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DETECTING GEOMETRIC SPLITTINGS

IN FINITELY PRESENTED GROUPS

NICHOLAS W. M. TOUIKAN

Abstract. We present an algorithm which given a presentation of a group
G without 2-torsion, a solution to the word problem with respect to this pre-

sentation, and an acylindricity constant κ outputs a collection of tracks in an
appropriate presentation complex. We give two applications: the first is an
algorithm which decides if G admits an essential free decomposition; the sec-
ond is an algorithm which, if G is relatively hyperbolic, decides if it admits an
essential elementary splitting.

1. Introduction

An important group invariant is whether or not it splits as a certain type of graph
of groups. In this paper we prove an algorithmic analogue of Sela’s κ-acylindrical
super accessibility [Sel97, Theorem 4.3] for the class of one edged κ-acylindrical
geometric splittings. In particular the main result, Theorem B, gives an algorithm
that produces a list that contains a representative of every one edged κ-acylindrical
geometric splitting of π1(C), up to equivalence in Aut (π1(C)). We give some
corollaries of this theorem.

Theorem A. There is an algorithm that takes as input a finite presentation 〈X | R〉
of a group G without 2-torsion and a solution to the word problem with respect to
this presentation and decides whether or not the group G admits an essential free
decomposition, i.e., a free decomposition

G = H1 ∗H2

with H1 �= {1} �= H2.

This theorem is proved in Section 1.6. As a consequence we have the following
corollary, whose proof we leave as an exercise. (Hint: if we can solve the word
problem, then we can decide if a finitely generated group is abelian and we can
decide, given a finite presentation, if an abelian group is cyclic.)

Corollary 1.1. Let G = 〈X | R〉 be as in the statement of Theorem A. Then we
can find a Grushko decomposition for G.

In a sense, aside from the no 2-torsion assumption, this is the strongest result of
this type possible: the restrictions on the input are as minimal as can be reasonably
expected. This result also extends all previously known results (at least in the case
without 2-torsion), which we now briefly survey.
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Diao and Feighn in [DF05] showed how to find a Grushko decomposition of a
fundamental group of a graph of free groups. Their techniques rely on Whitehead
methods refined by Gersten and group actions on square complexes. Kharlampovich
and Miasnikov in [KM05] showed how to find a Grushko decomposition of a fully
residually free group by running their Elimination Process: the free decomposition
becomes apparent by “separating the variables” in the defining equations.

Even in the presence of 2-torsion, Dahmani and Groves in [DG08a] are able
to detect free splittings of certain relatively hyperbolic groups by generalizing an
unpublished algorithm for hyperbolic groups due to Gerasimov. Their approach is
to decide some connectivity criterion of the boundary of toral relatively hyperbolic
groups. Our work implies this result in the 2-torsion-free case. Another result
[GW09] due to Groves and Wilton, which works in the presence of 2-torsion, is that
given a finite presentation of a group G and a solution to the word problem with
respect to that presentation we can decide if G is free. If G is without 2-torsion,
then this is an easy consequence of Corollary 1.1. At the end of Section 1.6 we
will explain how to obtain this result in complete generality from the work in this
paper.

It is also worth noting that Casals-Ruiz and Kazachkov used methods related to
ours to describe solutions to equations over free products [CRK11].

The algorithm given in this paper is also well-suited to relatively hyperbolic
groups. We have the following immediate corollary to Theorem C, which is proved
in Section 1.7.

Corollary 1.2. We can decide if a torsion-free relatively hyperbolic group with
polycyclic parabolics has a trivial elementary JSJ decomposition, in the sense of
[Bow98,Bow01]or [GL11, Theorem 4].

This generalizes a result of Dahmani and Groves in [DG08b] for toral relatively
hyperbolic groups in two ways. Firstly, the present approach works for a larger,
wider class of groups. Secondly, it can detect splittings that are not in the class
Zmax. Both of these earlier limitations arise from the fact that all previous algo-
rithms to detect splittings in relatively hyperbolic groups depend on “equational”
methods. In particular they will not work with nilpotent parabolics since we can’t
solve equations over nilpotent groups [Rom79] and they can’t detect non-Zmax

splittings since Dehn twists around such groups give trivial automorphisms.
In an earlier preprint, Effective Grushko decomposition (http://arxiv.org/

abs/0906.3902v1), the author claimed Theorem A without the no 2-torsion hy-
pothesis. There is a gap in that proof: the argument is incomplete because the
author did not take Möbius strips into consideration. In the second version of this
paper we modified the argument so that it can handle κ-acylindricity and the exis-
tence of Möbius strips, at the cost of having to exclude 2-torsion. Otherwise, there
was no gap in the second version of this paper, but it was horribly written. This
third version attempts to rectify the issue and has more figures.

1.1. Outline of the paper. First we will give the basic definitions and results
needed to make sense of the statement of Theorem B. After stating it and discussing
some of its limitations, we apply it to detect free decompositions of finitely presented
groups and elementary splittings of relatively hyperbolic groups. These applications
also serve the role of providing a “tutorial” on how to use Theorem B.

http://arxiv.org/abs/0906.3902v1
http://arxiv.org/abs/0906.3902v1
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Next we will define band complexes which are similar, but not identical, to the
band complexes in [BF95]. Instead of using them to study minimal foliations, we
will treat them as combinatorial objects to study Dunwoody patterns (see Definition
1.4). Next we will define transformations done to band complexes and tracks they
carry. This constitutes the Rips machine of [BF95].

The Rips machine is designed to study a single lamination in a cell complex. The
elimination process, inspired from works of Makanin and Razborov [Mak82,Raz87]
as read from [KM98], is a branching search algorithm that constructs a finite rooted
directed tree that decides the existence of certain types of laminations, in our case,
tracks. We will show how to construct this tree one level at a time and give an
analogy with splitting sequences for surface train tracks. We will then define various
inadmissibility criteria which will forbid the elimination tree from growing at certain
nodes.

As usual in this business, it will be relatively easy to handle the thin/Levitt/7-10
case as well as the surface/quadratic/12 case. The real difficulty is in handling the
superquadratic/axial/15 case, and this is where most of the new ideas in this paper
reside.

Eventually we will have given sufficiently many inadmissibility criteria, including
a periodicity bound, to force the elimination tree to be finite. The leaves of this
tree will give us the output of the main algorithm.

1.2. Patterns, tracks, and geometric splittings. We take it for granted that
the reader is comfortable with Bass-Serre theory. The best reference, especially for
this paper, would be [SW79]. Another standard reference is [Ser03]. We also assume
the reader is well acquainted with polygonal 2-complexes, their fundamental groups,
and the actions of fundamental groups on universal covers by deck transformations.

The graph of groups X has underlying graph X. We will write G splits as
a graph of groups X or even X is a splitting of G instead of writing “G is the
fundamental group of the graph of groups X.” We will also use the action of a
group G on a simplicial tree T and the corresponding splitting X, where X = G\T ,
interchangeably. Finally all trees are assumed to be minimal.

Convention 1.3. In order to be sure to avoid any pathologies, we will restrict
ourselves to the piecewise linear category of topological spaces.

Throughout this paper C will be a polygonal 2-complex. If f : X → Y is a
continuous map we denote its functorial image f� : π1(X) → π1(Y ), which is well-
defined up to conjugacy. Let Y ⊂ X be connected cell complexes. Consider the
natural map

Y X

π1(Y ) π1(X)

i

i�

where i denotes the inclusion map. We denote

Gp(Y ) = i�(π1(Y )),

which gives a well-defined conjugacy class in π1(X).
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Definition 1.4. Let C be a polygonal 2-complex. A pattern P ⊂ C is an embedded
1-complex such that:

(i) for every 2-cell D ⊂ C, P ∩ D is a (possibly empty) finite collection of
closed arcs joining distinct sides of D;

(ii) P does not meet C(0);
(iii) P has a regular neighbourhood N(P ) ⊂ C homeomorphic to P × [−1, 1].

Definition 1.5. A connected component of a pattern is called a track.

This definition of a pattern is slightly non-standard in that the last condition
implies that our pattern is 2-sided. 2-sidedness, however, should be standard be-
cause it implies that the pattern is locally separating into two components. The
Seifert-van Kampen Theorem immediately implies that the decomposition (which
is essentially a graph of spaces)

(1) C = N(P ) ∪ C \ P

splits π1(C) as a graph of groups XP where the vertex groups are given by Gp(Ci)
and the edge groups are given by Gp(tj), where the Ci denote the connected com-
ponents of C \ P and the tj denote the tracks in P respectively.

Proposition 1.6. Let P ⊂ C be a pattern and let P̃ be the lift of P in the universal

cover C̃ of C. Each connected component of P̃ separates C̃ into two components.
This gives rise to the π1(C)-tree T (P,C), whose vertices are connected components

of C̃ \ P̃ , whose edges are connected components of P̃ , and such that the edge t̃ is

adjacent to the vertex C̃i if t̃ is contained in the closure of C̃i. Thus T (P,C) can
be obtained by a π1(C)-equivariant identification map

(2) π : C̃ � T (P,C).

Proof. The lift P̃ ⊂ C̃ of P is again a pattern in C̃. This gives a decomposition of

C̃ as in (1) which expresses π1(C̃) as a graph of groups Y. If some component of

P̃ is not separating the underlying graph Y of Y contains a cycle contradicting the

fact that π1(C̃) = 1. It therefore follows that the graph Y is a tree T (P,C), which
is easily seen to be a π1(C)-tree.

π is obtained by collapsing each track neighbourhood N(t̃) = t̃ × [−1, 1] �
[−1, 1] and by collapsing every connected component of closure

(
C̃ \N(P̃ )

)
to a

point. �

This next proposition follows immediately by thinking about the action of π1(C)
on T (P,C) induced by deck transformations and the meaning of the Seifert-van
Kampen Theorem or simply by thinking of (1) as a graph of spaces decomposition
à la [SW79].

Proposition 1.7. Let P ⊂ C be a pattern. Then the action of π1(C) on T (P,C)
gives the splitting of π1(C) as the graph of groups XP induced by the decomposition
(1).

All that being sorted out, we can now make sense of the second and third words
of the title of the paper.
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Definition 1.8. For a pattern P ⊂ C the tree T (P,C) obtained in Proposition 1.6
is called the Bass-Serre tree dual to P or simply the dual Bass-Serre tree.

Definition 1.9. A splitting of π1(C) is geometric if it is represented by a pattern P ,
i.e., the Bass-Serre tree of the splitting is given by the action of π1(C) on T (P,C).
The pattern P is said to be essential if T (P,C) is infinite.

The following fact is important since it implies that the class of geometric split-
tings is significant.

Theorem 1.10 (Restatement of [DS99, Lemma 2.2]). Let π1(C) act minimally on
a tree T . Then there exists a pattern P ⊂ C such that there is a π1(C )-equivariant
surjective simplicial map called a resolution

ρ : T (P,C) → T.

In particular, the edge stabilizers of T (P,C) are conjugate to subgroups of the edge
stabilizers of T . Moreover if the action of π1(C) on T is nontrivial, then some track
in P will be essential.

Immediately we get:

Corollary 1.11. If π1(C) is freely decomposable, then some essential free decom-
position is geometric.

Corollary 1.12. If C is a finite complex, then any Guirardel-Levitt JSJ deforma-
tion space [GL09, Definition 4] of π1(C) contains a geometric splitting.

Proof. We refer the reader to the introduction of [GL09] for the terminology in
this proof. Let T be some JSJ tree for π1(C) over some class of groups A, i.e., a
domination-maximal universally elliptic A-tree. Theorem 1.10 implies the existence
of a geometric tree T (P,C) → T that dominates T . Since the edge groups of
T (P,C) are contained in edge groups of T and A is assumed to be closed under
taking subgroups, T (P,C) is also an A-tree. Since the edge groups of T are A-
universally elliptic, so must the edge groups of T (P,C). It follows that T (P,C) is
also a domination-maximal universally elliptic A-tree so the result follows. �

1.3. Relative splittings. Suppose we are given a finite collection of finite gener-
ating

S =
{
{hi}i∈In | n = 1, . . . ,m

}
of subgroups of π1(C) and that we want to study the geometric splittings of π1(C) in
which the subgroups 〈hi〉 are elliptic. Then we can make a new 2-complex CS ⊃ C
with π1(C) ≈ π1(CS) as follows (see Figure 1.) For each Sn = {hi}i∈In ,

(1) Make a bouquet of circles Bn such that for each h ∈ Sn there is a directed
edge eh in Bn.

(2) Attach the vertex vn of Bn to the vertex v of C by an arc αn.
(3) Attach a 2-cell so that the loop αn ∗ eh ∗ α−1

n is now homotopic to h ∈
π1(C, v).

We call the resulting 2-complex CS . We note that π1(C) ≈ π1(Cs) because of the
obvious deformation retraction CS � C. We now employ the following trick to
restrict to relative geometric splittings.
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C

Figure 1. Attaching bouquets of circles to a presentation com-
plex. We must then attach 2-cells to preserve the fundamental
group.

Proposition 1.13. Let H be the set of subgroups generated by the elements of
S. Then every track t dual to a geometric splitting of π1(C) relative to H can be
extended to a track t′ ⊂ CS so that t′ is disjoint from the edges eh in item (1) of
the construction of CS.

Sketch of proof. Let π1(C) × T → T be a geometric action with the subgroups H
acting elliptically. Then we can extend the pattern P ⊂ C ⊂ CS to a pattern
P ′ ⊂ CS such that P ′ has empty intersection with the edges eh and such that we
have a π1(C)-equivariant isomorphism

(3) T (P ′, CS) → T (P,C).

We do this by taking a resolution

ρ′ : C̃S → T (P,C)

which extends ρ : C̃ → T (P,C) such that the lifts of the vertices of vi are mapped
to vertices stabilized by appropriate conjugates of 〈Si〉. We refer the reader to
Section 2 of [DS99] for details on the resolution construction. It therefore follows
that geometric splittings of π1(C) relative to H are given exactly by patterns in
π1(CS) that do not intersect the new edges eh. �
1.4. Equivalence under automorphisms. Let

ϕ : G× T → T

(g, x) 
→ g · x

be an action of a group G on a tree T . Then for any α ∈ Aut(G) we may twist ϕ
by α to get a new action

ϕα : G× T → T

(g, x) 
→ α(g) · x.
Definition 1.14. Let ϕ : G × T 
→ T and ψ : G × S 
→ S be two actions of
the group G on simplicial trees. Let α ∈ Aut(G) . We say the actions ϕ and ψ
are Aut(G)-equivalent, written ϕ ∼Aut(G) ψ, if there is a simplicial isomorphism
f : T → S and an α ∈ Aut(G) that makes the following diagram commutative:

G× T T

G× S S

ϕα

ψ
1× f f



DETECTING GEOMETRIC SPLITTINGS IN GROUPS 5641

Definition 1.15. Let P, P ′ be patterns in C. We say that the patterns P and
P ′ are Aut(π1(C))-equivalent, written P ∼Aut(π1(C)) P ′, if the natural actions
π1(C) × T (P,C) → T (P,C) and π1(C) × T (P ′, C) → T (P ′, C) are Aut(π1(C))-
equivalent.

In the case of closed surfaces patterns arise as multicurves, and automorphic
equivalence of multicurves coincides with equivalence under homeomorphisms. For
general 2-complexes (which may have trivial mapping class groups) these equiva-
lences may not coincide.

1.5. The main result. A solution to the word problem in π1(C) is a procedure
that decides if a loop (given as a sequence of directed edges in C(1)) is nullhomotopic
in C. In the case where C is a presentation complex such a loop uniquely defines
a word in the prescribed generating set.

Theorem B. There is an algorithm which takes as input a finite 2-complex C such
that π1(C) has no 2-torsion, a solution to the word problem in π1(C), some positive
integer κ, a finite collection

S =
{
{hi}i∈In | n = 1, . . . ,m

}
of finite generating sets of subgroups H =

{
〈hi〉i∈In

}m

n=1
of π1(C) and outputs a

finite collection of tracks t1, . . . , tn(C,κ,S) which lie in a complex CS ⊇ C (with
equality if S = ∅) such that the isomorphism π1(CS) ≈ π1(C) is given explicitly.
These tracks give splittings of π1(C) relative to H with the following property: if
π1(C) admits a geometric κ-acylindrical splitting relative to H represented by a
track t, then there is some i ∈ {1, . . . , n(C, κ, S)} such that t ∼Aut(π1(C)) ti.

This theorem is proved in Section 7.6, where the main algorithm is given. The
2-complex Cs was defined in Section 1.3.

The result, as stated, is about splittings that are geometric, κ-acylindrical and
with one edge group. This result is not the strongest possible, but it gives us all
the applications we need.

It could be strengthened as follows: by Theorem 1.10 every κ-acylindrical tree
T is resolved by a geometric tree ρ : T (P,C) � T . The resolving tree T (P,C),
however, may not itself be κ-acylindrical. The analysis of the relationship between
the trees T (P,C) and T in [Del99] combined with the arguments of this paper
actually gives a finite collection of tracks that resolve every κ-acylindrical tree. The
geometric resolving splittings themselves may not be κ-acylindrical, but they are
“locally” κ-acylindrical in a way that is good enough for our arguments. Although
this would give us a full algorithmic version of Sela’s super accessibility [Sel97,
Theorem 4.3] for the class of κ-acylindrical one edged splittings, we have opted for
a simpler formulation, thus removing a layer of notation. We hope the reader will
agree that this is for the best.

For the sake of simplicity we have also restricted ourselves to one edged splitting
or tracks instead of general patterns. This does not weaken the result because
we allow relative splittings which enables us to produce refinements. Results such
as [Wei02, Del99] then give explicit bounds on the number of components of the
pattern.

It should also be noted that Theorem B does not necessarily enable us to detect
whether π1(C ) actually has a geometric κ-acylindrical splitting. To reach such a
conclusion we must be able to further analyze the collection of tracks produced by
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the main algorithm. This means we must be able to solve more delicate algorithmic
problems in the ambient group. The next two applications, especially the proof of
Theorem C, will illustrate the necessary extra requirements.

Finally there is the issue of torsion. The current algorithm cannot handle actions
on trees with arbitrarily long arcs with non-trivial pointwise stabilizers, even if
these stabilizers are finite. Forbidding 2-torsion, for example, controls a problem
that occurs with Möbius bands by bounding their width, which gives terminating
conditions. If the algorithm were to run in the presence of 2-torsion, then it would
still produce a (possibly empty) list of tracks and terminate. However, because the
algorithm will have stopped prematurely this list may be missing some tracks.

There is no reason these torsion issues cannot be overcome. For example, [DG10]
deals with laminations in band complexes with torsion. The author suspects that
to solve this problem one would have to generalize band complexes to some version
for 2-orbihedra with finite cell stabilizers.

1.6. Computing Grushko decompositions. This is an application of Theorem
B with H = ∅ and κ = 0. In this case we only need to be able to solve the word
problem.

Proof of Theorem A. Let C be a presentation 2-complex form 〈X | R〉 and consider
a maximal splitting of 〈X | R〉 over finite groups. If G admits an essential free
decomposition, then by Corollary 1.11 there is a track t ⊂ C that represents this
splitting.

Free decompositions correspond exactly to 0-acylindrical actions on trees. We
now apply the algorithm of Theorem B to get a finite collection of tracks,

t1, . . . , tn.

If there is a track t that represents an essential free splitting of G, then t is Aut(G)-
equivalent to some ti in our finite collection. So G admits an essential free decom-
position if and only if some ti represents an essential free decomposition.

With our solution to the word problem we are able to check for each ti:

• if Gp(ti) = {1},
• if C\ti is not connected, then both components must have non-trivial image
in π1(C) via the inclusion map, or

• if C \ ti is connected, there is nothing to show,

and thus decide if ti represents an essential free decomposition. �

We now give another method to decide if a finitely presented group G with
decidable word problem is free (see [GW09].) First note that if we can solve the
word problem, we can decide if a finitely presented group is abelian (check if the
generators commute) and then, by linear algebra, we can compute its isomorphism
type. In particular we can decide if G is isomorphic to Z. We repeatedly apply
the algorithm for Theorem A to attempt to compute the Grushko decomposition
of G. If G is 2-torsion-free, then this will be the correct Grushko decomposition.
Otherwise we still will obtain some (possibly trivial) free decomposition of G. We
can then decide if each factor of this decomposition is isomorphic to Z or {1}. This
will be the case if and only if G is free.
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1.7. Detecting splittings of relatively hyperbolic groups. For this section
we assume that the reader is familiar with relatively hyperbolic groups. The reader
can consult [Far98] or [Hru10] for definitions. Let G be a finitely presented torsion-
free group that is hyperbolic relative to the finitely generated subgroups H =
{H1, . . . , Hm}. We assume that the groups Hi ∈ H are pairwise distinct and non-
conjugate. Before continuing we need to give some definitions.

Definition 1.16. An element of g ∈ G (respectively a subgroupK ≤ G) is parabolic
if there exists some h ∈ G such that h−1gh ∈ Hi (respectively h−1Kh ≤ Hi) for
some i ∈ H.

Convention 1.17. We will assume in this section that all algorithms in a group
are with respect to a presentation and that the (tuples of) elements of the input
are given as (tuples of) words in the symmetrized generating set.

Definition 1.18. A splitting of G is elementary if all parabolic subgroups are
elliptic and the edge groups are either trivial, infinite cyclic, or parabolic.

Definition 1.19. A triple
(
〈S | R〉, CP, Gen

)
where

(i) 〈S | R〉 is a finite group presentation,
(ii) CP is an algorithm which solves the conjugacy problem with respect to

〈S | R〉, and
(iii) Gen is an algorithm which decides whether or not a finite tuple generates

〈S | R〉
is called an algorithmically tractable triple.

Definition 1.20. A class C of finitely presented groups is called an algorithmically
tractable class of parabolics if there is an algorithm which enumerates algorithmi-
cally tractable triples corresponding to the groups in C.

It is worth pointing out that by [BCRS91] the class of polycyclic-by-finite groups
is algorithmically tractable. We now collect some well-known facts about torsion-
free relatively hyperbolic groups.

Proposition 1.21 ([Far98, Example 1, p. 819]). For all h ∈ G,
(
h−1Hih

)
∩Hj �=

{1} if and only if i = j and h ∈ Hi.

This next result about elements of G follows from the work in [Bum04] but is
stated explicitly in [Osi06]. The generalization to explicitly given subgroups of G
follows applying Proposition 1.21.

Theorem 1.22 (cf. [Osi06, Theorem 5.6]). Given g ∈ G (respectively K =
〈k1, . . . , kn〉 ≤ G) if we are given a solution to the conjugacy problem for each
Hi, i = 1, . . . , n, then we can decide whether there is some h ∈ G such that
h−1gh ∈ Hi (respectively h−1Kh ≤ Hi) for some i ∈ {1, . . . , n}, and find h if
it exists.

The following two facts are well known; however I couldn’t find any precise
references. They are stated here and proved.

Proposition 1.23. Let g ∈ G be a non-parabolic element. Then its centralizer
C(g) is infinite cyclic and malnormal.
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Proof. By Lemma 4.16 and Convention 4.19, the centralizer C(g) of g is a word
hyperbolic group. By [Aea91, Corollary 3.6], since G is torsion free C(g) is infinite
cyclic. Assume now for simplicity that C(g) = 〈g〉.

Suppose there was some h ∈ G such that h−1〈g〉h ∩ 〈g〉 �= {1}. Then by [Osi06,
Corollary 4.26] there is some l ∈ Z �=0 such that h−1glh = g±l. This means that
h2 ∈ C(gl) and that 〈gl〉 is normal in 〈h, gl〉. Now as explained before 〈k〉 =
C(〈gl〉) ≥ C(g) = 〈g〉, which implies that k ∈ C(g), so k ∈ 〈g〉; thus h2 ∈ 〈g〉. From
this we get that [〈h, gl〉 : 〈gl〉] ≤ 2l.

Now [Hem76, Lemma 11.4] states that if a group Q contains an infinite cyclic
subgroup of finite index, then Q contains a finite subgroup K such that Q/K is
either isomorphic to Z or Z2 ∗ Z2. If Q ≤ G, then Q is torsion-free, so K must
be trivial and Q must be infinite cyclic. It follows that 〈h, gl〉 is infinite cyclic, say
〈h, gl〉 = 〈z〉. Then z ∈ C(g), so in particular h ∈ C(g). �

Corollary 1.24. A one edged elementary splitting of a torsion free relatively hy-
perbolic group G is 2-acylindrical.

Proof. We first prove the following. Claim: let e be an edge in a Bass-Serre T
tree connecting the vertices u, v. Then at least one of the images of Ge ≤ Gu or
Ge ≤ Gv is malnormal.

Indeed, if the splitting in question is free, then the result holds. Suppose now
that the edge group is 〈g〉 for some non-parabolic g ∈ G. Then 〈g〉 must be
maximal cyclic in at least one of its images in the vertex groups; otherwise its
centralizer is not cyclic because in the amalgam 〈x〉 ∗xr=ys 〈y〉 if r, s �= 1, then
〈xy, ys〉 ≈ Z ⊕ Z ≤ C(ys). Also the images of 〈g〉 in the associated subgroups
cannot intersect since by [Osi06, Corollary 4.27] any Baumslag-Solitar group must
be parabolic.

Suppose now that the edge groupGe is parabolic, but not maximal parabolic, and
hence malnormal, in either Gu or Gv. Then we have parabolic proper overgroups
Ge < Pu ≤ Gu and Ge < Pv ≤ Gv. On one hand since |Pu ∩ Pv| = |Ge| = ∞ they
must lie in a common maximal parabolic subgroup P . On the other hand P does
not act elliptically on T (it has a non-trivial induced splitting), contradicting the
fact that the splitting is elementary. This proves our claim.

We now prove 2-acylindricity. Let u be a vertex in the Bass-Serre tree and let
e, f be edges such that e∩f = {u}. Since e, f are in the same G-orbit we have that
Ge, Gf are conjugate. On the other hand if e �= f , then if Gv ≥ Ge ∩ Gf �= {1},
then Ge is not malnormal in Gv. Suppose towards a contradiction that there is
some g ∈ Ge such for some edge h ⊂ T such that e ∩ h = ∅ we have g · h = h,
and suppose moreover that there is some edge f ⊂ T such that e ∩ f = {u} and
f ∩ h = {v}. Then we must have that g ∈ Ge ∩ Gf ∩ Gh. g ∈ Ge ∩ Gf implies
that Gf is not malnormal in Gu, which means by our earlier claim that Gf must
be malnormal in Gv so Gf ∩ Gh = {1}, a contradiction. Therefore no element of
G \ {1} fixes an arc of T of length more than 2. �

We finally need the following.

Theorem 1.25 (Theorem 3 of [DG13]). There exists an algorithm as follows. It
takes an input of a finite presentation of a group G, a solution to its word problem,
and a recursive class of finitely presented groups C (given by a Turing machine
enumerating presentations of these groups).
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It terminates if and only if G is properly hyperbolic relative to subgroups that are
in the class C.

In this case, the algorithm outputs an (relative linear) isoperimetry constant K
(in the sense of [Osi06, Definition 2.30]), a generating set, and a finite presentation
for each of the parabolic subgroups.

Now we have our second application.

Theorem C. Suppose we are given a finite presentation 〈X | R〉 of a torsion free
group G that is relatively hyperbolic with finitely many parabolics that lie in an
algorithmically tractable class of parabolics C. Suppose also that we are given a
solution to the word problem with respect to 〈X | R〉 and a finite collection S of
finite generating sets for a set of subgroups H′. Then we can decide if G admits an
elementary splitting relative to H′.

Proof. We first note that by Theorem 1.10 if C is the presentation 2-complex as-
sociated to 〈X | R〉, then G admits an essential elementary splitting if and only if
π1(C) admits an essential elementary geometric splitting. Any elementary splitting
is, by Corollary 1.24, 2-acylindrical.

We first run the algorithm of Theorem 1.25 to find the finite collection {H1, . . . ,
Hn} (given by generating sets in 〈X | R〉) of parabolic subgroups. We then apply
the algorithm of Theorem B with κ = 2 and

H = H′ ∪ {H1, . . . , Hn}

with the collection of generating sets S. This gives us a finite collection of tracks
t1, . . . , tn(C,κ,S) that lie in CS . It is now enough to check for each of these tracks if
they represent an essential elementary splitting. Let t be one of these tracks. By
Theorem 1.22 we can decide if Gp(t) is parabolic.

If Gp(t) is trivial, then as in the proof of Theorem A we can decide if it gives an
essential splitting.

Suppose now that Gp(t) isn’t parabolic. Since we can solve the word problem
we can check whether Gp(t) is abelian. If it isn’t, then it certainly cannot rep-
resent an elementary splitting. Otherwise Gp(t) is abelian. By Proposition 1.23,
Gp(t) is contained in the centralizer of some non-parabolic element and is therefore
contained in a non-parabolic maximal cyclic group. If t is a non-separating track,
then it gives an essential elementary splitting. Otherwise t separates CS , and G
splits as a free product with amalgamation over Gp(t). To check if the splitting
is essential it suffices to check, using the word problem, whether the generators of
the vertex groups commute with Gp(t). Indeed, since we are assuming that Gp(t)
is non-parabolic, we can assume that the vertex groups are non-parabolic; so by
Proposition 1.23 if one of the vertex groups commutes with Gp(t), then it is at most
a finite index cyclic overgroup of Gp(t). Deciding if the vertex group coincides with
Gp(t) can now be solved using item (3) of Theorem 1.16 of [Osi06].

Suppose finally that Gp(t) is parabolic. Again, if t is non-separating the splitting
is essential. Otherwise the splitting is essential if and only if Gp(t) doesn’t equal
one of the vertex groups. If neither of the vertex groups is parabolic, then the
splitting is essential. Otherwise at most one of the vertex groups is parabolic, and
we can decide if it is generated by Gp(t) using Theorem 1.22 and our solution to
the generation problem given by the algorithmic tractability assumption (Definition
1.19(iii)). �
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2. Band complexes

The algorithm of Theorem B is a procedure that will produce a rooted directed
tree (i.e., a branching sequence) of band complexes. Band complexes first appeared
in [BF95] to classify stable actions of finitely presented groups on R-trees. Our
version of band complexes differs in that they are combinatorial objects: they do
not come with laminations; instead we will allow a band complex to carry multiple
laminations or, in our case, tracks.

As combinatorial objects, our band complexes will contain the same amount of
information as Makanin’s generalized equations (cf. [KM98]).

2.1. Definitions and terminology.

Definition 2.1. A band B is a Cartesian product JB × [−1, 1] where JB is home-
omorphic to a closed interval. The subsets JB × {±1} are called bases. If μ =
JB × {±1} is the base of a band, then we call the base μ = JB × {∓1} the dual of
μ.

A band is therefore a rectangle with well-defined bases and a vertical direction.

Convention 2.2. The letters λ, μ, η, ν shall be used to denote bases, and λ will
always denote the dual of λ. We shall denote by B(λ) the band that contains λ.

Definition 2.3. A band complex C is a 2-complex that is constructed in the fol-
lowing way:

(1) Start with a simplicial graph Γ.
(2) Attach the bases of the bands B1, . . .Bm to the interiors of edges of Γ via

embeddings

gμi
: μi ↪→ Γ \ Γ(0),

where the {μi} is the set of bases of the bands.
(3) Let

U =
(
Γ ∪ B1 ∪ . . . ∪ Bm

)
/ ∼

be the resulting identification space. We finally obtain C by attaching discs
D1, . . . , Dl via immersions fi : ∂Di � U with the following requirement:
(a) For all i, j, fi(∂Di)∩Bj can be expressed as a finite union of embedded

arcs αi that travel from one base of Bj to the other. Such arcs are
called connections.

(b) Connections are pairwise disjoint.
(c) If a connection has non-trivial intersection with a side of a band Bj ,

then it coincides with that side.

In the case of measured band complexes [BF95] the complicated requirement (3)
above on the 2-cell attaching map is ensured if the 2-cell attaching maps intersect
measured bands in vertical subsets.

Connections (as described in items (3a)-(3c) of the definition above) will occur
exactly where boundary connections occur when working with generalized equations
(see for example [KM98].) Controlling their cardinality is a key step in the repetition
argument which deals with the thinning and superquadratic cases of the elimination
process (Section 4.8).

Convention 2.4. Although a band complex is a 2-complex, whenever we mention
a 2-cell we really mean a 2-cell Di that gets attached in step (3) of Definition 2.3.
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Thus, it is possible that a 2-cell Di in a band complex never intersects any bands,
in which case the image of the attaching map fi(∂Di) lies entirely in the underlying
graph Γ in item (1) of Definition 2.3.

Convention 2.5. Formally speaking, a base μ isn’t a subset of the band complex C .
That being said we will still write x ∈ μ for some point x ∈ C such that x ∈ gμ(μ).
We will also write λ ⊂ μ if gλ(λ) ⊂ gμ(μ). In the case where gλ(λ) = gμ(μ) we will
use the evocative symbol λ � μ to avoid confusion. We will also treat the bands
Bi as subsets of C when it is convenient.

Definition 2.6. We say that bases μ, μ are matched bases if μ � μ and B(μ) forms
an annulus in C . Otherwise a base is called unmatched.

Definition 2.7. A union of unmatched bases U =
⋃

μ∈S μ is called strongly con-

nected if the union of the interior of the bases U ′ =
⋃

μ∈S interior (μ) is also con-

nected (and therefore an interval). A maximal (with respect to inclusion) strongly
connected union of unmatched bases is called a maximal section.

Maximal sections are almost the blocks in [BF95] and the closed sections in
[KM98].

Definition 2.8 (Carrying a track). Let C be a band complex and let t ⊂ C be a
track. C carries t if t is contained in the union of the bands in C and furthermore:

(i) For each band Bj , t ∩ Bj consists of a union of pairwise disjoint embedded
arcs travelling from one base of Bj to the other, and

(ii) Bj ∩ t is disjoint from the connections in Bj as well as from its sides.

Definition 2.9 (Efficiently carrying). For a base μ, let Sμ ⊂ μ be the finite set
containing the points of the form x = μ∩ c, where c is a connection, and the points
x that are the endpoints of bases. C carries t efficiently if for every base μ and
every distinct x, y ∈ Sμ there is some point in t ∩ μ that separates them.

Thus, if C carries a track t, then t is confined to the interior of the bands. The
notion of carrying naturally generalizes to arbitrarily measured laminations, but
since we will only be focusing on one leaf laminations we only need to deal with
the hitting measure.

Definition 2.10 (Measure from a track). Let C be a band complex, let t be a track
carried by C , and let S ⊂ C be a union of bases. We define the hitting measure on
S with respect to t, denoted |S|t, to be the cardinality of the intersection

|S|t = |S ∩ t|.
If μ is a base of C , then we will sometimes call |μ|t the length of μ with respect to
t.

2.2. Constructing (measured) band complexes from tracks. Let C be a
standard CW 2-complex and let t ⊂ C be a track. We obtain a band complex C
from C as follows.

For each 2-cell D ⊂ C, t ∩D is a disjoint union of arcs travelling from one edge
of ∂D to another edge of ∂D. Metrize the 1-skeleton C(1), giving each edge ei a
length of |ei ∩ t|+2. Subdivide each 2-cell D into a union of bands and 2-cells such
that a base μ has length |μ ∩ t| = |μ|t. Explicitly parameterize each band

B(μ) = [0, |μ|t]× [−1, 1]
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so that t ∩ B(μ) ∩ t is a union of vertical sets as follows:

t ∩ B(μ) =

|μ|t⋃
i=1

{i− 1

2
} × [−1, 1];

this is illustrated in Figure 2.

3

2

1

Figure 2. On the left, the intersection of a track t with a 2-cell U
in a 2-complex. On the right how to construct the corresponding
measured band complex efficiently carrying t by dividing U into
three bands and four 2-cells.

This construction gives a band complex as in Definition 2.3. The underlying
graph is the 1-skeleton C(1); the bases of the bands are embedded in this graph
and avoid the vertices C(0). We further see that the remaining 2-cells have embed-
ded (thus, immersed) boundaries that only intersect bands in their vertical sides.
Furthermore, since no 2-cell attaching maps go through the interior of any of the
bands, t is efficiently carried by the band complex C .

Definition 2.11. A band complex C is measured if every base μ is metrized as a
real closed interval [0, |μ|t] (recall Definition 2.10). A subset v of a band B(μ) =
[0, |μ|t]× [−1, 1] is called vertical if it is of the form

v = {xv} × [−1, 1].

We have proved:

Proposition 2.12. For any track t contained in a 2-complex C, we can subdivide
C into a measured band complex C in which t consists of a union of vertical sets.
Moreover C carries t efficiently.

Definition 2.13 (Combinatorial equivalence of band complexes). Two band com-
plexes C and C ′ are said to be equivalent if there is a homeomorphism C → C ′

that sends the underlying simplicial graph (Definition 2.3(1)) to the underlying sim-
plicial graph, sends bands to bands, sends 2-cells to 2-cells, and for each of these
objects restricts to a homeomorphism.

If we forget the measures on band complexes, we are left with only finitely many
possibilities. Thus,

Proposition 2.14. Let C be a finite 2-complex and let S be a finite collection of
finite subsets of π1(C). Then there are only finitely many possible band complexes
(up to the combinatorial equivalence of Definition 2.13) that arise from the possibly
infinite collection of tracks t ⊂ CS (Proposition 1.13). Furthermore this list can be
effectively constructed.
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3. Moves on band complexes carrying tracks

We will present moves that transform a band complex carrying a track into a
new band complex carrying a new track. These moves are essentially the moves
given in [BF95, §6.1]. Our treatment is slightly different since we want to explicitly
realize each move as a continuous map m : C → C ′ sending the track t to some
track t′ ⊂ C ′, which we denote (C , t) → (C ′, t′). This is accomplished with the
zipping moves. They will be of use in a later section.

We will employ the convention of [KM98] and reuse the names of bases, as is
customary in computer science.

3.1. The basic moves on band complexes that carry a track. Let C be a
band complex efficiently carrying a track t. Suppose furthermore that C is measured
(Definition 2.11) so that a base μ is metrized with length |μ|t and t ⊂ C is a union
of vertical sets.

We first define elementary moves (C , t) → (C ′, t′) which transform the under-
lying band complex and track while preserving the fundamental group and dual
Bass-Serre tree T (t,C ). These moves are actually π1-isomorphic continuous maps
C → C ′ that map t to t′.

Definition 3.1 (Type I zip). Suppose we have a containment of bases λ ⊂ μ with
λ ∩ μ = ∅ and λ ∩ μ = ∅. The union of U vertical sets of B(μ) that intersect λ is
a rectangle homeomorphic to B(λ). A type I zip of B(λ) into B(μ) consists of the
operation of identifying B(λ) to U so that vertical sets are sent homeomorphically
to vertical sets and λ is identified to the corresponding subset of μ.

Definition 3.2 (Type II zip, or squish). Suppose we have the containments of bases
λ ⊂ μ and λ ⊂ μ. Suppose furthermore that there are vertical paths α ⊂ B(λ) and
β ⊂ B(μ) such that the concatenation α∗β is a nullhomotopic loop. A type II zip of
B(λ) into B(μ) is the operation of continuously identifying α to β and continuously
extending this to an identification of B(λ) to a union of vertical subsets of B(μ).
This identification map must be injective when restricted to B(μ) and B(λ) and
must send vertical sets to vertical sets.

→ ←

Figure 3. Type I and type II zips. The identifications must send
tracks to tracks.

These zipping moves are not used in [BF95], but the type I zip is a step in the
transfer (see Definition 3.10 later) or M4 Slide of [BF95]. The zipping moves will be
necessary later when we will be “wrapping one band around another” (see Figure
19). Also the fact that they are given by explicit continuous maps is convenient.

Definition 3.3 (Collapse a band). Let B(μ) be a band such that μ∩ μ = ∅. Then
the collapse of B(μ) onto μ is the operation of identifying each vertical subset v
that intersects interior (μ) to the point xv = v ∩ μ.
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Definition 3.4 (Annulus). An annulus A is a band B(μ) such that μ � μ whose
image in the band complex C is homeomorphic to an annulus.

This next move is similar to the type II zip.

Definition 3.5 (Crush an annulus). Let A ⊂ C be an annulus such that Gp(A) =
{1}. Then crushing A is the operation of identifying each vertical subset of A to
its intersection with μ.

Definition 3.6 (Vertically subdivide a band). Let B = [a, b]× [−1, 1] be a band in
C and let {p} × [−1, 1] be a vertical subset. The operation of subdividing B along
{p} × [−1, 1] consists of the following operations:

(1) Cut B along {p} × [−1, 1] so that we get two bands B1 = [a, p−] × [−1, 1]
and B2 = [p+, b]× [−1, 1].

(2) Attach a 2-cell along the loop (p−× [−1, 1])∗(p+× [−1, 1]), where ∗ denotes
concatenation. This 2-cell is called a subdivision digon.

Convention 3.7. We only allow band subdivision of (t,C ) if the resulting t′ ⊂ C ′

is efficiently carried.

These basic operations may leave some messiness behind:

(i) After performing a zipping move a 2-cell may no longer have an immersed
boundary.

(ii) After a collapse a 2-cell may have a free face, and perhaps the resulting
band complex can be given as C = C ′ ∗p α, i.e., the connected sum at a
point p of a band complex C ′ and a closed arc α.

(iii) After crushing an annulus or performing a type II zip, the boundary of a
2-cell may map onto a point or an interval resulting in a sphere.

We therefore introduce, as basic moves, the following cleaning operations.

Definition 3.8 (Delete superfluous cells). If a 2-cell in C is a sphere, as may occur
in (iii) above, or if it has a free face, remove it. Do the same for hanging arcs that
occur in (ii) above.

Definition 3.9 (Tighten 2-cells). If a 2-cellD no longer has an immersed boundary,
then the attaching map fD : ∂D → C factors as

(4) ∂D �
(
S1 ∗pi

τi
) f ′

� C ,

where the middle term is a circle with some hanging trees τi, which arise from the
“pinching” of the attaching map. This middle term is immersed into C . We replace
D by a 2-cell D′ whose boundary is identified with S1 in (4) and mapped to C \D
(abusing notation) via the immersion f ′ in (4). D′ is called the tightening of D.

We leave it to the reader to verify that the result of a 2-cell removal and the
tightening move C → C ′ can be realized by a continuous map. The transfer, given
below and illustrated in Figure 4, is defined in terms of band subdivisions and
zipping, but we will also treat it as an elementary move.

Definition 3.10 (The transfer). Let μ ⊂ λ be bases such that μ �= λ. The
operation of transferring μ from λ to λ across B(λ) is the following sequence of
operations.
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(1) Subdivide the band B(μ) horizontally:

B(μ) = B(μ−) ∪ B(μ+)

with μ � μ−, μ− � μ+, and μ+ � μ.
(2) Zip the band B(μ−) into B(λ). (By hypothesis, this is a type I zip).
(3) We rename the base μ+ as μ.

μ
λ λ

μ

μ−

μ+

λ

μ

μ

Figure 4. Transferring μ from λ to λ across B(λ). The dotted
line shows a connection (Definition 2.3(3a)). After a transfer this
connection may give rise to two connections.

3.2. The preservation property. We will now give a preservation result for our
moves. This result is stated as a fact at the beginning of [BF95, §6]. In order to
lay out the terminology that is necessary for our purposes, we will carefully state
and prove the preservation property.

Proposition 3.11 (The preservation property). Let m : (C , t) → (C ′, t′) be one of
the basic moves given in Section 3.1. Then we have an isomorphism of fundamental
groups

m� : π1(C )
∼→ π1(C

′)

and a simplicial isomorphism of dual Bass-Serre trees mT : T (t,C ) → T (t′,C ′)
induced by m. Furthermore this map is m�-equivariant in the following sense:
letting π1(C ) act naturally on T (t,C ) by deck transformations via the quotient map
π (Proposition 1.6 (2)), we have

m�(g) ·mT (x) = mT (g · x),
for all g ∈ π1(C ) and all x ∈ T (t,C ).

Proof. We first prove the proposition for zipping, collapsing, and crushing moves.
We first show that the fundamental groups are isomorphic. Consider first either

a type I zip (Definition 3.1) of B(λ) into B(μ) (i.e., with λ ⊂ μ) or the collapse of

B(μ) onto μ (Definition 3.3). These moves lift to π1(C )-equivariant moves on C̃ .
Pick a basepoint x ∈ μ ⊂ C ; by the disjointness criteria we see that no distinct

lifts of x in C̃ are identified and that the resulting complex C̃ ′ remains simply

connected. Since the lifts of x in C̃ are in bijective correspondence with π1(C ); the
isomorphism π1(C ) ≈ π1(C ′) follows.

In the case of a type II zip (Definition 3.2) or an annulus crush (Definition

3.5) the π1-triviality criteria ensure that we can find lifts B̃(μ), B̃(λ) of B(λ),B(μ)

(respectively) such that B̃(μ) ∪ B̃(λ) is as in the right side of Figure 3 or that the

annulus A(μ) lifts to C̃ . Arguing as before (taking a basepoint in μ) we obtain the
isomorphism π1(C ) ≈ π1(C ′).
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In all cases the moves map bands to (interiors) of bands and vertical sets to
vertical sets. Also points in the complement of the union of bands of C are sent to
the complement of the union of band of C ′, and the restriction to the complement

is injective. Lifting to C̃ we therefore see a bijective correspondence between the

connected components of t̃ and t̃′. Furthermore if connected components t1, t2 ⊂ t̃
are dual to edges that share a vertex in T (t,C ), then their images t′1, t

′
2 will be

dual to edges in T (t′,C ′) that share a vertex. The isomorphism of Bass-Serre trees
follows, and m�-equivariance of the isomorphism follows from construction.

The proof for band subdivisions, superfluous 2-cell deletions, and tightenings is
obvious. �

3.3. Derived moves. Having defined basic moves we shall now define the com-
posite, or derived, moves that constitute the Rips machine. We first introduce the
τ -complexity (originally Makanin’s ξ-complexity [Mak82]), which is one of the main
tools of our analysis. As we define the derived moves we will show why they do not
increase this τ -complexity.

Definition 3.12. Let σ ⊂ C be a maximal section (Definition 2.7), and let b(σ)
be the number of unmatched bases contained in σ. We define the τ -complexity of
a section to be

τ (σ) = max
(
b(σ)− 2, 0

)
.

Definition 3.13 ([BF95, Definition 4.3], [KM98, §5]). Let J ⊂ C be a union of
maximal sections. Then we define the J-relative τ -complexity to be

(5) τ (C , J) =
∑
σ �⊂J

τ (σ).

If J = ∅ write τ (C ) instead of τ (C , ∅).

Definition 3.14. For a point x ∈ μ we denote by γ(x) the number of unmatched
bases λ such that λ � x.

Definition 3.15. The vertical length of the attaching map ∂D � C of a 2-cell D
is the number of connected components of the preimages of the connections ((3a) of
Definition 2.1). Equivalently, this is the number of times the attaching map travels
through a band.

3.3.1. The Möbius move.

Definition 3.16. A dual pair (μ, μ) such that μ � μ and B(μ) forms a Möbius
band is called a Möbius pair.

This next move is described in [BF95, Lemma 6.4]. Note that since we require
tracks to be two-sided, a track t ⊂ C can never intersect the core of a Möbius
band. It follows that we can always subdivide a Möbius band along its core and
the resulting band complex will still efficiently carry t.

Definition 3.17 (The Möbius move). Given a Möbius pair (μ, μ), we subdivide
the band B(μ) = μ× [−1, 1] along {m}× [−1, 1], the core of the Möbius band. Call
the resulting bands B(μ0) and B(μ1). We then transfer the base μ0 across the band
B(μ1). The dual pair (μ0, μ0) now forms an annulus A(μ0), and the pair μ1, μ1

intersects at a point. If the annulus A(μ0) is π1-trivial, we crush it. We rename
μ1, μ1 as μ, μ respectively.
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Straightforward verification gives the following result:

Lemma 3.18. Let (C , t) be a band complex efficiently carrying a track. Let (μ, μ)
form a Möbius pair. After the corresponding Möbius move m : (C , t) → (C , t′) we
have the following:

(i) The hitting measure of μ drops by a half, i.e.,

|μ|t′ =
1

2
|μ|t.

(ii) The hitting measure of |μ|t′ is the same as the measures of the matched
base |μ0|t′ .

(iii) The τ -complexity did not increase.

3.3.2. The thinning move. The thinning move is applied whenever there is some
point x in a base μ such that γ(x) = 1 (Definition 3.14). In [BF95] this is the move
for Process I, but modified to keep the number of unmatched bases non-increasing
(we prevent the “long bands” of [BF95] from occurring). In [KM98] this is the move
applied in cases 7-10.

Definition 3.19. Let x ∈ μ be a point such that γ(x) = 1. Let x ⊂ μ0 ⊂ μ be
the maximal segment that contains only points x′ with γ(x′) = 1. We call μ0 a
maximal naked segment.

Suppose that a base μ contains a naked segment. We now describe the thinning
move starting at μ:

(1) Subdivide μ. Subdivide μ into segments

μ = μ−1 ∪ μ0 ∪ μ1

with μ−1 or μ1 possibly empty and μ0 a maximal naked segment of μ.
This results in a subdivision of B(μ). Denote by D−1 and D1 the added
subdivision digons.

(2) Subdivide annuli and clean μ0. For every matched base pair (λ, λ) such
that λ intersects interior (μ0) vertically subdivide

B(λ) = B(λ−1) ∪ B(λ0) ∪ B(λ1)

so that λ0 ⊂ μ0 and λ±1 doesn’t intersect interior (μ0).
Next, take all the resulting base pairs (λ0, λ0) with λ0 ⊂ μ0 and transfer

λ0 and λ0 from μ0 to μ0 through B(μ0). Now μ0 doesn’t intersect any other
bases.

(3) Collapse the naked segment and the added subdivision digons. Collapse
the band B(μ0) onto μ0. Delete the subdivision digons D−1, D1 that were
added in step 1 since they now have free faces.

(4) Remove long bands. A long band is a union of two bands

B(μ) ∪ B(λ)

with μ � λ. If a long band is created, first transfer μ, and all other bases
contained in λ, from λ to λ through B(λ) and then collapse the band B(λ)
onto λ.

(5) Clean up. Crush any remaining π1-trivial annuli.

A proof of this next fact for generalized equations can be found in [KM98];
instead of adapting it we simply give another proof.
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Lemma 3.20. After applying a thinning move starting at a base μ, the τ -complexity
did not increase. If no annuli were subdivided, the number of 2-cells did not in-
crease, nor did the vertical lengths of 2-cell attaching maps.

Proof. From (3), the number of 2-cells did not increase if no annuli were subdivided.
Furthermore, since the only transfer move is immediately followed by a collapse of
the transfer band, the vertical lengths of 2-cell attaching maps could not increase.

It remains to show that the τ -complexity doesn’t increase. Suppose that we
performed (2), so that μ0 doesn’t intersect any other bases (we could also do (1),
(2) and then recombine the bands created in (1)). Then the number of maximal
sections may have increased, but the number of unmatched bases did not; thus the
τ -complexity did not increase.

Let σ be the maximal section containing μ and let σ′ be the maximal segment
containing μ, after the subdivision of matched bases.

Suppose first that μ is completely naked (i.e., μ0 = μ). Then (1) doesn’t occur
and after the collapse of B(μ) in (3), the total number of unmatched bases goes
down by 2. It therefore clearly follows from Definition 3.13 (5) that the τ -complexity
decreased.

Suppose now that μ gets subdivided into two segments μ0, μ1. Take σ to be
co-initial with μ0. After (1) and (2) σ gets subdivided into σ0, σ1 with b(σ0) = 1
and b(σ1) = b(σ). In σ′ the base μ gets replaced by μ0∪μ1. This increases b(σ

′) by
1 (Definition 3.13 (5)), but in (3) we collapse B(μ0) onto μ0. This deletes μ0 from
σ′ so b(σ′) goes back down.

Suppose finally that μ gets subdivided into μ−1, μ0, μ1. After (1) the maximal
section σ gets split into σ−1, σ0, σ1, with b(σ0) = 1 and b(σ±1) ≥ 2. If we look
at the contribution of what is left of σ we have a decrease in the contribution of
τ -complexity of at least

τ (σ)−
(
τ (σ−1) + τ (σ0) + τ (σ1)

)
≥ 1.

On the other hand, if we look at σ′ we see that μ gets subdivided into three bases
and μ0 gets deleted after the collapse in (3). We therefore have an increase in the
contribution to the τ complexity of resulting sections that constitute σ′, which may
have been subdivided, of at most τ (σ′) + 1; thus the total τ -complexity did not
increase.

Note further that in all the cases above, if we were working with a J-relative
complexity, with μ ⊂ J , then the J-relative τ complexity also did not increase. �

B(μ) B(μ−1) B(μ1)

Figure 5. A thinning move (the 2-cells are not shown).
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3.3.3. The entire transformation. This is the entire transformation given before
[KM98, Case 12]; it also constitutes the move used in Process II in [BF95]. One of
the disadvantages of the topological setting is that dealing with closures of maximal
sections is awkward due to the fact that endpoints of bases can lie in the closures
of distinct maximal sections.

Definition 3.21. An ordering < on a band complex C is an ordering < on the union
U of maximal sections (Definition 2.7) that is compatible with some embedding
U ↪→ R. An unmatched base μ whose interior is <-coinitial is called a leading
base. An endpoint of μ is called initial (terminal) if it is the limit of a <-decreasing
(<-increasing) sequence of points in interior (μ).

Convention 3.22. Band complexes will always be assumed to be equipped with
an ordering.

We now describe the entire transformation with carrier μ. Let μ be a maximal
leading base.

(1) Subdivide matched bases. If the base μ intersects any annuli A(λi), we
vertically subdivide them so that the resulting annuli are either contained
in μ or do not intersect the interior of μ.

(2) Move bases to the right. Transfer every other leading base λ ⊂ μ (except
μ) onto μ through B(μ).

(3) Collapse the naked initial segment. Let μ0 be closure of the <-coinitial
maximal naked subsegment of μ. Subdivide B(μ) into B(μ0)∪B(μ1). Denote
by D1 the added subdivision digon. Collapse B(μ0) onto μ0 and delete D1

because it has a free face.
(4) Rename and clean up. We rename μ1 as μ and crush any π1-trivial annuli.

Definition 3.23. The leading base μ given in the definition of the entire transfor-
mation is called the carrier base.

An illustration of the result of an entire transformation is given in Figure 7. This
next result follows from a counting argument.

Lemma 3.24 ([BF95, Proposition 7.5]). After applying an entire transformation
the τ -complexity did not increase.

Unlike in the thinning case, the vertical lengths of 2-cell attaching maps may
increase.

3.4. The Rips machine. The Rips machine, which was first described in [BF95],
is a geometric adaptation of Makanin’s algorithm which takes a measured band
complex C and produces a sequence called the Rips sequence:

C = C0 → C1 → . . .

of measured band complexes, constructed inductively. We assume that C is
equipped with an order <, as given in Definition 3.21.

Lemma 3.25. Let C be equipped with an order < and let m : (C , t) → (C ′, t′)
be a Möbius move, a thinning move, or an entire transformation. Then there is a
naturally induced order <′ on C ′.
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Figure 6. A band complex in terminal form; i.e., all bases are
matched. As a graph of spaces, the edge space is clearly visible.
There is a unique track, drawn in black, that is efficiently carried
by this band complex. (Recall that tracks are connected by defi-
nition.)

Proof. A Möbius move may split a maximal section σ (i.e., delete a point) into two
maximal sections σ0, σ1 < therefore restricts to <′ on the new union of maximal
sections.

Denote by U,U ′ the union of maximal sections in C ,C ′, respectively. If a thin-
ning move is applied, then some maximal base is collapsed onto its dual so that
C → C ′ is actually a retraction. It follows that after splitting some maximal sec-
tions the restriction U → U ′ is also a retraction, so there is a natural restriction C ′.
For entire transformations, the initial subdivisions and transfers will at most split
U into more open intervals. This is immediately followed by a collapse, so there is
a well-defined <′ as before. �

We now describe the Rips sequence for C induced by a track t efficiently carried
by C .

(1) Crush any π1-trivial annuli and delete any superfluous 2-cells.
(2) If there is point Ci with γ(x) = 1, we apply a thinning move collapsing the

<-minimal maximal naked segment (Definition 3.19) to obtain Ci+1.
(3) Otherwise, if there are any unmatched bases,

(a) if possible, apply a Möbius move on a <-minimal Möbius band or
(b) apply an entire transformation, then
tighten all 2-cells attaching maps.

(4) Once all the bases are matched stop.

We note that our choice of ordering < on C is by no means canonical. However
once it is made, the Rips sequence becomes deterministic.

Proposition 3.26. Let t ⊂ C be a track in a 2-complex and let C be the cor-
responding measured band complex given in Proposition 2.12. Then after finitely
many steps the Rips machine terminates on a band complex (CT , tT ), with all bases
matched and coinciding. The interior of the union of the bases is a regular neigh-
bourhood of tT homeomorphic to t× (−1, 1), t is a wedge sum of circles, and there
are no connections in the interior of the bands.

Proof. Since all bases start off with finite integer valued length, the Rips machine
eventually stops since every step decreases the length of some base by a positive
integer.

All bases are matched, and they must all coincide, since tT is connected and it’s
efficiently carried by CT . Now, because all the bases are matched, if μ is any base
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|μ|tT , the number of connected components of tT must equal 1. Efficient carrying
also excludes the possibility of connection in the interior of a band. �

Proposition 3.11 implies that the final dual Bass-Serre tree T (tT ,CT ) is π1(C )-
equivariantly isomorphic to the original T (t, C). The following definition is impor-
tant for the next section.

Definition 3.27. A band complex C is in terminal form if it is as described in
conclusion of Proposition 3.26; see Figure 6.

4. The elimination process

We will now turn our attention to the set of all tracks that are efficiently carried
by a band complex.

Let C be a band complex equipped with an ordering < on the union of maximal
sections (Definition 3.21). Then, given a track t ⊂ C , the Rips machine (Section
3.4) will perform a specific derived transformation (C , t) → (C ′, t′). The type of
transformation, either an annulus crush, a thinning move, a Möbius move, or an
entire transformation, is determined by C and the ordering <, but not the track t
it carries.

Although the type of transformation doesn’t depend on the track t carried by C ,
the combinatorial equivalence class of the resulting C ′ does depend on the track t.
For example consider Figure 7, which shows two different combinatorial outcomes
coming from two different tracks carried by the same band complex. Since we want
to study the set of all tracks carried by C we must consider all these combinatorial
outcomes simultaneously.

4.0.1. The elimination tree T(C). Given a band complex C with a track t ⊂ C , the
Rips machine gives a sequence (C , t) → · · · → (CT , tT ) with (CT , tT ) in terminal
form. If we want to consider all tracks carried by C , then we must have a branching
sequence or, in other words, a rooted directed tree.

Definition 4.1. Let C be a band complex. Denote by tracks(C ) the set of tracks
efficiently carried by C .

Definition 4.2 (Combinatorially equivalent derived transformations). Let t1 and
t2 be two tracks efficiently carried by a band complex C . The derived transfor-
mations (C , t1) → (C ′

1, t
′
1) and (C , t2) → (C ′

2, t
′
2) are combinatorially equivalent if

there is a commuting homeomorphism e,

C ′
1

C

C ′
2

e

that is a combinatorial equivalence of band complexes in the sense of Definition
2.13.

Convention 4.3. In section 3.4 it was convenient to consider band complexes as
being measured in order to precisely describe continuous quotient maps. For the
rest of the paper, unless stated otherwise, band complexes C without tracks will
be considered equal if they are combinatorially equivalent in the sense of Definition
2.13.
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μ

μ

δ η

λ ρ

�μ
�δ �η �μ

�λ �ρ

�μ
�η �μ�δ

�λ �ρ

�μ
�η �μ�δ

�λ �ρ

Figure 7. Two different tracks carried by the same band complex
C give distinct combinatorial outcomes after applying an entire
transformation (see Section 3.3.3). Here the carrier μ moves base
δ onto its dual. The base diagrams illustrate the ordering < (see
Definition 3.21) on the union of maximal sections.

The entire transformations shown in Figure 7 are not combinatorially equivalent.
We note that, in the notation of the above definition, the tracks t′1, t

′
2 need no longer

give combinatorially equivalent derived transformations of C ′
1 = C ′

2.

Definition 4.4 (Derived transformations of a band complex). Let C be a band
complex equipped with an ordering < of the union of its maximal sections (Defini-
tion 3.21). For every t ∈ tracks(C ) there is a corresponding derived transformation
(C , t) → (C ′, t′) with resulting band complex C ′. The type of this transformation,
either an annulus crush, a Möbius move, a thinning move, or an entire trans-
formation, depends on the underlying band complex C (and the ordering). Let
C1, . . . ,Cn denote the finite set of combinatorial equivalence classes of the resulting
band complexes. A derived transformation of a band complex C is the operation
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that produces the finite collection of continuous maps

(6)

C

C1 Cn· · ·

We remark that we can algorithmically construct the set C1, . . . ,Cn.

Lemma 4.5. If the < is an ordering on C , then all its children obtained by a
derived transformation have well-defined induced orderings.

Proof. The induced ordering given in Lemma 3.25 does not depend on the track,
only on the continuous map between the underlying band complexes. �

Convention 4.6. For the rest of the paper, unless stated otherwise, we will assume
that a band complex C comes equipped with such an ordering < of the union of
its maximal sections.

The elimination process for a 2-complex C is the construction of the elimination
tree T(C), a directed rooted tree defined inductively as follows:

(1) The root of T(C) is the polygonal complex C.
(2) The set of children of C is the finite collection of band complexes C1, . . . ,CnC

provided by Proposition 2.14 that can efficiently carry all tracks of C. For
each Ci, 1 ≤ i ≤ nC , we equip the union of maximal sections (Definition
2.7) with an ordering < as in Definition 3.21.

(3) If a band complex Cv in T(C) is in terminal form (Definition 3.27), then it
is called a terminal leaf.

(4) If a band complex Cv in T(C) cannot be brought to terminal form via
derived moves because the union of the bands is not connected or all bases
are matched, but there are 2-cell attaching maps that intersect the interior
of the bands, then it is called an inadmissible leaf.

(5) Otherwise we continue to grow T(C) at a band complex Cv by adding
its descendants with a derived transformation (Definition 4.4). Equip the
union of bases of each descendant Cv′ of Cv with the induced order < given
by Lemma 4.5.

As will be explained in the next section T(C) gives a way to encode the set
of tracks that can lie in the polygonal complex C. It follows that in general it is
infinite.

4.1. The sets of tracks in a band complex organized by open neighbour-
hoods.

Lemma 4.7. Let C → C ′ be one of the continuous maps of the derived transfor-
mation on C (Definition (4.4) (6)). Suppose that C ′ is equipped with a measure
(Definition 2.11). Then there is a well-defined pullback measure on C . Further-
more, as long as the union of the interiors of the bands in C ′ is connected, the
maximal measure of each base μ of C is no more than the sum of the measures of
the bases in C ′ that are in the image of μ via the map C → C ′.

Proof. It is now enough to consider the basic moves in Section 3.1, i.e., the zips,
collapses, annulus crushes, vertical and horizontal subdivisions. In all cases given

such a transformation Ĉ → C ′ as a continuous map, there is a unique pullback
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measure we can put on Ĉ . The upper bound on the measure of the bases of C is
obvious from the definitions of the derived moves. �

Corollary 4.8 (Going backwards). Let C → C ′ be one of the continuous maps
of the derived transformation on C . Suppose that C ′ efficiently carries a track t
(Definition 2.9). Then there is a unique track t̂ that is efficiently carried by C such
that (C , t̂) → (C ′, t) is a derived transformation in the Rips machine.

Proof. Since C ′ efficiently carries t, we can put a measure on C ′ (Definition 2.11)
that corresponds to t. Lemma 4.7 gives a pullback measure on C , which induces a
track t̂ ⊂ C which induces the derived transformation. Furthermore it is routine
to check for the basic moves in Section 3.1 that t̂ is indeed efficiently carried by C ,
provided t is efficiently carried by C ′. �

Any band complex in terminal form (Definition 3.27) efficiently carries a unique
track. We will now show how repeatedly going backwards enables us to use T(C)
to organize the collection of tracks that are efficiently carried by C.

Proposition 4.9. There is a bijective correspondence between the set of tracks in
C and {Cl}, the set of terminal leaves (Section 4.0.1 (3)) of T(C).

Proof. Let C be a band complex at the top level of T(C). As a topological space
it is homeomorphic to C. Any track efficiently carried by C is obviously a track in
C.

If t ⊂ C is a track, by Proposition 3.26 the Rips sequence for (C , t) will give
a path in T(C) from C to some band complex in terminal form Cl. This map
from tracks to leaves is injective since, having fixed <, the outcome of a particular
derived move (C , t) → (C ′, t′) depends only on the track t.

On the other hand, let Cl be a terminal leaf of T(C). We may metrize all its bases
to have length 1, so that each band is explicitly parameterized as [0, 1] × [−1, 1].
Cl efficiently carries the track tl which intersects each band as { 1

2} × [−1, 1]. Now
starting at (Cl, tl) and repeatedly going backwards (Corollary 4.8) in T(C), we
obtain (C , t), where t ⊂ C is an efficiently carried track. �

If C is some band complex not in terminal form (as in Section 4 (3)), then any
efficiently carried track t ⊂ C gives rise to one of the children in the elimination
tree

C

C1 Cn· · ·

It follows that there are injective maps

(7) ιj : tracks(Cj) ↪→ tracks(C )

whose images give a cover

tracks(C ) =
⋃
j

ιj (tracks(Cj)) .

Definition 4.10. Let Cv be a band complex in an elimination tree T(C). We
denote the track neighbourhood

NT(C)(Cv) ⊂ tracks(C )
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to be the set of tracks carried by C obtained by composing the maps (7) going from
Cv all the way back to C .

Equivalently if Cv is a band complex in T(C), then there is a natural inclusion
T(Cv) ⊂ T(C). Proposition 4.9 immediately gives the inclusion tracks(Cv) ↪→
tracks(C ) obtained by iterating (7).

4.2. Analogies with surface train tracks. If the reader has some familiarity
with surface train tracks, the following analogies may be helpful.

If Σ is a surface, then a train track τ ⊂ Σ is analogous to a band complex
structure C on a 2-complex C. If we assign positive integer weights to the branches
of a train track τ satisfying the switch equations, then we get a multicurve in Σ,
which is analogous to a pattern in C. For us a track in a 2-complex is analogous
to a simple closed curve.

The assignment of weights to branches of a train track gives rise to a splitting
sequence

τ = τ0 → · · ·
which will eventually split τ into a multicurve if the weights are positive integers.
This is analogous to a Rips process.

On the other hand, if we put a measure on a train track, then we can consider
all possible train tracks

τ

τ1 τn· · ·

that can be obtained from τ via a splitting move. Iterating, this gives an analogue
to the elimination tree. In fact we will get an actual tree if we impose some kind of
order < which specifies which switch to split at each step. If eventually the train
track has split itself into a simple closed curve τT , then we have a train track in
terminal form. Assigning weight 1 to the branch and working backwards (i.e., using
folding sequences) gives us a “complicated” simple closed curve in Σ.

If we were to consider the set of projectivized measured laminations, then irra-
tional laminations would give infinite splitting sequences. Furthermore the neigh-
bourhoods of Definition 4.10 are somewhat analogous to open neighbourhoods in
the Hausdorff topology on laminations. Indeed, two laminations are “close” if the
corresponding splitting sequences coincide for a long time. This all carries through
to measured laminations on cell complexes, but this technology is not needed, and
the ordering < will cause us to stay stuck in a single minimal component.

4.3. Inadmissibility from κ-acylindricity. Up to now the κ-acylindricity of the
dual Bass-Serre tree T (t,C ) has not been used at all.

Definition 4.11. A track t efficiently carried by a band complex C is called a
κ-track if the dual tree T (t,C ) is κ-acylindrical. We denote by tracksκ(C ) the set
of κ-tracks efficiently carried by C .

We give two extra criteria to exclude vertices Cv of T(C) because their track
neighbourhood NC (Cv) cannot contain any κ-tracks.

Lemma 4.12. If π1(C ) has no elements of order 2 and t ∈ tracksκ(C ), and if
μ � μ, then either (μ, μ) forms an annulus that can be crushed (which decreases
the number of bands) or |μ|t ≤ κ, where |μ|t is the hitting measure.
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Proof. By the κ-acylindricity assumption any element that fixes an arc of length
κ+1 in the dual tree T (t,C ) must be trivial. By assumption B(μ) either forms an
annulus A(μ) or a Möbius strip M(μ). In both cases Gp (A(μ)) or Gp (M(μ)) is
generated by an element g �= 1, since clause (1) in the Rips machine (Section 3.4)
crushes π1-trivial annuli and Gp (M(μ)) must act non-trivially on T (t,C ).

We pass to the universal cover and consider the equivariant map π of Proposition
1.6 (2), and we see that in the annulus case g fixes an arc of T (t,C ) of length |μ|t.
In the Möbius strip case g2 �= 1 fixes an arc of length |μ|t in T (t,C ). In the Möbius
band case this forces |μ|t to be at most κ. In the annulus case, if |μ|t > κ, then we
can crush it since Gp (A(μ)) = {1}. �

As an immediate corollary we have:

Proposition 4.13. Let Cv be a band complex in T(C). If along some path

p : Cu → · · · → Cv

in T(C) either some annulus gets subdivided more than κ+1 times or some base μ
that formed a Möbius pair with its dual gets shortened or vertically subdivided more
than κ+ 1 times, then NT(C)(Cv) doesn’t contain any κ-acylindrical tracks.

Definition 4.14. We call a path p in T(C) such as the one given in Proposition
4.13 κ-inadmissible.

4.4. Automorphic minimality and repetitions.

Definition 4.15 (Size and minimality). The size of a track t ⊂ C in a band
complex is the finite sum

Size(t) =
∑
μ

|μ ∩ t|

where μ ranges over the bases of C . A track t is called automorphically minimal if
among all other tracks t′ such that t ∼Aut(π1(C )) t

′, Size(t) ≤ Size(t′).

This next lemma is easy to prove from the definitions of the basic moves.

Lemma 4.16. Let m : C → C ′ be a basic transformation. If t′1 is a track efficiently
carried by C ′, then there is a corresponding track t1 efficiently carried by C such
that m : (C , t1) → (C ′, t′1). Furthermore if t′2 is efficiently carried by C ′ and
Size(t′1) < Size(t′2), then Size(t1) < Size(t2), where t2 is the track efficiently carried
by C corresponding to t2.

This notion of automorphic minimality may seem convoluted, but the proof of
the following proposition may clear things up for the reader.

Proposition 4.17 (Repetitions and minimality). Let Cv be a band complex in
T(C). If along some path

p : Cu → · · · → Cv

in T(C) there are two combinatorially equivalent band complexes (Definition 2.13)

Cu
≈→ Cv, i.e., a repetition, then NT(C)(Cv) cannot contain any minimal tracks.

Proof. Suppose towards a contradiction that there was a track t ⊂ C in NT(C)(Cv)
that was minimal. Let qv : Cv → · · · → Cl be the path to the terminal leaf in T(C)
corresponding to t (recall Proposition 4.9).

Let pu be the concatenation of paths p and qv, i.e., pu : Cu → · · · → Cv → · · · →
Cl. Since Cu ≈ Cv, we can attach the path qv to Cu to get a corresponding path
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qu : Cu → · · · → Cl′ , where Cl′ ≈ Cl. Let t
′ ⊂ C be the track corresponding to Cl′ ,

and denote by t′i (respectively ti) the image of t′ (respectively t) in Ci, should there
be such an image. Derived moves always decrease the lengths of bases; thus, in Cu,
Size(t′u) < Size(tu). Working backwards in T(C), i.e., repeatedly applying Corollary
4.8, all the way back to a direct descendant C of C yields Size(t′) < Size(t).

On one hand, by the definitions of qv and qu, we have (Cv, tv)
≈→ (Cu, t

′
u). On

the other hand we have a sequence of derived moves

(Cu, tu) → · · · → (Cv, tv).

This gives a composition of continuous maps

ϕ : Cu → · · · → Cv
≈→ Cu,

which by Proposition 3.11 induces an isomorphism on π1; hence ϕ� ∈ Aut(π1(Cu)).
Furthermore, by construction ϕ(tu) = t′u, so again Proposition 3.11 gives us that
T (tu,Cu) is ϕ�-equivariantly isomorphic to T (t′u,Cu), where the action on the sec-
ond tree is given by (g, x) 
→ ϕ�(g) · x. It follows that t′ and t are automorphically
equivalent, contradicting the minimality of t. �

Definition 4.18. A path p in T(C) that satisfies the hypotheses of Proposition
4.17 is called repetition-inadmissible.

4.5. Restricted elimination processes. In order to construct T(C) we will some-
times have to construct auxiliary elimination trees that are rooted at band com-
plexes C in T(C).

Let J ⊂ C be a union of maximal sections. We redefine the order < so that the
maximal sections in J are terminal. The restricted elimination tree is used to study
how the bases of C can be moved into J . If C → C ′ is a derived transformation
which is a continuous map, then J has a well-defined image in C ′ which we also
denote by J . T(C , J) is constructed as follows:

(1) The root of T(C , J) is C .
(2) If every base of a band complex Cl in T(C , J) is contained in J , then Cl is

called a J-terminal leaf.
(3) Inadmissible leaves are defined the same way as for T(C).
(4) Otherwise we apply a corresponding derived transformation, either a Mö-

bius move on (μ, μ), a thinning move starting at μ, or an entire transfor-
mation with leading base μ to create the children of Cv. Equip the union
of bases of every child C ′

v of Cv with the induced order <.

Restricted elimination processes will be required for some subprocesses of our
main algorithm. It is obvious that the various inadmissibility criteria for a standard
elimination tree T(C) also hold for restricted elimination trees.

Convention 4.19. Many statements about restricted elimination trees will also
follow for the standard elimination tree by replacing T(C) by the elimination trees
T(C1, ∅), . . . ,T(CnC

, ∅) where C1, . . . ,CnC
are the children of C (see step (2) in

Section 4.0.1). These elimination trees are contained in T(C). We will therefore
assume that results about restricted elimination processes will apply to the standard
elimination process, the latter being a special case.
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4.6. The infinite branches of T(C). One of Makanin’s key observations is that
every infinite branch of T(C) stabilizes into one of three cases. The main ingredient
is the following lemma.

Lemma 4.20. If after applying an entire transformation which didn’t involve a
Möbius move we are in the situation where we must make a thinning move, then
(J-relative) τ -complexity decreased.

In the case of band complexes, this fact is explained between Proposition 7.5
and Proposition 7.6 of [BF95]. The proof consists of a straightforward complex-
ity counting argument. This next result is ubiquitous whenever the elimination
process/Rips machine is involved.

Theorem 4.21 (Fundamental classification). Every infinite branch b in T(C)
(T(C , J)) has a tail bv = Cv → · · · of one of the following forms:

(i) Thinning: Every derived transformation along bv is a thinning move.
(ii) Quadratic: Every derived transformation along bv is an entire transforma-

tion. For all but finitely many points in the (J-complement of the) union
of bases of the band complexes Cw along bv we have γ(x) = 2 (Definition
3.14).

(iii) Superquadratic: Every derived transformation along bv is an entire trans-
formation. There is a whole open interval of points in the (J-complement of
the) union of bases of the band complexes Cw along bv such that γ(x) ≥ 3.

Furthermore if we require NT(C)(Cv) to contain a κ-track, then we may assume that
no Möbius moves or annulus subdivisions occur along bv.

In (ii) above, we would really like to say that every point in the union of bases
is contained in exactly two unmatched bases. Points on the boundary of bases,
however, may be contained in up to four distinct bases, but there are only finitely
many of them.

Proof. If the (J-restricted) τ -complexity is 0, because we are not allowing long
bands (see step 4 of the thinning move, Section 3.3.2), all bases are matched (all
bases moved onto J) so we are at a leaf. It therefore follows by Lemma 4.20 that
the infinite branch b eventually always consists of thinning moves or eventually
always consists of entire transformations.

Suppose now that bv is not of thinning type. If Cv is of quadratic type, then after
applying an entire transformation C ′

v is still quadratic. The trichotomy now follows.
The fact that Möbius moves and annulus subdivisions stop occurring follows from
Lemma 4.12. �

König’s Lemma states that every infinite rooted tree with vertices of finite va-
lency must have an infinite branch. This classification of infinite branches is the
foundation of the construction of a finite subtree of T(C) containing all the leaves
corresponding to minimal κ-acylindrical tracks.

4.7. The admissible subtree A(C , J).

Definition 4.22. The admissible elimination tree A(C , J) ⊂ T(C , J) is the sub-
tree obtained by forbidding κ-inadmissible and repetition-inadmissible subpaths
(Definitions 4.14 and 4.18). We similarly define the admissible elimination tree
A(C) ⊂ T(C).
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This next proposition enables us to restrict the search for tracks in the algorithm
for Theorem B to admissible elimination trees.

Proposition 4.23. Let t be an automorphically minimal κ-track efficiently carried
by C . Any path C → · · · in T(C , J) induced by t ⊂ C must be contained in A(C , J).

Proof. Otherwise Proposition 4.14 or 4.18 leads to a contradiction of the hypothe-
ses. �
Proposition 4.24. For every n, the subtree of radius n of A(C , J) can be effectively
constructed.

Proof. For any band complex the collection of children (see Definition 4.4 (6)) can
be constructed effectively, and the various inadmissibility conditions can be verified
effectively. �
4.8. Reduction to the superquadratic case. We show that infinite thinning or
quadratic branch in T(C , J) contains a repetition. From this it will follow that the
admissible elimination tree A(C , J) does not have any infinite thinning or quadratic
branches.

Lemma 4.25 (cf. [KM98, Lemma 15]). Any sufficiently long thinning path Cv →
· · · contains a repetition, i.e., a subpath Cu → · · · → Cw with Cu ≈ Cw.

Proof. By Theorem 4.21 we may assume that no more annulus subdivisions occur.
By Lemma 3.20, the number of 2-cells and the vertical lengths of the 2-cell attaching
maps are non-increasing. Furthermore since the τ -complexity is bounded and there
are no maximal sections σ with τ (σ) = 0 there is a bound on the number of bases.

A band complex is obtained by gluing bands to a graph Γ and then attaching
other 2-cells. Since derived transformations do not change anything in the exterior
of union of the bands, the number of bands and 2-cells remains bounded, and the
combinatorial lengths of the attaching immersions of the 2-cells is bounded; any
sufficiently long thinning path will have a repetition. �

This next lemma will also be used later in Section 6.2.

Lemma 4.26 (cf. [KM98, Case 14]). Any sufficiently long quadratic path Cv → · · ·
contains a repetition.

Proof. By Lemma 3.24, the τ complexity doesn’t increase, and we may assume
that no Möbius moves or annulus subdivisions occur. It remains to show that the
vertical lengths of 2-cell attaching maps remain bounded; the result will then follow
as in the previous proof.

Consider Figure 8 with leading bases μ, λ, where μ is the carrier. The only way
the attaching map of a 2-cell will decrease in vertical length is if it has a subpath
as in the shaded path on the left of Figure 8 that travels through B(λ) ∪ B(μ).
The only way for a segment in the boundary of a 2-cell to get “stretched” is if it
travels through the vertical sides of B(λ) and B(η). In this case we have a segment
σ of length 2 that gets stretched to a segment σ′ of length 3. After the entire
transformation, however, η and μ are now leading bases. This means that after the
next entire transformation there is a subsegment of length 2 σ′ that gets shortened
again back to length 1.

It therefore follows that the vertical lengths of the boundaries of 2-cells remain
bounded throughout the quadratic path, and the result follows. �
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Figure 8. Above, the attaching maps of 2-cells under an entire
transformation in the quadratic case. Below, the resulting ordered
base configurations.

These two lemmas immediately imply the following corollary, which pretty much
sets the tone for the rest of the paper.

Corollary 4.27. The admissible elimination subtree A(C , J) ⊂ T(C , J) does not
have any infinite paths of thinning or quadratic type. Equivalently, all infinite paths
in A(C , J) have superquadratic tails.

5. Overlapping pairs and periodic mergers

We start our attack of the superquadratic case by examining overlapping pairs
and by introducing a new move: the periodic merger (precisely defined in Section

5.3). Throughout this section π will denote the map π : C̃ → T (t,C ) given in
Proposition 1.6 (2).

Definition 5.1. A dual pair (μ, μ) is an overlapping pair if interior (μ ∩ μ) �= ∅
and the pair is orientation preserving, i.e., if the image of B(μ) ⊂ C does not
contain an embedded Möbius band.

Convention 5.2. When (μ, μ) is an overlapping pair we will assume that μ < μ,
where < is the ordering on C (Definition 3.21).

Definition 5.3. Let B(μ) be a band such that (μ, μ) is an overlapping pair. Let
p ∈ μ be the <-initial point (Definition 3.21). The tubular loop τμ is the loop α ∗ β
where α is the path in the side of B(μ) starting at p and going from μ to μ and β
is the path in μ connecting the endpoint of α to p. See Figure 9.

We note that our definition of a tubular loop is an oriented based loop. This
gives rise to an element g ∈ π1(C ) that we will call a μ-tubular element. For the
rest of the paper we will avoid mentioning the basepoint.

Suppose that C carries a track t. Figure 10 illustrates the action of the μ-tubular
element τμ on T (t,C ) given by the quotient map π of Proposition 1.6. p ∈ C is

as in Definition 5.3, and p̃ ∈ μ̃ is a lift in the universal cover C̃ of p ∈ μ ⊂ C . It
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�

�

�p
μ

μ

Figure 9. An overlapping pair. The dark loop indicated on the
left is the tubular loop τμ.

μ̃

τμ · μ̃

μ̃

p̃

τμ · p̃

τμ · π(μ̃)

π(μ̃)

. . . . . .

Figure 10. On the left, the action of a tubular element on the
universal cover by deck transformations; on the right the corre-
sponding action on the tree T (P,C). Tracks are shown as dashed
lines.

σ(μ)

�
μ

�
μ

tr(μ)

Figure 11. The translation length tr(μ) and σ(μ), the section
corresponding to μ given in Definition 5.5.

is evident, for any track t efficiently carried by C , that τμ must fix some axis of
T (t,C ). Closer examination immediately yields:

Lemma 5.4. If C efficiently carries a track t and (μ, μ) is an overlapping pair,
then the μ-tubular element τμ acts on T (t,C ) hyperbolically with translation length
denoted

tr(μ) = |μ \ μ|t.
One of the principal features of a group acting acylindrically on a tree is that

infinite line stabilizers are cyclic. It follows that if there are two overlapping pairs
that themselves overlap sufficiently, the corresponding tubular elements must fix a
common axis and therefore must lie in a common cyclic subgroup. In Section 5.3 we
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Figure 12. A periodic merger (defined in Section 5.3). In this
example tr(τμ) = 2, tr(τλ) = 3, and tr(τη) = gcd(2, 3) = 1.

will describe the periodic merger, a move from [AHT06], which will replace these
two overlapping pairs by a single overlapping pair. This is illustrated in Figure 12.
There are two subtleties to this operation which do not occur when deciding if an
equation has a solution or if we simply want to count orbits as in [AHT06].

• We must merge these bands into one while preserving the fundamental
group of the band complex as well as the dual Bass-Serre tree.

• We must be able to algorithmically produce a finite list containing all com-
binatorial outcomes of a periodic merger for (C , t), where t ranges over
tracksκ(C ) (Definition 4.11).

There is one outstanding difficulty: given two commuting elements g, h ∈ π1(C ),
deciding if they lie in a common cyclic subgroup. Only being able to solve the word
problem in π1(C ) is insufficient to solve this problem in general. To overcome this
impasse we will use the author’s generalized Bulitko Lemma [Tou14] in a way that
is completely different from its usual purpose.

5.1. Interactions with tubular elements: Entanglement.

Definition 5.5. If (μ, μ) is an overlapping pair, then we denote the section corre-
sponding to (μ, μ) as

σ(μ) = μ ∪ μ.

Suppose now that there is another band B(λ) whose unmatched bases both lie
in σ(μ), as in Figure 13.

Convention 5.6. We write (λ, λ) ⊂ σ(μ) to signify λ ∪ λ ⊂ σ(μ). We will always
assume that base pairs (λ, λ), (μ, μ) are unmatched.

To study how these bands interact we have the following:

Definition 5.7. Let (μ, μ) be overlapping and let (λ, λ) ⊂ σ(μ) with λ < λ. Let
p be as in Definition 5.3. The μ-relative loop ρλσ(μ) is the concatenation α ∗ β ∗ γ
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B(μ)

�
α

�
β

�
γp

r q

B(λ)

Figure 13. The band B(λ) has both bases lying in the section
σ(μ). The μ-relative loop ρλσ(μ) is the loop α ∗ β ∗ λ.

shown in Figure 13, where α is the path from p to q in σ(μ), β is the path from q
to r travelling along a side of B(λ), and γ is the path in σ(μ) from r to p.

Again fixing a lift p̃ of p and μ̃ of μ in the universal cover C̃ of C , we can describe
the deck transformation given by ρλσ(μ) (see Figure 14). From this we immediately
get:

Lemma 5.8. If C efficiently carries a track t, then in T (t,C ) the length of the arc

axis(τμ) ∩
(
ρλσ(μ) · axis(τμ)

)
is at least |λ|t.

Definition 5.9. We define trσ(μ)(λ) to be the measure of the arc between the

leftmost point of λ and the leftmost point of λ, i.e., the length |α|t − |γ|t as shown
in Figure 13. We say the dual pair (λ, λ) is orientation preserving if the holonomy
λ → λ extends to an orientation preserving homeomorphism of σ(μ) (relative to its
endpoints).

For the following three lemmas assume that t ∈ tracksκ(C ).

Definition 5.10. If (μ, μ) is an overlapping pair, (λ, λ) ⊂ σ(μ) with (λ, λ) orien-
tation preserving, and the commutator [τμ, ρ

λ
σ(μ)] = 1, then we say that dual pairs

(μ, μ) and (λ, λ) are entangled.

The following is obvious but necessary for computational considerations.

σ̃(μ)

�β̃

q

p̃
�̃α

ρλσ(μ) · p̃ �̃
γ r̃

Figure 14. The deck transformation corresponding to ρλσ(μ). The

lifts of α, β, and γ of Figure 13 are shown.
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Lemma 5.11. Let C be a band complex with (μ, μ) an overlapping pair, and let
(λ, λ) ⊂ σ(μ) such that (λ, λ) is orientation preserving. If we can solve the word
problem in π1(C ), then we can decide if (μ, μ) and (λ, λ) are entangled.

Lemma 5.12. Let (μ, μ) be an overlapping pair, suppose (λ, λ) ⊂ σ(μ), and that
(λ, λ) is orientation preserving and unmatched. If [τμ, ρ

λ
σ(μ)] = 1, i.e., (μ, μ) and

(λ, λ) are entangled, then ρλσ(μ) acts hyperbolically on T (t,C ),

axis(ρλσ(μ)) = axis(τμ),

and the translation length of ρλσ(μ) is trσ(μ)(λ).

Proof. Because [τμ, ρ
λ
σ(μ)] = 1,

ρλσ(μ) · axis(τμ) = axis
(
ρλσ(μ)τμ(ρ

λ
σ(μ))

−1
)
= axis(τμ).

It therefore follows that 〈ρλσ(μ)〉 fixes a bi-infinite arc in T (t,C ). From Figure 14,

ρλσ(μ) translates this arc by tr(ρλσ(μ)) (as defined in Definition 5.9); it therefore

follows that axis(τμ) is the minimal invariant subtree for 〈ρλσ(μ)〉. �

Lemma 5.13. Let (μ, μ) be an overlapping pair, let (λ, λ) ⊂ σ(μ), and let (λ, λ)
be orientation preserving. If |λ|t ≥ tr(μ) + κ + 1, then [τμ, ρ

λ
σ(μ)] = 1; i.e., (μ, μ)

and (λ, λ) are entangled.

Proof. Let

I = axis(τμ) ∩ axis
(
ρλσ(μ)τμ(ρ

λ
σ(μ))

−1
)
.

By Lemma 5.8 we have |I| ≥ tr(μ) + κ + 1. Let J be a co-initial (or co-final)
subsegment of I with|J | ≥ κ+ 1. Without loss of generality (up to choosing if J is
co-initial or co-final) we may assume that

τμ · J ⊂ I ⊂ axis
(
ρλσ(μ)τμ(ρ

λ
σ(μ))

−1
)
,

and since λ is orientation preserving and since translation length is invariant under
conjugation we have (

ρλσ(μ)τ
−1
μ (ρλσ(μ))

−1
)
· (τμ · J) = J,

which by κ-acylindricity implies that [τμ, ρ
λ
σ(μ)] = 1. �

5.2. The Bulitko trick. If we are given a band complex C with an overlapping
pair (μ, μ) that is entangled with (λ, λ), then, by Lemma 5.12, if tracksκ(C ) �= ∅,
〈τμ, ρλσ(μ)〉 must be cyclic. In particular there is 〈g〉 = 〈τμ, ρλσ(μ)〉 so that gn = τμ

and gm = ρλσ(μ) with n,m minimal in absolute value. The Bulitko trick will either

enable us to find n,m or will certify that tracksκ(C ) = ∅.
Let φ : π1(C ) → H be a homomorphism to the fundamental group of a one edged

κ-acylindrical graph of groups. Then as long as some element of 〈g〉 is sent to a
hyperbolic element n,m will still be the minimal integers such that φ(g)n = φ(τμ)
and φ(g)m = φ(ρλσ(μ)).

Since [ρλσ(μ), τμ] = 1 then any φ : π1(C ) → H will send τμ and ρλσ(μ) to elements

fixing a common axis, provided their images are hyperbolic. In this case, the
acylindrical Bulitko Lemma provides a computable function depending only on τμ
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and ρλσ(μ) that bounds n,m given above. Before giving the lemma we must first

present the necessary terminology.
Let H act κ-acylindrically on a based tree (T, t0), let p be some hyperbolic

element of H (with respect to the given splitting of H), and let L ⊂ T denote its
axis. Consider the set of segments{

L′ ⊂ L | L =
⋃
n∈Z

pnL′}.
A minimal element of this set with respect to inclusion is called a fundamental
domain of L.

For an element h ∈ H, let [v0, h · v0] denote the geodesic between v0 and h · v0.
Let g ∈ H. If a segment

σ = [v0, h · v0] ∩ g · L
is non-empty, then we call it an L-periodic subsegment of [v0, h · v0]. The L-
periodicity of σ is the integer

� |σ|
|L0|

�,

where L0 is a fundamental domain of L. We can now state

Theorem 5.14 (Acylindrical Bulitko Lemma, Theorem 1.3 of [Tou14]). There
exists a computable function n : N × N × N → N such that for any non-trivial
homomorphism φ : G → H, where the group G has a finite presentation 〈Y | S〉
and the group H has a κ-acylindrical splitting with based Bass-Serre tree (T, t0),
and for any hyperbolic element in p ∈ H (denote its axis L ⊂ T ), there exists a
homomorphism φ∗ : G → H such that for all y ∈ Y :

• if [t0, φ(y) · to] has no L-periodic subsegments, then φ(y) = φ∗(y); and
• if [t0, φ(y) · to] has L-periodic subsegments, then there is a bijective corre-
spondence between the L-periodic subsegments of [t0, φ(y)·to] and [t0, φ(y)

∗ ·
to], but the L-periodicity of all the periodic subsegments of [t0, φ(y)

∗ · to] is
at most n(|Y |, |S|, κ).

Proposition 5.15. Let (μ, μ) be an overlapping pair in a band complex C and
suppose it is entangled with (λ, λ). There is an algorithm which terminates with
one of the two following outputs:

(i) It gives an element g such that 〈g〉 = 〈τμ, ρλσ(μ)〉.
(ii) It (correctly) certifies that tracksκ(C ) = ∅.

Proof. Let G = π1(C ). Since C is an explicitly given cell complex and since we can
solve the word problem in π1(C ), it is possible to give a finite presentation 〈Y | S〉
of G where τμ and ρλσ(μ) are included in the generating set Y .

Let n be the computable function given by Theorem 5.14 and letM=n(|Y |, |S|, κ).
For every pair ni,mj of absolute value less than M let (ui, vj) be a pair such that
uini+vimj = gcd(ni,mi). Let gij = (τμ)

ui(ρλσ(μ))
vj and check whether (gij)

ni = τμ

and (gij)
mj = ρλσ(μ). If we find some gij satisfying item (i), then we stop. Otherwise

if all these verifications are negative we know that tracksκ(C ) = ∅.
Indeed suppose towards a contradiction that none of the gij are roots of τμ and

ρλσ(μ), but that there is some t ∈ tracksκ(C ). By Lemma 5.12 there is some g ∈ G

such that 〈g〉 is the maximal cyclic group stabilizing L = axis(τμ) = axis
(
ρλσ(μ)

)
.
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Let n,m be the integers such that gn = τμ and gm = ρλσ(μ). By hypothesis |n| or |m|
is greater than M . Let H = π1(C ), let T be T (t,C ), let φ be the identity, let p = g,
and let L denote the axis of g. We can choose the basepoint t0 of T so that t0 ∈ L,
which implies that the geodesics [t0, φ(ρ

λ
σ(μ))·t0] and [t0, φ(τμ)·t0] consist of a single

L-periodic segment. By Theorem 5.14 there exists an endomorphism φ∗ such that
[t0, φ

∗(ρλσ(μ)) · t0] and [t0, φ
∗(τμ) · t0] contain a single non-trivial L-periodic segment.

This implies the hyperbolicity of φ∗(τμ) and φ∗(ρλσ(μ)); thus the restriction φ∗|〈g〉 is
injective. On the other hand, the bound on L periodicity implies that φ∗(τμ) = gn0

and φ∗(ρλσ(μ)) = gm0 with |n0|, |m0| ≤ M . Now we must have φ∗(g) = gr, which

implies that |n0| = |r||n| and |m0| = |r||m|, which contradicts the assumption that
|n|, |m| > M. �
5.3. Merging entangled pairs. Let C be a measured band complex and let t ∈
tracksκ(C ). Suppose we have an overlapping pair (μ, μ) entangled with (λ, λ) ⊂
σ(μ). Then it will sometimes be possible to merge the bands B(λ) and B(μ) into a
new band B(η).

Simply attaching a new band with overlapping bases to C inside the segment
σ(μ) will add a cyclic free factor to π1(C ). We must therefore also attach a 2-cell
to encode that τη is a root of τμ and ρλσ(μ). In order to do so we may first have to

widen B(λ).

B(μ)

B(λ)
Widen B(λ)

B(λ)

Figure 15. We widen the band B(λ) so that it becomes co-initial
and co-terminal with σ(μ).

Consider the operation of widening a band B(λ) illustrated in Figure 15. We do
this so that the resulting base λ is co-initial with σ(μ) and λ is co-final. The inverse
of a widening is a deformation retraction, so it preserves π1(C ). Furthermore the
element ρλσ(μ) of the fundamental group is unchanged. If [ρλσ(μ), τμ] = 1, then for

any track t efficiently carried by C both ρλσ(μ) and τμ have the same axis by Lemma

5.12. Figure 16 depicts what happens when we pass to the universal cover. Because

ρλσ(μ) has the same axis as τμ there is a natural way to extend the pattern in C̃ to

a pattern of C̃ ′ so that the resulting dual trees T (t,C ), T (t′,C ′) are equivariantly
isomorphic. No 2-cells were added so t′ is efficiently carried. We summarize in the
following lemma.

Lemma 5.16. Let μ and λ be as above and let t ∈ tracksκ(C ). We can widen
B(λ) so that, in the new band complex C ′, λ is co-initial with σ(μ) and λ is co-
final with σ(μ). Furthermore the dual trees T (t,C ) and T (t′,C ′) are equivariantly
isomorphic. In particular tr(λ), tr(μ) remain invariant, and t′ ∈ tracksκ(C ′).

Lemma 5.17. Let (μ, μ) be an overlapping pair entangled with (λ, λ) and suppose
furthermore that (λ, λ) is itself overlapping. Then after widening B(λ) as in Lemma
5.16 we have |λ|t ≥ tr(μ).
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σ̃(μ)

B̃(λ)

y

ρλσ(μ) · σ̃(μ)

x

σ̃(μ)

B̃(λ)

y

ρλσ(μ) · σ̃(μ)

x

Figure 16. The widening move corresponds to equivariantly

widening every lift B̃(λ) of B(λ) in the universal cover. If x, y

lie in the same track t̃ in C̃ , then in C̃ ′ we extend the track to pass

through the widened B̃(λ).

Proof. If λ is co-initial and co-final with σ(μ) but |λ|t < tr(μ), then λ can’t overlap
with its dual. �

Before continuing we need the following fact, which follows by meditating on the
Euclidean algorithm.

Lemma 5.18. Let n,m be positive integers and let d = gcd(n,m). Then without
loss of generality there are integers u, v ∈ Z≥0 such that d = un − vm. Moreover
we have non-decreasing sequences of integers 0 = v0 ≤ v1 ≤ · · · ≤ vu+v = v and
0 = u0 ≤ u1 ≤ · · · ≤ uu+v = u with

ui + vi + 1 = ui+1 + vi+1

such that the following inequalities hold:

(8) 0 ≤ uin+ vim ≤ m+ n.

This fact motivates the following observation.

Lemma 5.19. Let (μ, μ) be an overlapping pair entangled with (λ, λ). If |λ|t ≥
tr(μ), then

|σ(μ)| ≥ tr(μ) + trσ(μ)(λ).

Proof. By hypothesis |λ|t ≥ tr(μ) and

λ ∪ λ ⊂ σ(μ) ⇒ |λ|t + trσ(μ)(λ)| ≤ |σ(μ)|,
which give the required inequality. �

Suppose we are in the situation of Lemma 5.19 and that we have widened B(λ) as
in Lemma 5.16. We will illustrate the attachment of B(η) with a concrete example.
Suppose that tr(μ) = 3, trσ(μ)(λ) = 7, |μ|t = 8, and |λ|t = 4; see Figure 17.
gcd(3, 7) = 1, we pick the linear combination 5 ∗ 3− 2 ∗ 7 = 1, which we rewrite as
the series 3 + 3+ 3− 7+ 3+ 3− 7 = 1, and we do this because each initial subsum
is positive and at most 10 = 3 + 7 as in Lemma 5.18 (8). This lemma implies that
such a series can be found for any pair of bands satisfying our hypotheses. Now
αμλ in Figure 17 is a simple path that is a concatenation of vertical sets prescribed
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Figure 17. The vertical path αμλ contained in bands B(λ),B(μ)
corresponding to the series 3+3+3−7+3+3−7 = 1 = gcd(3, 7).

by the associated series. Its endpoints in σ(μ) have distance gcd(tr(μ), trσ(μ)(λ)),
which in our example is 1. By Lemmas 5.18 and 5.19, we can always find such an
αμλ for any pair of bands that satisfies the hypotheses. This is why we needed to
widen B(λ) in the first place; if it were too narrow we wouldn’t be able to construct
αμλ.

In π1(C ) the elements τμ and ρλσ(μ) commute, so the product implied by the path

αμλ is

(τμ)
3(ρλσ(μ))

−1(τμ)
2(ρλσ(μ))

−1 = (τμ)
5(ρλσ(μ))

−2;

(τμ)
5(ρλσ(μ))

−2 is an element that translates axis(τμ) = axis(ρλσ(μ)) by a distance of

gcd(tr(μ), trσ(μ)(λ)). Noting that (signed) translation length gives an embedding
from the stabilizer of a bi-infinite line in a κ-acylindrical tree to Z, we conclude
that g = (τμ)

5(ρλσ(μ))
−2 is the element such that 〈g〉 = 〈τμ, ρλσ(μ)〉 that will (up to

sign ±1) be produced by the algorithm given in Proposition 5.15.
We now attach a new band B(η) so that σ(η) = σ(μ) and

tr(η) = gcd(tr(μ), trσ(μ)(λ)).

�
βη

Figure 18. Adding B(η) and the arc βη.

In our example this forces |η|t = 10. Let βη be the path shown in Figure 18. Simply
attaching B(η) to C gives the fundamental group π1(C ) ∗ 〈τη〉. We also attach a
2-cell B along the simple closed path αμλ ∗ βη to get the resulting fundamental
group

(π1(C ) ∗ 〈τη〉) /〈〈τη = g〉〉 ≈ π1(C )

by defining τη = g. First note that the new band complex C ′ can be seen as
containing C and that the track t ⊂ C ⊂ C ′ naturally extends to a track t′ ⊂ C ′

and that the trees T (t,C ) ≈ T (t′,C ′) are equivariantly isomorphic. Further note
that by the way the attaching map αμλ ∗ βη is defined, C ′ carries t′ efficiently.

The next step is to zip the bands B(μ) and B(λ) onto B(η). In our example,
since τμ = (τη)

3, B(μ) should “wrap” three times around B(η). To accomplish this
we horizontally subdivide B(μ) into 3 bands and successively perform three zipping
operations (Definitions 3.1 and 3.2). This is best visualized in the universal cover;
see Figure 19. Thus, we have produced a new band complex C ′ efficiently carrying
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Figure 19. Zipping B(μ) onto B(η), as seen from the universal
cover. Here τμ = (τη)

3.

a track t′, and by Proposition 3.11 we have preserved the fundamental group and
the dual Bass-Serre tree. Although we considered a specific example, this discussion
is sufficiently general to make the following claim.

Proposition 5.20 (The periodic merger). Let C be a band complex with an over-
lapping pair (μ, μ) and an overlapping pair (λ, λ) ⊂ σ(μ) such that (μ, μ) and (λ, λ)
are entangled. Suppose that t ∈ tracksκ(C ). If, after widening B(λ), as in Lemma
5.16, we have |λ|t ≥ tr(μ), then:

• There is a continuous map m : C → C ′ where C ′ with m(t) = t′ ⊂ C ′

where t′ is a track efficiently carried by C ′.
• The induced map m� : π1(C ) → π1(C ′) is an isomorphism, and there is an
m�-equivariant isomorphism of dual Bass-Serre trees T (t,C ) → T (t′,C ′).

• The resulting band complex C ′ has two fewer bases.

Proof. C ′ is obtained by first perhaps widening B(λ) so that it is co-initial and
co-terminal with σ(μ), then attaching a band B(η) so that σ(η) = σ(μ), attaching
a 2-cell, and finally horizontally subdividing and zipping B(μ) and B(λ) onto B(η).
The resulting composition of operations preserves fundamental groups and dual
trees. �
5.4. A modification to T(C): Adding periodic mergers to the elimination
process. We now turn our attention to band complexes, viewed as combinatorial
objects.

Definition 5.21. Let Cv be a band complex in T(C). Then we say that Cv is
merging inadmissible if it contains an overlapping pair (μ, μ) that is entangled with
(λ, λ), but the algorithm of Proposition 5.15 certifies that Cv cannot efficiently
carry a κ-track.

Merging inadmissibility can be verified algorithmically. Indeed, given (λ, λ) ⊂
σ(μ), Lemma 5.11 states that entanglement can be computed and merging inad-
missibility is certified from the output of the algorithm of Proposition 5.15. By
definition, this only depends on the underlying band complex and not on the track
it carries.

Whether entangled base pairs can actually be merged and the outcome of this
operation depend on the track t carried by C . Merging inadmissibility, however,
guarantees that no matter the track being carried by C , such a merging is impos-
sible.

Now we have proved that if (μ, μ), (λ, λ) are a pair of entangled overlapping pairs
with (λ, λ) ⊂ σ(μ), then for any t ∈ tracksκ(Cv), after widening B(λ) as in Lemma
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5.16, we will be able to apply a periodic merger by Lemma 5.19. It therefore follows
that we can discard merging inadmissible band complexes since they cannot carry
κ-tracks.

This next lemma simply follows from the fact that we can enumerate the com-
binatorial outcomes of all such periodic mergers since we widened some band by a
controlled amount, added a band and a 2-cell with an attaching map of length M ,
and applied the N zipping operation, where M,N are bounded by the output of
the algorithm of Proposition 5.15.

Lemma 5.22. Let C be a band complex containing overlapping pairs (μ, μ), (λ, λ)
that are entangled and such that (λ, λ) ⊂ σ(μ). Then we can effectively construct a
finite set of band complexes

C

C1 CmC· · ·

containing all possible outcomes m : C → C ′ of merging B(μ) and B(λ) as described
by Proposition 5.20, with the track t ranging over tracksκ(C ).

We note that although some of the band complexes produced by Lemma 5.22
may not correspond to any periodic mergers, the resulting band complexes will
have the same fundamental group and a lower τ -complexity. In particular if any
of them admit a κ-track, then so must the original C . There is thus no danger
of introducing “false positives” by giving C illegitimate children. We now include
periodic mergers in our elimination tree.

Definition 5.23. The elimination tree T+(C , J) is constructed inductively simi-
larly as T(C , J) in Section 4.5 except with a new clause that takes precedence over
item (5) given in Section 4.0.1.

(5m) If Cv is a non-terminal band complex in T+(C J) that contains overlapping
pairs (μ, μ) and (λ, λ) satisfying the premises of Lemma 5.22, then define
as its children the collection of band complexes given by Lemma 5.22.

Obviously all the κ-inadmissibility and repetition inadmissibility criteria on paths
T(C , J) also apply to T+(C , J), as does the classification in Theorem 4.21. For the
remainder of this paper we will use T+(C , J) as our elimination tree.

6. Overlapping pairs must occur and stabilize

For this section let C be a band complex, and let t ⊂ C be an automorphically
minimal κ-track efficiently carried by C . The corresponding Rips sequence gives a
path in T+(C , J). Throughout this section we will fix a superquadratic subpath

(9) p(t1) : (C1, t1) → · · · → (CP , tP )

where, in particular, the track t1 is an automorphically minimal κ-track efficiently
carried by C1. We will further assume that the J-relative τ -complexity remains
constant throughout p. The purpose of this section is to show that if p is sufficiently
long, then it must have a tail in which some base μ is repeatedly the carrier. This
is called μ-periodicity (Definition 6.14).

We prove this by first defining a quantity called the excess that remains constant
throughout p. We then consider the quadratic part of C1 and use this to show that
a union of bases called the participating segments has a length bounded above
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by some computable multiple of the excess. This multiple is computed using a
restricted elimination process. It will be clear from the definition that the excess
is bounded above by some constant multiple of the length of the longest base in
each Ci occurring in p. Finally we will define something called a C-T cycle with
the property that whenever it occurs, a considerable portion of the participating
segments gets cut out. Our bound on the total length of the participating segments
will prevent these cycles from occurring too often. The critical detail is that this
bound does not depend on the actual track t. It only depends on the sequence of
underlying band complexes that occur along the path p and the assumption that t
is an automorphically minimal κ-track efficiently carried by C .

�
μ

�
μ

�λ

Transfer λ
C1

I(1)

. . .

Cu

�
μ

�λ

I(u)
cut out

Figure 20. In C1, μ is a carrier and λ gets transferred. In Cu, λ
is again leading. At least |μ|t1 got cut out of I(1).

We will give an example of what is meant by “cut out”. Suppose that the carrier
μ in C1 does not overlap with its dual, that some base λ gets transferred, and that
eventually in Cu λ is again a leading base; see Figure 20. Let the interval I(u) be
the natural image of I(1) in Cu. On one hand we have |I(u)|tu < |I(1)|t1 , on the
other hand we have |I(1)|t1 − |I(u)|tu ≥ |μ|t1 ; i.e., we cut out at least |μ|t1 from
I(1).

6.1. The excess invariant. The excess invariant given in Definition 6.2 is origi-
nally due to Makanin [Mak82]. It also occurs in [BF95,KM98].

Definition 6.1. Let p be the path given in (9). By C(p) we denote the set of bases
that are carriers at some point along p, and by T (p) we denote the set of bases that
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are transferred at some point along p. We denote the participating segments

σ(p) =
⋃

μ∈C(p)∪T (p)

(μ ∪ μ) .

Recall that we are reusing symbols, so that if λ denotes a base in C1, then it
also naturally denotes a base in every Cu that occurs along p. With this in mind
it makes sense to reuse notation to denote the corresponding subset σ(p) of each
Cu in p the same way. If there is a danger of confusion we will explicitly write
σ(p) ⊂ Cu. Noting that entire transformations are compositions of zipping moves
and collapses (cf. Section 3.1), the continuous map Cu → Cu′ actually induces a
retraction of σ(p) ⊂ Cu onto σ(p) ⊂ Cu′ . It follows that σ(p) ⊂ Cu′ naturally
embeds into σ(p) ⊂ Cu. Along the path p(t1) given in (9) we will write |σ(p)|tu
to denote the hitting measure of σ(p) ⊂ Cu with respect to tu. By the embedding
above we have a chain of proper inequalities

(10) |σ(p)|t1 > · · · > |σ(p)|tP > 0.

Definition 6.2. Suppose now a subset σ is a union of bases and a track t is carried
by C . We call the following quantity excess :

ψt (σ) =

(∑
μ⊂σ

|μ|t

)
− 2|σ|t.

Excess measures how far the σ is from being quadratic as quantified by the
hitting measure. From the definition of the entire transformation, a straightforward
counting argument gives the following.

Lemma 6.3 (Excess is invariant; cf. [BF95, (7.6.1)]). Let p(t1) be the Rips process
given in (9); i.e., all moves are entire transformations, and J-relative τ -complexity
is constant. Then we have equalities

ψt1 (σ(p)) = · · · = ψtw (σ(p)) .

6.2. Bounding the quadratic part. We can decompose σ(p) ⊂ C1 into

σ(p) = Q(p) ∪ SQ(p) ⊂ C1,

where Q(p), the quadratic part of σ(p), is the closure of the set of points that are
contained in exactly two bases. We define SQ(p), the superquadratic part of σ(p),
to be the closure of σ(p) \Q(p) (all points in SQ(p) lie in at most three bases). It
is worth noting that this decomposition is almost disjoint (intersection consists of
finitely many points) and that some bases may lie partially in Q(p) and partially
in SQ(p).

If we forget the tracks ti carried by Ci in p(t1), then we have an induced su-
perquadratic path

(11) p : C1 → · · · → CP

with constant J-relative τ complexity that lies in T(C , J). Note that we are not
requiring Cp to be terminal.

Lemma 6.4. We can construct a computable function frep, depending only on the
band complex C and a path p as in (11), with positive integer values such that for
any automorphically minimal track t efficiently carried by C1 we have the inequality

(12) |Q(p)|t ≤ frep(Cv, p) · |SQ(p)|t.
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Proof. Subdivide each band (Definition 3.6) so that each base either lies entirely
in Q(p) or intersects Q(p) with empty interior. Q(p) is now a union of maximal
sections (Definition 2.7). Let JQ be the complement of Q(p). Consider the JQ-
restricted admissible elimination tree A(C1, JQ). Since σ(p) is a union of bases
that is closed under taking duals, the leaves of A(C1, JQ) will be band complexes
in which every base in Q(p) is eventually moved onto SQ(p). On the other hand,
since A(C1, JQ) is JQ-relatively quadratic, by Corollary 4.27 the subtree A(C1, JQ)
is finite and therefore algorithmically constructible.

Going backwards in A(C1, JQ) from every admissible leaf to the root C1 (recall
Section 4.1) and repeatedly applying the upper bound of Lemma 4.7 give us a finite
(algorithmically constructible) set of upper bounds for lengths of the bases in Q(P )
in C1 in terms of |SQ(p)|t. The maximum over this set can be used to compute an
upper bound of |Q(p)|t in terms of |SQ(p)|t for any automorphically minimal track
t efficiently carried by C1. �

Whenever a base λu is the carrier in (Cu, tu) → (Cu′ , tu′) in (9), after transferring
other bases, it gets shortened. The bound given by Lemma 6.4 and the invariance
of excess tell us that, although bases get shorter, their lengths remain bounded
below throughout p. This will force them to overlap.

Lemma 6.5. Let p(t1) be as in (9) and let λu ∈ C(p)∪T (p) be the base in Cu such
that |λu|tu is maximal. The initial length |σ(p)|t1 is always bounded by

|σ(p)|t1 ≤ (frep(C1, p) + 1)N2|λu|tu ,

where N is the number of bases in Cu.

Proof. In (Cu, tu), every μ ∈ C(p) ∪ T (p) has length at most |λu|tu . It therefore
follows that |σ(p)|tu ≤ N · |λu|tu . Now since there are no more than N bases, each
point in σ(p) is contained by at most N bases. The strict upper bound for the
invariant excess

ψt1 (σ(p)) = ψtu (σ(p)) < N2 · |λu|tu ,
as well as the bound |SQ(p)|t1 ≤ ψt1 (σ(p)), combine with Lemma 6.4 to give the
desired inequality since |σ(p)|t1 = |Q(p)|t1 + |SQ(p)|t1 . �

6.3. Orientation reversing overlaps: Two lemmas. The proof in the next
section requires two additional lemmas.

Lemma 6.6. Suppose π1(C ) has no elements of order 2 and t ∈ tracksκ(C ).
Then for any dual pair (μ, μ) such that μ∩μ �= ∅, that is, orientation reversing, we
have

|μ ∩ μ|t < κ+ 1.

Proof. Since μ ∩ μ �= ∅ and (μ, μ) is orientation reversing, the image of B(μ) in C
contains a Möbius band. Let the simple closed curve γ be homotopic to the core of
this band. We may view γ as an element of π1(C ). If C efficiently carries a track
t, then γ must invert some segment in T (t,C ); thus γ �= 1.

By assumption γ2 �= 1, but an analysis of the action of γ2 on C̃ and T (t,C )
similar to the one shown in Figure 10 shows that γ2 fixes an arc of length |μ ∩ μ|t
in T (t,C ). κ-acylindricity therefore ensures the required bound. �
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Lemma 6.7. Let (μ, μ) be an overlapping pair and suppose that (λ, λ) is orientation
reversing and λ∪λ ⊂ σ(μ). If π1(C ) has no 2-torsion, then for any t ∈ tracksκ(C )

|λ|t < tr(μ) + κ+ 1.

Proof. Suppose towards a contradiction that |λ|t ≥ tr(μ)+κ+1. Assume that λ is
to the left of λ and let q be the leftmost point of λ. By successively transferring λ
through B(μ) we can arrange it so that the leftmost point of λ is moved to a distance
of less than tr(μ) to the right of q. It therefore follows that |λ ∩ λ|t ≥ κ+ 1, which
contradicts Lemma 6.6. �

6.4. Cutting off too much. We now introduce C-T cycles which are guaranteed
to “shorten” σ(p) ⊂ Cv by some fixed amount each time they occur. The idea of a
C-T cycle is inspired from Case 3 in the proof of [AHT06, Theorem 12].

Definition 6.8. Let p be as in (9). A C-T cycle is a subpath Cj → · · · → Ck such
that for each λ ∈ C(p) there is some j ≤ l ≤ k such that λ is the carrier in some
Cl and one of the following occurs:

• If λ either doesn’t overlap with its dual or is orientation reversing, then for
some l < l′ ≤ k, some base δ that was transferred by λ in Cl → Cl+1 is a
leading base again in Cl′ .

• If (λ, λ) form an overlapping pair, then there are l < l′ < l′′ ≤ k such that
λ gets carried in Cl′ (i.e., it ceases to be a carrier) and is a leading base
again in Cl′′ . Also there is some base δ that was transferred in Cl → Cl+1

that is again a leading base in Cl′′′ for some l < l′′′ ≤ k.

Lemma 6.9. Let p(t1) be a path as in (9) and let Cj → · · · → Ck be a C-T cycle
in p(t1). Then either every base in C(p) ∪ T (p) has length at most max{2κ, 1} or

(13) |σ(p)|tj − |σ(p)|tk ≥
|λ|tj

2(2 + κ)
,

where λ is the longest base in Cj.

Proof. First note that until λ is the carrier in some Cl where j ≤ l ≤ k we have

|λ|tj = |λ|tj+1 = · · · = |λ|tl .

By definition of a C-T cycle, there is such a j ≤ l ≤ k where λ is the carrier in Cl.
Assume that |λ|tj > max{2κ, 1}. We will now show (13). The proof divides into
cases; decimals denote subcases.

Case 1: λ does not overlap with its dual. In this case let δ be some base that
is carried by λ. Since it is moved by at least |λ|tj to the right, by definition of a
C-T cycle there are some l < l′ ≤ k where δ is a leading base in Cl′ again, which
means that |σ(p)|tl − |σ(p)|t′

l
≥ |λ|tj so the result holds. (See Figure 20.)

Case 2: λ has non-trivial intersection with λ.

Case 2.1: (λ, λ) is orientation reversing. Let δ be some base that is carried by λ.
Then δ is moved 2|λ|tl − |λ ∩ λ|tl − |δ|tl to the right. On one hand |δ|tl ≤ |λ|tl ; on
the other hand by Lemma 6.6 |λ∩ λ|tl ≤ κ. We therefore conclude that δ is moved
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at least |λ|tl −κ to the right. When δ is again a leading base in Cl′ , l < l′ ≤ k, then

|σ(p)|tl − |σ(p)|tl′ ≥ |λ|tl − κ− 1 ≥ |λ|tl
2

,

so (13) holds.

Case 2.2: (λ, λ) form an overlapping pair. There is some maximal l′ such that in
Cl → · · · → Cl′−1, λ is always the carrier base. Note moreover that tr(λ) remains
constant.

Case 2.2.1: |λ|tl ≤ (2κ + 2)tr(λ). Let δ be some base that is carried by λ.
Then it is moved to the right by tr(λ), and by hypothesis there is some l < l′′′ ≤ k
such that δ is leading again; hence

|σ(p)|tl − |σ(p)|tl′ ≥
|λ|tl

2κ+ 2
,

and (13) holds.

Case 2.2.2: |λ|tl > (2κ+ 2)tr(λ).

Case 2.2.2.1: |σ(p)|tl − |σ(p)|tl′ ≥
|λ|tl

2(2κ+ 2)
. (13) immediately holds.

Case 2.2.2.2: |σ(p)|tl − |σ(p)|tl′ <
|λ|tl

2(2κ+ 2)
. In particular, in Cl′ ,

(14) |λ|tl′ > |λ|tl
(
1− 1

2(2κ+ 2)

)
= |λ|tl

(
4κ+ 3

2(2κ+ 2)

)
> (2κ+ 3/2)tr(λ)

by the Case 2.2.2 assumption on |λ|tl .

Case 2.2.2.2.1: The carrier η in Cl′ does not overlap with its dual. In this case λ
is moved to the right by at least |λ|tl′ , and we note that for all κ ≥ 0 we have

1− 1

2(2κ+ 2)
> 1/2 >

1

2(2κ+ 2)
;

thus when λ is a leading base again in Cl′′ , by (14) we have

|σ(p)|tl′ − |σ(p)|tl′′ >
|λ|tl
2

,

so (13) holds.

Case 2.2.2.2.2: The carrier η in Cl′ has non-trivial intersection with η and is
orientation reversing. Note that

|η|tl′ > |λ|tl′ ≥ |λ|tl
(
1− 1

2(2κ+ 2)

)
.

As in Case 2.1 we deduce that η carries λ more than |λ|tl′ − κ to the right. So in
Cl′′ when λ is leading again at least |λ|tl′ − κ was cut from σ(p). Suppose towards
a contradiction that

|λ|tl′ − κ <
|λ|tl

2(2κ+ 2)
.
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Then since we are in Case 2.2.2.2 we have

|λ|tl
(
1− 1

2(2κ+ 2)

)
− κ < |λ|tl′ − κ.

Combining these gives

|λ|tl
(
1− 1

2(2κ+ 2)

)
− κ <

|λ|tl
2(2κ+ 2)

⇒ |λ|tl
(
1− 2

2(2κ+ 2)

)
< κ

⇒ |λ|tl
(
4κ+ 2

4κ+ 4

)
< κ

⇒ |λ|tl <
(
1 +

2

(4κ+ 4)

)
κ <

3

2
κ,

which contradicts our assumption that |λ|tl > 2κ.

Case 2.2.2.2.3: (η, η) form an overlapping pair where η in Cl′ is the carrier.
We may assume that after repeatedly getting shortened in Cl → · · · → Cl′−1, λ is
still long enough in Cl′ for (λ, λ) to be an overlapping pair. Indeed suppose this
was not the case. By not overlapping we have |λ|tl′ < tr(λ), and substituting into
the Case 2.2.2 assumption yields

|λ|tl′ <
|λ|tl

(2κ+ 2)
.

This contradicts (14) since

1− 1

2(2κ+ 2)
>

1

2κ+ 2
.

Case 2.2.2.2.3.1: (Recall Definition 5.5) In Cl′ , σ(η) ⊂ σ(λ). This means, since
we are in Case 2.2.2.2, that

|η|tl′ > (2κ+ 3/2)tr(λ) > tr(λ) + κ+ 1,

so by Lemma 5.13 τλ and ρησ(λ) commute, so the overlapping pairs (μ, μ) and (λ, λ)

are entangled. By Lemma 5.17 we can apply the periodic merger of Proposition
5.20 to merge the bands B(η) and B(μ). Since we are working in the elimination tree
T+(C), by (5m) of Definition 5.23 we must merge the bands B(η) and B(λ), which
decreases the complexity. This contradicts the assumption that the τ -complexity
remains constant throughout p.

Case 2.2.2.2.3.2: In Cl′ , σ(η) ⊃ σ(λ). We finally distinguish two subcases:

Case 2.2.2.2.3.2.1: (κ + 2)tr(η) ≤ |λ|tl′ . Again as in Case 2.2.2.2.3.1 we can
perform a periodic merger.

Case 2.2.2.2.3.2.2: (κ + 2)tr(η) > |λ|tl′ . In this case λ gets moved by tr(η)
to the right. λ is again a leading base in Cl′′ ; then we will have cut at least tr(η)
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from σ(p) in passing from C ′
l to Cl′′ . On one hand, since this is a subcase of Case

2.2.2.2, we have

tr(η) >
|λ|tl′
κ+ 2

>
|λ|tl
κ+ 2

(
1− 1

2(2κ+ 2)

)
,

where the last inequality is from (14), and we can estimate

2(2κ+ 2)

κ+ 2

1

2
≥ 1

⇒ 2(2κ+ 2)

κ+ 2

(
1− 1

2(2κ+ 2)

)
> 1

⇔ 1

κ+ 2

(
1− 1

2(2κ+ 2)

)
>

1

2(2κ+ 2)

⇔ |λ|tl
κ+ 2

(
1− 1

2(2κ+ 2)

)
>

|λ|tl
2(2κ+ 2)

⇒ tr(η) >
|λ|tl

2(2κ+ 2)
.

(13) therefore holds and, furthermore, all possibilities have been exhausted. �

We can now combine Lemmas 6.5 and 6.9.

Corollary 6.10. Let p be a path as in (9), i.e., a path induced by an automorphi-
cally minimal κ-track efficiently carried by C1. Then at most

N2(frep(C1, p) + 1)(2κ+ 2)

disjoint C-T cycles can occur.

Proof. By Lemmas 6.9 and 6.5, whenever a C-T cycle Cj → · · · → Ck occurs we
can bound from below the difference

|σ(p)|tj − |σ(p)|tk ≥ |σ(p)|t1
N2(frep(C1, p) + 1)(2κ+ 2)

.

Since |σ(p)|t1 > |σ(p)|t2 > · · · > 0 the desired bound on the number of C-T cycles
follows. �

6.5. C-T-inadmissibility and a reduction to μ-periodicity. Given a path p
in a (restricted) elimination tree T+(C , J) we can define the sets C(p) and T (p)
(Definition 6.1) and therefore corresponding C-T cycles (Definition 6.8).

Definition 6.11. If a path p : Cv → · · · → Cu in T+(C , J) contains more disjoint
C-T cycles than the computable bound given by Corollary 6.10, then it is called
C-T-inadmissible.

Definition 6.12 (Admissible). A subtree of T+(C , J) is said to be admissible
if it doesn’t contain any leaves that are inadmissible (recall (4) in Section 4), κ-
inadmissible paths (Definition 4.14), repetition inadmissible paths (Definition 4.18),
or C-T inadmissible paths. We denote by A+(C , J) ⊂ T+(C , J) the maximal
admissible subtree and call it the admissible elimination tree.

Proposition 6.13. Any path p : C → · · · in T+(C , J) induced by an automorphi-
cally minimal κ-track efficiently carried by C must also lie in A+(C , J).

Proof. This follows immediately from Proposition 4.23 and Corollary 6.10. �
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Definition 6.14. Let μ be the carrier base in C . A path

p : Cu → · · ·
in T+(C , J) is called μ-periodic if, throughout p, μ is the carrier base and (μ, μ)
forms an overlapping pair.

Proposition 6.15. Any infinite path of A+(C , J) has a tail

Cu → · · ·
that is λ-periodic for some base λ.

Proof. Let p be some infinite path of A+(C , J). We can form the sets C(p) and
T (p), since every tail p′ of p gives C(p′) ⊂ C(p) and T (p′) ⊂ T (p). Passing to a tail
of p we may assume that each base in C(p) is the carrier infinitely often and every
base in T (p) is carried infinitely often.

We may further assume that the (relative) τ -complexity remains constant, that
no annulus subdivisions or Möbius moves occur, and that p is superquadratic. If
C(p) consists of more than one element, then infinitely many C-T cycles (Definition
6.8) occur so p is not contained in an admissible subtree.

It therefore follows that some base λ must repeatedly be the carrier throughout
p. Now if λ doesn’t overlap with λ after N (the total number of bases) entire
transformations λ can no longer be a maximal leading base. It follows that (λ, λ)
form an overlapping pair. �

Therefore, if we can find a computable bound on the number of times in a row
the same base λ can be a carrier base in some λ-periodic path Cv → · · · induced
by a minimal κ-track efficiently carried by Cv, then we will be able to effectively
construct a finite subtree of A+(C), whose leaves give a set of tracks containing all
automorphically minimal κ-tracks efficiently carried by C .

7. Bounding the periodicity of overlapping pairs

Definition 7.1. We say that a maximal leading base λ is a principal overlapping
carrier if (λ, λ) form an overlapping pair and there are no other overlapping pairs
(μ, μ) that can be merged with (λ, λ).

By Proposition 6.15, in any sufficiently long admissible branch in T+(C), the
situation depicted in Figure 21 will occur. At each such entire transformation
although |λ| decreases, tr(λ) is invariant. Taking inspiration from words, where a
large initial segment of a word overlaps with a terminal segment, e.g., abcabcabcab,
we have the following:

Definition 7.2. Let C be a band complex efficiently carrying a track t and suppose
that (λ, λ) form an overlapping pair. We define the periodicity of λ to be the positive
integer

periodt(λ) =
⌊ |λ|t
tr(λ)

⌋
.

Lemma 7.3. Let λ be a principal overlapping carrier in a band complex C ef-
ficiently carrying a track t with N bases. Then in the Rips process induced by t
starting at (C , t), λ can be the maximal leading base at most Nperiodt(λ) times in
a row.
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Figure 21. An entire transformation where the leading base λ
forms a principal overlapping carrier. The transfer base δ is moved
to the right by tr(λ). If δ is eventually a leading base again, then
|λ| will have decreased by tr(λ).

Proof. Each time a base δ is carried by λ it is moved to the right by tr(λ). The next
time that base is carried the base λ will be shortened by tr(λ) so the advertised
bound holds. �

It therefore follows that the periodicity of λ bounds the number of consecutive
times λ can be a carrier in a Rips process. Equivalently, this is the maximal length
of a λ-periodic path. Given a band complex C that has a principal overlapping
carrier λ, we will compute an upper bound for periodt(λ) that holds for every
automorphically minimal κ-track t. If periodt(λ) exceeds this bound, we prove
the existence of another automorphically equivalent track t′ efficiently carried by
C such that Size(t′) < Size(t). It is worth noting that, since we are requiring
automorphic equivalence, simply applying Bulitko’s Lemma is not good enough, as
the latter only bounds minimal periodicity in possibly non-injective homomorphic
images.

To compute this bound we will construct auxiliary elimination trees. This will
require all the machinery developed up until now as well as a few new ideas. The
auxiliary tree will in fact be a rooted tree of trees. Off the leaves of this tree we
will be able to read an upper bound for the periodicity.

Proposition 6.15 combined with this periodicity bound for every occurring prin-
cipal overlapping carrier in A+(C) will finally enable us to construct a finite subtree
guaranteed to give us all the tracks we need for Theorem B.

7.1. Periodic block form, and the tree TPBF(C , J).

Definition 7.4. Suppose that for some overlapping pair (λ, λ), σ(λ) is a maximal
section (recall Definition 2.7). Then we call σ(λ) a periodic block. A band complex
such that every base lies in some periodic block is said to be in periodic block form.
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Figure 22. Creating a new periodic block for the principal over-
lapping carrier λ. Depicted is the sequence (2a) - (2c) in the con-
struction of TPBF(C , J).

We now describe another J-restricted elimination process which constructs the
tree TPBF(C , J). This process brings a band complex C into periodic block form
and is a variation of the construction of A+(C , J), only this time, whenever we
encounter a principal overlapping carrier, we add a new band B(δ), transfer (λ, λ)
all the way to the right using entire transformations, and enlarge J to J ∪σ(λ); see
Figure 22. By Proposition 6.15, we will have constructed a finite admissible tree in
which every leaf is a band complex whose bases either lie in J or in some periodic
block. We build TPBF(C , J) as follows:

(1) We perform a J-restricted elimination process, adding only admissible band
complexes (recall Definition 6.12).

(2) If at some point as we grow our tree there is a Ci with a principal overlapping
carrier λ, then instead of doing an entire transformation we do the following:
(a) We attach a band B(δ) to Ci by identifying δ � σ(λ), so that δ doesn’t

meet any other bases. We extend the ordering <i so that the maximal
section corresponding to δ is terminal (Definition 3.21).

(b) We transfer all the bases contained in σ(λ) through B(δ) onto δ.
(c) We collapse the naked initial segment of δ. This gives the C ′

i .
(d) We set J ′ = J ∪ σ(λ) and we continue growing our tree at C ′

i by
returning to step (1) but with J ′ in place of J .

(3) If after step (2d) we have moved all the bases onto J ′, then we stop.

By direct inspection we verify:

Lemma 7.5. If (Ci, J) is quadratic or superquadratic, then after performing steps
(2a) - (2d), the resulting band complex is still quadratic or superquadratic (respec-
tively).
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Lemma 7.6. If we add a band B(δ) to C1 as in (2a), then transfer all the bases
contained in σ(λ) onto δ as in (2b) to produce C ′

i . Then τ (Ci) ≥ τ (C ′
i ). Moreover

if J and J ′ are as in (2d) above, then we have a strict inequality

τ (Ci, J) > τ (C ′
i , J

′).

Proof. We keep track of the τ -complexity. Adding the band B(δ) adds a base to a
maximal section σ with b(σ) ≥ 2 (recall Definitions 2.7 and 3.13), which increases
the τ -complexity by 1 and creates another maximal section σ(δ) with only one
base, which doesn’t contribute to the τ -complexity. We then move the base λ onto
σ(δ), which decreases b(σ) by 1. Now b(σ(δ)) = 2, so it still contributes 0 to the
τ -complexity. So far we have added 1 and removed 1 from the τ -complexity. Since
λ was assumed to be a leading base and δ ⊃ λ, doing the rest of (2b) and (2c)
amounts to a sequence of transformations which do not increase the τ -complexity.

After all this σ(λ) is a maximal section with τ (σ(λ)) > 0 and σ(λ) ∩ J = ∅,
which implies that τ (Ci, J) > τ (C ′

i , J
′). �

Corollary 7.7. TPBF(C , J) is finite. Furthermore, if t ⊂ C is an efficiently carried
automorphically minimal κ-track, then the path C → · · · → Cp to a band complex
in periodic block form induced by t is contained in TPBF(C , J).

Proof. We first prove the first statement. Suppose towards a contradiction that this
is not the case; then TPBF(C , J) has an infinite branch b. Since we are constructing
an admissible elimination tree in the sense of Definition 6.12, by Proposition 6.15
this infinite branch can be assumed to start with some Cu with a principal over-
lapping carrier λ. By the definition of TPBF(C , J), this means we must construct
a new periodic block, item (2), which by Lemma 7.6 strictly decreases the relative
τ -complexity, so this event can only happen finitely many times, contradicting the
fact that b is infinite.

The second claim follows immediately from Proposition 6.13. �
7.2. Normalized periodic block form. Once a band complex C is in periodic
block form, it will be possible to perform periodic block mergers, which decreases
the number of periodic blocks and the τ -complexity. Furthermore it will enable us
to put a partial order on the periodic blocks, called a periodic hierarchy. First we
give another version of entanglement.

Definition 7.8. If (μ, μ) is an overlapping pair such that σ(μ) is a maximal section
(Definition 2.7), then (μ, μ) is called a block overlapping pair.

In particular, if C is in periodic block form, then every maximal section is in
fact a block overlapping pair.

Definition 7.9. Let (λ, λ) and (μ, μ) be disjoint block overlapping pairs. Suppose
there is a band B(δ) connecting σ(λ) and σ(μ), i.e., δ ⊂ σ(λ) and δ ⊂ σ(μ). For
any p ∈ B(δ) we can define δ-relative tubular elements τ δλ, τ

δ
μ as in Figure 23. (λ, λ)

and (μ, μ) are entangled by B(δ) if

[τ δλ, τ
δ
μ] = 1.

Lemma 7.10. Let (μ, μ) and (λ, λ) be entangled by B(δ). If [τ δμ, τ
δ
λ] = 1, then τ δμ

and τ δλ have the same axis in the dual Bass-Serre tree T (t,C ) and lie in a common
cyclic subgroup.
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p

�
β

�
γ�α

Figure 23. δ-relative tubular elements. The relative tubular ele-
ment τ δλ is the loop based at p given by α ∗ β ∗ γ ∗ α−1.

Sketch of proof. This is proved in the same way as Lemma 5.12. �

Lemma 7.11. In the band complex C , let (μ, μ) and (λ, λ) be block overlapping
pairs, let B(δ) satisfy δ ⊂ σ(μ), and let δ ⊂ σ(λ). If for some t ∈ tracksκ(C ),

|δ|t > max {tr(μ) + κ, tr(λ) + κ} ,

then (μ, μ) and (λ, λ) are entangled by B(δ). Furthermore the tubular elements τ δλ
and τ δμ have the same axis in T (t,C ).

Sketch of proof. This is proved in the same way as Lemma 5.13. �

We can’t simply widen some band B(λ) and still have a well-formed band complex
and preserve the dual tree. We could do this in Lemma 5.16 by studying what
happened in the dual tree and by noting that the result was still a well-formed
band complex. A similar analysis for block overlapping pairs gives the following:

Lemma 7.12. Let (μ, μ) be a block overlapping pair in a band complex C and let
t ∈ tracksκ(C ). Then we can obtain a new band complex C ′ ⊃ C , equipped with
an efficiently carried κ-track t′, by widening B(μ). After widening, μ has an initial
naked segment and we recover C ′ → C by collapsing (Definition 3.3) this initial
segment. The dual Bass-Serre trees T (t′,C ′) and T (t,C ) are therefore equivariantly
isomorphic. Furthermore tr(μ) remains invariant.

Lemma 7.13. Let (μ, μ) and (λ, λ) be block overlapping pairs entangled by B(δ) in
a band complex C . Then for any κ-track t efficiently carried by C we can obtain a
new band complex C ′ ⊃ C by first widening B(λ),B(μ) by at most |λ|t + |μ|t and
then widening B(δ) so that

(i) either σ(λ) ⊂ δ or σ(μ) ⊂ δ, and
(ii) the track t extends to a track t ⊂ t′ efficiently carried by C ′ such that there

is a π1(C )-equivariant isomorphism of dual Bass-Serre trees

T (t,C )
∼→ T (t′,C ′).

We note that λ, μ only need to be increased to length at most |λ|t + |μ|t for this
to work.
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7.2.1. The periodic block merger. We now describe the periodic block merger ; see
Figure 24. Let C have block overlapping pairs (μ, μ), (λ, λ) entangled by B(δ). We
do the following:

(1) Widen bands B(λ),B(μ), and then B(δ) to obtain a band complex C ′ as
given in Lemma 7.13.

(2) Assume that δ ⊃ σ(λ). We treat δ as the carrier base and move all the
bases contained in σ(λ) onto δ via entire transformations.

(3) The dual pairs (λ, λ), (μ, μ) are now entangled in the sense of Definition
5.10 and both form overlapping pairs, so by Lemma 5.17 we can apply the
periodic merger given in Proposition 5.20, merging B(λ),B(μ) into some
new B(η).

Figure 24. Steps (1) and (2) of type periodic block merger.

We now record the following observation.

Lemma 7.14. Let C be a band complex containing block overlapping pairs (λ, λ),
(μ, μ) entangled by B(δ). Then we can effectively construct a finite set of band
complexes

C

C1 Cn· · ·

containing all possible combinatorial outcomes m : (C , t) → (C ′, t′) of applying a
periodic block merger as t ranges over tracksκ(C ).

7.2.2. Normalization: Merging away entanglement. It may be that (μ, μ) is a block
overlapping pair that is entangled with (λ, λ) but |λ|t < tr(μ), for example if λ, λ
are very short and near the extremities of (μ, μ). In this situation it is not possible
to directly apply a periodic merger. However since block overlapping pairs can
always be widened we have the following:

Lemma 7.15. Let C have a block overlapping pair (μ, μ) entangled with (λ, λ).
For any t ∈ tracksκ(t) we can widen B(μ) by tr(μ) so that after widening B(λ) we
have |λ|t ≥ tr(μ).

Proof. By Lemma 7.12, we can widen (μ, μ) (by at most tr(μ)) so that λ is at
distance more than tr(μ) from the endpoints of σ(μ). It follows that after widening
as in Lemma 5.16, λ is sufficiently long. �

Corollary 7.16. Let C have a block overlapping pair (μ, μ) entangled with (λ, λ).
For any t ∈ tracksκ(t), after perhaps widening B(μ) by at most tr(μ) and B(λ) as
in Lemma 5.16, we can perform a periodic merger (Proposition 5.20) of B(μ) and
B(λ).
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Definition 7.17. Let C be a band complex in periodic block form and let t ∈
tracksκ(C ). Then we can repeatedly apply periodic block mergers and periodic
mergers as described in Corollary 7.16 so no block overlapping pair is entangled with
any other base pair. If such is the case, then we call corresponding m : (C , t) →
(C ′, t′) the normalization of (C , t) and we say that C ′ is in normalized periodic
block form.

We now give the combinatorial equivalent. Recall that entanglement is algorith-
mically decidable and depends only on the band complex C .

Definition 7.18. Let C be a band complex in periodic block form. Then its
normalized children is the collection of band complexes

C

C1 Cn· · ·

obtained by enumerating all possible combinatorial outcomes of normalizations m :
(C , t) → (C ′, t′) where t ranges over tracksκ(C ).

7.3. Periodic hierarchies and maximal periodic blocks. Throughout this sec-
tion C will be a band complex in normalized periodic block form.

Definition 7.19. Let C be in normalized periodic block form, let t ∈ tracksκ(C ),
and let σ(λ) be a periodic block. A base δ ⊂ σ(λ) is t-long in σ(λ) if |δ|t ≥
tr(λ) + κ+ 1. Otherwise it is called t-short.

Lemma 7.20. Let C , t, λ, and δ be as in Definition 7.19. Then if δ also lies in
σ(λ), δ must be t-short in σ(λ).

Proof. If (δ, δ) is orientation reversing, then this follows immediately from Lemma
6.7. If (δ, δ) is orientation preserving but t-long in σ(λ), then it is entangled with
(λ, λ) but not merged. By Corollary 7.16 this contradicts the assumption that C
is in normalized periodic block form. �

It is possible for a base to be long in one periodic block, but its dual must lie in
another periodic block and it must be short in that periodic block. If a base and
its dual are both long in their respective periodic blocks, then we can perform a
periodic block merger.

Definition 7.21 (Periodic hierarchies). Let the band complex C be in normalized
periodic block form. A periodic hierarchy H is a partial order <H on the set of
periodic blocks that is generated as follows:

(i) If B(δ) has bases lying in periodic blocks σ(λ1) and σ(λ2), then we may
either declare σ(λ1) <H σ(λ2), σ(λ2) <H σ(λ1) or that σ(λ1) and σ(λ2)
are incomparable.

(ii) We extend (i) to a partial order, if possible.

A periodic block σ(λ) is H-maximal if it is maximal with respect to the partial
order. If t ∈ tracksκ(C ), then we define the induced periodic hierarchy H(t) to be
generated by setting σ(λ1) <H(t) σ(λ2) if and only if δ is t-long in σ(λ1) in (i).

It is obvious that periodic hierarchies, being finite combinatorial objects, can
be effectively listed. What is less obvious is whether the definition of an induced
periodic hierarchy actually gives a periodic hierarchy.
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Lemma 7.22. If C , t and H(t) are as in Definition 7.21, then <H(T ) gives a partial
order on the set of periodic blocks; thus H(t) is a periodic hierarchy.

Proof. Suppose that for some B(δ), both δ and δ are long in σ(λ1) and σ(λ2),
respectively. Then by Lemma 7.11 the block overlapping pairs are entangled and can
be merged, contradicting the assumption that C is normalized, so (i) of Definition
7.21 is satisfied. Thus (i) gives a directed graph Γ without loops of length 2 with
periodic blocks as vertices. If Γ has a directed cycle, then this would imply that for
some (λ, λ), tr(λ) < tr(λ), which is absurd. We can therefore extend H to a partial
order giving (ii) of Definition 7.21. �

Corollary 7.23. If (λ, λ) is an H(t)-maximal block overlapping pair, then every
base δ ⊂ σ(λ) is t-short.

7.4. Bounding the periodicity of maximal periodic blocks.

Definition 7.24. Suppose σ(λ) is a periodic block and suppose that we can verti-
cally subdivide B(λ) into three bands

B(λ1), B(λ2), B(λ3)

such that:

• (λ2, λ2) form an overlapping pair.
• No bases other than λ1 and λ3 intersect σ(λ2).
• B(λ2) contains no connections (recall Definition 2.3(3a)).

Then we call B(λ2) a clean tube.

Figure 25. A clean tube in a band complex is literally an em-
bedded S1 × [−1, 1]. The track t spirals around the clean tube.
Unwinding it by a Dehn twist will decrease the size.

The significance of clean tubes is illustrated in Figure 25. Although the next
result is obvious from this picture, it is important to state it carefully to get explicit
bounds.

Lemma 7.25. Let t be an automorphically minimal κ-track efficiently carried by
C , and let σ(λ) be a periodic block. Then for any clean tube B(λ2) ⊂ B(λ),

|λ2|t ≤ 2tr(λ).
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Proof. Suppose towards a contradiction that for some clean tube B(λ2) we have

|λ2|t > 2tr(λ).

Let I ⊂ λ2 ∩ λ2 be an interval of length tr(λ) that is of distance tr(λ), the leftmost
endpoint of σ(λ2). Let p ∈ t ∩ I be the rightmost point of t ∩ I. If we follow the
connected component of t ∩ B(λ2) that contains p and intersects I again in p′, we
see that the distance between p and p′ in λ2 is exactly tr(λ). Recall the notation
of Definition 2.1 and consider the map

JB(λ2) × [−1, 1] → C

with JB(λ2) × {1} → λ2 and JB(λ2) × {−1} → λ2. The preimage of I has two
connected components I±1 ⊂ JB(λ2) × {±1}. Let α be the straight line in JB(λ2) ×
[−1, 1] between the rightmost point of I1 and the rightmost point of I−1 and let
β be the line in JB(λ2) × [−1, 1] between the leftmost point of I1 and the leftmost
point of I−1. α and β are chosen to be transverse to the preimage of t. Let Q be
the quadrilateral in JB(λ2) × [−1, 1] enclosed by I±1, α, β (see Figure 26). Then via
JB(λ2) × [−1, 1] → C , Q is mapped to an annulus A ⊂ C such that Q ⊂ B(λ2) with
α, β mapping onto each component of ∂A.

�α�β

I1

I−1

Figure 26. The quadrilateral Q inside B(λ2). The annulus A is
obtained by identifying I1 and I−1. The track is drawn as dashed
lines.

�
α

�
β

�
α

�
β

Figure 27. On the left the image A of Q after identifying I1 and
I2 parameterized as (15) (drawn to scale). On the right the result
of the Dehn twist τA. The dashed line represents tm ∩ A. Note
that τA restricts to the identity on ∂A.
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We parameterize this annulus A as

(15) {r exp(iθ)|1 ≤ r ≤ 2, 0 ≤ θ ≤ 2π} ⊂ C.

By construction, tA = t ∩ A corresponds to the curve

tA : [0, 1] → A

s 
→ (2− s) exp(i(2πs)).

If we make a Dehn τA twist around A, then post-composing gives

τA ◦ tA : [0, 1] → A

s 
→ (2− s).

Such a Dehn twist is illustrated in Figure 27. Since the homeomorphism τA
restricts to the identity on ∂A, it extends to a homeomorphism of C which we
will also denote τA. Consider the new track τA(t). On one hand, τA(t) is still
efficiently carried by C . On the other hand, after perturbing by an isotopy we have
τA(t) ∩ σ(λ) = t ∩ σ(λ)− 1, but otherwise for every subset S ⊂ C \ B(λ2) we have
S ∩ t = S ∩ τA(t). It follows that

(16) Size(τA(t)) < Size(t).

The homeomorphism τA : C → C lifts to a homeomorphism of τ̃A : C̃ → C̃

sending the lift t̃ to the lift τ̃A(t). Furthermore τA maps naturally to an ele-
ment of Aut(π1(C )). It follows that the trees T (t,C ) and T (τA(t),C ) are (τA)�-
equivariantly isomorphic so that t ∼Aut(π1(C )) τA(t). τA(t) is therefore obviously
a κ-track, and with (16) we see that t is not automorphically minimal, which is a
contradiction. �

Informally, if clean tubes are longer than twice the translation length, there
would be enough room to make an annulus, as shown in Figures 26, 27. This
would enable us to shorten the track t by a Dehn twist, contradicting automorphic
minimality. Clean tubes therefore must be short. We now use this observation to
give a combinatorial bound for periodicity.

Corollary 7.26 (Periodicity bound for maximal periodic blocks). Let t ⊂ C be an
efficiently carried automorphically minimal κ-track and let σ(λ) be an H(t)-maximal
periodic block. Let |C| denote the number of connected components of connection
preimages in B(λ) = JB(λ) × [−1, 1] and let B denote the number of bases, other

than λ, λ, contained in σ(λ). Then

periodt(λ) ≤ (6 + 2κ)B + 2|C|+ 2.

Proof. Parameterize B(λ) as Jλ × [−1, 1] so that the preimage of t and of every
connection is contained in a union of vertical lines. Every base δ ⊂ B(λ) has a
preimage with connected components δ+ ⊂ Jλ × {1} and δ− ⊂ Jλ × {−1}. Let C
denote the preimage of the connections. Consider the complement

Y = JB(λ) × [−1, 1] \
(
C ∪

(⋃
δ

(
δ± × [−1, 1]

)))
,

where δ runs over the bases contained in σ(λ). On one hand Y has at most |C|+2B+
1 connected components; on the other hand every maximal clean tube contained in
B(λ) is the preimage of one of these components. Thus every connected component
of Y has length at most 2tr(λ) by Lemma 7.25. Furthermore, by Corollary 7.23
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and Definition 7.19, every δ± has width at most tr(λ) + κ. We therefore have the
bound

|λ|t ≤ 2B (tr(λ) + κ) + 2tr(λ) (|C|+ 2B + 1)

≤ 2B (tr(λ) + tr(λ)κ) + 2tr(λ) (|C|+ 2B + 1)

≤ tr(λ) ((6 + 2κ)B + 2|C|+ 2) ,

from which we immediately obtain the advertised bound. �

The significance of this bound is that it depends only on the combinatorial band
complex C and the combinatorial periodic hierarchy H(t). We obtain the following
computable function.

Definition 7.27. Let C be in normalized periodic block form, let H be a periodic
hierarchy on C , and let σ(λ) be an H-maximal periodic block. We define

periodH(λ) = (6 + 2κ)B + 2|C|+ 2,

where B, |C| are as in Corollary 7.26.

Unfortunately it may be that the periodic block whose periodicity we are inter-
ested in is not H-maximal. We deal with this in the next section.

7.5. Bounding the periodicity of principal overlapping carriers: Auxiliary
trees. Throughout this section we will use the following notation. If C is a band
complex, then the term J in the pair (C , J) will always denote a union of block
overlapping pairs. If C happens to be in normalized periodic block form and is
equipped with a periodic hierarchy H, then we will denote the corresponding triple
(C , J ;H).

We will try to bound the periodicity of the block overlapping pairs that constitute
J . It may happen however that two block overlapping pairs get merged at some
point. Because of this we will use the following naming convention.

Convention 7.28 (Renaming merged bases in auxiliary trees). Suppose that two
bands B(λ),B(μ) get merged onto some band B(η) in a periodic merger. Then, as
far as naming bases is concerned, we will consider η = λ = μ; i.e., we will allow a
base to have multiple names.

This renaming convention is justified, since on one hand, we want to bound
the periodicity of an overlapping pair that gets merged, so we must keep track of
what it got merged with. On the other hand, by the following result, which is an
immediate consequence of Proposition 5.20, we are guaranteed that any periodicities
we compute will be overestimates.

Lemma 7.29. Let (λ, λ) be an overlapping pair such that B(λ) gets zipped onto
B(η) via a periodic merger C → C ′ mapping an efficiently carried κ-track t ⊂ C
into the efficiently carried κ-track t′ ⊂ C ′. Then

periodt(λ) ≤ periodt′(η).

In particular periodicities of block overlapping pairs are non-decreasing when passing
to normalizations.
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Definition 7.30. Let (C , J) be a band complex with a principal overlapping pair
(λ, λ). Then we define the auxiliary children of (C , J) to the collection:

(C , J)

(C1, J ∪ σ(λ);H1) (CN , J ∪ σ(λ);HN )· · ·

where

{(C1, J ∪ σ(λ);H1), . . . , (CN , J ∪ σ(λ);HN )}
is obtained by first taking the leaves of TPBF(C , J), then taking their normalized
children (Definition 7.18), and finally taking all combinatorial possibilities for pe-
riodic hierarchies (Section 7.3).

In Section 7.3 we bounded the periodicity of a maximal block overlapping pair,
but it may be that σ(λ), where λ is a principal overlapping pair in (C , J), is not a
maximal periodic block in some of the auxiliary descendants (Ci, J ∪σ(λ),Hi), due
to the choice of periodic hierarchy Hi. It follows that simply passing to auxiliary
children isn’t sufficient to bound periodt(λ) where t ranges over the automorphically
minimal κ-tracks efficiently carried by C .

In Section 7.5.1 we will construct from (C , J) a finite auxiliary tree
Taux (C , J ∪ σ(λ)). If C efficiently carries an automorphically minimal κ-track t,
then we will construct an induced tree Taux (C , t, J ∪ σ(λ)) in Section 7.5.2. This
induced tree will be proved to contain a combinatorial witness for an upper bound
of periodt(μ) for some base μ such that σ(μ) ⊂ J is a periodic block. We will also
have a containment

T
aux (C , t, J ∪ σ(λ)) ⊂ T

aux (C , J ∪ σ(λ)) .

From this it will follow that the construction of Taux (C , σ(λ)) will give a way to
bound periodt(λ) in C where t ranges over the automorphically minimal κ-tracks.

7.5.1. The auxiliary tree Taux (C , J ∪ σ(λ)). We construct Taux (C , J ∪ σ(λ)) with
the following recursive algorithm. The reader may skip ahead to Figure 28 to get
an idea of what this tree is supposed to look like.

(1) If (λ, λ) is a principal overlapping pair in (C , J), then we declare (C , J) to
be the root of Taux (C , J ∪ σ(λ)). Write J ′ = J ′ ∪ σ(λ).

(2) The Taux (C , J ′)-children of the root (C , J) are the auxiliary children of
C (Definition 7.30). These are connected to the root by auxiliary edges.
Further descendants are added as follows:
(a) If some periodic block σ(μ) ⊂ J ′ in an auxiliary child (C ′, J ′;H′) of

(C , J) is H′-maximal, then (C ′, J ′;H′) is called a witnessing terminal.
We stop growing Taux (C , J ′) at (C ′, J ′).

(b) Otherwise we modify the order <′ on C ′ (Definition 3.21) so that some
H′-maximal periodic block σ(δ) is initial with δ the carrier base.
We start building T+(C , J ′) rooted at (C ′, J ′). For every path origi-
nating from the root we forbid the base δ from being the carrier base
more than B ·periodH′(δ) times in a row, where B denotes the number
of bases in C ′. Once δ ceases to be the carrier base we forget about
H′ and go to (3) below.
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(3) We continue growing Taux (C , J ′) using the following rules:
(a) If the leading base μ in some (C ′′, J ′) does not form a principal over-

lapping pair, then continue growing A+(C
′, J ′) at (C ′′, J ′) by adding

admissible descendants (Definition 6.12), if there are any.
If (C ′′, J ′) has no admissible children and some of its bases are not in
J , then (C ′′, J ′) is halted by inadmissibility.
Otherwise, if the elimination process stops because all the bases of C ′′

were moved into J ′, then we take the auxiliary children

{(C ′′
r , J

′;Hr)}

of (C ′′, J ′) (which is already in periodic block from, but may not be
normalized), equipped with periodic hierarchies. All these children are
witnessing terminals as in (2a).

(b) If the carrier base μ in some (C ′′, J ′) is a principal overlapping carrier
we first construct Taux (C ′′, J ′′) rooted at (C ′′, J ′), where J ′′ = J ′ ∪
σ(μ). This is the recursion.
Next we take

W = W (C ′′, J ′′, μ) = {(Ci, Ji;Hi)}

to be the set of all witnessing terminals of Taux (C ′′, J ′′) in which σ(μ)
is an Hi-maximal block overlapping pair (recall Convention 7.28).
If this set is empty, then (C ′′, J ′) is declared to be a halted terminal
and no further descendants are added. Otherwise the following number
is defined and computable:

(17) period(C ′′,J′)(μ) = max
(Ci,Ji;Hi)∈W

periodHi
(μ).

We continue growing A+(C ′, J ′) at (C ′′, J ′), but we forbid μ from
being the carrier base more than B ·period(C ′′,J′)(μ) times in a row in

every path originating at (C ′′, J ′). Once μ ceases to be a carrier base
we go back to (3a) or (3b) as appropriate.

Definition 7.31. Let C ′ be a band complex occurring in Taux (C , J). The depth
of C ′ in Taux (C , J) is the number of auxiliary edges in Taux (C , J) connecting C
and C ′.

Lemma 7.32. The maximal depth of a descendant of C in Taux (C , J) is at most
the relative τ -complexity τ (C , J).

Proof. By Lemma 7.6 all the leaves of TPBF(C , J,) have strictly smaller τ complex-
ity relative to J ∪σ(λ). Furthermore, periodic mergers never increase τ -complexity.
Finally if the relative τ complexity τ (C ′, J ′) = 0, then by (3a) all its children are
witnessing terminals. �

We think of auxiliary edges as being vertical; thus

Definition 7.33. A subtree of Taux (C , J) sitting inside some A+(C ′, J ′) or, equiv-
alently, without auxiliary edges is called horizontal.

Proposition 7.34. Let λ be a principal overlapping pair in a band complex C
occurring in A+(C ). Then Taux (C , σ(λ)) is finite.
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Proof. We first show that for any C ′′ occurring in some horizontal subtree
A+(C ′, J ′) ⊂ Taux (C , σ(λ)) with a principal overlapping carrier μ, the auxiliary
tree Taux (C ′′, J ′ ∪ σ(μ)) is finite.

We prove this by induction on τ (C ′′, J ′). If τ (C ′′, J ′) = 0, then if it is not itself
yet a witnessing terminal, then its auxiliary children are halted terminals and the
result follows. Otherwise if τ (C ′′, J ′) = 1, by Lemma 7.6, all auxiliary children must
have (J ′ ∪ σ(λ))-relative τ -complexity equal to 0, so they are witnessing terminals.

Now we suppose that all auxiliary trees are finite for all relative τ complexities
less than n and that τ (C ′′, J ′) = n. Any auxiliary descendant (C ′′′, J ′′;H′′′) will
have τ (C ′′′, J ′′) < n by Lemma 7.6. We construct A+(C ′′′, J ′′) for each auxiliary
descendant of (C ′′, J ′) according to rules (3a) and (3b). Whenever a principal
overlapping carrier η occurs in some C (4), the corresponding auxiliary tree built
in (3b) is finite by the induction hypothesis. Either C (4) is a halted terminal or
we can compute the finite period(C (4),J′′)(μ) (as given in (17) of step (3b)). By
Proposition 6.15, this prevents horizontal subtrees from having infinite branches;
thus by König’s Lemma they are finite. It follows that Taux (C ′′, J ′ ∪ σ(λ)) is finite.
The result now follows by induction. �

Having established that Taux (C , J) is finite and therefore effectively construct-
ible, we can now define the following computable function.

Definition 7.35. For a band complex C with a principal overlapping pair (λ, λ)
we define

periodC (λ) = max
(Ci,Ji,Hi)∈S

periodHi
(λ),

where S is the set of witnessing terminals (Ci, Ji,Hi) of Taux (C , σ(λ)), where,
following the renaming Convention 7.28, σ(λ) is Hi-maximal.

It remains to show that this periodC (λ) gives an upper bound for periodt(λ),
where t is an automorphically minimal κ-track efficiently carried by C . This will
be done by studying the induced tree.

7.5.2. The induced tree Taux (C , t, J ∪ σ(λ)). A triple (C , t, J) will denote a band
complex C , an automorphically minimal κ-track t efficiently carried by C , and a
union J of periodic blocks. If C is in normalized periodic block form, in the 3+1
tuple (C , t, J ;H(t)), H(t) will denote the periodic hierarchy induced by t (Definition
7.21).

In any (restricted) elimination tree T rooted at (C , J) a track t ⊂ C efficiently
carried by C induces a directed path in T. By Corollary 7.7 and by Definition 7.17
the following makes sense:

Definition 7.36. Let (C , t, J) be a band complex with a principal overlapping pair
(λ, λ). Then its induced auxiliary child is given by the labelled graph

(C , J, t)

(C ′, t′, J ∪ σ(λ);H(t′)),

where (C ′, t, J ∪ σ(λ);H(t′)) is the auxiliary descendant of (C , J) (Definition 7.30)
induced by t ⊂ C .
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The algorithm to construct Taux (C , t, J ∪ σ(λ)) is analogous to the algorithm to
construct Taux (C , J ∪ σ(λ)) given in Section 7.5.1. The numbering of the clauses
is intended to coincide.

(1) If (λ, λ) is a principal overlapping pair in (C , t, J), then we declare (C , t, J)
to be the root of Taux (C , t, J ∪ σ(λ)). Write J ′ = J ′ ∪ σ(λ).

(2) The Taux (C , t, J ′)-child of the root (C , t, J) is the induced auxiliary child
of C . These are connected to the root by an auxiliary edge. Further de-
scendants are added as follows:
(a) If some periodic block σ(μ) ⊂ J ′ in an auxiliary descendant

(C ′, t′, J ′;H(t′)) of (C , t, J) is H(t′)-maximal, then ((C ′, J ′;H(t′)) is
called a witnessing terminal. We stop growing Taux (C , t, J ′).

(b) Otherwise we change the order < on (C ′, t′, J ′;H(t′)) so that some
H(t′)-maximal periodic block σ(δ) is initial with δ the carrier base.
We start our Rips process, building the path in A+(C , J ′) rooted at
(C ′, J ′) induced by the track t′ ⊂ C ′. By Corollary 7.26, δ is not the
carrier base more than B ·periodH′(δ) times in a row, where B denotes
the number of bases in C ′. Once δ ceases to be the carrier base we go
to (3) below.

(3) We continue growing the path induced by t in A+(C , J ′) using the following
rules:
(a) If the carrier base μ in some (C ′′, t′′, J ′) is not a principal overlapping

carrier, then we add its descendant in A+(C , J ′) as usual.
If all the bases C ′′ are moved into J ′, then we take the induced auxil-
iary child

(C ′′′, t′′′, J ′;H(t′′′))

of (C ′′, J ′) (which is already in periodic block from but may not be
normalized). Again we call (C ′′′, t′′′, J ′;H(t′′′)) a witnessing terminal
as in (2a).

(b) If the carrier base μ in some (C ′′, t′′, J ′) forms a principal overlap-
ping pair with its dual we first construct the induced auxiliary tree
Taux (C ′′, t′′, J ′′) rooted at (C ′′, J ′), where J ′′ = J ′ ∪ σ(μ).
Next we take

R = R(C ′′, t′′, J ′′, μ) = {(Ci, ti, Ji;H(ti))}

to be the set of all witnessing terminals of Taux (C ′′, J ′′) in which σ(μ)
is an H(ti)-maximal block overlapping pair (recall Convention 7.28).
If this set is empty, then (C ′′, J ′) is declared to be a halted terminal
and no further descendants are added. Otherwise the following number
is defined and computable (recall Definition 7.27):

(18) period(C ′′,t′′,J′)(μ) = max
(Ci,ti,Ji;H(ti))∈R

periodH(ti)(μ).

We now continue growing the path at (C ′′, t′′, J ′′) in A+(C
′, J ′) in-

duced by t′ ⊂ C ′. By Corollary 7.26 and Lemma 7.29, μ will not be
the carrier base more than B · period(C ′′,t′′,J′)(μ) times in a row.

Once μ ceases to be a carrier base we go back to (3a) or (3b) as
appropriate.
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The induced auxiliary tree can be thought of as being constructed one vertex
at a time (see Figure 28), as opposed to a branching process. Another important
distinction is that induced auxiliary trees do not have terminals that are halted by
inadmissibility.

(C , t)

(λ, λ) overlapping.

(C1, t1, J)

σ(λ) not H(t1)-
maximal.

(C2, t2, J)

(μ, μ) overlapping.

(C4, t4, J
′)

(δ, δ) overlapping.

(C6, t6, J)

(η, η) overlapping.

(C3, t3, J
′)

σ(μ) and σ(λ) not
H(t3)-maximal.

(C5, t5, J
′′)

σ(μ) is H(t5)-maximal.
Continue growing at
C2.

(C7, t7, J ∪ σ(η))

σ(λ) is H(ty)-maximal.
In C periodt(λ) is at
most periodH(t5)(λ).

· · ·

· · ·

· · · · · ·

μ is carrier base at
most NperiodH(t5)(μ)
times.

Figure 28. The tree Taux (C , t, σ(λ)); here J = σ(λ), J ′ = σ(λ)∪
σ(μ), and J ′′ = J ′ ∪ σ(δ). The band complexes are numbered
in order of appearance. Whenever an overlapping pair occurs, an
auxiliary edge is constructed. C4 and C6 are halted terminals. C5

and C7 are witnessing terminals.

Lemma 7.37. Taux (C , t, J) is finite.

Proof. By Lemma 7.32 there is a bound on the number of auxiliary edges in any
path. The finiteness of horizontal paths follows from the definition of a Rips process;
i.e., Size(t) (Definition 4.15) effectively bounds the length of such paths. �

Lemma 7.38. If (λ, λ) is a principal overlapping pair in C , then there is a wit-
nessing terminal (CT , tT , JT ;H(tT )) in Taux (C , t, σ(λ)) in which σ(λ) (following
renaming convention 7.28) is an H(tT )-maximal periodic block such that

periodt(λ) ≤ periodH(tT )(λ).

Proof. We first must show that such a witnessing terminal (CT , tT , Jt;H(tT )) exists.
Suppose towards a contradiction that this is not the case. Then the top level
elimination tree in Taux (C , t, σ(λ)) must end in a halted terminal (C1, t1, σ(λ));
otherwise all the bases are moved onto σ(λ), and this periodic block will be maximal
(since it’s unique).

Let (λ1, λ1) be the overlapping pair in C1 and let J2 = σ(λ) ∪ σ(λ1). Let
(C2, t2, J2) be the auxiliary descendant, as in (2), of C1. The horizontal path in
Taux (C , t, σ(λ)) starting at (C2, t2, J2) must end with a halted terminal; otherwise
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it ends in a witnessing terminal (CT , tT , J2;H(tT )) with either σ(λ) or σ(λ)1 H(tT )-
maximal. This contradicts either the hypothesis that C1 is a halted terminal or the
hypothesis that Taux (C , t, σ(λ)) has no witnessing terminals with σ(λ) maximal.

Continuing in this fashion we obtain a sequence of halted terminals of increasing
depth

(C1, t1, J1) , (C2, t2, J2) , . . . , (CF , tF , JF ) ,

where (λ, λ)i is the principal overlapping pair in Ci and Ji+1 = Ji ∪ λi. Since
τ (Ci, Ji) > τ (Ci+1, Ji+1) this sequence is finite, which forces some principal over-
lapping pair λj in CF to be H(tF )-maximal, contradicting the fact that Cj is a
halted terminal.

It therefore follows that there is a witnessing terminal (CT , tT , Jt;H(tT )) in
Taux (C , t, σ(λ)) in which σ(λ) is maximal. The desired upper bound on periodt(λ)
now follows immediately from Definition 7.27, Lemma 7.29, and Corollary 7.26. �

So far we have shown that the induced auxiliary tree contains a witnessing termi-
nal whose combinatorial periodicity bounds the actual periodicity. We now bound
the periodicity for all tracks.

Proposition 7.39. Let λ be a principal overlapping pair in a band complex C in
A+(C ). Then for all automorphically minimal κ-tracks t efficiently carried by C
the following holds:

periodt(λ) ≤ periodC (λ),

where periodC (λ) is the computable function given by Definition 7.35.

Proof. We first show that for any automorphically minimal κ-track t efficiently
carried by C we have a natural containment:

(19) Taux (C , t, σ(λ)) ⊂ Taux (C , σ(λ)) .

We will show this by analyzing how Taux (C , t, σ(λ)) is constructed by adding one
band complex at a time.

Going through the construction algorithms point-by-point, by Proposition 6.13,
the only problem that could arise is in step (3b) of the construction of the auxiliary
trees. It could be that for some (C ′, t′, J ′) with principal overlapping pair (μ, μ),
(C ′, t′, J ′) is not a halted terminal and period(C ′,t′,J′)(μ) from (18) is greater than

period(C ′,J′)(μ) from (17).

Note however that in the recursive construction of Taux (C , t, σ(λ)), we must first
construct Taux (C ′, t′, J ′ ∪ λ) before adding a “horizontal” child of (C ′, t′, J ′). It
follows, by the definition and properties of auxiliary children, that the next vertex
added to Taux (C , t, σ(λ)) is still contained in Taux (C , σ(λ)).

Continuing in this manner it is obvious (the reader is, of course, free to supply
their own argument by induction on relative τ -complexity) that the set R appearing
in (18) of case (3b) in the construction of the induced auxiliary tree is a subset of
W appearing in (17) of case (3b) of the construction of the auxiliary tree. We
conclude that

period(C ′,t′,J′)(μ) ≤ period(C ′,J′)(μ).

(19) now follows; thus by Lemma 7.38 a witnessing terminal of Taux (C , σ(λ))
bounds periodt(λ) from above. �
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7.6. The proof of Theorem B: A description of the main algorithm. Sup-
pose we are given a finite 2-complex C such that π1(C) has no elements of order 2,
a solution to the word problem for π1(C), an acylindricity constant κ, and a finite
collection

S =
{
{hi}i∈In | n = 1, . . . ,m

}
of finite generating sets of subgroups H =

{
〈hi〉i∈In

}m

n=1
.

We start by replacing C by CS given in Section 1.3. This can be done algorith-
mically. Using the construction of Section 2.2, we see that for any track t ⊂ C
there is a corresponding band complex that carries it efficiently. These band com-
plexes can be effectively enumerated; thus it is possible to construct the finite set
{C1, . . . ,CnC

} of band complexes given by Proposition 2.14 (see also Section 4.0.1
(2)). This gives the first level of our elimination tree. We will now define the
ultimate elimination tree TP

+(C) in this paper. Here is the final inadmissibility
criterion.

Definition 7.40. Let C be a band complex. A path

p : Cu → · · · → Cv

in A+(C ) (recall section 6.5) is called periodicity-inadmissible if

(1) p is a μ-periodic path (Definition 6.14) for some base μ in Cu, and
(2) the length of p is greater than N · periodCu

(μ) (Definition 7.35), where N
is the number of bases in Cu.

TP
+(C) is constructed identically to A+(C), but we also forbid periodicity in-

admissible paths. By Proposition 7.34 we can compute the periodicity bound and
thus effectively decide whether a path is periodicity-inadmissible, so the resulting
tree is finite.

To help the reader, however, we will give here a more explicit construction of
TP

+(C) that will summarize the important results of this paper. We start with
our root, the polygonal 2-complex C. We add the descendants C1, . . . ,CnC

. We
then build TP

+(C) “one generation at a time” as follows:

(1) For every admissible vertex without descendants we add the descendants
as described in Definition 5.23.

(2) If a freshly added descendant is merging inadmissible (Definition 5.21), we
declare it inadmissible and stop adding its descendants.

(3) We now consider every directed path constructed so far in our elimination
tree. If a path Cu → · · · → Cv is either

• κ-inadmissible (Definition 4.14),
• repetition inadmissible (Definition 4.18),
• C-T-inadmissible (Definition 6.11) or
• periodicity inadmissible,

then we declare the last vertex Cv to be inadmissible and stop adding its
descendants.

We will now argue that tree TP
+(C) is finite and can be algorithmically con-

structed. First note that at every step we can algorithmically construct the set of
descendants of a band complex (Definition 4.4); in particular TP

+(C) has finite
branching. By König’s lemma it is therefore enough to show that TP

+(C) has no
directed infinite paths.
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C

C1 Ci Cn

Cu

Cv

. . . . . .

Figure 29. As we build TP
+(C) we have a path (drawn thick)

in which Cu and Cv are equal. This path is therefore repetition
inadmissible and Cv has no further descendants.

Suppose towards a contradiction that this was the case. By Theorem 4.21 any
such infinite branch must be either thinning, quadratic, or superquadratic. In the
thinning and quadratic cases, such a branch must either have a κ-inadmissible sub-
path or contain a repetition (see Section 4.8). In the superquadratic case any infinite
branch must either have a tail with infinitely many C-T cycles or the tail must be
μ-periodic for some base μ (see the proof of Proposition 6.15). In both of these cases
such a tail will have either a C-T-inadmissible or a periodicity inadmissible initial
segment. It therefore follows that TP

+(C) has no infinite branches. Furthermore
the four inadmissibility criteria are algorithmically verifiable; thus TP

+(C) ⊂ T(C)
is algorithmically constructible.

The leaves of TP
+(C) give a subset of all possible tracks of C (recall Section

4.1). We will now show that this subset contains a representative of every auto-
morphically minimal κ-track.

Suppose that there was some automorphically minimal κ-track t ⊂ C that in-
duced a path p : C → C1 → · · · → Cl in T(C) with Cl terminal, which isn’t
contained in TP

+(C). Then, by definition of TP
+(C), p must either contain a

κ-inadmissible, a repetition inadmissible, a C-T-inadmissible, or a periodicity in-
admissible subpath. Propositions 4.13, 4.17, Corollary 6.10, and Proposition 7.39
cover each of these cases and contradict the assumption that t is an automorphi-
cally minimal κ-track. It follows that the admissible leaves of TP

+(C) give a set of
tracks {

t1, . . . , tn(C,κ,S)

}
in C that satisfy the requirements of Theorem B. �
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