wk of Al(Rq) with

AlM(W1 ∪ · · · ∪Wk) = W1 ∪ · · · ∪Wk for each M ∈ S .

When l = 1 we say that S is strongly irreducible.



SELF-AFFINE MEASURES 4769

Remark 15. Given q ≥ 2, 1 ≤ l < q, and linear subspaces W1, . . . ,Wk of Al(Rq),
the set

{M ∈ Gl(q,R) : AlM(W1 ∪ · · · ∪Wk) = W1 ∪ · · · ∪Wk}

is a closed subgroup of Gl(q,R).

Definition 16. Given q ≥ 2, 1 ≤ l < q, and S ⊂ Gl(q,R), we say that S is
l-contracting if there exists a sequence {Mn}∞n=1 ⊂ S such that

{
∥∥AlMn

∥∥−1 · AlMn : n ≥ 1}

converges to a rank-one matrix. When l = 1 we say that S is contracting.

Throughout this section T ⊂ Gl(d,R) will denote the closure of the semigroup
generated by {A−1

λ }λ∈Λ. Let q ≥ 1 be the dimension of Am(Rd); then given

M ∈ Gl(d,R) we may view AmM as a member of Gl(q,R). Let T̃ ⊂ Gl(q,R)
be the closure of the semigroup generated by {AmA−1

λ }λ∈Λ. Recall that we assume
m < d and G is m-irreducible.

Lemma 17. T̃ is contracting and strongly irreducible, and T is m-contracting and
m-strongly irreducible.

Proof of Lemma 17. Since G is m-irreducible it follows from Remark 15 that

{A−1
λ }λ∈Λ is m-irreducible, and so T̃ is irreducible. Let ∞ > γ′

1 ≥ · · · ≥ γ′
d > 0 be

the Lyapunov exponents corresponding to μ and {A−1
λ }λ∈Λ; then γ′

i = −γd−i+1 for
1 ≤ i ≤ d. Let η1 ≥ η2 be the the two upper Lyapunov exponents corresponding to
μ and {AmA−1

λ }λ∈Λ. From an argument given in the proof of Theorem IV.1.2 in
[BL2] we get

η1 =

m∑
i=1

γ′
i and η2 =

m−1∑
i=1

γ′
i + γ′

m+1,

hence from the definition of m

η1 =
m∑
i=1

γ′
i = −

m∑
i=1

γd−i+1 > −
m−1∑
i=1

γd−i+1 − γd−m =
m−1∑
i=1

γ′
i + γ′

m+1 = η2 .

From this, from the irreducibility of T̃, and from Theorem III.6.1 in [BL2], we get

that T̃ is contracting and strongly irreducible. From this and Remark 15 it follows
that {AmA−1

λ }λ∈Λ is strongly irreducible, and so T is m-strongly irreducible. Since

T̃ is contracting and since {AmA−1
w : w ∈ Λ∗} is dense in T̃, it follows that

{AmA−1
w : w ∈ Λ∗} is contracting. This shows that T is m-contracting. �

Let 〈·, ·〉 be the usual scalar product on R
d. As in Section III.5 of [BL2] we define

a scalar product on Am(Rd) by the formula

〈x1 ∧ · · · ∧ xm, y1 ∧ · · · ∧ ym〉 = det
[
{〈xi, yj〉}mi,j=1

]
.

Let P (Am(Rd)) be the projective space of Am(Rd). Given ξ̄, η̄ ∈ P (Am(Rd)) set

dP (Am(Rd))(ξ̄, η̄) =
(
1− 〈ξ, η〉2

)1/2

,
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where ξ and η are unit vectors in Am(Rd) with directions ξ̄ and η̄. As shown in
Section III.4 of [BL2], dP (Am(Rd)) is a metric on P (Am(Rd)).

Given independent sets {x1, . . . , xm}, {y1, . . . , ym} ⊂ R
d, there exists a constant

a ∈ R \ {0} with

y1 ∧ · · · ∧ ym = a · x1 ∧ · · · ∧ xm

if and only if

span{y1, . . . , ym} = span{x1, . . . , xm} .
Define a map ψ : Gd,m → P (Am(Rd)) by

ψ(W ) = R · x1 ∧ · · · ∧ xm if span{x1, . . . , xm} = W ∈ Gd,m .

It is not hard to check that there exists a constant C ∈ (1,∞) with

(4.1) C−1 · dGd,m
(W,U) ≤

(
dP (Am(Rd))(ψ(W ), ψ(U))

)2 ≤ C · dGd,m
(W,U)

for all W,U ∈ Gd,m, where dGd,m
is the metric defined above in Section 2. Hence

ψ is an embedding of Gd,m into P (Am(Rd)). Now we can prove Proposition 3.

Proof of Proposition 3. From Lemma 17 and Theorem IV.1.2 in [BL2] it follows
that there exists a unique θ ∈ M(P (Am(Rd))) with θ =

∑
λ∈Λ pλ · AmA−1

λ θ.
Since ψ(Gd,m) is compact and AmM(ψ(Gd,m)) = ψ(Gd,m) for each M ∈ Gl(d,R),
it follows from Lemma I.3.5 in [BL2] that there exists θ′ ∈ M(ψ(Gd,m)) with

θ′ =
∑

λ∈Λ pλ · AmA−1
λ θ′. By the uniqueness of θ it follows that θ = θ′, and so θ is

supported on ψ(Gd,m).
Set μF = ψ−1θ; then

μF = ψ−1θ =
∑
λ∈Λ

pλ · ψ−1 ◦ AmA−1
λ θ =

∑
λ∈Λ

pλ ·A−1
λ ◦ ψ−1θ =

∑
λ∈Λ

pλ ·A−1
λ μF .

Since ψ is an embedding the uniqueness of μF follows from the uniqueness of θ.
From Corollary VI.4.2 in [BL2] and the remarks following it it follows that dimH θ >
0. From this and from (4.1) we obtain dimH μF > 0. This completes the proof of
the lemma. �

Given a1, . . . , ad ∈ R let diag(a1, . . . , ad) denote the d× d matrix D with

Di,j =

{
ai if i = j

0 if i �= j
for 1 ≤ i, j ≤ d .

Given M ∈ Gl(d,R) there exist orthogonal matrices U, V ∈ Gl(d,R) with M =
UDV , where D = diag(α1(M), . . . , αd(M)). We call the product UDV a singular
value decomposition of M . Note that V ∗ei is an eigenvector of M∗M with eigen-
value αi(M)2 for each 1 ≤ i ≤ d. Here {ei}di=1 is the standard basis of Rd and M∗

is the transpose of M .

Lemma 18. For each ω ∈ Ω and n ≥ 1 set Dn,ω = diag(α1(Aω|n), . . . , αd(Aω|n)),
let Un,ωDn,ωVn,ω be a singular value decomposition of Aω|n , and set Wn(ω) =
span{Un,ωed−m+1, . . . , Un,ωed}. Then for μ-a.e. ω ∈ Ω there exists W (ω) ∈ Gd,m

such that {Wn(ω)}∞n=1 converges to W (ω) in Gd,m.

Proof of Lemma 18. From Lemma 17 we get that T̃ is a contracting and strongly
irreducible subset of Gl(q,R). Hence we may apply proposition III.3.2 in [BL2]



SELF-AFFINE MEASURES 4771

on the i.i.d. sequence {AmA−1
ωn

}∞n=0. For each ω ∈ Ω and n ≥ 1 set Mn,ω =

A−1
ωn−1

, · · · , A−1
ω0

, set ξn,ω = Un,ωed−m+1 ∧ · · · ∧ Un,ωed, and set

W̃n(ω) = {η ∈ Am(Rd) : AmM∗
n.ωMn.ωη = α1(AmM∗

n.ωMn.ω) · η} .
From part (b) of proposition III.3.2 it follows that for μ-a.e. ω ∈ Ω

α1(AmM∗
n.ωMn.ω) > α2(AmM∗

n.ωMn.ω)

for all n large enough, and so W̃n(ω) is 1-dimensional for all n large enough.
From part (a) of proposition III.3.2 it follows that for μ-a.e. ω ∈ Ω the sequence

{W̃n(ω)}∞n=1 converges to some element in P (Am(Rd)). For each ω ∈ Ω and n ≥ 1
we have

M∗
n.ωMn.ωUn,ω = (A−1

ω|n)
∗A−1

ω|nUn,ω

= (V −1
n,ωD

−1
n,ωU

−1
n,ω)

∗(V −1
n,ωD

−1
n,ωU

−1
n,ω)Un,ω = Un,ωD

−2
n,ω,

and also from Lemma 5.3 in [BL2]

α1(AmM∗
n.ωMn.ω) =

m∏
i=1

αi(M
∗
n.ωMn.ω) =

m∏
i=1

αi(Mn.ω)
2

=

m∏
i=1

αi(A
−1
ω|n)

2 =

m∏
i=1

αd−i+1(Aω|n)
−2 .

It follows that

AmM∗
n.ωMn.ω(ξn,ω) = Un,ωD

−2
n,ωed−m+1 ∧ · · · ∧ Un,ωD

−2
n,ωed

=

m∏
i=1

αd−i+1(Aω|n)
−2 · ξn,ω = α1(AmM∗

n.ωMn.ω) · ξn,ω,

hence ξn,ω ∈ W̃n(ω), and so for μ-a.e. ω ∈ Ω we have R · ξn,ω = W̃n(ω) for all n
large enough. This shows that for μ-a.e. ω ∈ Ω the sequence {R·ξn,ω}∞n=1 converges
in P (Am(Rd)). Now since {R · ξn,ω}∞n=1 ⊂ ψ(Gd,m), since ψ(Gd,m) is compact, and
since ψ is an embedding, it follows that

{Wn(ω)}∞n=1 = {ψ−1(R · ξn,ω)}∞n=1

converges to some W (ω) in Gd,m. This completes the proof of the lemma. �

Lemma 19. Let U ∈ Gd,m be given and set

SU = {W ∈ Gd,m : U⊥ +W �= R
d};

then μF (SU ) = 0.

Proof of Lemma 19. Set θ = ψμF ; then θ ∈ M(P (Am(Rd))) and

θ =
∑
λ∈Λ

pλ · AmA−1
λ θ .

From the strong irreducibility of T̃ and from proposition III.2.3 in [BL2], it follows
that

θ{R · z : z ∈ Q \ {0}} = 0
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for every proper subspace Q of Am(Rd). Let {x1, . . . , xd−m} be a basis for U⊥, set
ξ = x1 ∧ · · · ∧ xd−m, and set

Q = {z ∈ Am(Rd) : ξ ∧ z = 0};
then Q is a proper subspace of Am(Rd). Now since

μF (SU )

= μF {W ∈ Gd,m : ξ ∧ w1 ∧ · · · ∧ wm = 0 where {w1, . . . , wm} is a basis for W}
= μF {W ∈ Gd,m : ψ(W ) = R · z where z ∈ Am(Rd) and ξ ∧ z = 0}
= θ{R · z : z ∈ Q \ {0}} = 0

the lemma follows. �

5. Proof of Proposition 6

Fix some v ∈ V and set π = πv, K = Kv, ϕλ = ϕv,λ for λ ∈ Λ, and FW = Fv,W

and {μW,ω}ω∈Ω = {μv,W,ω}ω∈Ω for W ∈ Gd,m. For k ≥ 1 and λ0, · · · , λk−1 = w ∈
Λk let

[w] = {ω ∈ Ω : ωi = λi for 0 ≤ i < k},
and let [∅] = Ω. Given ω ∈ Ω and k ≥ 1 set ω|k = ω0, · · · , ωk−1 ∈ Λk and ω|0 = ∅.

In the proof of Proposition 6 we shall make use of the following dynamical system.
Let σ : Ω → Ω be the left shift, i.e., (σω)k = ωk+1 for ω ∈ Ω and k ≥ 0. Set X =
Ω×Gd,m, for each (ω,W ) ∈ X, set T (ω,W ) = (σ(ω), A−1

ω0
·W ), and set ν = μ×μF .

Since μF is the unique member in M(Gd,m) with μF =
∑

λ∈Λ pλ ·A−1
λ μF , it follows

from Proposition 1.14 in [BQ1] that (X,T, ν) is measure preserving and ergodic.

Lemma 20. Let E ⊂ Ω be a Borel set, let M ∈ Gl(d,R), let W ∈ Gd,m, and set

B̃ = PW⊥ ◦M(B(0, 1)); then for μ-a.e. ω ∈ Ω

μW,ω(E) = lim
δ↓0

μ(π−1 ◦ P−1
W⊥(PW⊥ ◦ π(ω) + δ · B̃) ∩ E)

μ(π−1 ◦ P−1
W⊥(PW⊥ ◦ π(ω) + δ · B̃))

.

Proof of Lemma 20. Let μ|E be the restriction of μ to E, i.e., μ|E(F ) = μ(F ∩ E)

for F ∈ F . For x ∈ W⊥ set ‖x‖
˜B = inf{t > 0 : t−1 · x ∈ B̃}, i.e., ‖·‖

˜B is the

Minkowski functional corresponding to the convex and balanced set B̃. Clearly
‖·‖

˜B is a norm on W⊥, and

δ · B̃ = {x ∈ W⊥ : ‖x‖
˜B ≤ δ} for δ > 0 .

Now from Theorem 4.2 in [BL1] and the discussion preceding it, and from property
(b) in Section 3.1 above, we get that for μ-a.e. ω ∈ Ω

lim
δ↓0

μ(π−1 ◦ P−1
W⊥(PW⊥ ◦ π(ω) + δ · B̃) ∩ E)

μ(π−1 ◦ P−1
W⊥(PW⊥ ◦ π(ω) + δ · B̃))

= lim
δ↓0

PW⊥πμ|E(PW⊥ ◦ π(ω) + δ · B̃)

PW⊥πμ(PW⊥ ◦ π(ω) + δ · B̃)

=
dPW⊥πμ|E
dPW⊥πμ

(PW⊥ ◦ π(ω)) = μW,ω(E),

which proves the lemma. �



SELF-AFFINE MEASURES 4773

Lemma 21. For each W ∈ Gd,m and k ≥ 0

μW,ω[ω|k+1]

μW,ω[ω|k]
= μ(Aω|k )

−1·W,σkω[ωk] for μ-a.e. ω ∈ Ω .

Proof of Lemma 21. For each λ ∈ Λ and ω ∈ Ω set fλ(ω) = λ · ω, i.e., fλ(ω) is
the concatenation of λ with ω. Let W ∈ Gd,m, k ≥ 0, and w ∈ Λk be given, and
set U = (Aw)

−1 · W . From property (b) stated in Section 3.1 above and since
μ(fw(E)) = pw · μ(E) for each E ∈ F , it follows that for μ-a.e. ω ∈ Ω

(5.1) μU,σkω[ωk] = lim
δ↓0

μ(π−1 ◦ P−1
U⊥(B(PU⊥ ◦ π ◦ σk(ω), δ)) ∩ [(σkω)|1])

μ(π−1 ◦ P−1
U⊥(B(PU⊥ ◦ π ◦ σk(ω), δ)))

= lim
δ↓0

μ(fw(π
−1 ◦ P−1

U⊥(B(PU⊥ ◦ π ◦ σk(ω), δ)) ∩ [(σkω)|1]))
μ(fw ◦ π−1 ◦ P−1

U⊥(B(PU⊥ ◦ π ◦ σk(ω), δ)))
.

Fix ω ∈ [w] and δ > 0, and set B̃ = PW⊥ ◦ Aw(B(0, 1)). Since fw ◦ π−1(x) =
π−1 ◦ ϕw(x) for x ∈ K,

(5.2) fw ◦ π−1 ◦ P−1
U⊥(B(PU⊥ ◦ π ◦ σk(ω), δ))

= π−1 ◦ ϕw(K ∩ P−1
U⊥(B(PU⊥ ◦ π ◦ σk(ω), δ)))

= π−1 ◦ ϕw(K) ∩ π−1 ◦ ϕw(π ◦ σk(ω) + U +B(0, δ))

= [ω|k] ∩ π−1 ◦ ϕw(π ◦ σk(ω) + U +B(0, δ)) .

From ϕw ◦ π = π ◦ fw and ω|k = w we get

ϕw(π ◦ σk(ω) + U +B(0, δ))

= π ◦ fw ◦ σk(ω) +Aw · U +Aw(B(0, δ))

= π(ω) +W + δ ·Aw(B(0, 1))

= W + PW⊥ ◦ π(ω) + δ · PW⊥(Aw(B(0, 1)))

= P−1
W⊥(PW⊥ ◦ π(ω) + δ · B̃) .

From this and from (5.2) we obtain

fw ◦ π−1 ◦ P−1
U⊥(B(PU⊥ ◦ π ◦ σk(ω), δ)) = [ω|k] ∩ π−1 ◦ P−1

W⊥(PW⊥ ◦ π(ω) + δ · B̃),

for each ω ∈ [w] and δ > 0. It now follows from (5.1) and Lemma 20 that for μ-a.e.
ω ∈ [w]

μU,σkω[ωk] = lim
δ↓0

μ([ω|k] ∩ π−1 ◦ P−1
W⊥(PW⊥ ◦ π(ω) + δ · B̃) ∩ fw([(σ

kω)|1]))
μ([ω|k] ∩ π−1 ◦ P−1

W⊥(PW⊥ ◦ π(ω) + δ · B̃))

=
μW,ω([ω|k] ∩ fw[(σ

kω)|1])
μW,ω[ω|k]

=
μW,ω[ω|k+1]

μW,ω[ω|k]
.

This proves the lemma since U = (Aω|k)
−1 · W for ω ∈ [w], and since w is an

arbitrary element of Λk. �

Proof of Proposition 6. Recall that P = {[λ] : λ ∈ Λ}. For w ∈ Λ∗ set Kw =
ϕw(K). Define I : X → R by I(ω,W ) = − log μW,ω[ω0] for (ω,W ) ∈ X. It follows
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from property (c) stated in Section 3.1, from the ergodic theorem, and from Lemma
21, that for ν-a.e. (ω,W ) ∈ X

(5.3)

ˆ
Hμ(P | FU ) dμF (U)

=

ˆ ˆ
− logEμ[1[η0] | FU ](η) dμ(η) dμF (U)

=

ˆ ˆ
− log μU,η[η0] dμ(η) dμF (U) =

ˆ
I(η, U) dν(η, U)

= lim
n

1

n

n−1∑
k=0

I ◦ T k(ω,W ) = lim
n

− 1

n

n−1∑
k=0

log μ(Aω|k )
−1·W,σkω[ωk]

= lim
n

− 1

n

n−1∑
k=0

log
μW,ω[ω|k+1]

μW,ω[ω|k]
= lim

n

− logμW,ω[ω|n]
n

= lim
n

− log πμW,ω(Kω|n)

n
.

Let 0 < ε < −γ1; then there exists a Borel set Ω0 ∈ Ω with μ(Ω \ Ω0) = 0, such
that for ω ∈ Ω0 there exists Nω ≥ 1 for which

αi(Aω|n) ∈ (en(γi−ε), en(γi+ε)) for n ≥ Nω and 1 ≤ i ≤ d .

Since v ∈ V there exists ρ > 0 with

ρ < min{d(ϕλ1
(K), ϕλ2

(K)) : λ1, λ2 ∈ Λ with λ1 �= λ2} .
Let ω ∈ Ω0, n ≥ Nω, and λ0, · · · , λn−1 = w ∈ Λn \ {ω|n}. Let 0 ≤ k < n be
such that λk �= ωk with λj = ωj for 0 ≤ j < k. Since π(σkω) ∈ Kωk

we have
B(π(σkω), ρ) ∩Kλk

= ∅, and so

∅ = ϕω|k(B(π(σkω), ρ) ∩Kλk
) ⊃ ϕω|k(B(π(σkω), ρ)) ∩Kw .

Now since

ϕω|k(B(π(σkω), ρ)) ⊃ B(ϕω|k ◦ π(σkω), αd(Aω|k) · ρ)
⊃ B(π(ω), αd(Aω|n) · ρ) ⊃ B(π(ω), en(γd−ε) · ρ),

we get B(π(ω), en(γd−ε) · ρ) ∩Kw = ∅. We have thus shown that

B(π(ω), en(γd−ε) · ρ) ∩Kw = ∅ for ω ∈ Ω0, n ≥ Nω, and w ∈ Λn \ {ω|n} .
It follows from this, from the fact that πμW,ω is supported on K for ν-a.e. (ω,W ) ∈
X, and from (5.3), that for ν-a.e. (ω,W ) ∈ X

(5.4) lim inf
δ↓0

log(πμW,ω(B(π(ω), δ)))

log δ

= lim inf
n

log(πμW,ω(B(π(ω), ρ · en(γd−ε)) ∩K))

log(ρ · en(γd−ε))

≥ lim
n

log(πμW,ω(Kω|n))

n · (γd − ε)
=

´
Hμ(P | FU ) dμF (U)

ε− γd
.

For each ω∈Ω and n≥1 set Dn,ω=diag(α1(Aω|n), . . . , αd(Aω|n)), let Un,ωDn,ωVn,ω

be a singular value decomposition of Aω|n , and set

Ln,ω = span{Un,ωed−m+1, . . . , Un,ωed}.
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From Lemma 18 it follows that for μ-a.e. ω ∈ Ω there exists Lω ∈ Gd,m such that
{Ln,ω}∞n=1 converges to Lω in Gd,m. Set

X0 = {(ω,W ) ∈ X : ω ∈ Ω0, the limit Lω = lim
n

Ln,ω exists, and L⊥
ω +W = R

d},

and for U ∈ Gd,m set

SU = {W ∈ Gd,m : U⊥ +W �= R
d} .

From Fubini’s theorem and Lemma 19 we get

ν(X \X0) ≤
ˆ
{Lω exists}

μF (SLω
) dμ(ω) = 0 .

Let b ∈ (0,∞) be such that K ⊂ B(0, b). Fix (ω,W ) ∈ X0; then L⊥
ω ∩W = {0}, so

PLω
(x) �= 0 for each x ∈ W \ {0}, and so

aω,W := min{|PLω
(x)| : x ∈ W and |x| = 1} > 0 .

Since {Ln,ω}∞n=1 converges to Lω it follows that there exists Nω,W ≥ Nω with

min{|PLn,ω
(x)| : x ∈ W and |x| = 1} >

aω,W

2
for every n ≥ Nω,W .

Let n ≥ Nω,W , and set

R = π(ω) + L⊥
n,ω + {x ∈ Ln,ω : |x| ≤ 2b · en(γd+ε)} .

For d−m+ 1 ≤ i ≤ d we have γi = γd, hence αi(Aω|n) ≤ en(γd+ε), and so

Aω|n(B(0, 2b)) = Un,ωDn,ωVn,ω(B(0, 2b)) = Un,ωDn,ω(B(0, 2b))

⊂ Un,ω(span{e1, . . . , ed−m}+ {x ∈ span{ed−m+1, . . . , ed} : |x| ≤ 2b · en(γd+ε)})
= L⊥

n,ω + {x ∈ Ln,ω : |x| ≤ 2b · en(γd+ε)} .

It follows that for y ∈ K

ϕω|n(y)− π(ω) = ϕω|n(y)− ϕω|n ◦ π ◦ σn(ω)

= Aω|n(y − π ◦ σn(ω)) ∈ Aω|n(B(0, 2b))

⊂ L⊥
n,ω + {x ∈ Ln,ω : |x| ≤ 2b · en(γd+ε)},

which shows that Kω|n ⊂ R. Given x ∈ W with |x| > 4b
aω,W

· en(γd+ε) we have

|PLn,ω
(x)| = |x| · |PLn,ω

(
x

|x| )| > |x| · aω,W

2
> 2b · en(γd+ε) .

It follows that x+ π(ω) /∈ R, and so

(π(ω) +W ) ∩Kω|n ⊂ (π(ω) +W ) ∩R ⊂ B(π(ω),
4b

aω,W
· en(γd+ε)) .

We have thus shown that
(5.5)

Kω|n∩(π(ω)+W ) ⊂ B(π(ω),
4b

aω,W
·en(γd+ε)) for every (ω,W ) ∈ X0 and n ≥ Nω,W .
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From property (a) stated in Section 3.1 it follows that πμW,ω is supported on
π(ω)+W for ν-a.e. (ω,W ) ∈ X. From this, from (5.5), and from (5.3), we get that
for ν-a.e. (ω,W ) ∈ X

(5.6) lim sup
δ↓0

log(πμW,ω(B(π(ω), δ)))

log δ

= lim sup
n

log(πμW,ω(B(π(ω), 4b
aω,W

· en(γd+ε))))

log( 4b
aω,W

· en(γd+ε))

≤ lim
n

log(πμW,ω(Kω|n ∩ (π(ω) +W )))

n · (γd + ε)

= lim
n

log(πμW,ω(Kω|n))

n · (γd + ε)
=

´
Hμ(P | FU ) dμF (U)

−γd − ε
.

Now since ε > 0 can be chosen arbitrarily small the proposition follows from (5.4)
and (5.6). �

6. Proofs of auxiliary lemmas

Proof of Lemma 7. Given a continuous g : Rd → R with compact support it holds
for μ-a.e. ω thatˆ

gd(πvμ)W,πv(ω) = lim
δ↓0

1

PW⊥πvμ(B(PW⊥πv(ω), δ))
·
ˆ
P−1

W⊥ (B(P
W⊥πv(ω),δ))

gdπvμ

= lim
δ↓0

1

PW⊥πvμ(B(PW⊥πv(ω), δ))
·
ˆ
π−1
v ◦P−1

W⊥ (B(P
W⊥πv(ω),δ))

g ◦ πv dμ

=

ˆ
g ◦ πv dμv,W,ω =

ˆ
g dπvμv,W,ω ,

which proves the lemma. �
Proof of Lemma 8. Fix W ∈ Gd,m and v0 ∈ V , and for each v ∈ V set FW (v) =
Hμ(P | Fv,W ); then it suffices to show that FW : V → R is upper semi-continuous
at v0. Let {u1, . . . , ud−m} be an orthonormal basis for W⊥, and for 1 ≤ i ≤ d−m
set Ui = span{ui} and

Qi = {t ∈ R : PUi
πv0μ{t · ui} = 0} .

Clearly R \ Qi is at most countable. For each 1 ≤ i ≤ d − m and n ≥ 1 let
{ain,k}∞k=−∞ = J i

n ⊂ Qi be such that 2−n−1 ≤ ain,k+1 − ain,k ≤ 2−n for k ∈ Z, and

such that J i
n ⊂ J i

n+1. For n ≥ 1 and (k1, . . . , kd−m) = k̄ ∈ Z
d−m set

Sn,k̄=P−1
W⊥{

d−m∑
i=1

ti ·ui : (t
1, . . . , td−m)∈ [a1n,k1

, a1n,k1+1)×· · ·×[ad−m
n,kd−m

, ad−m
n,kd−m+1)}.

For n ≥ 1 and v ∈ V let Gv,n be the σ-algebra on Ω generated by

{π−1
v (Sn,k̄) : k̄ ∈ Z

d−m},
and set FW,n(v) = Hμ(P | Gv,n). For v ∈ V we have Gv,1 ⊂ Gv,2 ⊂ . . . and Fv,W =∨∞

n=1 Gv,n, hence from Theorem 6 on page 38 of [P] we get that FW,1 ≥ FW,2 ≥ . . .
and FW = lim

n
FW,n. It follows that it is enough to prove that FW,n : V → R is

continuous at v0 for n ≥ 1. Let n ≥ 1, (k1, . . . , kd−m) = k̄ ∈ Z
d−m and λ ∈ Λ be
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given, and for v ∈ V set f(v) = μ([λ]∩π−1
v (Sn,k̄)). From the way FW,n is defined it

follows that it suffices to show that f is continuous at v0. From ain,ki
, ain,ki+1 ∈ Qi

for each 1 ≤ i ≤ d−m it follows that μ(π−1
v0 (∂Sn,k̄)) = 0, and for ω ∈ Ω\π−1

v0 (∂Sn,k̄)
we have

lim
v→v0

1[λ]∩π−1
v (Sn,k̄)

(ω) = 1[λ]∩π−1
v0

(Sn,k̄)
(ω),

hence from the dominated convergence theorem lim
v→v0

f(v) = f(v0). This completes

the proof of the lemma. �

Proof of Lemma 9. Since πvμ is supported on Kv it suffices to show that Lebd(Kv)
= 0. Let ρ > 0 be such that

ρ <
1

2
·min{d(ϕv,λ1

(Kv), ϕv,λ2
(Kv)) : λ1, λ2 ∈ Λ with λ1 �= λ2}

and set U = {x ∈ R
d : d(x,Kv) < ρ}; then ϕv,λ1

(U) ⊂ U and ϕv,λ1
(U)∩ϕv,λ2

(U) =
∅ for λ1, λ2 ∈ Λ with λ1 �= λ2. Also it is easy to see that the set U \

⋃
λ∈Λ ϕv,λ(U)

has a non-empty interior, hence

Lebd(U) > Lebd(
⋃
λ∈Λ

ϕv,λ(U)) =
∑
λ∈Λ

Lebd(ϕv,λ(U)) = Lebd(U) ·
∑
λ∈Λ

| det(Aλ)|,

and so
∑

λ∈Λ | det(Aλ)| < 1. In addition, for each n ≥ 1 we have

Lebd(Kv) ≤ Lebd(
⋃

w∈Λn

ϕv,w(U)) =
∑

w∈Λn

Lebd(ϕv,w(U))

= Lebd(U) ·
∑

w∈Λn

| det(Aw)| = Lebd(U) ·
∑

λ1,...,λn∈Λ

n∏
i=1

| det(Aλi
)|

= Lebd(U) · (
∑
λ∈Λ

| det(Aλ)|)n,

which shows that Lebd(Kv) = 0. �

For the proof of Lemma 10 we shall first need the following lemma regarding
the dimension of exceptional sets of projections. Given θ ∈ M(Rd) and t > 0 let
It(θ) be the t-energy of θ (see Section 2.5 of [M2]), and let dimS θ be the Sobolev
dimension of θ (see Section 5.2 of [M2]). Given a Borel set E ⊂ R

d we denote the
restriction of θ to E by θ|E .

Lemma 22. Let θ ∈ M(Rd) and 1 ≤ l < d be given and set s = dimH θ; then:
(a) If s ≤ l, then for 0 < t ≤ s

dimH{W ∈ Gd,l : dimH(PW θ) < t} ≤ l(d− l − 1) + t .

(b) If s > l, then for s− l(d− l) ≤ t ≤ l

dimH{W ∈ Gd,l : dimH(PW θ) < t} ≤ l(d− l) + t− s .

(c) If s > l, then

dimH(Gd,l \ {W ∈ Gd,l : PW θ � Hl}) ≤ l(d− l + 1)− s,

where Hl is the l-dimensional Hausdorff measure.
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Proof of Lemma 22, part (a). Let 0 < t0 < t1 < t, and for each n ≥ 1 set

En = {x ∈ R
d : θ(B(x, δ)) ≤ n · δt1 for each δ > 0} .

From dimH θ > t1 and (2.3) we get θ(Rd \
⋃

n En) = 0. From an argument as the
one given on page 19 of [M2] it follows that It0(θ|En

) < ∞ for each n ≥ 1. From
this, from Theorem 5.10 in [M2], and since dimS ξ ≤ dimH ξ for each ξ ∈ M(Rd)
with dimH ξ < d, we get

dimH{W ∈ Gd,l : dimH(PW θ) < t0}
= sup

n≥1
dimH{W ∈ Gd,l : dimH(PW (θ|En

)) < t0} ≤ l(d− l − 1) + t .

As this holds for every 0 < t0 < t we obtain (a). �

Proof of part (b). Let l < t0 < t1 < s, and for each n ≥ 1 let En be as in the proof
of (a). Since It0(θ|En

) < ∞ for each n ≥ 1, it follows from Theorem 5.10 in [M2]
that

dimH{W ∈ Gd,l : dimH(PW θ) < t}
= sup

n≥1
dimH{W ∈ Gd,l : dimH(PW (θ|En

)) < t} ≤ l(d− l) + t− t0 .

Now by letting t0 tend to s we obtain (b). �

Proof of part (c). Let l < t2 < t0 < t1 < s, and for each n ≥ 1 let En be as in the
proof of (a). Since It0(θ|En

) < ∞ for each n ≥ 1, it follows from Theorems 5.4.b
and 5.10 in [M2] that

dimH(Gd,l \ {W ∈ Gd,l : PW θ � Hl})
= sup

n≥1
dimH(Gd,l \ {W ∈ Gd,l : PW (θ|En

) � Hl})

≤ sup
n≥1

dimH{W ∈ Gd,l : dimS(PW (θ|En
)) < t2} ≤ l(d− l) + t2 − t0 .

Now by letting t2 tend to l and t0 tend to s we obtain (c). �

For the proof of Lemma 10 we shall also need the following proposition, which
follows directly from Theorem 5.8 in [F2]. The proof is actually given in [F2] for
the case d = 2, but extends to higher dimensions without difficulty.

Proposition 23. Let 1 ≤ l < d, E ⊂ R
d, W ∈ Gd,l, ∅ �= A ⊂ W⊥, and t > 0 be

given. If dimH(E ∩ (x+W )) ≥ t for each x ∈ A, then dimH E ≥ t+ dimH A.

Proof of Lemma 10, part (a). Assume by contradiction that the claim is false for
some 0 < t ≤ s; then

(6.1) dimH{W ∈ Gd,l : essinfθ{dimH(θW,x) : x ∈ R
d} > s−t} > (l−1)(d− l)+t .

Since the map that sends W ∈ Gd,l to W⊥ ∈ Gd,d−l is an isometry with respect
to the metric on the Grassmannian defined in Section 2, we get from part (a) of
Lemma 22 that

dimH{W ∈ Gd,l : dimH(PW⊥θ) < t}
= dimH{W ∈ Gd,d−l : dimH(PW θ) < t} ≤ (l − 1)(d− l) + t .
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From this and (6.1) it follows that there exists 0 < ε < t and W ∈ Gd,l such that
dimH(PW⊥θ) ≥ t and

essinfθ{dimH(θW,x) : x ∈ R
d} > s− t+ ε .

Let E ⊂ R
d be a Borel set with θ(E) > 0, for x ∈ W⊥ set Ex = E ∩ (x+W ), and

set

A = {x ∈ W⊥ : θW,x(Ex) > 0 and dimH(θW,x) ≥ s− t+ ε} .
From properties stated in Section 3.1 it follows that PW⊥θ(A) > 0, hence

dimH A ≥ dimH(PW⊥θ) ≥ t .

For x ∈ A we have

dimH Ex ≥ dimH(θW,x) ≥ s− t+ ε,

and so from Proposition 23 we obtain dimH E ≥ s+ε. As this holds for every Borel
set E ⊂ R

d with θ(E) > 0, it follows that s = dimH θ ≥ s + ε. This is clearly a
contradiction, and so we obtain part (a) of the lemma. The proof of part (b) is the
same, except we need to use part (b) of Lemma 22 instead of part (a). �

Proof of part (c). Set

S = {W ∈ Gd,l : PW⊥θ � Hd−l};
then from part (c) of Lemma 22 we get

(6.2) dimH(Gd,l \ S) ≤ (d− l)(l+ 1)− s .

Let d− l < t0 < t1 < s and for n ≥ 1 set

En = {x ∈ R
d : θ(B(x, δ)) ≤ n · δt1 for each δ > 0};

then as in the proof of part (a) of Lemma 22 we have θ(Rd \
⋃

n En) = 0 and
It0(θ|En

) < ∞ for each n ≥ 1. Since for each W ∈ Gd,l we have θW,x(R
d \

⋃
n En) =

0 for θ-a.e. x ∈ R
d, it follows that

(6.3) dimH{W ∈ S : essinfθ{dimH(θW,x) : x ∈ R
d} < t0 − d+ l}

= sup
n≥1

dimH{W ∈ S : essinfθ{dimH(θW,x|En
) : x ∈ R

d} < t0 − d+ l} .

As described in Section 2 of [JM], given W ∈ Gd,l and a Radon measure ξ on R
d

with compact support, there exist Radon measures {ξW,x}x∈W⊥ on R
d such that

for Hd−l-a.e. x ∈ W⊥ˆ
g dξW,x = lim

δ↓0

1

(2δ)d−l
·
ˆ
P−1

W⊥ (B(x,δ))

g dξ for g ∈ C(Rd) .

For x ∈ R
d we set ξW,x := ξW,P

W⊥x.
Fix some n ≥ 1 with θ(En) > 0, and let W ∈ S. From property (b) in Section

3.1 above and from Theorem 2.12 in [M3], it follows that for θ-a.e. x ∈ R
d we have

for each g ∈ C(Rd)

ˆ
g dθW,x = lim

δ↓0

PW⊥θ(B(PW⊥x, δ))

(2δ)d−l
·

´
P−1

W⊥ (B(P
W⊥x,δ))

g dθ

PW⊥θ(B(PW⊥x, δ))

=
dPW⊥θ

dHd−l
(PW⊥x) ·

ˆ
g dθW,x,
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which shows that

θW,x =
dPW⊥θ

dHd−l
(PW⊥x) · θW,x .

From this, from 0 <
dP

W⊥θ

dHd−l (PW⊥x) < ∞ for θ-a.e. x ∈ R
d, and from Lemma 3.2

in [JM], we get that for θ-a.e. x ∈ R
d

dimH(θW,x|En
) = dimH(θW,x|En

) = dimH((θ|En
)W,x) .

Now from Lemma 2.22 in [JM], from It0(θ|En
) < ∞, and from Theorem 6.5 in [M2],

we obtain

dimH{W ∈ S : essinfθ{dimH(θW,x|En
) : x ∈ R

d} < t0 − d+ l}
= dimH{W ∈ S : essinfθ{dimH((θ|En

)W,x) : x ∈ R
d} < t0 − d+ l}

≤ dimH{W ∈ S :

ˆ
W⊥

It0−d+l((θ|En
)W,x) dHd−l(x) = ∞} ≤ (d− l)(l+1)− t0 .

This together with (6.2) and (6.3) proves part (c) of the lemma, since we can let t0
tend to s. �

Proof of Lemma 11. Fix v ∈ R
d|Λ| and set π = πv, K = Kv, and ϕλ = ϕv,λ for

λ ∈ Λ. Let k := k(μ) ≥ 0 be as defined in (2.2). If D(μ) ≥ d, then there is nothing
to prove (see Proposition 10.3 in [F1]), hence we can assume D(μ) < d, and so

k < d. For 1 ≤ i ≤ k and w ∈ Λ∗ set di,w =
⌈

αi(Aw)
αk+1(Aw)

⌉
, and set

dw =

{∏k
i=1 di,w if k > 0,

1 if k = 0.

There exists a constant a > 0 such that for each w ∈ Λ∗ there exists a rectangle
Rw ⊂ R

d with ϕw(K) ⊂ Rw and with side lengths s1, . . . , sd > 0, where

si =

{
a · αk+1(Aw) · di,w if 1 ≤ i ≤ k,

a · αk+1(Aw) if k + 1 ≤ i ≤ d.

For w ∈ Λ∗ let Rw = {Rw,1, . . . , Rw,dw
} be a partition of Rw into disjoint squares

of side length a · αk+1(Aw). For ω ∈ Ω and n ≥ 1 let Rω,n be the unique member
of Rω|n which contains π(ω). For each n ≥ 1 set

En = {ω ∈ Ω : πμ(Rω,n) ≤
μ[ω|n]
dω|n · n2

};

then

μ(En) ≤
∑

w∈Λn

dw∑
j=1

πμ(Rw,j) · 1{πμ(Rw,j)≤ μ[w]

dw·n2 } ≤ 1

n2
,

and so
∑∞

n=1 μ(En) < ∞. From this and the Borel-Cantelli Lemma it follows that

(6.4) μ{ω : #{n ≥ 1 : ω ∈ En} = ∞} = 0 .

There exists a constant a′ > a such that

Rω,n ⊂ B(π(ω), a′ · αk+1(Aω|n)) for ω ∈ Ω and n ≥ 1,
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hence for ω ∈ Ω

lim sup
δ↓0

log πμ(B(π(ω), δ))

log δ

= lim sup
n→∞

log πμ(B(π(ω), a′ · αk+1(Aω|n)))

log(a′ · αk+1(Aω|n))

≤ lim sup
n→∞

log πμ(Rω,n)

log(αk+1(Aω|n))
.

Now from (6.4) it follows that for μ-a.e. ω ∈ Ω

lim sup
δ↓0

log πμ(B(π(ω), δ))

log δ
≤ lim sup

n→∞

log( μ[ω|n]
dω|n ·n2 )

log(αk+1(Aω|n))

= lim sup
n→∞

log μ[ω|n]−
∑k

i=1 log
αi(Aω|n )

αk+1(Aω|n )

log(αk+1(Aω|n))
.

This together with (2.1) and the Shannon-McMillan-Breiman theorem gives

lim sup
δ↓0

log πμ(B(π(ω), δ))

log δ
≤ k − hμ + γ1 + · · ·+ γk

γk+1
= D(μ)

for μ-a.e. ω ∈ Ω, which proves the lemma. �

Proof of Lemma 12. Assume by contradiction that G′ is not m-irreducible; then
there exists a proper linear subspace W of Am(Rd) such that AmM(W ) = W for
all M ∈ G′. Let W1, . . . ,Wk be an enumeration of the set

{AmAw(W ) : w = λ1, · · · , λl for some 0 ≤ l < n and λ1, . . . , λl ∈ Λ}

and define

H = {M ∈ Gl(d,R) : ∀ 1 ≤ i ≤ k ∃ 1 ≤ j ≤ k with AmM(Wi) = Wj};

then H is a closed subgroup of Gl(d,R). Let T denote the closure of the semigroup
generated by {A−1

λ }λ∈Λ. Since AmM(W ) = W for each M ∈ G′ it follows that H
contains the semigroup generated by {Aλ}λ∈Λ, and so T ⊂ H. This implies that
T is not m-strongly irreducible which contradicts Lemma 17, and so it must hold
that G′ is m-irreducible.

From Proposition III.5.6 in [BL2] it follows that for each 1 ≤ i ≤ d

γ′
i = lim

N

1

N

ˆ
(Λn)N

logαi(Aω|N ) dμ
′(ω)

= lim
N

1

N

ˆ
ΛN

logαi(Aω|n·N ) dμ(ω) = n · γi,

hence

max{1 ≤ i ≤ d : γ′
d−i+1 = · · · = γ′

d} = m < d .

From this, from the m-irreducibility of G′, and from Proposition 3, it follows that
there exists a unique μ′

F ∈ M(Gd,m) with μ′
F =

∑
w∈Λn pw · A−1

w μ′
F . Clearly we

also have μF =
∑

w∈Λn pw ·A−1
w μF , hence μ′

F = μF . �
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