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B-FREE SETS AND DYNAMICS

AURELIA DYMEK, STANIS�LAW KASJAN, JOANNA KU�LAGA-PRZYMUS,

AND MARIUSZ LEMAŃCZYK

Abstract. Given B ⊂ N, let η = ηB ∈ {0, 1}Z be the characteristic function
of the set FB := Z\

⋃
b∈B bZ of B-free numbers. The B-free shift (Xη , S), its

hereditary closure (X̃η , S), and (still larger) the B-admissible shift (XB, S)
are examined. Originated by Sarnak in 2010 for B being the set of square-free
numbers, the dynamics of B-free shifts was discussed by several authors for
B being Erdös; i.e., when B is infinite, its elements are pairwise coprime, and∑

b∈B 1/b < ∞: in the Erdös case, we have Xη = X̃η = XB.
It is proved that Xη has a unique minimal subset, which turns out to be

a Toeplitz dynamical system. Furthermore, a B-free shift is proximal if and
only if B contains an infinite coprime subset. It is also shown that for B
with light tails, i.e., d(

∑
b>K bZ) → 0 as K → ∞, proximality is the same as

heredity.
For each B, it is shown that η is a quasi-generic point for some natural

S-invariant measure νη on Xη . A special role is played by subshifts given by
B which are taut, i.e., when δ(FB) < δ(FB\{b}) for each b ∈ B (δ stands for

the logarithmic density). The taut class contains the light tail case; hence all
Erdös sets and a characterization of taut sets B in terms of the support of νη
are given. Moreover, for any B there exists a taut B′ with νηB = νηB′ . For

taut sets B,B′, it holds that XB = XB′ if and only if B = B′.
For each B, it is proved that there exists a taut B′ such that (X̃ηB′ , S)

is a subsystem of (X̃ηB , S) and X̃ηB′ is a quasi-attractor. In particular, all

invariant measures for (X̃ηB , S) are supported by X̃ηB′ . Moreover, the system

(X̃η , S) is shown to be intrinsically ergodic for an arbitrary B. A description

of all probability invariant measures for (X̃η , S) is given. The topological

entropies of (X̃η , S) and (XB, S) are shown to be the same and equal to

d(FB) (d stands for the upper density).
Finally, some applications in number theory on gaps between consecutive

B-free numbers are given, and some of these results are applied to the set of
abundant numbers.
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1. Introduction

1.1. Motivation.

Sets of multiples. For a subset B ⊂ N := {1, 2, . . . }, we consider its set of multiples
MB :=

⋃
b∈B bZ and the associated set of B-free numbers FB := Z \ MB. The

interest in sets of multiples was initiated in the 1930s by the study of the set of
abundant numbers, i.e., of n ∈ Z for which |n| is less than or equal to the sum of its
(positive) proper divisors. In [7], Bessel-Hagen asked whether the set of abundant
numbers has asymptotic density, and the positive answer was given independently
by Davenport [12], Chowla [10] and Erdös [19]. Nowadays, abundant numbers are
still of certain interest in number theory (see, e.g., [31, 32, 35]).

The works of Davenport, Chowla, and Erdös led to various problems on general
sets of multiples. In particular, the natural question whether all sets of multiples
have asymptotic density was answered negatively by Besicovitch [6]. On the other
hand, Davenport and Erdös [13, 14] showed that MB (equivalently, FB) always
has logarithmic density equal to the lower density (respectively, upper density). In
many cases, MB has even density: it is the case for B Erdös [22], that is, when
B is infinite, its elements are pairwise coprime and

∑
b∈B

1/b < ∞; see, e.g., [27].
Following [28], all sets B ⊂ N for which MB has density are called Besicovitch.

An important example of an Erdös set, hence Besicovitch, is the set S = {p2 :
p ∈ P} of squares of primes. Then, FS is called the set of square-free integers
and its density equals 6/π2; see, e.g., [29]. The characteristic function of FS is the
square μ2 of the Möbius function μ extended to Z in the natural way: μ(−n) =
μ(n),μ(0) = 0. (Recall that μ(n) = (−1)k when n is a product of k ≥ 1 distinct
primes, μ(1) = 1, and μ(n) = 0 if n ∈ N is not square-free.)

With each set FB of B-free numbers, we associate three subshifts Xη ⊂ X̃η ⊂
XB (by a subshift, we mean a dynamical system (X,S), where X ⊂ {0, 1}Z is
closed, S-invariant and S stands for the left shift):

• B-free subshift (Xη, S), where Xη is the closure of the orbit OS(η) :=
{Smη : m ∈ Z} of η = ηB = 1FB ∈ {0, 1}Z;

• the subshift (X̃η, S), where X̃η is defined to be the smallest hereditary
subshift containing Xη (a subshift (X,S) is hereditary whenever x ∈ X and
y ≤ x coordinatewise, then y ∈ X);

• B-admissible subshift (XB, S), where XB is the set of B-admissible se-
quences, i.e., of x ∈ {0, 1}Z, such that, for each b ∈ B, the support
supp x := {n ∈ Z : x(n) = 1} of x taken modulo b is a proper subset
of Z/bZ.
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Similarly to the notion of admissible sequences, we can define admissible blocks
and admissible subsets of integers. Notice that the set XB is closed as the B-
admissibility of x is equivalent to the B-admissibility of all finite subsets of suppx.
Clearly, η is B-admissible. Moreover, (XB, S) is hereditary. As above, if no confu-
sion arises, we will write η instead of ηB. We adopt this convention also for B′ by
writing η′ instead of ηB′ .

Relations with number theory. Consider two more examples. Let

(1) B := {pq : p, q ∈ P} and B′ := P.

Then FB = P∪(−P)∪{−1, 1} (cf. [42], p. 173) and FB′ = {−1, 1}. Let η := 1FB ,

η′ := 1FB′ . Clearly, Xη′ � X̃η′ � XP , and it is easy to see that XP is uncountable.
Recall the following famous number-theoretical conjectures:

Prime k-Tuples Conjecture. For each k ≥ 1 and each P-admissible subset
{a1, . . . , ak} ⊂ N ∪ {0}, there exist infinitely many n ∈ N such that {a1 + n, . . . ,
ak + n} ⊂ P.

Note that the set {0, 2} is P-admissible and the Prime k-Tuples Conjecture in
this case is the Twin Prime Conjecture. Note also that if, for some p ∈ P, we have
{ai mod p : 1 ≤ i ≤ k} = Z/pZ and {a1 + n, . . . , ak + n} ⊂ P, then n = p− ai for
some 1 ≤ i ≤ k, whence the set of n ∈ N such that {a1 + n, . . . , ak + n} ⊂ P is
finite.

Remark 1.1. It is not hard to see that the Prime k-Tuples Conjecture is equivalent

to XP ⊂ X̃η. Indeed, for the necessity, we need to show that if a block B ∈ {0, 1}s
is P-admissible, then there is a block B′ ∈ {0, 1}s appearing in η such that B ≤ B′.
The existence of such a B′ follows directly from the Prime k-Tuples Conjecture.
Conversely, let F = {a1, . . . , ak} be P-admissible. Take i0 ≥ 1 large enough,
so that 2|F | < pi0+1, where pi stands for the i-th prime number. Then the sets
F ∪ (F + kp1 . . . pi0), k ≥ 1, are also P-admissible. These sets, for each k ≥ 1,
correspond to some blocks Ck appearing in XP . By assumption, this implies the
existence of C ′

k in η with Ck ≤ C ′
k, k ≥ 1. It follows that we have n,m ∈ Z such

that F + n, F + m ⊂ P with |n − m| arbitrarily large, and the Prime k-Tuples
Conjecture follows.

Dickson’s conjecture [15]. Let ai ∈ Z, bi ∈ N for 1 ≤ i ≤ k. If for each p ∈ P
there exists n ∈ N such that p �

∏
1≤i≤k(bin + ai), then there are infinitely many

n ∈ N such that bin+ ai ∈ P for 1 ≤ i ≤ k.

Note that if bi = 1 for 1 ≤ i ≤ k, the condition that for each p ∈ P there
exists n ∈ N such that p �

∏
1≤i≤k(bin+ ai) is equivalent to the P-admissibility of

{a1, . . . , ak}.

Remark 1.2. The following consequence of Dickson’s conjecture (more specifically,
of its special case when bi = 1 for 1 ≤ i ≤ k) was pointed out to us by Professor
A. Schinzel; see C13 in [50]:

If {a1, . . . , ak} ∈ [−n, n] ∩ Z is P-admissible, then, for infinitely
many x ∈ N, we have [x− n, x+ n] ∩ P = {x+ ai : i = 1, . . . , k}.

This can be rephrased as XP ⊂ Xη.
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Dynamical approach. The above suggests that the sets of multiples and the as-
sociated subshifts are difficult to study in full generality. Sarnak, in his semi-
nal paper [49], suggested studying dynamical properties of the square-free subshift
(Xμ2 , S). In [49], he also announced the following results:

(i) μ2 is generic for an ergodic S-invariant measure νμ2 on {0, 1}Z such that the
measure-theoretical dynamical system (Xμ2 , νμ2 , S) has zero Kolmogorov
entropy,

(ii) the topological entropy of (Xμ2 , S) is equal to 6/π2,
(iii) Xμ2 = XS ,
(iv) (Xμ2 , S) is proximal,
(v) (Xμ2 , S) has a non-trivial topological joining with a rotation on a compact

Abelian group

(we will explain the notions appearing in (i)-(v) later). Today, proofs of these
facts are available; (i)-(v) have also been studied for some natural generalizations
of (Xμ2 , S), see [1, 4, 8, 9, 30, 46, 48] (cf. also [5, 33, 41] for the harmonic analysis
viewpoint). In particular, in [1], Abdalaoui, Lemańczyk, and de la Rue cover the
counterparts of (i)-(iii) from Sarnak’s list for each B which is Erdös. In this case,

by (iii), we have Xη = X̃η = XB. During the conference Ergodic Theory and
Dynamical Systems in Toruń, Poland, 2014, M. Boshernitzan asked if one can
relax the assumption on B being Erdös and tackle similar problems to (i)-(v) for
a general B. Note that XB′ ⊂ XB whenever B ⊂ B′ ⊂ N. In other words, any
(XB, S) has subsystems of the form (XB′ , S) for certain sets B′ ⊂ N whose elements
are no longer pairwise coprime. (Another way to obtain a natural subsystem of
(XB, S) is to choose b′ | b for each b ∈ B and then note that XB′ ⊂ XB, where
B′ = {b′ : b ∈ B}.) In particular, the square-free subshift contains XB whenever
S ⊂ B ⊂ {pq : p, q ∈ P}.

Recall also that in [36] a description of all invariant measures for (XB, S) was
given for B Erdös. Moreover, under the same assumptions, (XB, S) was proved to
be intrinsically ergodic; that is, the system has only one invariant measure ν such
that the Kolmogorov entropy of (XB, ν, S) is equal to the topological entropy of
(XB, S) (the intrinsic ergodicity of (Xμ2 , S) was proved in [46]).

The present paper seems to be the first attempt to consider Sarnak’s list (i)-(v)
and the problem of invariant measures for a general B ⊂ N. Sometimes, we put
certain restrictions on B. In particular, we deal with B that:

• are thin, i.e.,
∑

b∈B
1/b < ∞,

• have light tails, i.e., d(
∑

b>K bZ) → 0 when K → ∞.

Each thin B has light tails, and if B is pairwise coprime, these two notions coincide.
Moreover, light tail sets are Besicovitch. A more subtle notion, which turns out to
be crucial in our studies, is that of tautness [28]:

• B is taut when δ(MB\{b}) < δ(MB) for each b ∈ B, where δ stands for
the logarithmic density.

Any primitive set B (i.e., such that, for b, b′ ∈ B, we have b � b′) with light tails is
taut.

The main difference between the general situation and the Erdös case is that
Xη no longer has a characterization in terms of admissible sequences; i.e., it may
happen that the B-admissible subshift (XB, S) is strictly larger than the B-free
subshift (Xη, S). What is more, while XB is always hereditary, Xη need not be
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so, and as we have already seen by inspecting the case B = P, we may even have

Xη � X̃η � XB. On the other hand, there are many similarities or analogies
between the Erdös case and the general case.

1.2. Main results. Our main results can be divided into three groups: structural
results, results on invariant measures and entropy, and number theoretical results.

1.2.1. Structural results. This group of results contains both topological and
measure-theoretical results. Namely, we have:

Theorem A. For any B ⊂ N, the subshift (Xη, S) has a unique minimal subset.
Moreover, this subset is the orbit closure of a Toeplitz sequence.

As a consequence of Theorem A, we obtain the following results:

Corollary 1.3. For any B ⊂ N, each point x ∈ Xη is proximal to a point in the
orbit closure of a Toeplitz sequence.

Corollary 1.4. Let B ⊂ N. Then (Xη, S) is minimal if and only if (Xη, S) is
a Toeplitz system.

We also give a simple characterization of those B ⊂ N for which the unique
minimal subset of (Xη, S) is a singleton:

Theorem B. Let B ⊂ N. The following conditions are equivalent:

(i) {. . . 0.00 . . . } is the unique minimal subset of (Xη, S),
(ii) (Xη, S) is proximal,
(iii) B contains an infinite pairwise coprime subset.

Given a topological dynamical system (X,T ), by P(X,T ) we denote the set of all
probability Borel T -invariant measures on X. It turns out that measure-theoretic

properties of the subshift (X̃η, S) strongly depend on the notion of tautness. We
have:

Theorem C. For any B ⊂ N, there exists a unique taut set B′ ⊂ N such that

FB′ ⊂ FB, X̃η′ ⊂ X̃η, and P(X̃η, S) = P(X̃η′ , S).

Corollary 1.5. For any B ⊂ N, there exists a unique taut set B′ ⊂ N such that

FB′ ⊂ FB and any point x ∈ X̃η is attracted to X̃η′ along a sequence of integers
of density 1; i.e., there exists Ex ⊂ N of zero density such that

lim
n→∞,n�∈Ex

d(Snx, X̃η′) = 0.

A key ingredient in the proof of Theorem C is the description of all invariant

measures on X̃η. Indeed, it follows from Theorem I below that in order to prove
Theorem C, it suffices to construct a taut set B′ such that νη′ = νη.

If B is Erdös, then, as shown in [1], we have Xη = X̃η = XB. In general, this
need not be the case.

Theorem D. Let B ⊂ N have light tails and contain an infinite, pairwise coprime

subset. Then Xη = X̃η.

In other words, for primitive B with light tails, (Xη, S) is proximal if and only
if it is hereditary. Since every B that is primitive and has light tails is taut, a
natural question arises whether the assertion of Theorem D remains true for all
taut B ⊂ N. We conjecture that the answer is positive.



5430 A. DYMEK, S. KASJAN, J. KU�LAGA-PRZYMUS, AND M. LEMAŃCZYK

1.2.2. Results on invariant measures and entropy.

Proposition E. For any B ⊂ N, η = 1FB is a quasi-generic point for a natural
ergodic S-invariant measure νη on {0, 1}Z. In particular, νη(Xη) = 1. Moreover,
B is Besicovitch if and only if η is generic for νη.

Remark 1.6. Recall that η is quasi-generic for νη if, for some (Nk), we have the
weak convergence 1

Nk

∑
n≤Nk

δSnη → νη. Recall also that in the Erdös case, this

convergence holds along (Nk) with Nk = k (see [1]), (i.e., η is generic in this case);
hence B is Besicovitch.

We call νη the Mirsky measure (in the square-free case the frequencies of blocks
in η were first studied by Mirsky [43, 44]).

Theorem F. Suppose that B ⊂ N is taut. Then (Xη, νη, S) is isomorphic to
(G,P, T ), where G is the closure of {(n mod bk)k≥1 ∈

∏
k≥1 Z/bkZ : n ∈ Z} in∏

k≥1 Z/bkZ and Tg = g + (1, 1, . . . ). In particular, (Xη, νη, S) has zero entropy.

Theorem G. If B ⊂ N has light tails, then Xη is the topological support of νη.

Theorem H. Let Y := {x ∈ {0, 1}Z : |supp y mod b| = b− 1 for each b ∈ B}. For
B ⊂ N infinite (and primitive), the following conditions are equivalent:

(a) B is taut,

(b) P(Y ∩ X̃η, S) 
= ∅,
(c) νη(Y ∩Xη) = 1.

Theorem I. For any B ⊂ N and any ν ∈ P(X̃η, S), there exists

ρ ∈ P(Xη × {0, 1}Z, S × S)

whose projection onto the first coordinate equals νη and such that M∗(ρ) = ν, where

M : Xη × {0, 1}Z → X̃η stands for the coordinatewise multiplication.

Theorem J. For any B ⊂ N, the subshift (X̃η, S) is intrinsically ergodic.

An important tool here, which can also be of independent interest, is the following
result:

Proposition K. For any B ⊂ N, we have htop(X̃η, S) = htop(XB, S) = δ(FB).

The last entropy result we would like to highlight here is the following immediate
consequence of Theorem C and the variational principle:

Corollary 1.7. For any B ⊂ N, there exists a taut set B′ ⊂ N such that FB′ ⊂ FB

and htop(X̃η, S) = htop(X̃η′ , S).

1.2.3. Number theoretical results.
General consequences : Our first result in this section shows, in particular, that

a taut set B is determined by the family of B-admissible subsets.

Theorem L. Suppose that B,B′ ⊂ N are taut. Then the following conditions are
equivalent:

(a) B = B′,
(b) MB = MB′ ,
(c) XB = XB′ ,

(d) X̃η = X̃η′ ,
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(e) Xη = Xη′ ,
(f) νη = νη′ ,

(g) P(X̃η, S) = P(X̃η′ , S).

Remark 1.8. Theorem L extends an analogous result from [36], where it was shown
that XB = XB′ is equivalent to B = B′ for B,B′ ⊂ N Erdös.

As an immediate consequence of Proposition E and Theorem G, we obtain:

Corollary 1.9. If B ⊂ N has light tails and F,M ⊂ N are finite sets such that
F ⊂ FB, M ⊂ MB, then the density of the set of n ∈ N such that F + n ⊂ FB,
M + n ⊂ MB is positive.

Consecutive gaps between B-free numbers : Fix B ⊂ N and denote by (nj)j≥1

the sequence of consecutive natural B-free numbers. In [3], the following was shown
when B ⊂ N is Erdös:

(2)

Let δ, σ > 0 be such that 20σ > 9 + 3606δ. Then, for N large
enough there exists j = j(N) ≥ 1 such that nj ∈ [N,N + Nσ]
and min(nj+1 − nj , nj − nj−1) > Φ(N), where Φ(N) is the largest

positive integer such that
∏3Φ(N)

j=1 bj ≤ Nδ.

In particular,

(3) lim sup
j→∞

min(nj+2 − nj+1, nj+1 − nj) = ∞.

Proposition M. Suppose that B ⊂ N has light tails and contains an infinite
coprime subset. Denote by (nj) the sequence of consecutive B-free numbers. Then

lim sup
j→∞

min
0≤k≤K

(nj+k+1 − nj+k) = ∞ for any K ≥ 1.

Proof. It follows from Theorem D that Xη = X̃η. Moreover, by Theorem G, Xη is
the topological support of νη. Since, by Proposition E η is quasi-generic for νη, the
result follows. �

Even though, contrary to (2), the result included in Proposition M is not quan-
titative, it seems new and it strengthens (3).

Consequences for abundant numbers: Denote by A ⊂ N the set of abundant
numbers, i.e., the set of n ∈ N for which

∑
d|n d ≥ 2n. In Section 11, we will show

that A is the set of multiples of a primitive set BA ⊂ N which is thin and contains
an infinite coprime set. Denote η = ηBA

.

Corollary 1.10. The subshift (Xη, S) is hereditary and proximal. Moreover,
(Xη, S) is intrinsically ergodic, and we have htop(Xη, S) = 1− d(A).

Proof. It follows from Theorem D that Xη = X̃η. In particular, by Theorem B,
(Xη, S) is proximal. The intrinsic ergodicity of (Xη, S) follows from its heredity
and Theorem J. Finally, the intrinsic ergodicity of (Xη, S) and Proposition K yield
htop(Xη, S) = 1− d(A). �

Moreover, in Section 11, an analog of Corollary 1.9 for A will be obtained.
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1.3. ‘Map’ of the paper.

Result Proof Main tools

Theorem A Section 3.1 Corollary 2.17, Lemma 2.18
Corollary 1.3 Section 1.2.1 Theorem A, Proposition 2.10
Corollary 1.4 Section 1.2.1 Theorem A, Corollary 1.3
Theorem B Section 3.2.2 Chinese Remainder Theorem

Theorem C Section 9.2
Proposition 2.28 and Proposition 2.30,

Theorem 4.5, Theorem I, and Theorem L
Corollary 1.5 Section 9.2 Theorem C, Lemma 9.3

Theorem D Remark 5.4 Proposition 5.10
Proposition E Section 4.1 Theorem 2.23
Theorem F Section 8.3 Lemma 8.7, Theorem 8.14
Theorem G Section 5 Proposition 5.10, Proposition 5.11
Theorem H Section 7 Theorem C, Proposition E
Theorem I Section 8.2 Theorem 8.2, Theorem 8.4

Theorem J Section 10
Theorem 10.1, Theorem C,
and the variational principle

Proposition K Section 6.1 Lemma 6.1
Corollary 1.7 Section 1.2.2 Theorem C and the variational principle

Theorem L Section 9.1
Theorem 4.29, Proposition 4.31

Theorem I, Proposition K
Corollary 1.9 Section 1.2.3 Proposition E, Theorem G
Proposition M Section 1.2.3 Theorem D, Proposition E, Theorem G
Corollary 11.3 Section 11 Lemma 11.1 and Corollary 1.9
Corollary 11.4 Section 11 Corollary 11.3
Corollary 11.8 Section 11 Proposition M, Lemma 11.1, Lemma 11.6

Corollary 1.10 Section 1.2.3
Lemma 11.1, Lemma 11.6, Theorem B,
Theorem D, Theorem J, Proposition K

2. Preliminaries

2.1. Topological dynamics: Basic notions. A topological dynamical system is
a pair (X,T ), where X is a compact space endowed with a metric d and T is a
homeomorphism of X. A point x ∈ X is called recurrent if, for any open set U � x,
there exists n 
= 0 such that Tnx ∈ U . Denote by OT (x) the orbit of x ∈ X under
T , i.e., OT (x) = {Tnx : n ∈ Z}. We say that (X,T ) is transitive if it has a dense
orbit, and each point x ∈ X whose orbit is dense in X is called transitive.

Remark 2.1. Recall that (X,T ) is transitive if and only if, for any non-empty open
sets U, V ⊂ X, there exists n ∈ Z such that T−nU ∩ V 
= ∅.

A dynamical system (X,T ) is called topologically weakly mixing if the product
system (X×X,T ×T ) is transitive. A minimal set M ⊂ X is a non-empty, closed,
T -invariant set that is minimal with respect to these properties. Equivalently,
M ⊂ X is minimal if for any x ∈ M , we have OT (x) = M . If M = X, then T is

called minimal. A point x ∈ X is called minimal if (OT (x), T ) is minimal.
Let (X,T ), (Z,R) be topological dynamical systems. Then (Z,R) is a factor of

(X,T ) if there is a surjective π : X → Z which is continuous and π ◦ T = R ◦ π.
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A subset C ⊂ X is called wandering whenever the sets TnC, n ∈ Z, are pairwise
disjoint. By P(X,T ) we denote the set of all Borel probability T -invariant measures
onX and by Pe(X,T ) the subset of P(X,T ) of ergodic measures (cf. Definition 2.7).
We say that (X,T ) is uniquely ergodic if P(X,T ) is a singleton. A point x ∈ X
is called generic for μ ∈ P(X,T ) if the ergodic theorem holds for T at x for any
continuous function f ∈ C(X): 1

N

∑
n≤N f(Tnx) →

∫
f dμ.

Remark 2.2. In any uniquely ergodic systems all points are generic for the unique
invariant measure and the above convergence is uniform.

A topological dynamical system (X,T ) is called equicontinuous (see, e.g., [25])
if the family of maps {Tn : n ∈ Z} is equicontinuous. Every topological dynamical
system has, up to isomorphism, the largest equicontinuous factor which is called
the maximal equicontinuous factor.

Example 2.3. Consider (G, T ), where G is a compact Abelian group and Tg =
g + g0 for some g0 ∈ G. If (G, T ) is minimal, then it is uniquely ergodic and Haar
measure P is the unique member of P(G, T ). In particular, all points g ∈ G are
generic for P. All compact Abelian group rotations (G, T ) are equicontinuous.

Example 2.4. Let A be a finite set and let S : AZ → AZ be the left shift, i.e.,
S((xn)n∈Z) = (yn)n∈Z, where yn = xn+1 for each n ∈ Z. Let X ⊂ AZ be closed
and S-invariant. Then we say that (X,S) is a subshift.

Definition 2.5. We say that x ∈ {0, 1}Z is a Toeplitz sequence whenever for any
n ∈ Z there exists dn ∈ N such that x(n+ k · dn) = x(n) for any k ∈ Z. A subshift

(Z, S), Z ⊂ {0, 1}Z is said to be Toeplitz if Z = OS(y) for some Toeplitz sequence
y ∈ {0, 1}Z.
Remark 2.6. Usually, one requires from a Toeplitz sequence that it not be periodic.
For convenience, periodic sequences are included in Definition 2.5. We refer the
reader, e.g., to [16] for more information on Toeplitz sequences.

2.2. Measure-theoretic dynamics: Basic notions. A measure-theoretic dy-
namical system is a 4-tuple (X,B, μ, T ), where (X,B, μ) is a standard Borel prob-
ability space and T is an automorphism of (X,B, μ). The set of all automorphisms
of (X,B, μ) will be denoted by Aut(X,B, μ).
Definition 2.7. We say that T ∈ Aut(X,B, μ) is ergodic if, for A ∈ B, A = T−1A
(μ-a.e.) implies μ(A) ∈ {0, 1}.

For T ∈Aut(X,B, μ), we define the associatedKoopman operator UT : L2(X,B, μ)
→ L2(X,B, μ) by setting UT f = f◦T . We say that λ ∈ S1 is in the discrete spectrum
of T if it is an eigenvalue of UT ; i.e., for some (eigenfunction) 0 
= f ∈ L2(X,B, μ),
we have UT f = λf . We say that T has purely discrete spectrum if the eigenfunctions
of UT are linearly dense in L2(X,B, μ). Following [26], we say that T ∈ Aut(X,B, μ)
is coalescent if each endomorphism of (X,B, μ) commuting with T is invertible.

Remark 2.8. All ergodic automorphisms with purely discrete spectrum are coales-
cent.

Let T ∈ Aut(X,B, μ), S ∈ Aut(Y, C, ν), and let ρ be a T × S-invariant measure
on X × Y . We say that ρ is a joining of T and S if ρ|X = μ and ρ|Y = ν. In
a similar way, joinings of at most countable families are defined. Following [24], T
and S are called disjoint if product measure is the only joining of T and S.
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Let T ∈ Aut(X,B, μ) and let C ∈ B be such that μ(C) > 0. Then the function
nC given by nC(x) = min{n ≥ 1 : Tnx ∈ C} is well-defined for μ-a.e. x ∈ C. The
map TC : C → C given by TCx = TnC(x)x is called the induced transformation.

Then TC ∈ Aut(C,BC , μC), where BC = B|C and μC(A) = μ(A)
μ(C) for any A ∈ BC .

Moreover, TC is ergodic whenever T is also.

2.3. Entropy: Basic notions. There are two basic notions of entropy: topolog-
ical entropy htop(X,T ) of (X,T ) and measure-theoretic entropy (or Kolmogorov
entropy) h(X,μ, T ) of (X,B, μ, T ). We skip the definitions and refer the reader,
e.g., to [17].

For any topological dynamical system (X,T ) the variational principle holds, that
is, htop(X,T ) = supμ∈P(X,T ) h(X,μ, T ). We say that μ ∈ P(X,T ) is a measure of

maximal entropy of (X,T ) if htop(X,T ) = h(X,μ, T ). A measure of maximal
entropy may not exist; however, subshifts always have at least one measure of
maximal entropy. Following [52], a topological system (X,T ) is intrinsically ergodic
if it has exactly one measure of maximal entropy.

2.4. Topological dynamics: More on minimal subsets. Let (X,T ) be a topo-
logical dynamical system. A set S ⊂ Z is called syndetic if there exists a finite set
K such that K + S = Z.

We will be particularly interested in the situation when (X,T ) has a unique
minimal subset. We first recall well-known results related to the proximal case.

A pair (x, y) ∈ X × X is called proximal if lim infn→∞ d(Tnx, Tny) = 0. We
denote the set of proximal pairs (x, y) by Prox(T ). We say that T is proximal
if Prox(T ) = X × X. A pair (x, y) ∈ X × X is called syndetically proximal if
{n ∈ Z : d(Tnx, Tny) < ε} is syndetic for any ε > 0. We denote the set of all
syndetically proximal pairs (x, y) by SyProx(T ). We say that T is syndetically
proximal if SyProx(T ) = X ×X.

Remark 2.9. Note that if (x, Tx) ∈ Prox(T ), then clearly T has a fixed point.
Moreover, (X,T ) is proximal if and only if it has a fixed point that is the unique
minimal subset of X.

Proposition 2.10 (Auslander - Ellis; see, e.g., [2]). Let (X,T ) be a topological
dynamical system. Then for any x ∈ X there exists a minimal point y ∈ X such
that x and y are proximal.

Remark 2.11. Clearly, a subsystem of a (syndetically) proximal system remains
(syndetically) proximal. Both relations, Prox and SyProx, are reflexive and sym-
metric. Moreover, SyProx is always an equivalence relation, whereas Prox need not
be.

Remark 2.12. It is easy to see that if T is syndetically proximal, then T×n is
syndetically proximal for each n ≥ 1.

Proposition 2.13 ([11,54]; see also Theorem 19 in [45]). The following are equiv-
alent:

• Prox(T ) is an equivalence relation,
• Prox(T ) = SyProx(T ),
• the orbit closure of any point (x, y) ∈ X × X in the dynamical system
(X ×X,T × T ) contains exactly one minimal subset.
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As an immediate consequence of Remark 2.11 and Remark 2.9, we obtain:

Corollary 2.14. Suppose that Tx0 = x0 and SyProx(T )∩ ({x0}×X) = {x0}×X.
Then Prox(T ) ⊃ SyProx(T ) = X ×X; i.e., T is syndetically proximal and {x0} is
the unique minimal subset of X.

The following result is related to Lemma 1 in [18].

Proposition 2.15. Let (X,T ) be a topological dynamical system with a transitive
point η ∈ X. The following are equivalent:

(a) (X,T ) has a unique minimal subset M .
(b) There exists a closed, T -invariant subset M ′ ⊂ X such that for any x ∈ M ′

and y ∈ X, there exists (mn)n≥1 ⊂ Z such that Tmny → x.
(c) There exists xM ∈ X such that for any y ∈ X there exists (mn)n≥1 ⊂ Z

such that Tmny → xM .
(d) There exists a closed, T -invariant subset M ′′ ⊂ X, such that {k ∈ Z :

T kη ∈ U} is syndetic for any open set U intersecting M ′′.
(e) There exists a sequence of open sets (Un)n≥1 ⊂ X such that:

• diam(Un) → 0 as n → ∞,
• {k ∈ Z : T kη ∈ Un} is syndetic for each n ∈ N.

Furthermore, if any of the above hold, then M = M ′ = M ′′ and xM ∈ M .

Proof. (a)⇒(b) Let M ′ = M , where M is as in (a). Let y ∈ X. The set ω(y) =
{z ∈ X : ∃mn → ∞ with Tmny → z} is closed, non-empty, and T -invariant, so it
contains M ′, which yields (b) and shows that any M ′ as in (b) satisfies M ′ = M .

Clearly, (b) implies (c).
(c)⇒(d) Let xM be as in (c). Denote by M ′′ the orbit closure of xM . Let

U be an open set and let U ∩ M ′′ 
= ∅. Then there exists N ∈ N such that
xM ∈ V := T−N (U). Thus N + {k ∈ Z : T kη ∈ V } ⊂ {k ∈ Z : T kη ∈ U}, and the
latter set is syndetic if the former is. If {k ∈ Z : T kη ∈ V } is not syndetic, then for
any n ∈ N there exists kn ∈ Z for which T kn−nη, . . . , T kn+nη ∈ X \ V . Then the
orbit closure of any limit point of (T knη)n≥1 lies in X \ V and cannot contain xM ,
which contradicts (c).

Clearly, (d) implies (e).
(e)⇒(a) Assume that (e) holds andM1,M2 ⊂ X are minimal with min{d(x1, x2) :

xi ∈ Mi, i = 1, 2} =: ε > 0. Let Un be as in (e) with diamUn < ε/2. We may
assume that Un ∩M2 = ∅. Let V ⊃ M2 be open such that V ∩ Un = ∅. Let N be
the maximal gap in {k ∈ Z : T kη ∈ Un}. Since M2 is T -invariant, there is an open
set W with M2 ⊂ W such that T jW ⊂ V for j = 0, 1, . . . , N . But the orbit of η is
dense in X; therefore there is k ∈ Z with T kη ∈ W , contradicting the choice of N .

The same reasoning shows thatM ′′ as in (d) must be unique and henceM = M ′′.
To finish the proof note that we also must have xM ∈ M = M ′ = M ′′ since xM

must be a minimal point. �
Remark 2.16. There is a well-known characterization of minimality of an orbit
closure. Let x ∈ X. Then (OT (x), T ) is minimal if and only if, for any open set
U � x, the set {n ∈ Z : Tnx ∈ U} is syndetic. In particular, if x is transitive, then
(X,T ) is minimal if and only if, for any open set U ⊂ X, the set {n ∈ Z : Tnx ∈ U}
is syndetic.

Notice that Proposition 2.15 includes this characterization of minimal orbit clo-
sures as a special case. Indeed, if (X,T ) is minimal, then any open set U intersects
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M = X, whence {n ∈ Z : Tnx ∈ U} is syndetic by (d). On the other hand, if
{n ∈ Z : Tnx ∈ U} is syndetic for any open set U , it follows that M ′ := X satisfies
(d). Therefore the only minimal subset M is also equal to X; i.e., (X,T ) is minimal.

Corollary 2.17. Let (X,T ) be a transitive subshift. Then (X,T ) has a unique
minimal subset M if and only if there exists an infinite family of pairwise distinct
blocks that appear in η with bounded gaps.

Proof. It follows from the equivalence of (a) and (e) in Proposition 2.15. �

If (X,T ) is a subshift, sometimes more can be said about the unique minimal
subset.

Lemma 2.18. Let η ∈ {0, 1}Z. Suppose that there exist Bn ∈ {0, 1}[�n,rn] for
n ≥ 1, with �n ↘ −∞, rn ↗ ∞, (mn)n≥1 ⊂ Z, and (dn)n≥1 ⊂ N, satisfying, for
each n ≥ 1:

(a) dn | dn+1,
(b) dn | mn+1 −mn,
(c) η[mn + kdn + �n,mn + kdn + rn] = Bn for each k ∈ Z. (Note that condi-

tions (a), (b), and (c) imply that Bn+1[�n, rn] = Bn, n ≥ 1.)

Then η has a Toeplitz sequence x in its orbit closure Xη. Moreover, (Xη, S) has
a unique minimal subset M which is the orbit closure of x.

Proof. Fix n0 ∈ N and let n ≥ n0. Then, by (a) and (b), we have dn0
| mn −mn0

.
Therefore, in view of (c), for any k ∈ Z, we have

Smnη[�n0
+ kdn0

, rn0
+ kdn0

]

= η[mn0
+ (kdn0

+mn −mn0
) + �n0

,mn0
+ (kdn0

+mn −mn0
) + rn0

] = Bn0
.

It follows that x := limn→∞ Smnη is well-defined and Toeplitz. The last assertion
follows by Corollary 2.17. �

2.5. Asymptotic densities. For A ⊂ Z, we recall several notions of asymptotic
density (in fact, these are densities of the positive part of the set A, i.e., of A∩N).
We have:

• d(A) := lim infN→∞
1
N |A ∩ [1, N ]| (lower density of A),

• d(A) := lim supN→∞
1
N |A ∩ [1, N ]| (upper density of A).

If the lower and the upper densities of A coincide, their common value d(A) :=
d(A) = d(A) is called the density of A. We also have:

• δ(A) := lim infN→∞
1

logN

∑
a∈A,1≤a≤N

1
a (lower logarithmic density of A),

• δ(A) := lim supN→∞
1

logN

∑
a∈A,1≤a≤N

1
a (upper logarithmic density of A).

If the lower and the upper logarithmic densities of A coincide, we set δ(A) :=
δ(A) = δ(A) and call it the logarithmic density of A. It is easy to see that

(4) d(A) ≤ δ(A) ≤ δ(A) ≤ d(A).

2.6. Sets of multiples, B-free numbers, and their density. For B ⊂ N, let
MB :=

⋃
b∈B bZ and FB := Z \MB.

Definition 2.19. We say that:

• B is coprime if gcd(b, b′) = 1 for b 
= b′ in B,
• B is thin if

∑
b∈B

1/b < +∞,



B-FREE SETS AND DYNAMICS 5437

• B has light tails if limK→∞ d
(⋃

b>K bZ
)
= 0,

• B is taut [28] if for any b ∈ B, we have δ(MB) > δ(MB\{b}).

Following [28], we say that B is Besicovitch if d(MB) exists (clearly, this is equiva-
lent to the existence of d(FB)). A set B ⊂ N\{1} is called Behrend if δ(MB) = 1.

Remark 2.20 (see Chapter 0 in [28]). Let P (B) be the intersection of all sets B′ ⊂ N
such that MB = MB′ . Then MP (B) = MB. Moreover, P (B) is primitive (i.e.,
no element of P (B) divides any other). Therefore, throughout the paper, whenever
B is arbitrary, we will tacitly assume that it is primitive.

Since d
(⋃

b>K bZ
)
≤
∑

b>K
1/b,

(5) if B is thin, then B has light tails.

Recall that d(MB) may not exist; the first counterexample was provided by
Besicovitch [6]. Recall also the result by Erdös:

Theorem 2.21 ([21]). A set B = {bk : k ≥ 1} is Besicovitch if and only if

lim
0<ε→0

lim sup
n→∞

1

n

∑
n1−ε<bk≤n

|[0, n] ∩ bkZ ∩ F{b1,...,bk−1}| = 0.

Corollary 2.22 (Theorem 1.6 in [28]). If A and B are Besicovitch, then A ∪ B
is also Besicovitch.

On the other hand, we have the following result of Davenport and Erdös:

Theorem 2.23 ([13, 14]). For any B, the logarithmic density δ(MB) of MB

exists. Moreover,

(6) δ(MB) = d(MB) = lim
K→∞

d(M{b∈B:b≤K}).

Remark 2.24. Formula (6) follows from the proof of Theorem 2.23 in [14] (see
also [28]). Notice that (6) implies that B is Besicovitch if and only if

lim
K→∞

d(M{b∈B:b>K} \M{b∈B:b≤K}) = 0.

In particular, if B has light tails, then B is Besicovitch (this follows also from
Theorem 2.21).

Corollary 2.25. Let A = A1 ∪ A2 ∪ . . .. Then

δ(MA ) = d(MA ) = lim
K→∞

δ(MA1∪A2∪...∪AK
).

Proof. Let Δ(A ) := limK→∞ δ(MA1∪...∪AK
). Clearly, Δ(A ) ≤ δ(MA ). We will

now show that δ(MA ) ≤ Δ(A ). For K ≥ 1, let NK be such that {a ∈ A : a ≤ K}
⊂ A1 ∪ . . . ∪ ANK

. Using Theorem 2.23, we obtain

δ(MA ) = lim
K→∞

δ(M{a∈A :a≤K}) ≤ lim
K→∞

δ(MA1∪...∪ANK
) = Δ(A ).

This completes the proof. �

Remark 2.26 (Cf. Remark 2.24). Let A = A1 ∪A2 ∪ . . . and suppose additionally
that the density of A1 ∪ . . . ∪ AK exists, for each K ≥ 1. As a consequence of
Corollary 2.25, we obtain that A is Besicovitch if and only if

lim
K→∞

d(MA \MA1∪...∪AK
) = 0.
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Remark 2.27. Clearly, any superset of a Behrend set that does not contain 1 re-
mains Behrend. Moreover, if B is Behrend, then B is Besicovitch. Note also that
by Theorem 2.23, B ⊂ N \ {1} is Behrend if and only if d(MB) = 1.

Proposition 2.28 ([28], Corollary 0.14). The set A ∪B is Behrend if and only if
at least one of A and B is Behrend.

For B, a ∈ N \ {1} let

B′(a) :=

{
b

gcd(b, a)
: b ∈ B

}
.

Proposition 2.29 ([28], Theorem 0.8). Let a 
∈ MB. Then δ(MB∪{a}) > δ(MB)
if and only if B′(a) is not Behrend.

Proposition 2.30 ([28], Corollary 0.19). The set B is taut if and only if it is
primitive and does not contain cA with c ∈ N and A ⊂ N \ {1} that is Behrend.

Corollary 2.31. Suppose that B is taut. If δ(MB∪{a}) = δ(MB), then a ∈ MB.

Proof. Suppose that δ(MB∪{a}) = δ(MB) and a 
∈ MB. By Proposition 2.29,
B′(a) is Behrend. Since a has finitely many divisors, it follows from Proposition 2.28
that at least one of the sets

B′
d(a) :=

{
b

d
: b ∈ B and gcd(b, a) = d

}
,

where d | a is Behrend. Moreover, d · B′
d(a) ⊂ B. Notice that 1 
∈ B′

d(a). Indeed,
if 1 ∈ B′

d(a), then d = gcd(d, a) ∈ B. In particular, d | a, i.e., a ∈ MB, which is
not possible by the choice of a. It follows from Proposition 2.30 that B cannot be
taut. �

Furthermore, notice that

(7) if B has light tails (and is primitive), then B is taut.

Indeed, if B is not taut, by Proposition 2.30, we have that B ⊃ cA with A
Behrend. Moreover, given K ≥ 1, there exists L = L(K, c) such that

c · {a ∈ A : a > L} ⊂
⋃
b>K

bZ.

But, in view of Proposition 2.28, {a ∈ A : a > L} is Behrend. It follows that
δ(
⋃

b>K bZ) ≥ 1/c for all K ≥ 1, which means that B cannot have light tails. In
particular, we obtain that if B is finite, then B is taut.

2.7. Canonical odometer associated with B. Denote the elements of B by
bk, k ≥ 1, and consider the compact Abelian group GB :=

∏
k≥1 Z/bkZ, with the

coordinatewise addition. The product topology on GB is metrizable with a metric
d given by

(8) d(g, g′) =
∑
k≥1

1

2k
|gk − g′k|

1 + |gk − g′k|
.

In this metric, closeness of two sequences implies that they agree on a long initial
segment of coordinates. Let PGB be Haar measure of GB, i.e., PGB =

⊗
mZ/bkZ,
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where, for c ∈ N, mZ/cZ stands for the normalized counting measure on Z/cZ. For
n ∈ Z, let

(9) nB := (n mod b1, n mod b2, . . .) ∈ GB.

Denote by G the smallest closed subgroup of GB that contains 1B, i.e.,

(10) G := {nB : n ∈ Z} ⊂ GB.

Remark 2.32. By its definition, G ⊂ GB contains a dense cyclic subgroup; i.e.,
G is monothetic and the homeomorphism Tg = g + 1B yields a uniquely ergodic
dynamical system (G, T ) (with Haar measure P as the only invariant measure).

We will now provide another model of (G, T ). First, given 1 ≤ k < �, denote by

πk,� : Z/ lcm(b1, . . . , bk, . . . , b�)Z → Z/ lcm(b1, . . . , bk)Z

the natural homomorphism given, for each r ∈ Z/ lcm(b1, . . . , bk, . . . , b�)Z, by

πk,�(r) = r mod lcm(b1, . . . , bk).

Note that whenever 1 ≤ k < � < m, we have πk,� ◦ π�,m = πk,m. Also, for each
k ≥ 1, we set πk := πk,k+1. This yields an inverse limit

Z/b1Z
π1← Z/ lcm(b1, b2)Z

π2← . . .
πk−1← Z/ lcm(b1, . . . , bk)Z

πk← . . . ,

and we define

(11) G′ := lim←−Z/ lcm(b1, . . . , bk)Z

=

⎧⎨⎩g ∈
∏
k≥1

Z/ lcm(b1, . . . , bk)Z : πk(gk+1) = gk for each k ≥ 1

⎫⎬⎭ ,

where g = (g1, g2, . . .). Then G′ is closed and invariant under the coordinatewise
addition. Hence, G′ is Abelian, compact, and metrizable; cf. (8). We denote by P′

Haar measure on G′. By the above, for each n ≥ 1, we have

(12) n := (n mod b1, n mod lcm(b1, b2), . . .) ∈ G′,

in particular, 1 ∈ G′. On G′, we also define a homeomorphism T ′g = g + 1.

Remark 2.33. Notice that if (g1, g2, . . . )∈G′, then, since gk=gj mod lcm(b1, . . . , bj)
for j = 1, . . . , k, we have

gk = (gk mod b1, gk mod lcm(b1, b2), . . . ) → (g1, g2, . . . ) when k → ∞.

It follows that {n : n ∈ Z} is dense in G′ (and hence G′ is monothetic).

Lemma 2.34. The map W : {nB : n ∈ Z} → G′ given by W (nB) = n extends
continuously to G in a unique way. Moreover, it yields a topological isomorphism
of the dynamical systems (G, T ) and (G′, T ′).

Proof. Notice first that W is uniformly continuous (and equivariant). Indeed, for
any K ≥ 1, if d(nB,mB) is sufficiently small, then n = m mod bk for 1 ≤ k ≤ K.
It follows that n = m mod lcm(b1, . . . , bk) for 1 ≤ k ≤ K; i.e., d(n,m) is small,
provided that K is large. Therefore, W extends to a continuous map from G to G′.
Moreover, by Remark 2.33, W : G → G′ is surjective.

It remains to show that W is injective. For this, it suffices to show that the map
n �→ nB is also uniformly continuous. Fix K ≥ 1. If d(n,m) is sufficiently small,
then n = m mod lcm(b1, . . . , bk) for 1 ≤ k ≤ K. It follows that, for 1 ≤ k ≤ K, we



5440 A. DYMEK, S. KASJAN, J. KU�LAGA-PRZYMUS, AND M. LEMAŃCZYK

have n = m mod bk; i.e., d(nB,mB) is arbitrarily small, provided that K is large.
This completes the proof. �

Definition 2.35. We say that (G,P, T ) is the canonical odometer associated to
B.

Remark 2.36. It follows from the proof of the above lemma that for g ∈ G, we have

(13) W (g) = (g1 mod b1, g2 mod b2, . . . ).

Example 2.37. When B is coprime, then Z/ lcm(b1, . . . , bk)Z = Z/(b1 ·. . .·bkZ) is,
by the Chinese Remainder Theorem, canonically isomorphic to Z/b1Z× . . .×Z/bkZ
via

j �→ (j mod b1, . . . , j mod bk),

so πk corresponds to

projk : Z/b1Z× . . .× Z/bkZ× Z/bk+1Z → Z/b1Z× . . .× Z/bkZ,

i.e., the projection on the k first coordinates. The inverse limit G′ given by the sys-
tem {projk : k ≥ 1} is naturally identified with the direct product GB. Moreover,
1 ∈ G′ corresponds to 1B ∈ GB. It follows that G = GB, and thus the canonical
odometer associated to B is the same as in [1] whenever B is coprime.

We will now show that the canonical odometer “outputs” FB. Consider the
following sets:

C :={(g1, g2, . . .) ∈ G : for all k ≥ 1, gk 
≡ 0 mod bk},(14)

C ′ :={(g1, g2, . . .) ∈ G′ : for all k ≥ 1, gk 
≡ 0 mod bk}.(15)

Remark 2.38. By Remark 2.36, we have W (C) = C ′. In particular, for each n ∈ Z,
we have nB ∈ C ⇐⇒ n ∈ C ′ ⇐⇒ n ∈ FB.

Let η ∈ {0, 1}Z be the sequence corresponding to 1FB . Recall that (Xη, S)
denotes the B-free subshift, i.e., Xη := {x ∈ {0, 1}Z: each block appearing in x
appears in η}.

Define ϕ : G → {0, 1}Z by setting ϕ(g)(n) := 1C(T
ng) and notice that

(16) ϕ(g)(n) = 1 ⇐⇒ n 
≡ −gk mod bk for all k ≥ 1.

Finally, notice that ϕ ◦ T = S ◦ ϕ and η = ϕ(0, 0, . . . ).

2.8. Admissibility. Recall that (XB, S) denotes the B-admissible subshift con-
sisting of x ∈ {0, 1}Z such that, for each b ∈ B, we have |{n ∈ Z : x(n) =
1} mod b| < b; see [1, 49].

Remark 2.39. Consider ϕB : GB → {0, 1}Z given, for g ∈ GB, by the same formula
as in (16). Arguing as in [1], we easily obtain ϕB(GB) ⊂ XB. In particular, since
η = ϕB(0, 0, . . . ), we have η ∈ XB, so Xη ⊂ XB.

Definition 2.40 (Cf. [34,38]). We say that X ⊂ {0, 1}Z is hereditary if for x ∈ X
and y ∈ {0, 1}Z with y ≤ x (coordinatewise), we have y ∈ X.

It follows directly from the definition of admissibility that XB is hereditary.

Denote by X̃η the smallest hereditary subshift containing Xη. It is clear that

Xη ⊂ X̃η ⊂ XB.
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Remark 2.41. Note that XB is always uncountable. Indeed, for B infinite, it
suffices to notice that the characteristic function 1A of A := {b1 · . . . bk : k ≥ 1}
has infinite support; thus the set {x ∈ {0, 1}Z : x ≤ 1A} ⊂ XB is uncountable. If
B = {b1, . . . , bk} is finite, then consider A := {(b1 · . . . · bk)� : � ≥ 1}.

For B Erdös, we have Xη = XB; see [1]. It is also easy to see that Xη � X̃η =
XB for B 
= ∅ finite and coprime. This need not always be the case:

Example 2.42 (Xη � X̃η � XB). Let B := P. Then FB = {±1} and B is
Behrend. It follows that

Xη = {Snη : n ∈ Z} ∪ {. . . 0.00 . . . },
X̃η = {Snη : n ∈ Z} ∪ {Sn(. . . 0.10 . . . ) : n ∈ Z} ∪ {. . . 0.00 . . . }.

Hence, Xη � X̃η and X̃η is countable; thus X̃η � XB by Remark 2.41. Note also

that (X̃η, S) fails to be transitive.

Example 2.43 (X̃η � XB). Suppose that 4, 6 ∈ B and b > 12 for b ∈ B \ {4, 6}.
Let y ∈ {0, 1}Z be such that y[1, 12] = 110011100110 and y(n) = 0 for all n ∈
Z \ {1, 2, . . . , 12}. It follows that y ∈ XB. We claim that y 
∈ X̃η. Suppose that

(17) y[1, 12] ≤ η[k, k + 11] for some k ∈ Z.

Recall that 4 ∈ B. Since y[1] = η[k] = y[2] = η[k + 1] = 1, it follows that 4 | k + 2
or 4 | k+3. Since y[7] = η[k+6] = 1, we cannot have 4 | k+2. Hence 4 | k+3. On
the other hand, we have 6 ∈ B. Since y[i + 1] = η[k + i] = 1 for i ∈ {0, 1, 4, 5, 6}
and k + 2 is odd, we have 6 | k + 3. It follows that 6 | k + 9, whence η[k + 9] = 0.
This, however, contradicts (17).

One can modify B so that d(FB) exists and is positive. Furthermore, one can

obtain both Xη = X̃η � XB and Xη � X̃η � XB; see Example 5.6.

The subshift (X̃η, S) has some natural S-invariant subsets we will be interested
in. Given a sequence (sk)k≥1 with 0 ≤ sk ≤ bk for k ≥ 1, let

Ys1,s2,... := {x ∈ {0, 1}Z : |supp x mod bk| = bk − sk for each k ≥ 1},
Y≥s1,≥s2,... := {x ∈ {0, 1}Z : |supp x mod bk| ≤ bk − sk for each k ≥ 1}.

Remark 2.44. For 0 ≤ sk ≤ bk, k ≥ 1, define auxiliary subsets

Y k
sk

:= {x ∈ {0, 1}Z : |supp x mod bk| = bk − sk},
Y k
≥sk

:= {x ∈ {0, 1}Z : |supp x mod bk| ≤ bk − sk}.

Then Y k
sk

= Y k
≥sk

\ Y k
≥sk+1 and Y k

≥sk
, Y k

≥sk+1 are closed. Moreover

Ys1,s2,... =
⋂
k≥1

Y k
sk
, Y≥s1,≥s2,... =

⋂
k≥1

Y k
≥sk

.

In particular, Ys1,s2,... is Borel and Y≥s1,≥s2,... is closed, for any choice of 0 ≤ sk ≤
bk, k ≥ 1. Additionally, sets Ys1,s2,... are pairwise disjoint for different choices of
(s1, s2, . . . ) and

{0, 1}Z =
⋃

0≤sk≤bk,k≥1

Ys1,s2,....

We will write Y for Y1,1,.... Notice also that Y≥s1,≥s2,... is the smallest hereditary
subshift containing Ys1,s2,....
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Following [46], we define a map θ : Y ∩ X̃η → GB by

(18) θ(y) = g ⇐⇒ (supp y) ∩ (bkZ− gk) = ∅ for each k ≥ 1.

Notice that given y ∈ Y and k0 ≥ 1, there exists N ≥ 1 such that

(19) |(supp y) ∩ [−N,N ] mod bk| = bk − 1 for 1 ≤ k ≤ k0.

Remark 2.45. Notice that

(20) θ(Y ∩ X̃η) ⊂ G.

Indeed, take y ∈ Y ∩ X̃η. Given k0 ≥ 1, let N ≥ 1 be such that (19) holds
and let M ∈ Z be such that y[−N,N ] ≤ η[−N + M,N + M ]. It follows that
θ(y) = (g1, g2, . . . ), where gk ≡ −M mod bk for 1 ≤ k ≤ k0. This yields (20).

Note also that θ is continuous. Indeed, given y ∈ Y and k0 ≥ 1, let N be such
that (19) holds. If y′ ∈ Y is sufficiently close to y, then (19) holds for y′ as well.
Therefore, if yn → y in Y , then θ(yn) → θ(y).

Remark 2.46. Note that:

• T ◦ θ = θ ◦ S,
• for each y ∈ Y ∩ X̃η, y ≤ ϕ(θ(y)),

• for any ν ∈ P(Y ∩ X̃η, S), θ∗(ν) = P

(the first two properties follow by a direct calculation; the third one is a consequence
of the unique ergodicity of T ).

2.9. Mirsky measure νη.

Definition 2.47. The image νη := ϕ∗(P) of P via ϕ is called the Mirsky measure
of B.

Remark 2.48 (Cf. Example 2.37). In the previous works [1,36], the Mirsky measure
was defined in a different way. In the new notation, the “old Mirsky measure” was
given by νB := (ϕB)∗(PΩB). We have

νB({x ∈ {0, 1}Z : x(0) = 1}) =
∏
b∈B

(
1− 1

b

)
(we follow word for word the proof of this formula from [1]). This implies that
νB 
= δ...0.00... if and only if B is thin. An advantage of νη is that νη 
= δ...0.00...
whenever B ⊂ N is not Behrend (see Remark 4.2). Moreover, we will see that νη
plays a similar role and has similar properties as the “old Mirsky measure”. This
is why we call νη the Mirsky measure, not νB. Notice that if B is Erdös, we have
νη = νB.

3. Topological dynamics

3.1. Unique minimal subset (proof of Theorem A). In the square-free case,
i.e., when B = {p2 : p ∈ P}, the subshift (Xη, S) is proximal [49]. In particular,
by Remark 2.9, it has a fixed point that yields the only minimal subset of Xη (this
fixed point is the sequence . . . 0.00 . . . ). It turns out that in general there are B-
free subshifts (Xη, S) that are not proximal. Indeed, this happens, e.g., when B is
finite (cf. Section 4.3.1), and more examples will be seen later (we give necessary
and sufficient conditions for proximality in Section 3.2.2).
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Proof of Theorem A. We begin the proof by showing the validity of the second
assertion. Suppose first that η contains arbitrarily long blocks of zeros. Then the
Toeplitz sequence . . . 0.00 . . . is in Xη.

Suppose now that the length of blocks of zeros that appear in η is bounded. We
will use Lemma 2.18 and sequences (Bn)n∈N, (mn)n∈N, (dn)n∈N will be constructed
inductively. First, we will choose the longest block of zeros that appears in η. Then
we will extend it to the right and to the left by the shortest possible blocks of
ones such that the extended block appears in η. Next, the obtained block will be
extended to the right and then to the left by the longest possible blocks of zeros,
so that the block we obtain still appears in η. This procedure will be repeated to
obtain longer and longer blocks.

Let B1 be the longest block of zeros that appears in η. For convenience, we will
treat B1 as an element of {0, 1}[0,|B1|−1] (i.e., we set �1 := 0, r1 := |B1| − 1). Then,
since η = 1FB , there exists d1 ∈ N such that B1 appears in η periodically, with
period d1; i.e., for some m1 ∈ Z, we have

η[m1 + kd1 + �1,m1 + kd1 + r1] = B1 for each k ∈ Z.

Suppose now that Bn ∈ {0, 1}[�n,rn], mn ∈ Z, and dn ∈ N for 1 ≤ n ≤ 4n0 + 1 are
chosen so that (a) and (b) from Lemma 2.18 hold for 1 ≤ n ≤ 4n0 and (c) from
Lemma 2.18 holds for 1 ≤ n ≤ 4n0 + 1. We will now define Bn ∈ {0, 1}[�n,rn],
mn ∈ Z, dn ∈ N for 4n0 + 2 ≤ n ≤ 4n0 + 5.

Let B4n0+2 ∈ {0, 1}[�4n0+2,r4n0+2], where �4n0+2 = �4n0+1 (and r4n0+2 = �4n0+2+
|B4n0+2| − 1), be the shortest block of the form B4n0+11 . . . 1 such that the block
B4n0+11 . . . 10 appears in η and begins at position m4n0+1 + �4n0+1 + k0d4n0+1 for
some k0 ∈ Z, i.e.,

η[m4n0+2 + �4n0+2,m4n0+2 + r4n0+2] = B4n0+2,

where m4n0+2 = m4n0+1 + k0d4n0+1. Then, clearly, d4n0+1 | m4n0+2 − m4n0+1.
Moreover, by the definition of B4n0+2, we have

η[m4n0+2 + �4n0+2 + kd4n0+1,m4n0+2 + r4n0+2 + kd4n0+1] = B4n0+2

for each k ∈ Z; i.e., we may set d4n0+2 := d4n0+1. This way, we have extended our
block B4n0+1 to the right by a block of ones.

The block B4n0+3 is defined in a similar way as B4n0+2, but now we extend
B4n0+2 to the left. Let B4n0+3 ∈ {0, 1}[�4n0+3,r4n0+3], where r4n0+3 = r4n0+2 (and
�4n0+3 = r4n0+3 − |B4n0+3| + 1), be the shortest block of the form 1 . . . 1B4n0+2

such that the block 01 . . . 1B4n0+2 appears in η and ends at position m4n0+2 +
r4n0+2 + k0d4n0+2 for some k0 ∈ Z, i.e.,

η[m4n0+3 + �4n0+3,m4n0+3 + r4n0+3] = B4n0+3,

where m4n0+3 = m4n0+2 + k0d4n0+2. Then, clearly, d4n0+2 | m4n0+3 − m4n0+2.
Moreover, by the definition of B4n0+3, we have

η[m4n0+3 + �4n0+3 + kd4n0+3,m4n0+3 + r4n0+3 + kd4n0+3] = B4n0+3

for each k ∈ Z; i.e., we may set d4n0+3 := d4n0+2. This way, we have extended our
block B4n0+2 to the left by a block of ones.

Let B4n0+4 ∈ {0, 1}[�4n0+4,r4n0+4], where �4n0+4 = �4n0+3 (and r4n0+4 = �4n0+4+
|B4n0+4|−1), be the longest block of the form B4n0+30 . . . 0 that appears in η and
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begins at position m4n0+3 + �4n0+3 + k0d4n0+3 for some k0 ∈ Z, i.e.,

η[m4n0+4 + �4n0+4,m4n0+4 + r4n0+4] = B4n0+4,

where m4n0+4 = m4n0+3 + k0d4n0+3. Then, clearly, d4n0+3 | m4n0+4 − m4n0+3.
Moreover, since each zero in η appears with some period, there exists d′4n0+4 such
that the pattern of zeros from B4n0+4 repeats in η periodically, with period d′4n0+4.
Thus, by taking d4n0+4 := lcm(d′4n0+4, d4n0+3), we obtain

η[m4n0+4 + �4n0+4 + kd4n0+4,m4n0+4 + r4n0+4 + kd4n0+4] = B4n0+4

for each k ∈ Z.
Finally, let B4n0+5 ∈ {0, 1}[�4n0+5,r4n0+5], where r4n0+5 = r4n0+4 (and �4n0+5 =

r4n0+5−|B4n0+5|+1), be the longest block of the form 0 . . . 0B4n0+4 that appears
in η and ends at position m4n0+4 + r4n0+4 + k0d4n0+4 for some k0 ∈ Z, i.e.,

η[m4n0+5 + �4n0+5,m4n0+5 + r4n0+5] = B4n0+5,

where m4n0+5 = m4n0+4 + k0d4n0+4. Then, clearly d4n0+4 | m4n0+5 − m4n0+4.
Moreover, since each zero in η appears with some period, there exists d′4n0+5 such
that the pattern of zeros from B4n0+5 repeats in η periodically, with period d′4n0+5.
Thus, by taking d4n0+5 := lcm(d′4n0+5, d4n0+4), we obtain

η[m4n0+5 + �4n0+5 + kd4n0+5,m4n0+5 + r4n0+5 + kd4n0+5] = B4n0+5

for each k ∈ Z.
The first assertion follows from the first part of the proof and Lemma 2.18. The

proof of Theorem A is complete. �

By Corollary 1.4, (Xη, S) is minimal if and only if it is Toeplitz. In fact, η may
even happen to be a Toeplitz sequence:

Example 3.1. Let B := {bi2i : i ≥ 1}, where bi ≥ 2 for i ≥ 1. We will show that
η is a Toeplitz sequence. Indeed, for each n ∈ Z such that η(n) = 0, there is kn ≥ 1
such that η(n+ jkn) = 0 for all j ∈ Z. Now let n ∈ Z be such that η(n) = 1, i.e.,

(21) n 
≡ 0 mod bi2
i for each i ≥ 1.

Let m be odd such that n = m2a. We claim that

(22) η(n+ jb1 . . . ba2
a+1) = 1 for all j ∈ Z.

Suppose not, so that for some i0, we have

(23) n+ j0b1 . . . ba2
a+1 = K0bi02

i0 for some j0,K0 ∈ Z.

Then i0 ≤ a; if not, by (23), 2a+1 | n, which is impossible. But now, again by (23),
bi02

i0 | n, which contradicts (21).

Remark 3.2. It follows by Proposition 4.25 that η in Example 3.1 is a Toeplitz
sequence that is not periodic. Consider dn := b1 · . . . · bn2n+1. Two cases appear:

• If s ∈ MB, then bi2
i | s for some i ≥ 1. If i ≤ n, then s + dnZ ⊂ MB.

Otherwise, we have 2n+1 | s.
• If s ∈ FB, then we let m be odd such that s = m · 2a. Then, by (22),
s+b1 · . . . ·ba2a+1Z ⊂ FB. If a ≤ n, then clearly s+dnZ ⊂ FB. Otherwise,
we have 2n+1 | s.
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It follows that if s ∈ Z satisfies (s+ dnZ)∩MB 
= ∅ and (s+ dnZ)∩FB 
= ∅, then
2n+1 | s. It follows that, in each integer interval of length dn, the proportion of s
for which the sequence (η(s+ jdn))j∈Z is not constant equals 2−(n+1), hence tends
to zero as n → ∞. Toeplitz sequences satisfying such a property are called regular;
see, e.g., [16]. In particular, (Xη, S) is minimal and uniquely ergodic.

3.2. Proximality of (Xη, S). We will first show that for B pairwise coprime and

infinite, (X̃η, S) is proximal. This implies, by Remark 2.11, that (Xη, S) is proximal

and if X̃η′ ⊂ X̃η, then (X̃η′ , S) and (Xη′ , S) are both proximal. Our aim (see

Theorem 3.7) is to show that the converse is also true: if (Xη′ , S) and (X̃η′ , S)
are proximal, then there exists η associated with coprime and infinite B such that

X̃η′ ⊂ X̃η.

3.2.1. Coprime case.

Proposition 3.3. If B ⊂ N is infinite and coprime, then (X̃η, S) is syndetically
proximal. In particular, (Xη, S) is syndetically proximal.

Proof. By Corollary 2.14, it suffices to show that for any x ∈ X̃η and ε > 0 the set

(24) {n ∈ Z : d(Snx, . . . 0.00 . . . ) < ε} is syndetic.

Fix x ∈ X̃η. For n ∈ N and k ≥ 1 there exists m = mn,k ∈ Z such that

x[n, . . . , n+ b1 · . . . · bk + k − 1] ≤ η[m, . . . ,m+ b1 · . . . · bk + k − 1].

By the Chinese Remainder Theorem, there exists a unique 0 ≤ i0 ≤ b1 · . . . · bk − 1
(i0 = i0(m,n)) such that

m+ i0 + j ≡ 0 mod bj+1 for 0 ≤ j ≤ k − 1,

i.e., x(n + i0 + j) ≤ η(mn,k + i0 + j) = 0 for 0 ≤ j ≤ k − 1. This yields (24) and
completes the proof. �

As an immediate consequence of Proposition 3.3 and Remark 2.12, we obtain
the following:

Corollary 3.4. For B ⊂ N infinite and coprime, the maximal equicontinuous
factor of (X×N

η , S×N ) is trivial for each N ≥ 1.

3.2.2. General case (proof of Theorem B).

Definition 3.5. We say that B ⊂ N satisfies condition (Au) whenever there exists
infinite pairwise coprime B′ ⊂ B. We say that B ⊂ N satisfies condition (Tprox)

whenever for any k ∈ N there exist b
(k)
1 , . . . , b

(k)
k ∈ B such that gcd(b

(k)
i , b

(k)
j ) | (j−i)

for all 1 ≤ i < j ≤ k.

Remark 3.6. Clearly, if (Au) holds, then η ≤ η′, whence Xη ⊂ X̃η′ .

Theorem 3.7. Let B ⊂ N. The following conditions are equivalent:

(a) (XB, S) is proximal,

(b) (X̃η, S) is proximal,
(c) (Xη, S) is proximal,
(d) . . . 0.00 . . . ∈ Xη,
(e) B satisfies (Tprox),
(f) for any choice of q1, . . . , qm > 1, m ≥ 1, we have B 
⊂

⋃m
i=1 Zqi,
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(g) B satisfies (Au),
(h) FB does not contain an infinite arithmetic progression.

Proof. Since Xη ⊂ X̃η ⊂ XB, by Remark 2.11, we have (a) ⇒ (b) ⇒ (c).
(c) ⇒ (d). If (Xη, S) is proximal, then, by Remark 2.9, it has a fixed point, i.e.

either . . . 0.00 . . . ∈ Xη or . . . 1.11 . . . ∈ Xη. The latter of the two is impossible,
since each zero on η appears in η with bounded gaps, and the claim follows.

(d) ⇒ (e). If . . . 0.00 . . . ∈ Xη, then there are arbitrarily long blocks of consecu-
tive zeros on η. In other words, given k ≥ 1, there are s1, . . . , sk such that we can
solve the system of congruences:

i0 + i− 1 ≡ 0 mod bsi , 1 ≤ i ≤ k.

Suppose that d | gcd(bsi , bsj ). Then d | i0+i−1 and d | i0+j−1, whence d | (j−i).
(e) ⇒ (f). Suppose that (e) holds but (f) does not hold and let q1, . . . , qm,

k ≥ 1, be such that B ⊂
⋃m

i=1 Zqi. Without loss of generality, we can assume
that {q1, . . . , qm} is coprime (indeed, we can always find a coprime set {q′1, . . . , q′n}
such that

⋃m
i=1 qiZ ⊂

⋃n
i=1 q

′
iZ). Let k ≥ q1 . . . qm and choose b

(k)
1 , . . . , b

(k)
k ∈ B

satisfying condition (Tprox). For i = 1, . . . ,m, let Mi := {1 ≤ � ≤ k : b
(k)
� ∈ qiZ}.

Then, by (Tprox), qi | (�− �′) for any �, �′ ∈ Mi, whence

(25) Mi ⊂ qiZ+ ri for some 0 ≤ ri < qi.

For i = 1, . . . ,m, choose a natural number r′i such that qi � (ri − r′i). By the
Chinese Remainder Theorem there exists a natural number j ≤ q1, . . . , qm ≤ k
such that j ≡ r′i mod qi for i = 1, . . . ,m. It follows from (25) that j /∈ Mi for any

i = 1, . . . ,m. Thus b
(k)
j /∈ q1Z ∪ . . . ∪ qmZ, a contradiction.

(f) ⇒ (g). We will proceed inductively. Fix c1 ∈ B. Suppose that for k ≥ 1 we
have found pairwise coprime subset {c1, . . . , ck} ⊂ B. Let {q1, . . . , qm} be the set
of all prime divisors of c1, . . . , ck. Then any ck+1 ∈ B \ (q1Z∪ . . .∪ qmZ) is coprime
with each of c1, . . . , ck.

(g) ⇒ (a). If (g) holds, then, by Remark 3.6, we have Xη ⊂ X̃η′ . By Proposi-

tion 3.3, X̃η′ is proximal. Hence, by Remark 2.11, we obtain (a).
(d) ⇒ (h) Condition (d) implies that MB contains intervals of integers of arbi-

trary length, whence (h) follows.
(h) ⇒ (f). Suppose that (f) does not hold and let q1, . . . , qk, k ≥ 1, be such that

B ⊂
⋃k

i=1 Zqi. Let M := q1 · . . . · qk. We claim that b � �M + 1 for every b ∈ B,
i.e., �M + 1 ∈ FB for every � ∈ Z. Indeed, given b ∈ B, there exists qi (1 ≤ i ≤ k)
such that qi | b. If b | �M + 1, then qi | �M + 1. This is however impossible since
qi | M . �

Proof of Theorem B. The assertion is an immediate consequence of Theorem 3.7
and Remark 2.9. �

Let us see some consequences of Theorem 3.7. By Remark 3.6 and Theorem 3.7,
we have the following:

Corollary 3.8. If (Xη, S) is proximal, then Xη ⊂ X̃η′ with B′ coprime.

Remark 3.9. Recall (see [1]) that if B is Erdös, then Xη = XB. In particular, Xη

is hereditary.
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If B is Behrend, then . . . 0.00 . . . ∈ Xη, so by the implication (d)⇒ (a), we obtain
that (Xη, S) is proximal; hence FB contains an infinite subset which is pairwise
coprime. The latter can be seen directly from the implication (f) ⇒ (g).

By the implication (d) ⇒ (c) in Theorem 3.7, we obtain the following (see also
Example 4.16):

Corollary 3.10. If Xη is hereditary, then (Xη, S) is proximal.

Question 3.11. Is it possible that Xη � X̃η = XB with (Xη, S) proximal?

We will now give one more characterization of the proximality of (Xη, S), in
terms of the maximal equicontinuous factor (cf. Corollary 3.4):

Theorem 3.12. The system (Xη, S) is proximal if and only if its maximal equicon-
tinuous factor is trivial.

For the proof, we will need the following lemma:

Lemma 3.13. Let d ≥ 1 and let A ⊂ {0, 1, . . . , d− 1}. Suppose that for any k ≥ 1
there exist nk ∈ Z and 0 ≤ rk ≤ d− 1 such that

(26) A+md+ rk ⊂ FB for nk ≤ m ≤ nk + k.

Then, for any 0 ≤ r ≤ d− 1 such that there are infinitely many k ≥ 1 with rk = r,
we have

(27) A+ Zd+ r ⊂ FB.

Proof. Let 0 ≤ r ≤ d−1 be such that there are infinitely many k ≥ 1 satisfying (26)
with rk = r, i.e.,

(28) A+md+ r ⊂ FB for nk ≤ m ≤ nk + k.

Suppose that (27) fails. Then, for some a ∈ A and k ∈ Z, we have a+kd+r ∈ MB.
In other words, for some b ∈ B, we have b | a + kd + r. It follows that for any
� ∈ Z, we have b | a+ (k + �b)d+ r. This, however, contradicts (28). �
Proof of Theorem 3.12. Since proximality implies that the maximal equicontinu-
ous factor is trivial, we only need to show the converse implication. Suppose that
(Xη, S) is not proximal. Let d ≥ 1 be the smallest number such that FB contains an
infinite arithmetic progression with difference d (such d exists by Theorem 3.7(h)).
Let F ⊂ {0, . . . , d− 1} be the maximal set such that

(29) F + Zd ⊂ FB

(F 
= ∅ by the definition of d). We claim that for any y ∈ Xη, there exists a unique
0 ≤ r < d such that

(30) y(a+md+ r) = 1 for all a ∈ F and m ∈ Z.

Since y ∈ Xη, it follows from (29) that such r exists and we only need to show
uniqueness. Suppose that (30) holds for r = r1, r2, where d � (r1− r2); i.e., we have

y(a+md) = 1 for all a ∈ (F + r1) ∪ (F + r2) and m ∈ Z.

Since y ∈ Xη, each block from y appears in η, and it follows that the assump-
tions of Lemma 3.13 hold for A := (F + r1) ∪ (F + r2) mod d. Therefore, using
additionally (29),

[F ∪ (F + r1 + s) ∪ (F + r2 + s)] + Zd ⊂ FB for some s.
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Note that by the minimality of d, we have F+i 
= F mod d for 0 < i < d. Therefore,

F � F ∪ (F + r1 + s) ∪ (F + r2 + s).

This contradicts the maximality of F and thus indeed implies the uniqueness of r.
It follows that

Xη =

d−1⋃
i=0

X(i)
η , X(i)

η = {y ∈ Xη : (30) holds for r = i}

is a decomposition of Xη into d pairwise disjoint sets. Clearly, each X
(i)
η is closed

and SX
(i)
η = X

(i−1)
η , where X

(−1)
η = X

(d−1)
η . It follows that (Xη, S) has the

(minimal) rotation on d points as a topological factor, which completes the proof.
�

The following natural question arises:

Question 3.14. Given B ⊂ N, what is the maximal equicontinuous factor of
(Xη, S)?

A partial answer to Question 3.14 is given by the following (see also Section 4.3.1):

Proposition 3.15. Suppose that Xη = Xη ∩ Y . Then (G, T ) is the maximal
equicontinuous factor of (Xη, S). In particular, if we additionally assume that B
is infinite, then the maximal equicontinuous factor of (Xη, S) is infinite.

Proof. Notice first that, by Remark 2.45, θ : Xη → G is well-defined and continuous.
Thus, (G, T ) is an equicontinuous factor of (Xη, S) and we only need to show its
maximality. Notice that the (discrete) spectrum of the maximal equicontinuous
factor of (Xη, S) is always included in the discrete part of the spectrum of (Xη, ν, S)
for any ν ∈ P(Xη, S). Therefore, to prove the maximality of (G, T ), it suffices to
find ν such that the discrete part of the spectrum of (Xη, ν, S) agrees with the
(discrete) spectrum of (G,P, T ). We have

(G,P, T )
ϕ−→ (Xη, νη, S)

θ−→ (G,P, T ).

It follows from the coalescence of (G,P, T ) that θ ◦ ϕ yields an isomorphism of
(G,P, T ) with itself, whence ϕ yields an isomorphism of (G,P, T ) and (Xη, νη, S).
In particular, the (discrete) spectrum of (G,P, T ) is the same as the (discrete)
spectrum of (Xη, νη, S), and the claim follows. �

Example 3.16. Let B be as in Example 3.1. Then
∑

i≥1
1

2ibi
≤
∑

i≥1
1
2i is thin

and it follows from (5), (7), and Corollary 4.32 that η ∈ Y . Moreover, by the
minimality of (Xη, S), for each 0 ≤ sk ≤ bk, k ≥ 1, we have that either Xη ∩
Y k
≥sk

= Xη or Xη ∩ Y k
≥sk

= ∅. Since η ∈ Y , it follows that Xη ∩ Y k
≥sk

= ∅
whenever sk ≥ 2. Since Xη = Xη ∩ (

⋃
1≤sk≤bk

Y k
sk
) for each k ≥ 1, it follows that

Xη = Xη ∩ Y . By Proposition 3.15, the associated canonical odometer (G, T ) is
the maximal equicontinuous factor of (Xη, S).



B-FREE SETS AND DYNAMICS 5449

3.3. Transitivity.

3.3.1. Transitivity of (X̃η, S) and (XB, S).

Proposition 3.17. For any B ⊂ N such that the support of η is infinite, the
following conditions are equivalent:

(a) (X̃η, S) is transitive.

(b) (X̃η, S) does not have open wandering sets of positive diameter.
(c) For any block B that appears in η there exists a block B′ ≥ B (coordinate-

wise) that appears in η, infinitely often.

Proof. Since the implication (a) ⇒ (b) is obvious, it remains to show (b) ⇒ (c) ⇒
(a). We will prove first (b) ⇒ (c). Suppose that (c) does not hold. Let B be a
block in η such that all blocks B′ ≥ B appear in η (at most) finitely many times.
Let

K := min{k ∈ Z : η[k, k + |B| − 1] ≥ B},
L := max{k + |B| − 1 : η[k, k + |B| − 1] ≥ B}

(in particular, blocks B′ ≥ B do not appear in η outside η[K,L]). We claim that,

for any x ∈ X̃η, the block C := η[K,L] appears in x at most once. Suppose that,

for some x ∈ X̃η, C appears in x twice. It follows that a block of the form C ′DC ′′,
where C ′, C ′′ ≥ C, appears in η, and this is impossible by the choice of C. Thus, the

cylinder set C := {x ∈ X̃η : x[K,L] = C} corresponding to C is an open wandering
set. Clearly, we have η ∈ C. Moreover, since the support of η is infinite, we also
have x ∈ C for x given by x(n) = η(n) for n ∈ [K,L]; x(n) = 0 otherwise. It follows
that |C| ≥ 2; i.e., the diameter of C is positive and we conclude that (b) fails.

We will now prove (c) ⇒ (a). By Remark 2.1, given blocks B′, C ′ that appear in

η and B ≤ B′, C ≤ C ′, it suffices to show that there exists x ∈ X̃η such that both
B and C appear in x. It follows from (c) that there exists B′′ ≥ B′ that appears
in η infinitely often. Therefore for some block D, a block of the form C ′DB′′ or

a block of the form B′′DC ′ appears in η. Hence, x := . . . 00B0|D|C00 . . . ∈ X̃η,
and the result follows. �

As an immediate consequence of Proposition 3.17, we obtain the following:

Corollary 3.18. Let B ⊂ N be such that η is recurrent. Then (X̃η, S) is transitive.

In particular, by Corollary 3.18, Theorem 4.1, and Theorem G, we have the
following (cf. Example 2.42):

Corollary 3.19. The subshift (X̃η, S) is transitive whenever B has light tails.

Clearly, if Xη = XB, then (XB, S) is transitive (recall that Xη = XB holds for
B Erdös). We will now give an example where (XB, S) fails to be transitive.

Example 3.20. Let B be as in Example 2.43, i.e., 4, 6 ∈ B and b > 12 for
b ∈ B \ {4, 6}. Let

A1 := 110011100110,

A2 := 011101010111 = η[0, 11].
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Suppose that both A1, A2 appear in x ∈ {0, 1}Z. We will show that x 
∈ XB.
Indeed, we have

Z/4Z \ (supp A1 mod 4) = {3},
Z/4Z \ (supp A2 mod 4) = {0}.

Let k, � ∈ Z be such that x[k, k + 11] = A1 and x[�, �+ 11] = A2. It follows that if
x is {4}-admissible, then 4 | k+3− �. In a similar way, if x is {6}-admissible, then
6 | k + 2− �. Since one of the numbers k + 3− � and k + 2− � is odd, we conclude
that x is not {4, 6}-admissible, so all the more, it is not B-admissible.

3.3.2. Topological non-disjointness of (Xη, S) and (G, T ).

Proposition 3.21. There exists a proper, closed, and T ×S-invariant subset N ⊂
G × Xη with full projections on both coordinates. In other words, there is a non-
trivial topological joining between (G, T ) and (Xη, S).

Proof. Let N := OT×S(0, η), where 0 = (0, 0, . . . ); i.e., N is the closure of the graph
of ϕ along the orbit of 0 (indeed, we have Snη = Snϕ(0) = ϕ(Tn0)). Since the
orbit of 0 under T is dense in G and the orbit of η under S is dense in Xη, it follows
that N has full projection on both coordinates. Moreover, N is closed and T × S-
invariant. It remains to show that N 
= G ×Xη. Take . . . 0.00 . . . 
= x ∈ Xη. We
claim that {g ∈ G : (g, x) ∈ N} 
= G. Indeed, let k0 ∈ Z be such that x(k0) = 1 and
suppose that (Tni × Sni)(0, η) → (g, x). Then Sniη → x, whence, for i sufficiently
large, η(k0 + ni) = Sniη(k0) = x(k0) = 1. It follows that ni + k0 ∈ FB, i.e.,
ni + k0 
= 0 mod bk for each k ≥ 1. On the other hand, we have Tni0 → g,
i.e., (ni, ni, . . . ) → (g1, g2, . . . ). Thus, gk 
= −k0 mod bk for each k ≥ 1. Hence,
{g ∈ G : (g, x) ∈ N} 
= G for x 
= . . . 0.00 . . . , which completes the proof. �

Remark 3.22. Suppose that B is taut and 1 
∈ B. By Corollary 4.32, η ∈ Y , i.e.,
for each k ≥ 1, we have FB mod bk = (Z/bkZ)\{0}. It follows from the above proof
that {g ∈ G : (g, η) ∈ N} = {0}. In a similar way, if x ∈ Y , then {g ∈ G : (g, x) ∈
N} is a singleton; in particular, for each n ∈ Z, the set {g ∈ G : (g, Snη) ∈ N} is a
singleton.

We can now use the theorem about disjointness of topologically weakly mixing
systems with (minimal) equicontinuous systems (see Theorem II.3 in [24]) to deduce
the following:

Corollary 3.23. The product system (Xη ×Xη, S × S) is not transitive.

Remark 3.24. It follows that whenever (Xη, S) is proximal, we have:

• (Xη, S) is transitive with trivial maximal equicontinuous factor,
• (Xη ×Xη, S × S) has trivial equicontinuous factor, but it is not transitive.

It is well-known that when the product system (X×X,T ×T ) is transitive then
all non-zero powers Tm are transitive. Hence, Corollary 3.23 can also be deduced
from the following result.

Proposition 3.25. A B-free system (Xη, S) is not totally transitive. More pre-
cisely, if c := minB, then (Xη, S

c) is not transitive.

Proof. Since the set {1, . . . , c−1} consists of B-free numbers, we have C := 1c−10 =
η[1, c]. Moreover, {j ∈ Z : C = η[j, j + c − 1]} ⊂ cZ + 1 (otherwise, we obtain
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c consecutive integers from which none is divisible by c). It follows that for each
y ∈ Xη, there exists 0 ≤ s < c such that {j ∈ Z : C = y[j, j + c − 1] ⊂ cZ + s,
whence Sc cannot be transitive. �

4. Tautness

4.1. η is quasi-generic for νη (proof of Proposition E).

Theorem 4.1. Given B ⊂ N, let (Nk) be such that

d(MB) = lim
k→∞

1

Nk
|[1, Nk] ∩MB|.

Then η is quasi-generic for νη along (Nk). In particular, if B is Besicovitch, then
η is generic for νη.

Proof. If B is finite, then the result follows from Proposition 4.25. Hence, we may
assume that B is infinite. According to [1], by a pure measure theory argument,
we only need to prove that

1

Nk

∑
n≤Nk

1ϕ−1(A)(T
n0) → P(ϕ−1(A)) as k → ∞,

for each A = {x ∈ {0, 1}Z : x(js) = 0, s = 1, . . . , r}, where j1 < . . . < jr and r ≥ 1.
Recall that

C = {(g1, g2, . . .) ∈ G : gk 
≡ 0 mod bk for k ≥ 1}
and, for K ≥ 1, define

CK := {(g1, g2, . . .) ∈ G : gk 
≡ 0 mod bk for 1 ≤ k ≤ K}.
Then each CK is clopen and CK ↘ C when K → ∞. We have ϕ−1(A) =⋂r

s=1 T
−jsCc, whence

(31)

r⋂
s=1

T−jsCc
K ⊂ ϕ−1(A) ⊂

r⋂
s=1

T−jsCc
K ∪

r⋃
s=1

T−js(Cc \ Cc
K).

Moreover, since 1⋂r
s=1 T−jsCc

K
is continuous, by the unique ergodicity of T in Ex-

ample 2.3, we have

(32)
1

Nk

∑
n≤Nk

1⋂r
s=1 T−jsCc

K
(Tn0) → P(

r⋂
s=1

T−jsCc
K)

and, given ε > 0, for K sufficiently large, we have

(33) P(
r⋂

s=1

T−jsCc
K) ≥ P(

r⋂
s=1

T−jsCc)− ε.

Notice that
Tn0 ∈ Cc \ Cc

K ⇐⇒ n ∈ MB \M{b1,...,bK}.

By Theorem 2.23, if K is large enough, then

d(M{b1,...,bK}) ≥ d(MB)− ε.

Therefore, and by the choice of (Nk),

(34) lim sup
k→∞

1

Nk

∑
n≤Nk

1⋃r
s=1(C

c\Cc
K)(T

n0) ≤ ε.

Putting together (31), (32), (33), and (34) completes the proof. �
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Remark 4.2. Notice that by Theorem 4.1, we have

νη({x ∈ {0, 1}Z : x(0) = 1}) = lim
k→∞

1

Nk
|{1 ≤ n ≤ Nk : η(n) = 1}| = d(FB).

It follows immediately that B is Behrend if and only if νη = δ...0.00....

By Theorem 4.1, if a block does not appear in η, then the Mirsky measure of
the corresponding cylinder set is zero. As a consequence, we obtain the following:

Corollary 4.3. We have νη(Xη) = 1.

Proof of Proposition E. The assertion follows from Theorem 4.1 and Corollary 4.3.
�

Remark 4.4. As an immediate consequence of Theorem 4.1, we have

d(FB) > 0 ⇐⇒ νη 
= δ...0.00....

In particular, if B 
= {1} is taut, then νη 
= δ...0.00..., as such a B is not Behrend in
view of Proposition 2.30.

4.2. Tautness and Mirsky measures (Theorem C – first steps). In this
section our main goal is to prove the following:

Theorem 4.5. For each B ⊂ N, there exists a taut set B′ ⊂ N such that FB′ ⊂ FB

and νη = νη′ .

We will see later that, in fact, the equality νη = νη′ determines B′; cf. Corol-
lary 4.36. In the course of the construction of B′ and to prove that B′ satisfies the
required properties, we will use the following general lemmas:

Lemma 4.6. Suppose that B ⊂ N is primitive. Then B is taut if and only if there
exists a cofinite subset of B that is taut.

Proof. Let B ⊂ N be primitive. It suffices to show that if B \ {b} is taut for some
b ∈ B, then B is taut. Suppose that B fails to be taut. By Proposition 2.30,
there exist c ∈ N and a Behrend set A such that cA ⊂ B. Then cA ′ ⊂ B \ {b},
where A ′ = A \ {b/c} and A ′ is Behrend by Proposition 2.28. Applying again
Proposition 2.30, we conclude that B \ {b} also fails to be taut. �

Lemma 4.7. Suppose that B ⊂ N is primitive. If B is not taut, then, for some
c ∈ N, the set

(35) Ac :=

{
b

c
: b ∈ B and c | b

}
is Behrend.

Proof. Clearly, for any c ∈ N, we have cAc ⊂ B, where Ac (possibly empty) is as
in (35). By Proposition 2.30, we have

C := {c ∈ N : cA ′
c ⊂ B for some Behrend set A ′

c } 
= ∅
and, for any c ∈ C, we have A ′

c ⊂ Ac, whence Ac is Behrend. �

Lemma 4.8. Let B1,B2 ⊂ N be disjoint and such that B := B1∪B2 is primitive.
Then B is taut if and only if both B1 and B2 are taut.
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Proof. If Bi is not taut for some i ∈ {1, 2}, then, by Proposition 2.30, there exist c ∈
N and a Behrend set A such that cA ⊂ Bi ⊂ B. Applying again Proposition 2.30,
we deduce that B also fails to be taut. On the other hand, if B is not taut, then,
by Proposition 2.30, there exist c ∈ N and a Behrend set A such that cA ⊂ B.
Let

Ai :=

{
b

c
: b ∈ Bi

}
, i = 1, 2.

Clearly, A = A1 ∪ A2. Moreover, by Proposition 2.28, Ai is Behrend for some
i ∈ {1, 2}. We obtain cAi ⊂ Bi for this i and, by Proposition 2.30, we conclude
that Bi fails to be taut. �

Construction. We may assume without loss of generality that B is primitive (cf.
Remark 2.20).

Step 1. If 1 ∈ B, we set B′ := {1}.

Step 2. Suppose now that 1 
∈ B and suppose that B is not taut. Let c1 ∈ N be
the smallest natural number such that

A 1 :=

{
b

c1
: b ∈ B and c1 | b

}
is Behrend (such c1 exists by Lemma 4.7). By the definition of A 1, we have
B \ c1A 1 = B \ c1Z. Let
(36) B1 := (B \ c1Z) ∪ {c1} = (B \ c1A 1) ∪ {c1}.
We claim that B1 is primitive. Indeed, if this is not the case, then, by the primitivity
of B, for some b ∈ B \ c1Z, we have b | c1 or c1 | b. The latter is impossible
for b 
∈ c1Z, whence b | c1. This implies b | c1a1 ∈ B for any a1 ∈ A 1. By the
primitivity of B, it follows that b = c1a1 for infinitely many a1, which is impossible,
and we obtain that B1 is indeed primitive. If B1 is taut, we stop the procedure
here and set B′ := B1. Otherwise, we continue inductively.

Step n. Suppose that from the previous step we have

Bn−1 = (B \ (c1Z ∪ . . . ∪ cn−1Z)) ∪ {c1, . . . , cn−1}
= (B \ (c1A 1 ∪ . . . ∪ cn−1A

n−1)) ∪ {c1, . . . , cn−1}
that is primitive but not taut. Then, by Lemma 4.6, B \ (c1Z∪ . . .∪ cn−1Z) is not
taut. Let cn ∈ N be the smallest number such that

A n :=

{
b

cn
: b ∈ B \ (c1Z ∪ . . . ∪ cn−1Z) and cn | b

}
is Behrend (such cn exists by Lemma 4.7). Note that (by the definition of c1, . . . , cn)

(37) cn > cn−1 and cn 
∈ c1Z ∪ · · · ∪ cn−1Z.

Moreover,

(38) B \ (c1Z ∪ . . . ∪ cnZ) = B \ (c1A 1 ∪ . . . ∪ cnA n).

Let

Bn : = B \ (c1Z ∪ . . . ∪ cnZ) ∪ {c1, . . . , cn}
= B \ (c1A 1 ∪ . . . ∪ cnA n) ∪ {c1, . . . , cn}.

(39)
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We claim that Bn is primitive. Indeed, if this is not the case, then, by the primi-
tivity of Bn−1 and (37), for some b ∈ B \ (c1Z∪ . . .∪ cnZ), we have b | cn or cn | b.
The latter is impossible for b 
∈ cnZ, whence b | cn. This implies b | cnan for any
an ∈ A n. By the primitivity of B, it follows that b = cnan for infinitely many an,
which is impossible, and we obtain that Bn is indeed primitive.

If Bn is taut, we stop the procedure and set B′ := Bn.

Step ∞. If Bn is not taut for all n ≥ 1, we set

(40) B′ := (B \
⋃
n≥1

cnZ) ∪ {cn : n ≥ 1} = (B \
⋃
n≥1

cnA n) ∪ {cn : n ≥ 1},

where the above equality follows from (38). Note that for any b, b′ ∈ B′ there
exists n ≥ 1 with b, b′ ∈ Bn. Therefore, by the primitivity of Bn, n ≥ 1, also B′

is primitive.
From now on, for the sake of readability, we will restrict ourselves to the case

when B′ is defined by (40). When B = Bn for some n ≥ 1, the proof goes along
the same lines, with some simplifications.

Remark 4.9. It follows from (38) that

B = (B \
⋃
n≥1

cnZ) ∪
⋃
n≥1

cnA n.

Therefore, MB ⊂ MB′ . Moreover, η′ ≤ η and X̃η′ ⊂ X̃η.

Lemma 4.10. The set B′ is taut.

Proof. Recall that B′ is primitive. In view of Lemma 4.8, it suffices to show that
B \
⋃

n≥1 cnZ and {cn : n ≥ 1} are taut. Suppose that B \
⋃

n≥1 cnZ fails to be
taut. Then, by Proposition 2.30, for some c ∈ N and a Behrend set A , we have
cA ⊂ B \

⋃
n≥1 cnZ. Therefore, for any n ≥ 1, we have cA ⊂ B \ (c1Z∪ . . .∪ cnZ).

By the definition of cn+1, we obtain c ≥ cn+1. Since n ≥ 1 is arbitrary and the
sequence (cn)n≥1 is strictly increasing, this yields a contradiction.

Suppose now that C := {cn : n ≥ 1} fails to be taut. Then, for some n0 ≥ 1, we
have δ(MC ) = δ(MC\{cn0

}). Note that by (37), we have cn0

∈
⋃

n�=n0
cnZ.

Therefore, by Proposition 2.29, the set {cn/ gcd(cn, cn0
) : n 
= n0} is Behrend.

We have{
cn

gcd(cn, cn0
)
: n 
= n0

}
=
⋃

dn0
|cn0

{
cn
dn0

: n 
= n0, gcd(cn, cn0
) = dn0

}
.

It follows from Proposition 2.28 that at least one of the sets in the union above is
Behrend. Denote this set by A (dn0

) and, for m > n0, define

Am :=

{
cn
dn0

: n ≥ m, gcd(cn, cn0
) = dn0

}
.

Since each Am differs from Adn0
by at most finitely many elements, it follows from

Proposition 2.28 that Am is Behrend for m > n0. Let

A ′
m :=

⋃
n≥m

gcd(cn,cn0
)=dn0

cn
dn0

A n.
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Using Theorem 2.23, Corollary 2.25, and the fact that A n is Behrend (the sets A n

are the same as in the construction of B′), we obtain

δ(MA ′
m
) = lim

K→∞
δ
(
M ⋃

m≤n≤K
gcd(cn,cn0

)=dn0

cn
dn0

A n

)

= lim
K→∞

δ
(
M{

cn
gcd(cn,cn0

)
:m≤n≤K,gcd(cn,cn0

)=dn0

}) = δ(MAm
) = 1,

since Am is Behrend. By the definition of A ′
m and A n, n ≥ m > n0, it follows that

dn0
A ′

m ⊂
⋃

n≥m

cnA n ⊂ B \
⋃

n<m

cnZ.

Moreover, by the definition of cm, it follows that dn0
≥ cm, which is impossible as

m ≥ n0 is arbitrary. This completes the proof. �

Lemma 4.11. We have νη = νη′ .

Proof. We will show first that d(MB) = d(MB′). Let

A1 := B \
⋃
n≥1

cnZ, Ak := ck−1A
k−1 for k ≥ 2,

A ′
1 := B \

⋃
n≥1

cnZ, A ′
k := {ck−1} for k ≥ 2.

Then

(41) B =
⋃
n≥1

An and B′ =
⋃
n≥1

A ′
n.

Since each of the sets A k, k ≥ 1, is Behrend, we have

(42) δ(MA1∪...∪AK
) = δ(MA ′

1∪...∪A ′
K
) for each K ≥ 1.

It follows from (41), (42), and by Corollary 2.25 that

d(MB) = δ(MB) = lim
K→∞

δ(MA1∪...∪AK
)

= lim
K→∞

δ(MA ′
1∪...∪A ′

K
) = δ(MB′) = d(MB′).

Moreover, since MB ⊂ MB′ , it follows that whenever (Nk)k≥1 satisfies

lim
k→∞

1

Nk
|MB′ ∩ [1, Nk]| = d(MB′),

then

lim
k→∞

1

Nk
|MB ∩ [1, Nk]| = d(MB).

Since η and η′ differ, along (Nk)k≥1, on a subset of zero density, it follows from The-
orem 4.1 that η and η′ are generic along (Nk)k≥1 for the same measure, i.e.,
νη = νη′ . �

Theorem 4.5 follows from Lemmas 4.10 and 4.11.
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4.3. Different classes of B-free numbers. In Section 2.6, we defined several
classes of B-free numbers and described some basic relations between them. In
particular, we showed that

B is thin ⇒ B has light tails

and

B has light tails (and is primitive) ⇒ B is taut.

We will now continue this discussion. In particular, we will show that the implica-
tions converse to the above do not hold. The relations between various classes of
B-free numbers for primitive B ⊂ N are summarized in this diagram (all depicted
regions are non-empty):

Erdös

S

thin

BA

light tails

Ex 4.13

Thm 4.20

Prop 4.17taut
Remark 4.24

Behrend

P

Besicovitch

2P

Remark 4.12. Let B,B′ ⊂ N be such that:

• for each b′ ∈ B′ there exists b ∈ B such that b | b′,
• for each b ∈ B there exists b′ ∈ B′ such that b | b′.

Then, clearly, FB ⊂ FB′ . Suppose additionally that B has light tails and for each
b ∈ B the set {b′ ∈ B′ : b | b′} is finite. Then, given K ≥ 1, there exists NK ≥ 1
such that

if b ∈ B, b′ ∈ B′, b | b′, and b′ > NK , then b > K.
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It follows that ⋃
b′>NK

b′Z ⊂
⋃
b>K

bZ.

Therefore, if B has light tails, then also B′ has light tails. In particular, this applies
when B is thin (see Example 4.13 below).

Example 4.13 (B has light tails 
⇒ B is thin). Let (qn)n≥1 be a thin sequence
of primes, i.e.,

∑
n≥1

1
qn

< +∞. We arrange the remaining primes into countably

many finite pairwise disjoint sets of the form {pn,1, pn,2, . . . , pn,kn
} such that

1

pn,1
+

1

pn,2
+ . . .+

1

pn,kn

≥ qn for any n.

Let B := {qnpn,j : n ∈ N, j = 1, . . . , kn}. By Remark 4.12, B has light tails. We
will show now that B is not thin. Indeed,∑

b∈B

1

b
=
∑
n≥1

(
1

qnpn,1
+

1

qnpn,2
+ . . .+

1

qnpn,kn

)
≥
∑
n≥1

1 = +∞.

Remark 4.14. Notice that B from Example 4.13 is not coprime (qnpn,1 and qnpn,2
are clearly not coprime). This is not surprising – if B is coprime, then it has light
tails if and only if it is thin. (Indeed, in the coprime case the density of FB exists
and it is equal to

∏
k≥1(1 − 1

bk
); see, e.g., [28]). Note however that B above is

primitive.

Remark 4.15. Let B be as in Example 4.13. It follows from Remark 4.4 that
νη 
= δ...0.00....

Example 4.16. Let B := 2P ∪ (S \ {2}). Then, by Corollary 2.22, B is Besi-
covitch but, in view of Propositions 2.28 and 2.30, it is neither taut nor Behrend.
Moreover, by Theorem 3.7, (Xη, S) is proximal. We claim that it is not hereditary.
Indeed, we have η[−3, 3] = 1110111 and η(2n) = 0 for each |n| 
= 1. Hence the
block 0110111 does not appear in η and the claim follows.

Proposition 4.17. There exists a taut B which is not Besicovitch.

In the proof, we will use the following lemma:

Lemma 4.18. Let B ⊂ N and let B′ be as in the proof of Theorem 4.5. Then B
is Besicovitch whenever B′ is Besicovitch.

Proof. Recall that in the notation from the proof of Theorem 4.5, we have

B = (B \
⋃
n≥1

cnA n) ∪
⋃
n≥1

cnA n

and

B′ = (B \
⋃
n≥1

cnA n) ∪ {cn : n ≥ 1}.

It follows from Theorem 2.23, by the fact that the sets A n for n ≥ 1 are Behrend,
and by Corollary 2.25 that we have

d(MB) = lim
K→∞

δ(M(B\
⋃

n≥1 cnA n)∪
⋃

n≤K cnAn
)

= lim
K→∞

δ(M(B\
⋃

n≥1 cnA n)∪{cn:n≤K}) = d(MB′).
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Therefore, if B′ is Besicovitch, we obtain d(MB) = d(MB′). On the other hand,
by Theorem 4.5, we have MB ⊂ MB′ , and it follows that d(MB) ≤ d(MB′). We
obtain d(MB) ≤ d(MB) and conclude that also B must be Besicovitch. �
Proof of Proposition 4.17. Consider B that fails to be Besicovitch. By Lemma 4.18,
the associated set B′ defined as in (40) also fails to be Besicovitch. Moreover, in
view of Lemma 4.10, B′ is taut. �

Since, as noted in Section 2.6, each B with light tails is automatically Besicov-
itch, we have the following immediate consequence of Proposition 4.17:

Corollary 4.19. There is a taut B which does not have light tails.

The rest of this section is devoted to the proof of the following more subtle result:

Theorem 4.20. There is a taut and Besicovitch B which does not have light tails.

To prove Theorem 4.20, we will need three lemmas.

Lemma 4.21. Let R be a union of finitely many arithmetic progressions with dif-
ferences d1, ..., dr. Then R is a union of finitely many pairwise disjoint arithmetic
progressions with differences d′ = lcm(d1, . . . , dr).

Proof. Let R =
⋃r

i=1(diZ + ai) and {a′1, . . . , a′s} = R ∩ [0, d′). Clearly, R′ =⋃s
i=1(d

′Z+ a′i) is a union of finitely many arithmetic sequences with differences d′,
and it is easy to see that R = R′. �
Lemma 4.22. Assume that B,C ⊂ N are thin, with gcd(b, c) = 1 for any b ∈ B,
c ∈ C. Let BC := {bc : b ∈ B, c ∈ C}. Then

(43) d(MBC) = d(MB ∩MC) = d(MB)d(MC).

Proof. Since lcm(b, c) = bc for any b ∈ B and c ∈ C, it follows that

MBC = MB ∩MC .

It remains to show the right hand side equality in (43), and it is enough to show
its validity for finite sets B, C (since BC is thin, it is Besicovitch, and we can use
Theorem 2.23 to pass to a limit).

Let B = {b1, . . . , bn}, C = {c1, . . . , cm}, and set b′ := lcm(b1, . . . , bn), c′ :=
lcm(c1, . . . , cm). Then, by Lemma 4.21,

MB =
⋃
r∈R

(b′Z+ r) and MC =
⋃
s∈S

(c′Z+ s)

for some finite sets R,S ⊂ N. Note that

(44) d(MB) =
|R|
b′

and d(MC) =
|S|
c′

.

Since gcd(b′, c′) = 1, we get

(45) d((b′Z+ r) ∩ (c′Z+ s)) =
1

b′c′

for any r ∈ R, s ∈ S. Hence, by (45) and (44), we obtain

d(MB ∩MC) = d(
⋃

(r,s)∈R×S

(b′Z+ r) ∩ (c′Z+ s)) =
|R× S|
b′c′

= d(MB)d(MC),

and the result follows. �
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Lemma 4.23. Let P ⊂ N be pairwise coprime with
∑

p∈P
1/p = +∞. For any

0 < β < 1 there exists a finite (resp. infinite and thin) set P ′ ⊂ P such that

β < d(MP ′) < 1.

Proof. For n ≥ 1, let Pn := {p ∈ P : p ≤ n}. By Theorem 2.23, we have

lim
n→∞

d(MPn
) = d(MP ) = 1.

Therefore, for n ≥ 1 large enough, we have β < d(MPn
) < 1 and we can take

P ′ := Pn to obtain a finite set satisfying the assertion. To obtain an infinite set P ′,
let the sequence (pm)m≥1 ⊂ P be such that d(MPn

) +
∑

m≥1
1/pm < 1 and take

P ′ := Pn ∪ {pm : m ≥ 1}. �
Construction. Fix 0 < γ < 1 and choose a sequence (γk)k≥1 ⊂ (0, 1) such that∏

k≥1 γk = γ (for instance, γk = γ1/2k). Applying Lemma 4.23, we construct

a collection {Bk, Ck : k ∈ N} of pairwise disjoint thin sets of primes such that

(46) γk < d(MBk
) < 1 for k ≥ 1

and

(47) 1− 1

k
< d(MCk

) for k ≥ 1.

Let

(48) B := B1C1 ∪B1B2C2 ∪ . . . ∪B1 . . . BnCn ∪ . . . .

Notice that B1C1 ∪B1B2C2 ∪ . . . ∪B1 . . . BnCn is thin for any n ∈ N.

Proof of Theorem 4.20. Let B be defined as in (48). We claim the following:

(a) B is Besicovitch,
(b) B does not have light tails,
(c) B is taut.

We will first prove (a). For k ≥ m, we have

MB1...BkCk
⊂ MB1...Bk

⊂ MB1...Bm
.

Thus,

(49) d(M⋃
k≥m+1 B1...BkCk

\MB1...BmCm
) ≤ d(MB1...Bm

\MB1...BmCm
).

By Lemma 4.22 and (47), we get

d(MB1...BmCm
) = d(MB1...Bm

)d(MCm
) ≥ d(MB1...Bm

)(1− 1/m),

whence

(50) d(MB1...Bm
\MB1...BmCm

) ≤ (1/m)d(MB1...Bm
) ≤ 1/m.

Using (49) and (50), we obtain

d(M⋃∞
i=m+1 B1...BiCi

\MB1...BmCm
) ≤ 1/m.

In view of Remark 2.26, this implies that B is Besicovitch.
We will now show (b). By Lemma 4.22, (46), and (47), we have

d(MB1...BmCm
) ≥ γ1 . . . γm(1− 1/m) → γ > 0

as m → +∞, which yields (b).
It remains to prove (c). Suppose that B is not taut. Since B is primitive, it

follows from Proposition 2.30 that for some c ∈ N and a Behrend set A ⊂ N \ {1},
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we have cA ⊂ B. Let m ∈ N be such that c is coprime to all elements of Bm+1

(such m exists since Bn, n ∈ N, are pairwise disjoint sets of primes). Let

B1 := B1C1 ∪ . . . ∪B1B2 . . . BmCm and B2 :=
⋃

n>m

B1B2 . . . BnCn.

Then clearly, B = B1 ∪ B2. Moreover, let

A1 :=

{
b

c
: b ∈ cA ∩ B1

}
and A2 :=

{
b

c
: b ∈ cA ∩ B2

}
.

Then clearly, A = A1 ∪ A2. Since B1 is thin, it follows from (5) and (7) that
B1 is taut. Therefore, since cA1 ⊂ B1, it follows from Proposition 2.30 that A1

is not Behrend. Since A is Behrend, we obtain by Proposition 2.28 that A2 must
be Behrend. Moreover, we have cA2 ⊂ B2. Take a ∈ A2. Since c is coprime to
each element of Bm+1, it follows that a ∈ MBm+1

. Hence, MA2
⊂ MBm+1

, which
is impossible since d(MA2

) = 1, whereas d(MBm+1
) < 1 since Bm+1 is thin. We

obtain that B is taut, which completes the proof. �

Remark 4.24. There exists a set which is not Besicovitch nor taut. In order to see
this let B be any set which is not Besicovitch [6]; that is, d(MB) < d(MB) and
let m ∈ N be a number such that 1

m < d(MB) − d(MB). Then it is not hard to
see that B ∪mP is not Besicovitch and clearly it is not taut.

4.3.1. When B is finite, (X̃η, S) and (XB, S) are sofic.

Proposition 4.25. Let B ⊂ N be primitive. Then B is finite if and only if η is
periodic, with the minimal period m = lcm(B).

Proof. If B is finite, then η is periodic with period lcmB. Suppose now that η is
periodic and denote its period by m. Let 1 ≤ r1 < r2 < . . . < rs ≤ m be such that
(supp η) ∩ [1,m] = {1, . . . ,m} \ {r1, . . . , rs}. Then⋃

b∈B

bZ =
s⋃

�=1

(mZ+ r�).

For 1 � � � s, let d� := gcd(m, r�). By the definition of d�, we have

(51) d�Z ⊃ mZ+ r�.

Then, gcd(m, r�) | d�; hence the equation r�x ≡ d� mod m has a solution for every �,
which implies that there exists k� ∈ Z such that r�k� ≡ d� mod m. Since η(r�) = 0,
we have η(r�k�) = 0, which, by periodicity, yields η(d�) = 0. This and (51) imply
that

(52)
⋃
b∈B

bZ =

s⋃
�=1

d�Z.

Fix b ∈ B. It follows from (52) that d� | b for some 1 ≤ � ≤ s. On the other
hand, there exists b′ ∈ B such that b′ | d�. By the primitivity of B, we have b′ | b,
whence b = b′ and d� = b. We conclude that B ⊂ {d� : 1 ≤ � ≤ s}; i.e., B is finite.
Moreover, since d� | m for 1 ≤ � ≤ s, we obtain b | m for each b ∈ B. This yields
lcm(B) | m. �
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Assume now that B = {b1, . . . , bn}. It is folklore that both subshifts (X̃η, S)
and (XB, S) are sofic, but we provide a proof of these facts for completeness (the
subshifts (XB, S), for any finite B ⊂ S , were shown to be sofic in [47]). Thus, for
a finite B, the results of the paper or answers to questions stated in the paper follow
from the theory of sofic systems, see, e.g., [39,53]. Recall that, by Proposition 3.25,
sofic systems obtained from finite B are not totally transitive; cf. also Example 2.43

to see that X̃η can be smaller than XB.
For any n-tuple r = (r1, . . . , rn) ∈ Zn, we say that a block x = x1 . . . x� ∈ {0, 1}�

satisfies the formula φr if and only if

supp(x) ∩
n⋃

i=1

(biZ+ ri) = ∅.

In this case, we write φr(x). We say that φr is equivalent to φs provided φr(x) ⇔
φs(x) for any block x.

Remark 4.26. Clearly, the formulas φr, φs, where r = (r1, . . . , rn), s = (s1, . . . , sn)
are equivalent if ri = si mod bi for any i = 1, . . . , n. Thus, there are only finitely
many equivalence classes of the formulas φr.

Given m ∈ Z and r = (r1, . . . , rn) ∈ Zn, we set r−m := (r1−m, . . . , rn−m). Let
C := {(r1, . . . , rn) ∈ Zn : ∀i,j=1,...,n gcd(bi, bj)|ri − rj}. Let FXB(x) (resp. FX̃η

(x))

denote the set of the followers of x in XB (resp. in X̃η), that is,

FXB(x) := {y ∈
∞⋃
q=0

{0, 1}q : xy appears in XB}.

To show that (XB, S) is sofic, following [53], we need to show that the family
{FXB(x) : x ∈ XB} is finite. Further, we denote

Φ(x) = {r ∈ Zn : φr(x)}, Ψ(x) = {r ∈ C : φr(x)}.

Lemma 4.27. We have the following:

(1) A block x appears in XB if and only if φr(x) for some r ∈ Zn.

(2) A block x appears in X̃η if and only if φr(x) for some r ∈ C.
(3) A block y ∈ FXB(x) if and only if φr−|x|(y) for some r ∈ Φ(x).
(4) A block y ∈ FX̃η

(x) if and only if φr−|x|(y) for some r ∈ Ψ(x).

Proof. (1) follows by the definition of XB, whereas (2) follows by the classical
Lemma 5.15.

Now, we show (3). Let y = y1 . . . yk be a block. In view of (1), the following
conditions are equivalent:

• the concatenation xy = x1 . . . x�y1 . . . yk appears in XB,
• φr(xy) for some r ∈ Zn,

• supp(xy) ∩
n⋃

i=1

(biZ+ ri) = ∅ for some r = (r1, . . . , rn) ∈ Zn,

• supp(x) ∩
n⋃

i=1

(biZ+ ri) = ∅ and supp(y) ∩
n⋃

i=1

(biZ+ ri − |x|) = ∅ for some

r ∈ Zn,
• φr−|x|(y) and r ∈ Φ(x) for some r ∈ Zn.

Thus, (3) follows, and the proof of (4) is analogous. �
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Proposition 4.28. The systems XB and X̃η are sofic.

Proof. By Lemma 4.27, the follower sets FXB(x), FX̃η
(x) are completely deter-

mined by the sets Φ(x), Ψ(x), respectively. But there are only finitely many such
sets, since the number of equivalence classes of the formulas φr is finite by Remark
4.26. �

4.4. Tautness and combinatorics (Theorem L – first steps). Since η ∈ XB,
a natural question arises how many residue classes are missing on supp η mod bk,
k ≥ 1. We will answer this question under the assumption that B is taut. Recall
first the following result:

Theorem 4.29 (Dirichlet). Let a, r ∈ N. If gcd(a, r) = 1, then aZ + r contains
infinitely many primes. Moreover,

∑
p∈(aZ+r)∩P 1/p = +∞.

Since each set containing a pairwise coprime set with divergent sum of reciprocals
is automatically Behrend and Proposition 2.28 holds, we obtain the following:

Corollary 4.30. Let a, r ∈ N. If gcd(a, r) = 1, then, for each N ≥ 1, the set
(aZ+ r) ∩ [N,∞) ∩ P is Behrend.

Proposition 4.31. Assume that B ⊂ N is taut, a ∈ N, 1 ≤ r ≤ a, and N ≥ 1. If

(53) (aZ+ r) ∩ [N,∞) ⊂
⋃
b∈B

bZ,

then there exists b ∈ B such that b | gcd(a, r). In particular, if a ∈ B, then r = a.

Proof. Suppose that a ∈ N and 1 ≤ r ≤ a are such that (53) holds. Let d :=
gcd(a, r), a′ := a/d, r′ := r/d; i.e., we have

d · (a′Z+ r′) ∩ [N,∞) ⊂
⋃
b∈B

bZ.

Applying Corollary 4.30 to a′ and r′, we obtain d(M(a′Z+r′)∩[N,∞)) = 1, whence
δ(MB) = δ(MB∪{d}). In view of Corollary 2.31, d ∈ MB. Then there exists
b ∈ B such that b | d, whence b | gcd(a, r).

Suppose now that a ∈ B and (53) holds. By the first part of the proof, we
have b | gcd(a, r) for some b ∈ B. It follows that b | a and, since a, b ∈ B, by the
primitivity of B, we obtain a = b. Therefore, using the relation b | gcd(a, r), we
obtain that b | r, and, since 1 ≤ r ≤ b, this yields r = b. �

Corollary 4.32. Assume that B ⊂ N is taut. Then, for each b ∈ B and 1 ≤ r ≤
b − 1, there exist infinitely many m ∈ FB such that m ≡ r mod b. In particular,
η ∈ Y .

Proof. Fix N ≥ 1, b ∈ B, and consider bZ+r for 1 ≤ r ≤ b−1. By Proposition 4.31,
(bZ+ r) ∩ [N,∞) 
⊂ MB, i.e.,

(FB ∩ [N,∞)) mod b = {1, . . . , r − 1},
and the result follows. �

Remark 4.33. Note that if η ∈ Y , then B is primitive. Indeed, if B is not primitive,
then, for some b, b′ ∈ B, we have b | b′. If |supp η mod b′| = b′−1, then |supp η mod
b| = b. The latter is impossible as η ∈ XB, and it follows that η 
∈ Y .
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The following example shows that the converse of Corollary 4.32 does not hold:

Example 4.34. Consider {(pi, ri) : i ≥ 1} = {(p, r) : p ∈ P, 0 < r < p}. Every
progression piZ+ ri contains infinitely many primes; given i ≥ 1 let, for n ≥ 1,

qni ∈ (piZ+ ri) ∩ P be such that qni > 2n · i2.
We set B := P \ {qni : i, n ≥ 1}. Since

∑
i,n≥1

1
qni

< ∞, it follows that B is

Behrend, so, in particular, B is not taut.
Let b ∈ B and 0 < r < b and let i ≥ 1 be such that (b, r) = (pi, ri). Then, for

each n ≥ 1, qni ≡ r mod b by the choice of qni . Moreover, qni ∈ FB since it is a
prime not belonging to B.

The following corollary extends an analogous result proved in [36] for B,B′ ⊂ N
thin and coprime.

Corollary 4.35. Let B,B′ ⊂ N and suppose that B is taut. Then the following
conditions are equivalent:

(a) XB ⊂ XB′ ,
(b) for each b′ ∈ B′ there exists b ∈ B with b | b′,
(c) η ≤ η′,

(d) X̃η ⊂ X̃η′ ,

(e) η ∈ X̃η′ ,
(f) η ∈ XB′ .

Proof. Clearly, we have (b) ⇒ (c) ⇒ (d) ⇒ (e) ⇒ (f) and (a) ⇒ (f). Therefore, to
complete the proof it suffices to show (b) ⇒ (a) and (f) ⇒ (b).

Suppose that (b) holds and let A ⊂ N be B-admissible. Take b′ ∈ B and let
b ∈ B be such that b | b′. It follows from the {b}-admissibility of A that for some
0 ≤ r ≤ b− 1, we have (bZ+ r)∩A = ∅, so all the more, we have (b′Z+ r)∩A = ∅;
i.e., A is {b′}-admissible and (a) follows.

Suppose that (f) holds. Then, for each b′ ∈ B′ there exists 1 ≤ r′ ≤ b′ such that
r′ 
∈ FB mod b′, i.e.,

b′Z+ r′ ⊂
⋃
b∈B

bZ.

It follows from Proposition 4.31 that there exists b ∈ B such that b | gcd(b′, r′), so,
in particular, b | b′; i.e., (b) holds. �
Corollary 4.36. Suppose that B,B′ are taut. Then the following conditions are
equivalent:

(a) XB = XB′ ,
(b) B = B′,
(c) η = η′,

(d) X̃η = X̃η′ ,

(e) η ∈ X̃η′ and η′ ∈ X̃η,
(f) η ∈ XB′ and η′ ∈ XB,
(g) Xη = Xη′ .

Proof. We have immediately (b) ⇒ (c) ⇒ (d) ⇒ (e) ⇒ (f), (b) ⇒ (a) ⇒ (f), and
(c) ⇒ (g) ⇒ (d). It remains to show (f) ⇒ (b). By the corresponding implication
in Corollary 4.35, for any b ∈ B there exist b′ ∈ B′ and b′′ ∈ B such that b′′ | b′ | b.
Since B is taut, it is, in particular, primitive, which yields b = b′ = b′′, i.e., B ⊂ B′.
Reversing the roles of B and B′, we obtain B = B′. �
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5. Heredity (proofs of Theorems D and G)

By Corollary 3.10, (Xη, S) is proximal whenever Xη is hereditary. The converse
to that does not hold; cf. Example 2.42. In this section, we will show however that
the proximality of (Xη, S) and the heredity of Xη are equivalent when B has light
tails.

Definition 5.1. We say that A ⊂ N is η-admissible whenever

(54) {k + 1, . . . , k + n} ∩ FB = A+ k

for some k, n ∈ N (in other words, supp η[k + 1, k + n] = A+ k).

Definition 5.2. We say that A ⊂ N satisfies condition (Ther) whenever

(Ther)
there exists {nb ∈ Z : b ∈ B} such that A ∩ (bZ+ nb) = ∅ and
gcd(b, b′) | nb − nb′ for any b, b′ ∈ B.

Our main goal in this section is to prove the following:

Theorem 5.3. Assume that B ⊂ N has light tails and satisfies (Au). Let n ∈ N
and A ⊂ {1, . . . , n}. The following conditions are equivalent:

(a) A satisfies (Ther),
(b) A is η-admissible.

In particular, Xη is hereditary, i.e., Xη = X̃η.

Remark 5.4 (Proof of Theorem D). Clearly, if A′ ⊂ A ⊂ N and A satisfies (Ther),
then also A′ satisfies (Ther). Thus, Theorem D, i.e., the assertion that Xη is hered-
itary in Theorem 5.3, follows immediately by the equivalence of (a) and (b).

As an immediate consequence of Theorems 3.7 and 5.3, we have:

Corollary 5.5. Assume that B ⊂ N has light tails. Then Xη is hereditary if and
only if (Xη, S) is proximal.

Example 5.6. Let B ⊂ N be as in Example 2.43. If additionally B has light tails

and satisfies (Au), then, by Theorem 5.3, Xη = X̃η. For example, one can take
B = {4, 6} ∪ {p2 : p ∈ P, p > 12}.

On the other hand, if (Au) fails, then, by Theorem 3.7, (Xη, S) fails to be
proximal. Hence, by Corollary 3.10, Xη also fails to be hereditary. For example,
one can take B = {4, 6} ∪ {5p2 : p ∈ P, p > 12}.

We leave the following question open:

Question 5.7. Are the heredity of Xη and proximality of (Xη, S) the same when-
ever B is taut?

Remark 5.8. Notice that B from the construction on page 5459 satisfies condi-
tion (Au) whenever B1, C1 are infinite; i.e., (Xη, S) is proximal. We do not know

whether in this example Xη = X̃η.

For the proof of Theorem 5.3, we will need several auxiliary results.

Lemma 5.9. Let n ∈ N and suppose that A ⊂ {1, . . . , n} is η-admissible. Then A
satisfies (Ther).
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Proof. Suppose that {k + 1, . . . , k + n} ∩ FB = A + k for some k. For b ∈ B, let
nb := −k. Since for any i ∈ A, i+ k ∈ FB, we have i+ k /∈ bZ for any b ∈ B. This
means that i /∈ bZ− k = bZ+ nb. Clearly, gcd(b, b

′)|(nb − nb′) for b, b
′ ∈ B; hence

A satisfies (Ther). �

Lemma 5.9 gives the implication (b) ⇒ (a) in the assertion of Theorem 5.3. Now,
we will prove the converse implication. For n ≥ 1, let

B(n) := {b ∈ B : p ≤ n for any p ∈ Spec(b)},
where Spec(b) stands for the set of all prime divisors of b. For A ⊂ N the set
Spec(A) is defined as the union of Spec(a), a ∈ A. Our main tools are the following
two results:

Proposition 5.10. Assume that B ⊂ N satisfies (Au) and B(n) ⊂ A ⊂ B.
Suppose that

(55) {k + 1, . . . , k + n} ∩MA = {k + i1, k + i2, . . . , k + ir}
for some 1 ≤ i1, . . . , ir ≤ n, r < n (if r = 0, we interpret the right hand side of (55)
as the empty set). Then, for arbitrary i0 ∈ {1, . . . , n}, there exist B(n) ⊂ A ′ ⊂ B
and k′ ∈ Z such that

{k′ + 1, . . . , k′ + n} ∩MA ′ = {k′ + i0, k
′ + i1, . . . , k

′ + ir}.

Proposition 5.11. Assume that B ⊂ N has light tails and B(n) ⊂ A ⊂ B.
Suppose that

(56) {k + 1, . . . , k + n} ∩MA = {k + i0, k + i1, . . . , k + ir}
for some 1 ≤ i0, . . . , ir ≤ n, r < n. Then the density of k′ ∈ N such that

{k′ + 1, . . . , k′ + n} ∩MB = {k′ + i0, k
′ + i1, . . . , k

′ + ir}
is positive.

Remark 5.12. For the purposes of this section it would be sufficient to know that
such k′ exists. We will use this result in its full form later.

Before we give the proofs of Propositions 5.10 and 5.11, we will show how these
two results yield the implication (a) ⇒ (b) in Theorem 5.3. Notice first that iter-
ating Propositions 5.10 and 5.11, we obtain immediately the following:

Corollary 5.13. Assume that B has light tails and satisfies (Au). Assume that
B(n) ⊂ A ⊂ B. Suppose that

(57) {k + 1, . . . , k + n} ∩MA = k + C

for some C ⊂ {1, . . . . , n}. Then, for arbitrary set C ′ such that C ⊂ C ′ ⊂
{1, . . . , n}, the density of the set of k′ ∈ Z such that {k′ + 1, . . . , k′ + n} ∩MB =
k′ + C ′ is positive.

We will now present some auxiliary results.

Lemma 5.14. Let A ⊂ N be primitive, with Spec(A) finite. Then A is also finite.

Proof. The proof will use induction on |Spec(A)|. Clearly, if |Spec(A)| = 1, then
also |A| = 1. Suppose that the assertion holds for any set A with |Spec(A)| ≤ n−1.
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Now let A be primitive with |Spec(A)| = n, i.e., Spec(A) = {p1, . . . , pn} ⊂ P. For
k ≥ 0, let

A(k) :={a ∈ A : k = max{� ≥ 0 : (p1 · . . . · pn)� | a}},
B(k) :={a/(p1 · . . . · pn)k : a ∈ A(k)}.

For 1 ≤ i ≤ n, let B
(k)
i := {b ∈ B(k) : pi � b}. By the induction hypothesis, each

of the sets B
(k)
i is finite. Therefore B(k) is finite because B(k) =

⋃
1≤i≤n B

(k)
i . It

follows immediately that also A(k) is finite. Suppose that |{k ≥ 0 : A(k) 
= ∅}| = ∞.
Choose a = pα1

1 · . . . ·pαn
n ∈ A. Let k0 > max{αi : 1 ≤ i ≤ n} be such that A(k0) 
= ∅

and take a′ ∈ A(k0). Then a | a′; however a 
= a′, which yields a contradiction; i.e.,
we have |{k ≥ 0 : A(k) 
= ∅}| < ∞. Since A =

⋃
k≥0 A

(k) is a finite union of finite

sets, we obtain |A| < ∞. �
Lemma 5.15 (See, e.g., [40]). Let b1, . . . , bk ∈ N, n1 . . . , nk ∈ Z. The system of
congruences

m ≡ ni mod bi, 1 ≤ i ≤ k,

has a solution m ∈ N if and only if gcd(bi, bj) | (ni − nj) for any i, j = 1, . . . , k.

Proof of Theorem 5.3. In view of Lemma 5.9, we have (b) ⇒ (a). We will now
show that (a) ⇒ (b). Assume that A ⊂ {1, . . . , n} satisfies condition (Ther) with
{nb : b ∈ B}. Since B is primitive, it follows from Lemma 5.14 that B(n) is finite.
Therefore, by Lemma 5.15, there exists m ∈ N such that m ≡ −nb mod b for each
b ∈ B(n). It follows that

{m+ 1, . . . ,m+ n} ∩MB(n)

= ({1, . . . , n} ∩
⋃

b∈B(n)

(bZ+ nb)) +m ⊂ ({1, . . . , n} \A) +m.

Applying Corollary 5.13 to A = B(n), k = m, C = {1, . . . , n} ∩
⋃

b∈B(n)(bZ+ nb),
and C ′ = {1, . . . , n} \A, we conclude that there exists m′ such that

{m′ + 1, . . . ,m′ + n} ∩MB = ({1, . . . , n} \A) +m′.

Equivalently, {m′ + 1, . . . ,m′ + n} ∩ FB = A+m′, which yields (a) ⇒ (b). �
What remains to be proved is Propositions 5.10 and 5.11.

Proof of Proposition 5.10. For u = 1, . . . , r, let ju be such that bju ∈ A and bju |
k + iu. Let B := B(n) ∪ {bj1 , . . . , bjr}. Then any b ∈ B \ B has a prime divisor
p > n and, by Lemma 5.14, the set B is finite. Let β1 := lcmB. Using bju | k + iu
and the assumption (55), we obtain

{i1, . . . , ir} ⊂ ({k + β1�+ 1, . . . , k + β1�+ n} ∩MB)− (k + β1�)

= ({k+1, . . . , k+n}∩MB)− k ⊂ ({k+1, . . . , k+n}∩MA )− k = {i1, . . . , ir};
i.e., for any � ∈ Z we have

(58) ({k + β1�+ 1, . . . , k + β1�+ n} ∩MB)− (k + β1�) = {i1, . . . , ir}.
Using (Au), we can find j0 such that gcd(bj0 , β1) = 1. It follows that there are
�0 ∈ Z and s ∈ Z such that β1�0 − sbj0 = −i0 − k. Hence, for k′ := k + β1�0, we
have bj0 | k′ + i0. Since bj0 /∈ B, we have bj0 > n. It follows that

(59) bj0 � k′ + i for any 1 ≤ i 
= i0 ≤ n
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(indeed, if bj0 | k′ + i, then n < bj0 | (i− i0)). Let β := β1bj0 . It follows from (59)
and (58) (with l := l0 +mbj0) that

({k′ + βm+ 1, . . . , k′ + βm+ n} ∩MB∪{bj0})− (k′ + βm)

= {i0, i1, . . . , ir}

for any m ∈ N. Hence, it suffices to take A ′ = B ∪ {bj0}. �

The proof of Proposition 5.11 will be proceeded by several lemmas.

Lemma 5.16. Let R be the intersection of finitely many arithmetic progressions
with differences d1, . . . , dr. Then either R = ∅ or R is equal to an arithmetic
progression of difference lcm(d1, . . . , dr).

Proof. It suffices to notice that if a ∈ R, then R = lcm(d1, . . . , dr)Z+ a. �

Lemma 5.17. Let β, r, n ∈ N, and assume that p > n is a prime that does not
divide β. Assume that R is a union of finitely many arithmetic progressions with
steps not divisible by p. Then

(60) d

(
(βZ+ r) ∩

(
n⋃

i=1

(pZ− i)

)
∩ R

)
=

n

p
d((βZ+ r) ∩ R)

and

(61) d

(
(βZ+ r) \

(
n⋃

i=1

(pZ− i) ∪ R

))
=

(
1− n

p

)
d ((βZ+ r) \ R) .

Proof. By Lemma 4.21, in order to prove (60), it suffices to prove it for R = bZ+j,
where p � b. Moreover, since the progressions pZ − i are pairwise disjoint for
1 ≤ i ≤ n, what we need to show is

(62) d((βZ+ r) ∩ (pZ− i) ∩ (bZ+ j)) =
1

p
d((βZ+ r) ∩ (bZ+ j))

for each 1 ≤ i ≤ n. Clearly, the above equality holds if (βZ + r) ∩ (bZ + j) = ∅.
Otherwise, let β′ := lcm(β, b) and take a ∈ (βZ+r)∩(bZ+j). Then, by Lemma 5.16,
(βZ+ r) ∩ (bZ+ j) = β′Z+ a and (62) is equivalent to

(63) d((β′Z+ a) ∩ (pZ− i)) =
1

p
d(β′Z+ a).

Since gcd(β′, p) = 1, it follows that (β′Z+ a) ∩ (pZ− i) 
= ∅ and (63) is a straight-
forward consequence of Lemma 5.16.
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In order to prove (61), note that

d

(
(βZ+ r) \

(
n⋃

i=1

(pZ− i) ∪ R

))

= d (βZ+ r)− d ((βZ+ r) ∩ R)− d

(
(βZ+ r) ∩

(
n⋃

i=1

(pZ− i)

))

+ d

(
(βZ+ r) ∩

(
n⋃

i=1

(pZ− i) ∩ R

))
= d (βZ+ r)− d ((βZ+ r) ∩ R)− n

p
d (βZ+ r) +

n

p
d ((βZ+ r) ∩ R)

=

(
1− n

p

)
d((βZ+ r) \ R),

where the second equality follows from (60). �

Lemma 5.18. Let β, r, n, c1, . . . , cm ∈ N. Assume that p > n is a prime, p divides
c1, . . . , ck, and p does not divide ck+1, . . . , cm nor β. Then

(64) d

(
(βZ+ r) ∩

n⋂
i=1

(
F{c1,...,cm} − i

))

≥
(
1− n

p

)
d

(
(βZ+ r) ∩

n⋂
i=1

(
F{ck+1,...,cm} − i

))
.

Proof. Notice first that

(65) (A− i)c = Ac − i for any A ⊂ Z, i ∈ Z.

Therefore,

(66) (βZ+ r) ∩
n⋂

i=1

(
F{c1,...,cm} − i

)
= (βZ+ r) \

(
n⋃

i=1

(
M{c1,...,cm} − i

))
.

Since

M{c1,...,cm} ⊂ M{p,ck+1,...,cm} = pZ ∪M{ck+1,...,cm},

using (66), we obtain

(βZ+ r)∩
n⋂

i=1

(
F{c1,...,cm} − i

)
⊃ (βZ+r)\

(
n⋃

i=1

(pZ− i) ∪
n⋃

i=1

(
M{ck+1,...,cm} − i

))
.

To complete the proof, we apply Lemma 5.17 to R =
⋃n

i=1(M{ck+1,...,cm} − i) and
use again (65). �

Remark 5.19. In Lemma 5.18 we allow k = m (then {ck+1, . . . , cm} = ∅, F∅ = Z,
and M∅ = ∅).

Lemma 5.20. Let β, r, n ∈ N. Suppose that {cm : m ≥ 1} ⊂ N is Besicovitch.
Assume that p > n is a prime and p divides c1 but does not divide β. Then the



B-FREE SETS AND DYNAMICS 5469

densities of (βZ+ r)∩
⋂n

i=1

(
F{cm:m≥1} − i

)
and (βZ+ r)∩

⋂n
i=1

(
F{cm:m≥2} − i

)
exist and

d

(
(βZ+ r) ∩

n⋂
i=1

(
F{cm:m≥1} − i

))

≥
(
1− n

p

)
d

(
(βZ+ r) ∩

n⋂
i=1

(
F{cm:m≥2} − i

))
.

Proof. FixM ∈N and assume that cl1 , . . . , clt are the elements of the set {c1, . . . , cM}
which are not divisible by p (t can be equal to 0; cf. Remark 5.19). By Lemma
5.18, it follows that

d

(
(βZ+ r) ∩

n⋂
i=1

(
F{c1,...,cM } − i

))

≥
(
1− n

p

)
d

(
(βZ+ r) ∩

n⋂
i=1

(
F{cl1 ,...,clt} − i

))
.

On the other hand, F{c2,...,cM } ⊂ F{cl1 ,...,clt}. Thus, we obtain

d

(
(βZ+ r) ∩

n⋂
i=1

(
F{c1,...,cM } − i

))

≥
(
1− n

p

)
d

(
(βZ+ r) ∩

n⋂
i=1

(
F{c2,...,cM} − i

))
.

To finish the proof use Theorem 2.23 and let M → ∞. �

Lemma 5.21. Suppose that B has light tails. Assume that β, r, n ∈ N and
bk1

, bk2
, . . . ∈ B are such that each bkj

has a prime divisor greater than n and
not dividing β. Then the density of

(βZ+ r) ∩
n⋂

i=1

(
F{bkj

:j≥1} − i
)

exists and is positive.

Proof. Observe that by Lemma 5.20, for any m ≥ 1, we have

d

(
(βZ+ r) ∩

n⋂
i=1

(
F{bkm ,bkm+1

,...} − i
))

≥
(
1− n

p

)
d

(
(βZ+ r) ∩

n⋂
i=1

(
F{bkm+1

,...} − i
))

,

where p > n is a prime divisor of bkm
. It follows that

d

(
(βZ+ r) ∩

n⋂
i=1

(
F{bk1

,bk2
,...} − i

))

≥ ρ (m) d

(
(βZ+ r) ∩

n⋂
i=1

(
F{bkm ,bkm+1

,...} − i
))

,
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where ρ (m) > 0 depends only on m. Since B has light tails, for m large enough so

that d
(
M{bkm ,bkm+1

,...}

)
< 1

nβ , we have

d

(
(βZ+ r) ∩

n⋂
i=1

(
F{bkm+1

,bkm+2
,...} − i

))
> 0,

and the assertion follows. �

Proof of Proposition 5.11. For u = 1, . . . , r, let ju be such that bju ∈ A and bju |
k+iu. Without loss of generality, we may assume that A = {bju : 0 ≤ u ≤ r}∪B(n).
Then, by Lemma 5.14, A is finite, and we set β := gcd(A ). It follows from (56)
that

(67) ({k + βm+ 1, . . . , k + βm+ n} ∩MA )− (k + βm) = {i0, . . . , ir}

for any m ∈ N. Let

B := {b ∈ B \ A : all prime divisors of b greater than n divide β}

(B may be empty) and notice that B is finite. Indeed, if p is a prime divisor of
b ∈ B, then either p ≤ n or p > n and divides β. Hence |Spec(B)| < ∞ and we
use Lemma 5.14. Since B(n) ⊂ A , we have B ⊂ B \ B(n), and it follows that any
b ∈ B has a prime divisor p > n. Let b ∈ B and take a prime p | b, p > n. By the
definition of B, we have p | β, whence p | bju for some 0 ≤ u ≤ r. It follows that
if b | k + βm + i for some 1 ≤ i ≤ n, then i ∈ {i0, . . . , ir} (otherwise, bju | k + iu
would imply p | iu − i, which is impossible). Thus, by (67), we obtain

(68) ({k + βm+ 1, . . . , k + βm+ n} ∩MA ∪B)− (k + βm) = {i0, i1, . . . , ir}

for any m ∈ N. Let

(B \ A ) \B =: B′ = {bk1
, bk2

, . . . };

i.e., each bkj
has a prime divisor greater than n, not dividing β. By Lemma 5.21,

the density of the set

(69) (Zβ + k) ∩ (

n⋂
i=1

F{bkj
:j≥1} − i)

exists and is positive. Therefore, for m ∈ N from some positive density set, we have
βm + k + i ∈ F{bkj

:j≥1} for any i = 1, . . . , n. Using (68), we obtain that for each

such m ∈ N, we have

({k + βm+ 1, . . . , k + βm+ n} ∩MB)− (k + βm)

= ({k + βm+ 1, . . . , k + βm+ n} ∩MA ∪B)− (k + βm) = {i0, . . . , ir},

as required. �

Proof of Theorem G. The assertion is an immediate consequence of Theorem 4.1
and of Proposition 5.11 (applied to A := B). �
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6. Entropy

6.1. Entropy of X̃η and XB (proof of Proposition K). In this section our
main goal is to prove Proposition K. To fix attention, we will restrict ourselves to
the case when B is infinite. The proof will be very similar to the proof of Theorem
5.3 in [1]. However, since our B are no longer Erdös, we cannot use the Chinese
Remainder Theorem directly and we will need an additional ingredient:

Lemma 6.1 (Rogers, see [27], p. 242). For any bk, k ≥ 1, any rk ∈ Z/bkZ, and
K ≥ 1, we have

(70) d
( ⋃

k≤K

(bkZ+ rk)
)
≥ d
(
M{b1,...,bK}

)
.

Remark 6.2. Clearly, for any n ∈ N,

d
( ⋃

k≤K

(bkZ+ rk)
)
=

1

n · b1 · . . . · bK

∣∣∣[1, n · b1 · . . . · bK ] ∩
( ⋃

k≤K

(bkZ+ rk)
)∣∣∣.

Proof of Proposition K. In view of Theorem 2.23, the result will follow once we
show that

htop(X̃η, S) = htop(XB, S) = d(FB).

For n ∈ N, let γ(n) := |{B ∈ {0, 1}n : B is B-admissible}| and, for K ≥ 1, let

γK(n) := |{B ∈ {0, 1}n : B is {b1, . . . , bK}-admissible}|.
Clearly, γ(n) ≤ γK(n) for any K ≥ 1. Moreover, any {b1, . . . , bK}-admissible
n · b1 · . . . · bK -block B ∈ {0, 1}[1,n·b1·...·bK ] can be obtained in the following way:

(a) choose (r1, . . . , rK) ∈
∏

k≤K Z/bkZ and set B(j) := 0 for 1 ≤ j ≤ n · b1 ·
. . . · bK satisfying j ≡ rk mod bk for some 1 ≤ k ≤ K,

(b) complete the word by choosing arbitrarily B(j) ∈ {0, 1} for all other 1 ≤
j ≤ n · b1 · . . . · bK .

(Clearly, (supp B) ∩ (biZ+ ri) = ∅.) Notice that once (r1, . . . , rK) ∈
∏

k≤K bkZ is

fixed, the freedom in step (b) gives 2n·b1·...·bK(1−d(
⋃

k≤K bkZ+rk)) pairwise distinct
{b1, . . . , bK}-admissible n · b1 · . . . · bK-blocks (cf. Remark 6.2). Moreover, in view
of Lemma 6.1, this number does not exceed

(71) 2n·b1·...·bK(1−dK),

where dK = d(M{b1,...,bK}).

We will show that htop(XB, S) ≤ d(FB). Fix ε > 0. In view of Theorem 2.23,

if K is large enough, then dK ≥ 1 − d(FB) − ε. Fix such K. It follows from
Lemma 6.1, Remark 6.2, and the discussion preceding (71) that

γK(n · b1 · . . . · bK) ≤ 2n·b1·...·bK ·(1−dK) ·
∏
k≤K

bk

whenever n = n(K, ε) is sufficiently large. Thus (since the number of possible
choices in step (a) equals b1 · . . . · bK), for such n, we obtain

γK(n · b1 · . . . · bK) ≤ 2n·b1·...·bK ·(d(FB)+ε) ·
∏
k≤K

bk.

Therefore, htop(XB, S) = limn→∞
1
n log γ(n) ≤ limn→∞

1
n log γK(n) ≤ d(FB).
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We will now show that htop(X̃η, S) ≥ d(FB). For n ≥ 1, denote by p(n) the

number of n-blocks occurring on X̃η. Let (Nk) be such that

lim
k→∞

1

Nk
|[0, Nk] ∩ FB| = d(FB).

Since p(Nk) ≥ 2|[0,Nk]∩FB|, it follows that htop(X̃η, S) = limk→∞
1
Nk

log p(Nk) ≥
d(FB), which completes the proof. �

Remark 6.3. Recall that a hereditary system has zero entropy if and only if δ...0.00...
is the unique invariant measure (for the proof, see [38]). Therefore, since both X̃η

and XB, are hereditary, it follows from Proposition K that the following conditions
are equivalent:

• P(XB, S) = {δ...0.00...},
• P(X̃η, S) = {δ...0.00...},
• δ(FB) = 0; i.e. B is Behrend,
• the upper Banach density

bd(FB) := lim sup
N→∞

sup
k≥1

1

N
|FB ∩ [k, k +N − 1]|

of FB is zero.

Note that the last condition follows directly from Theorem 2.23. Indeed, for each
A ⊂ Z, we have bd(A) = 1− bd(A). Moreover, for each K ≥ 1, bd(M{b∈B:b≤K}) =
d(M{b∈B:b≤K}). Since M{b∈B:b≤K} ∩ FB = ∅, we have

bd(FB) ≤ bd(Z \M{b∈B:b≤K}) = 1− bd(M{b∈B:b≤K}) → 0,

when K → ∞, and our claim follows.
In particular (cf. (1)), we obtain one more proof of the fact that bd(P) = 0.

6.2. Entropy of some invariant subsets of X̃η. In this section we will prove
the following:

Proposition 6.4. If B is taut, then

htop(Y≥s1,≥s2,... ∩ X̃η, S) < htop(X̃η, S)

whenever sk > 1 for some k ≥ 1.

For this, we will need some tools.

Lemma 6.5 (Cf. Lemma 1.17 in [28] and Theorem 2.23). Let B ⊂ N. For any
q ∈ N and 0 ≤ r ≤ q − 1 the logarithmic density of MB ∪ (qZ+ r) exists and

δ(MB ∪ (qZ+ r)) = d(MB ∪ (qZ+ r)) = lim
k→∞

d(M{b1,...,bk} ∪ (qZ+ r)).

Proof. Since

MB ∪ (qZ+ r) = (qZ+ r) ∪
⋃

0≤s �=r≤q−1

MB ∩ (qZ+ s),

it suffices to prove that the logarithmic density of MB ∩ (qZ+ s) exists and

(72) δ(MB ∩ (qZ+ s)) = d(MB ∩ (qZ+ s)) = lim
k→∞

d(M{b1,...,bk} ∩ (qZ+ s))
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for each 0 ≤ s ≤ q − 1. Indeed, if (72) holds, we have

δ(MB ∪ (qZ+ r)) ≥ d(MB ∪ (qZ+ r))

≥ d(qZ+ r) +
⋃

0≤s �=r≤q−1

d(MB ∩ (qZ+ s))

= d(qZ+ r) +
⋃

0≤s �=r≤q−1

δ(MB ∩ (qZ+ s)) = δ(MB ∪ (qZ+ r)).

To show (72), notice first that, for each k ≥ 1, we have

d(MB ∩ (qZ+ s)) ≥ d(M{b1,...,bk} ∩ (qZ+ s)),

whence

(73) d(MB ∩ (qZ+ s)) ≥ lim
k→∞

d(M{b1,...,bk} ∩ (qZ+ s)).

On the other hand, for each k ≥ 1,

δ(MB ∩ (qZ+ s)) ≤ d(M{b1,...,bk} ∩ (qZ+ s)) + δ(MB \M{b1,...,bk}),

whence, by Theorem 2.23,

(74) δ(MB ∩ (qZ+ s)) ≤ lim
k→∞

d(M{b1,...,bk} ∩ (qZ+ s)).

The claim follows from (73) and (74). �

Lemma 6.6. Assume that B is taut. Fix k0 ≥ 1 and let 0 < r < bk0
. Then

d (MB ∪ (bk0
Z+ r)) > d (MB) .

Proof. By Lemma 6.5, we have

(75) d(MB ∪ (bk0
Z+ r)) = δ(MB ∪ (bk0

Z+ r)) = δ(MB) + δ((bk0
Z+ r) \MB),

where

(76) δ((bk0
Z+ r) \MB) = δ((bk0

Z+ r) \MB\{bk0
}),

since (bk0
Z + r) ∩ bk0

Z = ∅. Moreover, since (bk0
Z + r) ∪ MB\{bk0

} is a disjoint

union of MB\{bk0
} and (bk0

Z + r) \ MB\{bk0
} (and the logarithmic density of

(bk0
Z + r) ∪ MB\{bk0

} and MB\{bk0
} exists by Lemma 6.5 and Theorem 2.23,

respectively), we obtain

(77) δ((bk0
Z+ r) \MB\{bk0

}) = δ((bk0
Z+ r) ∪MB\{bk0

})− δ(MB\{bk0
}).

By the tautness of B, δ(MB) > δ(MB\{bk0
}). Hence, by (75), (76), (77),

(78) d(MB ∪ (bk0
Z+ r))

> δ(MB\{bk0
}) + δ((bk0

Z+ r) ∪MB\{bk0
})− δ(MB\{bk0

})

= δ((bk0
Z+ r) ∪MB\{bk0

}).

Moreover, applying consecutively Lemmas 6.5 and 6.1 and Theorem 2.23 we obtain

δ((bk0
Z+ r) ∪MB\{bk0

}) = lim
k→∞

d((bk0
Z+ r) ∪M{bi:1≤i≤k,i �=k0})

≥ lim
k→∞

d(M{bi:1≤i≤k}) = δ(MB) = d(MB).

This, together with (78), completes the proof. �
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Proof of Proposition 6.4. Fix k0 ≥ 1 such that sk0
> 1. For 0 < r < bk0

, let

Dr := d (MB ∪ (bk0
Z+ r))

and D := min0<r<bk0
Dr. In view of Lemma 6.6, there exist ε > 0, c > 0 such that

(79) D − d(MB)− 2ε > c > 0.

By Lemma 6.5, there exists K ≥ k0 such that

(80) d(M{b1,...,bK} ∪ (bk0
Z+ r)) ≥ d(MB ∪ (bk0

Z+ r))− ε.

Finally, let N0 ∈ N be sufficiently large, so that for N > N0, we have

(81)

1

N · b1 · . . . · bK
∣∣[0, N · b1 · . . . · bK − 1] ∩ (M{b1,...,bK} ∪ (bk0

Z+ r))
∣∣

≥ d(M{b1,...,bK} ∪ (bk0
Z+ r))− ε.

Fix N > N0 and take B which appears in Y≥s1,≥s2,...∩X̃η, with |B| = N ·b1 ·. . .·bK .
Then there exists k ∈ Z such that

(82) B + k ≤ η[k, k +N · b1 · . . . · bK − 1].

It follows from (82) and the choice of k0 that there exists 0 < r0 < bk0
such that

(83) supp η ∩ [k, k +N · b1 · . . . · bK − 1] ∩ (bk0
Z+ r0) = ∅.

Therefore, using (83), (81), (80), the definition of Dr0 and D, and (79), we obtain

|B| − |supp B|
|B|

≥ 1

N · b1 · . . . · bK
|[k, k +N · b1 · . . . · bK − 1] ∩ (MB ∪ (bk0

Z+ r0))|

≥ 1

N · b1 · . . . · bK
∣∣[k, k +N · b1 · . . . · bK − 1] ∩ (M{b1,...,bK} ∪ (bk0

Z+ r0))
∣∣

=
1

N · b1 · . . . · bK
∣∣[0, N · b1 · . . . · bK − 1] ∩ (M{b1,...,bK} ∪ (bk0

Z+ r0))
∣∣

≥ d(M{b1,...,bK} ∪ (bk0
Z+ r))− ε ≥ d(MB ∪ (bk0

Z+ r0))− 2ε

= Dr0 − 2ε ≥ D − 2ε > d(MB) + c.

Thus

(84)
|supp B|

|B| < d(FB)− c.

We will now proceed as in the proof of Proposition K. For n ∈ N, let

γs1,s2,...(n) := |{B ∈ {0, 1}n : B appears in Y≥s1,≥s2,... ∩ X̃η}|

and, for K ≥ 1, let

γs1,s2,...,sK
K (n) := |{B ∈ {0, 1}n : |supp B| ≤ bk − sk for 1 ≤ k ≤ K}|.

Clearly,

γs1,s2,...(n) ≤ γs1,s2,...,sK
K (n) for any K ≥ 1.
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Consider the following procedure of defining a block B ∈ {0, 1}n:
(a) Choose (r1, . . . , rK) ∈

∏
k≤K Z/bkZ, set B(j) := 0 for 1 ≤ j ≤ n such that

j ≡ rk mod bk for some 1 ≤ k ≤ K, choose r′k0

≡ rk0

mod bk0
, and set

B(j) := 0 for 1 ≤ j ≤ n such that j ≡ rk0
mod bk0

.
(b) Complete the block by choosing arbitrarily B(j) ∈ {0, 1} for all other 1 ≤

j ≤ n.

Notice that all B ∈ {0, 1}n satisfying

(85) |(supp B) mod bk| ≤
{
bk − 1 for k 
= k0,

bk − 2 for k = k0

can be obtained this way. In particular, we obtain all blocks B ∈ {0, 1}n such that

|(supp B) mod bk| ≤ bk − sk for k ≥ 1.

Notice also that once the parameters (r1, . . . , rK) and r′k0
in step (a) are fixed,

the freedom in step (b) gives, for n = N · b1 · . . . · bK , in view of (84), at most

2N ·b1·...·bK(d(FB)−c) N · b1 · . . . · bK -blocks. It follows that

htop(Y≥s1,≥s2,... ∩ X̃η, S) = lim
n→∞

1

n
log γs1,s2,...(n)

≤ lim
n→∞

1

n
log γs1,s2,...,sK

K (n) ≤ d(FB)− c = htop(X̃η, S)− c,

which completes the proof. �

Corollary 6.7. Suppose that B ⊂ N is taut. Let ν ∈ P(X̃η, S) be such that

h(X̃η, ν, S) = htop(X̃η, S). Then ν(Y ∩ X̃η) = 1.

Proof. By considering the ergodic decomposition, we may restrict ourselves to

ν ∈ Pe(X̃η, S). Fix such ν and suppose that h(X̃η, ν, S) = htop(X̃η, S) but

ν(Y ∩ X̃η) = 0 (by the ergodicity of ν, we have ν(Y ∩ X̃η) ∈ {0, 1}). Note that,

for each k ≥ 1, there exists 1 ≤ sk < bk such that ν(Y k
sk

∩ X̃η) = 1; i.e., we obtain

(sk)k≥1 such that ν(Ys1,s2,... ∩ X̃η) = 1, so, all the more, ν(Y≥s1,≥s2,... ∩ X̃η) = 1.

Since ν(Y ∩ X̃η) = 0, there exists k ≥ 1 such that sk ≥ 2. But then, by Propo-

sition 6.4 and the variational principle, h(X̃η, ν, S) = h(Y≥s1,≥s2,... ∩ X̃η, ν, S) ≤
htop(Y≥s1,≥s2,... ∩ X̃η, S) < htop(X̃η, S). This contradicts our assumption. �

7. Tautness and support of νη (proof of Theorem H)

We will now use Theorem C and Proposition E to prove Theorem H.

Proof of Theorem H. Note that (a) ⇒ (b) by Corollary 6.7. To prove (b) ⇒ (c),

we claim that (b) implies νη(ϕ(θ(Y ∩ X̃η))) = 1. Then, since by Remark 2.46

we have ϕ(θ(Y ∩ X̃η)) ⊂ Y , it will follow that νη(Y ) = 1. Moreover, since, by
Proposition E, we have νη(Xη) = 1, we obtain (c). Thus, we are left to prove the

claim. Recall that by Remark 2.46, we have θ∗(ν) = P for any ν ∈ P(Y ∩ X̃η, S)
and, by definition, νη = ϕ∗(P). Therefore,

νη(ϕ(θ(Y ∩ X̃η))) = P(ϕ−1(ϕ(θ(Y ∩ X̃η)))) ≥ P(θ(Y ∩ X̃η))

= θ∗ν(θ(Y ∩ X̃η)) = ν(θ−1(θ(Y ∩ X̃η))) ≥ ν(Y ∩ X̃η) = 1,

and the claim holds.
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It remains to show that (c) implies (a). Suppose that B is not taut. Let B′ be
as in the proof of Theorem 4.5. For simplicity, we assume that B′ is given by (40),
i.e.,

B′ = (B \
⋃
n≥1

cnZ) ∪ {cn : n ≥ 1} = (B \
⋃
n≥1

cnA n) ∪ {cn : n ≥ 1},

where A n, n ≥ 1, are Behrend sets. By Theorem 4.5, B′ is taut and we have
νη = νη′ . Let

Y ′ := {x ∈ {0, 1}Z : |supp x mod b′k| = b′k − 1 for each k ≥ 1}.
Since (a) holds for B′ and we have proved that (a) implies (c), we have
νη′(Y ′ ∩ Xη′) = 1. We will show that νη(Y ∩ Xη) = 0. Since νη = νη′ , it suf-
fices to show that Y ∩ Y ′ = ∅. Take a ≥ 2 such that c1a ∈ B and c1 ∈ B′ and
consider the natural projections

Z
π1−→ Z/c1aZ

π2−→ Z/c1Z,

where π1(n) = n mod c1a for n ∈ Z and π2(n) = n mod c1 for n ∈ Z/c1aZ. Then,
for any A ⊂ Z, we have π1(A) ⊂ π−1

2 (π2(π1(A))). Moreover, for any B ⊂ Z/c1Z,
we have |π−1

2 (B)| = a|B|. Therefore, for x ∈ {0, 1}Z, we have

|supp x mod c1a| = |π1(supp x)| ≤ |π−1
2 (π2(π1(supp x)))|
= a|π2(π1(supp x))| = a|supp x mod c1|.

Therefore,

Y ′ ⊂ {x ∈ {0, 1}Z : |supp x mod c1| = c1 − 1}
⊂ {x ∈ {0, 1}Z : |supp x mod c1a| ≤ c1a− a}.

On the other hand, we have

Y ⊂ {x ∈ {0, 1}Z : |supp x mod c1a| = c1a− 1}.
Since c1a− a < c1a− 1, we have Y ∩ Y ′ = ∅. This completes the proof. �

Remark 7.1. If B ⊂ N has light tails, then νη(Y ∩Xη) = 1 can be shown directly.
Namely, fix K ≥ 1 and let

YK := {x ∈ {0, 1}Z : |supp x mod bk| = bk − 1 for 1 ≤ k ≤ K}.
Then YK∩Xη is S-invariant and η ∈ YK∩Xη (by Corollary 4.32); thus YK∩Xη 
= ∅.
Furthermore, YK∩Xη is open in Xη (indeed, if x ∈ YK∩Xη and M ∈ N is such that
supp x mod bk = (supp x ∩ [0,M ]) mod bk for each k ≥ 1, then for each y ∈ Xη

with y[0,M ] = x[0,M ], we have y ∈ YK ∩Xη).
In view of Theorem G, since YK ∩ Xη is open and non-empty, we have

νη(YK ∩Xη) > 0. By ergodicity and S-invariance, we obtain νη(YK ∩Xη) = 1. It
follows that νη(Y ∩Xη) = νη(

⋂
K≥1 YK ∩Xη) = 1.

8. Invariant measures (proof of Theorem I)

In [36], a description of P(Xη, S) was given in case of B Erdös (recall that in

this case we have Xη = X̃η). Theorem I extends this result, yielding a description

of P(X̃η, S) for all B (in particular, when Xη = X̃η, we obtain a description of
P(Xη, S)).



B-FREE SETS AND DYNAMICS 5477

Remark 8.1. Notice that Theorem I is stated in a more compact form than in [36]
(cf. Theorem 1.2 therein). What corresponds directly to [36] are Theorems 8.2
and 8.4. Notice that Theorem 8.4 is an immediate consequence of Theorem I (it
suffices to take b′k = bk for all k ≥ 1). The role of b′k | bk, k ≥ 1, will become more

clear later when we discuss the discrete rational part of the spectrum of (X̃η, ν, S);
see Section 8.3.

We will present only sketches of the proofs, referring the reader to [36] for the
remaining details (which can be repeated word by word). We will restrict ourselves
to the case when B is infinite (cf. Section 4.3.1).

8.1. Invariant measures on Y ∩ X̃η (Theorem I – first steps).

Theorem 8.2. For any ν ∈ Pe(Y ∩X̃η, S), there exists ρ̃ ∈ Pe(Xη×{0, 1}Z, S×S)

such that ρ̃|Xη
= νη and M∗(ρ̃) = ν, where M : Xη × {0, 1}Z → X̃η stands for the

coordinatewise multiplication.

Proof. Fix ν ∈ Pe(Y ∩ X̃η, S). Note that ν 
= δ...0.00.... Note also that it suffices to
find ρ̃ ∈ P(Xη × {0, 1}Z, S × S) such that ρ̃|Xη

= νη and M∗(ρ̃) = ν and use the
ergodic decomposition. Let

Y∞ := {y ∈ Y : |supp y ∩ (−∞, 0)| = |supp y ∩ (0,∞)| = ∞}

(notice that the definition of Y∞ is different from the one in [36]; we have changed
the notation to simplify the proof). Since ν 
= δ...0.00..., we have ν(Y∞) = 1.
For x ∈ {0, 1}Z, z ∈ Y∞, let x̂z be the sequence obtained by reading consecutive
coordinates of x which are in supp z and such that

x̂z(0) = x(min{k ≥ 0 : k ∈ supp z}).

Step 1. We define T̃ : G× {0, 1}Z → G× {0, 1}Z by

T̃ (g, x) =

{
(Tg, x) if ϕ(g)(0) = 0,

(Tg, Sx) if ϕ(g)(0) = 1.

By Remark 2.46, for y ∈ Y∞ ∩ X̃η, we have ϕ(θ(y)) ∈ Y∞. Let Θ: Y∞ ∩ X̃η →
G× {0, 1}Z be given by Θ(y) = (θ(y), ŷϕ(θ(y))). One can show that

(86) ŜxSz =

{
x̂z if z(0) = 0,

Sx̂z if z(0) = 1.

Hence, it follows from ϕ ◦ T = S ◦ ϕ and Remark 2.46 that Θ ◦ S = T̃ ◦Θ on Y∞.
Let Φ: ϕ−1(Y∞)× {0, 1}Z → XB be the unique element in XB such that

Φ(g, x) ≤ ϕ(g) and (Φ(g, x))ϕ̂(g) = x.
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Since ν(Y ∩X̃η) = 1, by Theorem H, we have that νη(Y ∩X̃η) = 1, so, in particular,

νη 
= δ...0.00.... It follows that Φ is well-defined a.e. with respect to any T̃ -invariant

measure. Moreover, using (86), one can show that S ◦ Φ = Φ ◦ T̃ on ϕ−1(Y∞) ×
{0, 1}Z. Therefore, the following diagram commutes:

G× {0, 1}Z

Y ∩ X̃η

G× {0, 1}Z

Y ∩ X̃η

XB XB

T̃

S

Θ Θ

Φ Φ

S

In particular, Φ ◦ Θ is well-defined a.e. with respect to any ν ∈ P(Y ∩ X̃η, S).
Moreover, by the choice of Θ and Φ, we obtain

(87) Φ ◦Θ = id a.e. with respect to any ν ∈ Pe(Y ∩ X̃η, S).

This gives, for any ν ∈ Pe(Y ∩ X̃η, S), the equality ν = Φ∗Θ∗ν, with Θ∗ν ∈
Pe(G× {0, 1}Z, T̃ ).

Step 2. Let Ψ: ϕ−1(Y∞) × {0, 1}Z → ϕ−1(Y∞) × {0, 1}Z be given by Ψ(g, x) =
(g, x̂ϕ(g)). Note that Ψ is defined a.e. with respect to any T ×S-invariant measure,

so that Ψ is onto a.e. with respect to any T̃ -invariant measure. Using again (86),
one can show that diagram (88) commutes:

(88)

G× {0, 1}Z

G× {0, 1}Z

G× {0, 1}Z

G× {0, 1}Z

T̃

T × S

Ψ Ψ

Notice that ∅ 
= Ψ−1(g, y) ⊂ {g} × {0, 1}Z. Moreover, given (g, x) ∈ Ψ−1(g, y),
all other points in Ψ−1(g, y) are obtained by changing in an arbitrary way these
coordinates in x which are not in the support of ϕ(g). In particular, each fiber
Ψ−1(g, y) is infinite. For k1 < · · · < ks and (i1, . . . , is) ∈ {0, 1}s, we define the
following cylinder set:

(89) C = Ci1,...,is
k1,...,ks

:= {x ∈ {0, 1}Z : x(kj) = ij , 1 ≤ j ≤ s}.
For each such C and for A ∈ B(G), we put

λ(g,y)(A× C) := 1A(g) · 2−m, where m = |{1 ≤ j ≤ s : ϕ(g)(kj) = 0}|,
if Φ(g, y)(kj) = ij whenever ϕ(g)(kj) = 1 (otherwise we set λ(g,y)(A × C) := 0).
Now, as in [36], we can prove the following:

(a) the map F : (g, y) �→ λ(g,y) is measurable,
(b) (T × S)∗λ(g,y) = λT̃ (g,y).

Then for any ρ ∈ Pe(G× {0, 1}Z, T̃ ), we obtain

ρ̃ :=

∫
λ(g,y) dρ(g, y) ∈ P(T × S,G× {0, 1}Z) with Ψ∗ρ̃ = ρ.
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Step 3. By the choice of Φ and Ψ, it follows that M ◦ (ϕ× id{0,1}Z) = Φ ◦Ψ. Then,

for any ν ∈ Pe(Y ∩ X̃η, S),

ν = Φ∗Θ∗ν = Φ∗Ψ∗Θ̃∗ν = M∗(ϕ× id{0,1}Z)∗Θ̃∗ν,

with Θ̃∗ν ∈ P(T × S,G× {0, 1}Z).
Step 4. To conclude it suffices to notice that

ϕ× id{0,1}Z : G× {0, 1}Z → Xη × {0, 1}Z

induces a map from P(T × S,G × {0, 1}Z) to the simplex of probability S × S-
invariant measures on Xη × {0, 1}Z whose projection onto the first coordinate is
νη.

�
Remark 8.3. The above proof can be summarized on the following commuting
diagram:

Y ∩ X̃η Y ∩ X̃η G× {0, 1}Z G× {0, 1}Z

G× {0, 1}Z G× {0, 1}Z Xη × {0, 1}Z Xη × {0, 1}Z

XB XB

Θ Θ
Ψ Ψ

ϕ× Id ϕ× Id

Φ Φ M M

S T × S

T̃ T × S

S

8.2. Invariant measures on X̃η (proof of Theorem I). The main ingredient
in the proof of Theorem I is the following result:

Theorem 8.4. For any ν ∈ Pe(X̃η, S) there exist b′k | bk, k ≥ 1, and ρ̃ ∈
Pe(Xη′ ×{0, 1}Z, S×S) such that ρ̃|Xη′ = νη′ and M∗(ρ̃) = ν, where η′ corresponds

to B′ = {b′k : k ≥ 1} and M : Xη′ × {0, 1}Z → X̃η′ stands for the coordinatewise
multiplication.

For the proof of Theorem 8.4 we will need several tools. Notice first that if
ν = δ...0.00..., then the above assertion holds true since M∗(δ...0.00... ⊗ κ) = δ...0.00...
for any κ ∈ P({0, 1}Z, S) and δ...0.00... = νη′ for η′ associated to B′ = {1}. Thus,
we only need to cover the case ν 
= δ...0.00....

Recall that
X̃η =

⋃
k≥1

⋃
0≤sk≤bk

Ys1,s2,... ∩ X̃η

is a partition of X̃η into Borel, S-invariant sets. Proceeding in a similar way as in
Section 3.2 in [36], we will now further refine this partition.
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Fix s = (sk)k≥1 with 1 ≤ sk ≤ bk − 1, a = (ak1 , . . . , a
k
sk
)k≥1 with aki ∈ Z/bkZ for

1 ≤ i ≤ sk and |{ak1 , . . . , aksk}| = sk. Let

Yk,sk;a1,...,ask
:= {x ∈ {0, 1}Z : supp x mod bk = Z/bkZ \ {a1, . . . , ask}}.

For each k ≥ 1, any two sets of such form are either disjoint or they coincide. Since
supp Sx = supp x− 1, we have

(90) SYk,sk;ak
1 ,...,a

k
sk

= Yk,sk;ak
1−1,...,ak

sk
−1

(note that subtraction is taken mod bk). Let

(91) b′k := min{j ≥ 1 : {ak1 , . . . , aksk} = {ak1 − j, . . . , aksk − j}}

and note that b′k ≥ 2. Clearly, Sb′kYk,sk;ak
1 ,...,a

k
sk

= Yk,sk;ak
1 ,...,a

k
sk

and the sets

Yk,sk;ak
1 ,...,a

k
sk
, SYk,sk;ak

1 ,...,a
k
sk
, . . . , Sb′k−1Yk,sk;ak

1 ,...,a
k
sk

are pairwise disjoint. Finally, we define

Ys,a :=
⋂
k≥1

b′k−1⋃
j=0

SjYk,sk;ak
1 ,...,a

k
sk

(notice that if sk = 1 for all k ≥ 1, we have Ys,a = Y for any choice of a).

Fix s, a and suppose that P(Ys,a ∩ X̃η, S) 
= ∅. Let

Gs,a := {nB′ : n ∈ Z} ⊂ GB′ =
∏
k≥1

Z/b′kZ,

where b′k, k ≥ 1, are as in (91); cf. (10). Define ϕs,a : Gs,a → {0, 1}Z (cf. (16)) by

ϕs,a(g)(n) =

{
1 if gk − aki + n 
= 0 mod bk for all k ≥ 1, 1 ≤ i ≤ sk,

0 otherwise.

We also define θs,a : Ys,a ∩ X̃η → GB′ in the following way; cf. (18):

θs,a(y) = g ⇐⇒ −gk + aki 
∈ supp(y) mod bk for all 1 ≤ i ≤ sk.

Notice that given y ∈ Ys,a and k0 ≥ 1, there exists N ≥ 1 such that

(supp y) ∩ [−N,N ] mod bk = Z/bkZ \ {−gk + aki : 1 ≤ i ≤ sk}(92)

for 1 ≤ k ≤ k0.

Furthermore, we claim that θs,a(Ys,a ∩ X̃η) ⊂ Gs,a. Indeed, take y ∈ Ys,a ∩ X̃η.
Given k0 ≥ 1, let N ≥ 1 be such that (92) holds and let M ∈ Z be such that
y[−N,N ] ≤ η[−N + M,N + M ]. It follows that θ(y) = (g1, g2, . . . ), where gk ≡
−M mod bk for 1 ≤ k ≤ k0. This yields the claim.

Remark 8.5. Note that θs,a is continuous. Indeed, given y ∈ Ys,a and k0 ≥ 1, let
N be such that (92) holds. Then, if y′ ∈ Ys,a is sufficiently close to y, (92) holds
for y′ as well. Therefore, if yn → y in Ys,a, then θs,a(yn) → θs,a(y).

Denote by Ts,a : Gs,a → Gs,a the map given by Ts,ag = g + 1B′ = (g1 + 1, g2 +
1, . . . ), where g = (g1, g2, . . . ).
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Remark 8.6 (cf. Remark 2.46). We have:

• Ts,a ◦ θs,a = θs,a ◦ S,
• for each y ∈ Ys,a ∩ X̃η, y ≤ ϕs,a(θs,a(y)),

• for any ν ∈ P(Ys,a ∩ X̃η, S), (θs,a)∗(ν) = Ps,a.

Lemma 8.7. Suppose that P(Ys,a ∩ X̃η, S) 
= ∅. Then (ϕs,a)∗(Ps,a)(Ys,a) = 1. In
particular, (ϕs,a)∗(Ps,a) 
= δ...0.00....

Proof. Take ν ∈ P(Ys,a ∩ X̃η, S). It follows from Remark 8.6 that

(ϕs,a)∗(Ps,a)(Ys,a) = (ϕs,a)∗(θs,a)∗(ν)(Ys,a) ≥ ν(Ys,a) = 1.

Since . . . 0.00 . . . 
∈ Ys,a, we conclude. �

For n ∈ N, let M (n) : ({0, 1}Z)×n → {0, 1}Z be given by

M (n)((x
(1)
i )i∈Z, . . . , (x

(n)
i )i∈Z) = (x

(1)
i · . . . · x(n)

i )i∈Z.

Moreover, we define M (∞) : ({0, 1}Z)N → {0, 1}Z as

M (∞)((x
(1)
i )i∈Z, (x

(2)
i )i∈Z, . . . ) = (x

(1)
i · x(2)

i · . . .)i∈Z.

Lemma 8.8 (Cf. Lemma 2.2.22 in [36]). We have (ϕs,a)∗(Ps,a) = M
(∞)
∗ (ρ), where

ρ is a joining of a countable number of copies of ({0, 1}Z, νη′ , S).

Proof. The proof is the same as in [36]. �
Lemma 8.9 (Lemma 2.2.23 in [36]). Let ν1, . . . , νn, νn+1 ∈ P({0, 1}Z, S). Then
for any joinings

• ρ1,n ∈ J(({0, 1}Z, ν1, S), . . . , ({0, 1}Z, νn, S)),
• ρ(1,n),n+1 ∈ J(({0, 1}Z,M (n)

∗ (ρ1,n), S), ({0, 1}Z, νn+1, S))

there exist

• ρ2,n+1 ∈ J(({0, 1}Z, ν2, S), . . . , ({0, 1}Z, νn, S), ({0, 1}Z, νn+1, S)),

• ρ1,(2,n+1) ∈ J(({0, 1}Z, ν1, S), ({0, 1}Z,M (n)
∗ (ρ2,n+1), S))

such that M
(2)
∗ (ρ(1,n),n+1) = M

(2)
∗ (ρ1,(2,n+1)).

Remark 8.10. We could write the equality M
(2)
∗ (ρ(1,n),n+1) = M

(2)
∗ (ρ1,(2,n+1)) as

M
(2)
∗ (M

(n)
∗ (ν1∨ · · · ∨νn)∨νn+1) = M

(2)
∗ (ν1∨M

(n)
∗ (ν2∨ . . .∨νn∨νn+1)). However,

until we say which joining we mean by each symbol ∨, this expression has no
concrete meaning.

Remark 8.11. The above lemma remains true when we consider infinite joinings;
i.e., instead of ν1, . . . , νn we have ν1, ν2, . . . , and instead of M (n) we consider M (∞).

Proof of Theorem 8.4. Fix δ...0.00... 
= ν ∈ Pe(X̃η, S) and let s, a be such that

ν(Ys,a ∩ X̃η) = 1. In view of Lemma 8.8, Lemma 8.9, and Remark 8.11, it suffices

to show that there exists ρ̃ ∈ P({0, 1}Z × {0, 1}Z, S × S) such that the projection
of ρ̃ onto the first coordinate equals (ϕs,a)∗(Ps,a) and M∗(ρ̃) = ν.

By Lemma 8.7, we have (ϕs,a)∗(Ps,a) 
= δ...0.00.... The remaining part of the proof
goes exactly along the same lines as the proof of Theorem 8.2, with the following
modification: we need to replace some objects related to Y by their counterparts

related to Ys,a. Namely, instead of G, Θ, Y∞, T̃ , Φ, and Ψ, we use

Gs,a, Θs,a, (Ys,a)∞, T̃s,a, Φs,a, and Ψs,a,
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where

• Θs,a : Ys,a∩X̃η → Gs,a×{0, 1}Z is given by Θs,a(y) := (θs,a(y), ŷϕs,a(θs,ay)),

• (Ys,a)∞ := {y ∈ Ys,a : |supp y ∩ (−∞, 0)| = |supp y ∩ (0,∞)| = ∞},
• T̃s,a : Gs,a × {0, 1}Z → Gs,a × {0, 1}Z given by

T̃s,a(g, x) =

{
(Ts,ag, x) if ϕs,a(g)(0) = 0,

(Ts,ag, Sx) if ϕs,a(g)(0) = 1,

• Φs,a(g, x) is the unique element in XB such that
(i) Φs,a(g, x) ≤ ϕs,a(g),
(ii) ̂(Φs,a(g, x))ϕs,a(g)

= x; i.e., the consecutive coordinates of x can be

found in Φs,a(g, x) along ϕs,a(g),
• Ψs,a(g, x) = (g, x̂ϕs,a(g)). �

Lemma 8.12 (Cf. the proof of Lemma 2.2.22 in [36]). Fix b′k | bk for k ≥ 1. Then

there exists ρ ∈ J((Xη, νη, S), (Xη, νη, S), . . . ) such that νη′ = M
(∞)
∗ (ρ).

Proof. For i ≥ 1, let R(i) : G → G be given by R(i)(g) = (gk + ib′k)k≥1. We claim
that

(M (∞))∗(ϕ ◦R(1) × ϕ ◦R(2) × . . . )∗(P) = νη′ .

In order to prove this, we will first show that

M (∞) ◦ (ϕ ◦R(1) × ϕ ◦R(2) × . . . ) = ϕ′ ◦ p,
where p : G → G′ is the natural projection and ϕ′ is defined analogously as ϕ, using
B′ instead of B. Indeed, we have

M (∞) ◦ (ϕ ◦R(1) × ϕ ◦R(2) × . . . )(g)(n) = 1

⇐⇒ ϕ ◦R(i)(g)(n) = 1 for all i ≥ 1

⇐⇒ gk + ib′k + n 
≡ 0 mod bk for all i ≥ 1, k ≥ 1

⇐⇒ gk + n 
≡ 0 mod b′k for all k ≥ 1

and, on the other hand,

ϕ′ ◦ p(g)(n) = 1 ⇐⇒ (gk mod b′k) + n 
≡ 0 mod b′k for all k ≥ 1

⇐⇒ gk + n 
≡ 0 mod b′k for all k ≥ 1.

This completes the proof as (ϕ′◦p)∗(P) = ϕ′
∗(p∗(P)) = ϕ′

∗(P
′) = νη′ and R

(i)
∗ (P) = P

for each i ≥ 1. �
Proof of Theorem I. The assertion is a consequence of Theorem 8.2, Theorem 8.4,
Lemma 8.12, Lemma 8.9, and Remark 8.11. �
8.3. Rational discrete spectrum (proof of Theorem F).

Remark 8.13. Let s, a be such that P(Ys,a, S) 
= ∅ and fix ν ∈ P(Ys,a, S). Let
b′k | bk, k ≥ 1, be as in the proof of Theorem 8.4. Recall (from the proof of
Theorem 8.4) that there is an equivariant map Θs,a : Ys,a → Gs,a × {0, 1}Z. It
follows that (Gs,a,Ps,a, Ts,a) is a factor of (Ys,a, ν, S). In particular, the rational
discrete spectrum of (Ys,a, ν, S) includes all b

′
k-roots of unity.

Theorem 8.14. Suppose that P(Ys,a ∩ X̃η, S) 
= ∅. Then ϕs,a yields an isomor-

phism of (Gs,a,Ps,a, Ts,a) and (Ys,a ∩ X̃s,a, (ϕs,a)∗(Ps,a), S).
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Proof. Since, by Lemma 8.7, we have (ϕs,a)∗(Ps,a)(Ys,a) = 1, we obtain the follow-
ing equivariant maps:

(Gs,a,Ps,a, Ts,a)
ϕs,a−−−→ (Ys,a ∩ X̃η, (ϕs,a)∗(Ps,a), S)

θs,a−−→ (Gs,a,Ps,a, Ts,a).

It follows from the coalescence of (Gs,a,Ps,a, Ts,a) that ϕs,a yields an isomorphism
of (Gs,a,Ps,a, Ts,a) and (Ys,a, (ϕs,a)∗(Ps,a), S). �

Proof of Theorem F. The assertion follows from the above and Corollary 6.7. �

9. Tautness revisited

9.1. Tautness and combinatorics revisited (proof of Theorem L). We will
prove an extension of Corollaries 4.35 and 4.36.

Corollary 9.1. Let B,B′ ⊂ N and suppose that B is taut. Conditions (a)–(f)
from Corollary 4.35 are equivalent to each of the following:

(g) νη ∈ P(X̃η′ , S),

(h) P(X̃η, S) ⊂ P(X̃η′ , S).

Proof. Notice first that (e) from Corollary 4.35 implies (g). Suppose now that (g)
holds. In view of Theorem I and Lemma 8.9, this yields (h). Suppose that (h) holds.

By the variational principle, we have htop(X̃η, S) = htop(X̃η ∩ X̃η′ , S). Moreover,

since X̃η ∩ X̃η′ ⊂ XB ∩XB′ = XB∪B′ ⊂ XB, we have

htop(X̃η ∩ X̃η′ , S) ≤ htop(XB∪B′ , S) ≤ htop(XB, S).

By Proposition K, it follows that htop(X̃η, S) = htop(XB, S). By the above, we
obtain

(93) htop(XB, S) = htop(XB∪B′ , S).

Moreover, since XB∪B′ ⊂ XB∪{b′} ⊂ XB for any b′ ∈ B′, (93) yields

htop(XB, S) = htop(XB∪{b′}, S) for any b′ ∈ B′.

It follows from Proposition K that δ(MB) = δ(MB∪{b′}). In view of Corol-
lary 2.31, either b′ ∈ MB or B is not taut. The latter is impossible; hence b | b′
for some b ∈ B, and we conclude that (b) from Corollary 4.35 holds. �

Corollary 9.2. Suppose that B,B′ ⊂ N are taut. Conditions (a)–(g) from Corol-
lary 4.36 are equivalent to each of the following:

(h) νη = νη′ ,

(i) νη ∈ P(X̃η′ , S) and νη′ ∈ P(X̃η, S),

(j) P(X̃η, S) = P(X̃η′ , S).

Proof. Clearly, (c) from Corollary 4.36 together with Proposition E implies (h).
Moreover, (h) implies (i) and, by Corollary 9.1, (i) implies (j). Suppose now that
(j) holds. So, (h) from Corollary 9.1 also holds. Applying again Corollary 9.1, we
obtain (a) from Corollary 4.35. Moreover, (a) from Corollary 4.35 still holds when
we exchange the roles of B and B′. Therefore, we conclude that XB′ = XB; i.e.,
(a) from Corollary 4.36 holds. �

Proof of Theorem L. The result follows directly from Corollary 9.2. �
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9.2. Tautness and invariant measures (proof of Theorem C).

Proof of Theorem C. The assertion is an immediate consequence of Theorem 4.5,
Theorem I, and Theorem L. �

We will now prove Corollary 1.5. For this, we will need the following folklore
result (cf. Theorem 2.3 in [37]):

Lemma 9.3. Let (X,T ) be a topological dynamical system and let X ′ ⊂ X be
compact and T -invariant. Then the following are equivalent:

(a) P(X,T ) = P(X ′, T ),
(b) for each x ∈ X, we have limn→∞,n�∈Ex

d(Tnx,X ′) = 0, where d(Ex) = 0,
(c) the set X \ X ′ is universally null; that is, μ(X \ X ′) = 0 for each μ ∈

P(X,T ).

Definition 9.4. When (b) of Lemma 9.3 holds, we say that X ′ is a quasi-attractor
in (X,T ). Sometimes, the smallest possible quasi-attractor is called the measure
center.

Proof of Corollary 1.5. The assertion follows immediately from Theorem C and
Lemma 9.3. �

It can be rephrased as follows:

Corollary 9.5. For any B ⊂ N, the subshift (X̃η, S) has a quasi-attractor of the

form X̃η′ for some taut set B′ such that FB′ ⊂ FB. Moreover, such B′ is unique.

Remark 9.6. Using Theorems D and G, we can deduce that if B′ above has light

tails and contains an infinite coprime set, then Xη′ is the measure center of (X̃η, S).

10. Intrinsic ergodicity (proof of Theorem J)

Theorem 10.1. Let B ⊂ N and suppose that B is taut. Then (X̃η, S) is intrinsi-

cally ergodic. In particular, if Xη = X̃η, then (Xη, S) is intrinsically ergodic.

The above theorem extends Theorem 1.1 from [36] for B Erdös to the case when
B is taut. The main ideas for the proof of Theorem 10.1 come from [36]. We will
present the sketch of the proof only, referring the reader to [36] for the remaining
details.

Proof of Theorem 10.1. We will use the notation introduced in the proof of Theo-
rem 8.2. There exists C0 ⊂ C (recall that C was defined in (14)) such that every
point from C0 returns to C infinitely often under T and P(C0) = P(C). It follows

that every point from C0 × {0, 1}Z returns to C × {0, 1}Z infinitely often under T̃

and ν(C0 × {0, 1}Z) = ν(C × {0, 1}Z) for every ν ∈ P(G × {0, 1}Z, T̃ ). Thus, the

induced transformation T̃C×{0,1}Z is well-defined. Recall that

T̃ (g, x) =

{
(Tg, x) if g 
∈ C,

(Tg, Sx) if g ∈ C.

It follows that T̃C×{0,1}Z = TC × S a.e. for any T̃ -invariant measure (cf. the defini-

tions of T̃ and C).
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We will show now that T̃ has a unique measure of maximal (measure-theoretic)

entropy. In view of Abramov’s formula, for this it suffices to show that T̃C×{0,1} =
TC×S has a unique measure of maximal entropy. For any TC×S-invariant measure
κ, by the Pinsker formula, we have

h({0, 1}Z, κ|{0,1}Z , S) ≤ h(C × {0, 1}Z, κ, TC × S)

≤ h(C, κ|C , TC) + h({0, 1}Z, κ|{0,1}Z , S) = h({0, 1}Z, κ|{0,1}Z , S).
(94)

Since κ can be arbitrary, it follows that a measure κ has the maximal entropy among
all TC × S-invariant measures if and only if h(C × {0, 1}Z, κ, TC × S) = htop(S).
Moreover, κ is a measure of maximal entropy for TC × S if and only if κ|{0,1}Z is
the measure of maximal entropy for S; that is, κ|{0,1}Z is the Bernoulli measure
B(1/2, 1/2), i.e., when κ is a joining of the unique invariant measure for TC and
B(1/2, 1/2). Since the unique invariant measure for TC is of zero entropy, it follows
from the disjointness of K-automorphisms with zero entropy automorphisms [24]
that κ is the product measure. In particular, κ is unique.

It follows from (87) that Θ is 1-1. Hence, Θ∗ : P(Y ∩ X̃η, S) → P(G×{0, 1}Z, T̃ )
is also 1-1, and for any ν ∈ P(Y ∩ X̃η, S), we have

h(Y ∩ X̃η, ν, S) = h(G× {0, 1}Z,Θ∗ν, T̃ ).

The result follows now from Corollary 6.7. �

Remark 10.2. Suppose that B ⊂ N is taut. Notice that we have Ψ∗(P⊗B(1/2, 1/2))
= P⊗B(1/2, 1/2). Moreover,

(P⊗B(1/2, 1/2))C×{0,1}Z = PC ⊗B(1/2, 1/2).

Since h(C × {0, 1}Z,PC ⊗B(1/2, 1/2), TC × S) = log 2, it follows from the above
proof of Theorem 10.1 that

Φ∗Ψ∗(P⊗B(1/2, 1/2)) = M∗(ϕ× id)∗(P⊗B(1/2, 1/2))

= M∗(νη ⊗B(1/2, 1/2))

is the unique measure of maximal entropy for (X̃η, S).

Proof of Theorem J. The assertion is an immediate consequence of Theorem C and
Theorem 10.1. �

11. Remarks on abundant numbers

For n ∈ N, consider the aliquot sum σ(n) :=
∑

d|n d. Then, n ∈ N is called

abundant if σ(n) ≥ 2n, perfect if σ(n) = 2n, and deficient if σ(n) < 2n. We denote
the set of abundant, perfect, and deficient numbers by A, P, and D, respectively.
Notice that A is closed under taking multiples. It follows that A = N∩MBA

and
D = N ∩ FBA

for some primitive BA ⊂ N.

Lemma 11.1. The set BA is thin. In particular, BA has light tails and is Besi-
covitch.
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Proof. Erdös [19] showed that |BA ∩ [0, n]| = o(n/ log2 n). Let jn be the n-th
BA-free natural number. Therefore, for n sufficiently large, n ≤ jn(log

2 jn)
−1. It

follows that, for large n, we have n log2 n ≤ n log2 jn ≤ jn, whence

(95)
∑

b∈BA

1/b =
∑
n≥1

1/jn ≤
∑
n≥1

1/n log2 n < ∞;

i.e., BA is thin. But thin sets are Besicovitch. �

Lemma 11.2 (E.g. [23], Chapter 8.14, p. 243). We have d(P) = 0.

Corollary 11.3. Suppose that A,D ⊂ N are finite sets consisting of abundant and
deficient numbers, respectively. Then the density of the set of n ∈ N such that A+n
and D + n consist of abundant and deficient numbers, respectively, is positive.

Proof. By Lemma 11.1 and Corollary 1.9, we have

d({n ∈ N : A+ n ⊂ A and F + n ⊂ D > 0.

�

Since {1, 2, 3, 4, 5} ⊂ D, the following result immediately follows.

Corollary 11.4. The set of n ∈ N such that the numbers n + 1, n + 2, . . . , n + 5
are deficient has positive density.

Remark 11.5. Notice that Corollary 11.4 yields an independent proof and strength-
ens the result from [51] that there are infinitely many sequences of 5 consecutive
deficient numbers.

Lemma 11.6. The set BA contains an infinite coprime subset.

Proof. It follows from [20] that
⋂

1≤k≤K(MBA
− k) 
= ∅ for any K ≥ 1, i.e.,

. . . 0.00 . . . ∈ Xη. To conclude, it suffices to use Theorem B. �

Remark 11.7. Another way to prove the above lemma is to use the algorithm
presented in [31], outputting the smallest element of A\P not divisible by the first
k primes.

Corollary 11.8. Denote by (nj) the sequence of consecutive deficient numbers.
Then, for any K ≥ 1,

lim sup
j→∞

min
0≤k≤K

(nj+k+1 − nj+k) = ∞.

Proof. The assertion is an immediate consequence of Proposition M, Lemma 11.1,
and Lemma 11.6. �

Remark 11.9. Remembering that Xη = X̃η, we will show that Xη � XBA
.

Let us note that 6, 12, 18, 20, 24, 28, 30 ∈ BA are first seven abundant numbers.
Consider the block B = 10011111011111011111001111011111011 of length 35 (we
enumerate the entries from 0 to 34). The eight zeros are at positions: 1, 2, 8, 14, 20,
21, 26 and 32. Now, the block B is admissible since 2 is a missing residue class mod 6
(and consequently mod 12, mod 18, mod 24 and mod 30), 1 is a missing residue class
mod 20 and 8 is a missing residue class mod 28. We claim that B does not appear in
ηBA

. Indeed, suppose that for some m, we have B = η[m,m+ 34]. Then 6 divides
exactly one number from the set of six consecutive numbers {m,m+1, . . . ,m+5}.
Since MBA

∩{m,m+1, . . . ,m+5} = {m+1,m+2}, so 6 | (m+1) or 6 | (m+2). If
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6|(m+1), then 6|(m+7), a contradiction with B[7] = 1. Thus 6|(m+2). Similarly,
20 divides exactly one of the numbers m+ 1,m+ 2,m+ 8,m+ 14. If 20 | (m+ 2),
then 20|(m + 22), which contradicts to B[22] = 1. Similarly, if 20 | (m + 8) or
20 | (m + 14), then we obtain a contradiction with B[28] = B[34] = 1. It follows
that 20|(m + 1). But it is impossible to have simultaneously 6 | (m + 2) and
20 | (m+ 1).
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[22] P. Erdős, On the difference of consecutive terms of sequences defined by divisibility properties,
Acta Arith 12 (1966/1967), 175–182. MR0207673
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Email address: mlem@mat.umk.pl

http://www.ams.org/mathscinet-getitem?mr=3205496
http://www.ams.org/mathscinet-getitem?mr=3430278
http://arxiv.org/abs/1205.2905v1
http://www.ams.org/mathscinet-getitem?mr=3070541
http://publications.ias.edu/sarnak/
http://publications.ias.edu/sarnak/
http://www.ams.org/mathscinet-getitem?mr=0130203
http://www.ams.org/mathscinet-getitem?mr=1540167
http://www.ams.org/mathscinet-getitem?mr=0267076
http://www.ams.org/mathscinet-getitem?mr=0340556
http://www.ams.org/mathscinet-getitem?mr=0179775

	1. Introduction
	2. Preliminaries
	3. Topological dynamics
	4. Tautness
	5. Heredity (proofs of \cref{TTD,OOF})
	6. Entropy
	7. Tautness and support of 𝜈_{𝜂} (proof of \cref{tautychar})
	8. Invariant measures (proof of \cref{OOG})
	9. Tautness revisited
	10. Intrinsic ergodicity (proof of \cref{OOH})
	11. Remarks on abundant numbers
	Acknowledgment
	References

