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MAJORIZATION IN C*-ALGEBRAS

PING WONG NG, LEONEL ROBERT, AND PAUL SKOUFRANIS

Abstract. We investigate the closed convex hull of unitary orbits of selfad-
joint elements in arbitrary unital C*-algebras. Using a notion of majorization
against unbounded traces, a characterization of these closed convex hulls is ob-
tained. Furthermore, for C*-algebras satisfying Blackadar’s strict comparison
of positive elements by traces or for collections of C*-algebras with a uniform
bound on their nuclear dimension, an upper bound for the number of unitary
conjugates in a convex combination required to approximate an element in
the closed convex hull within a given error is shown to exist. This property,
however, fails for certain “badly behaved” simple nuclear C*-algebras.

1. Introduction

The relation of majorization between selfadjoint matrices is an important and
well-studied relation (see [And94] and the references therein). It is thus natural
to pursue its study in the more general realm of operator algebras. This has been
done for von Neumann algebra factors ([Kam83,HN91]) and for various classes of
simple C*-algebras ([Sko16,NS16]). A basic result on matrix majorization due to
Uhlmann gives two equivalent ways of defining the majorization relation: Given
selfadjoint matrices a and b, the following conditions on a and b are equivalent:

(1) a belongs to the convex hull of the unitary conjugates of b,
(2) Tr(a) = Tr(b) and Tr((a− t)+) � Tr((b− t)+) for all t ∈ R. Here (a− t)+

is the element obtained from a by functional calculus with the function
x �→ (x− t)+ := max(x− t, 0) and Tr is the trace.

When either of these conditions holds a is said to be majorized by b. We show
in this paper that the equivalence above has a natural generalization to arbitrary
C*-algebras. In order to formulate a suitable version of (2) we must now look
at possibly unbounded traces. Let A be a C*-algebra. We call a map τ : A+ →
[0,∞] a trace if it is linear (additive, R+-homogeneous, and maps 0 to 0) and
satisfies that τ (x∗x) = τ (xx∗) for all x ∈ A. We will always assume that traces are
lower semicontinuous, i.e., such that τ (a) � lim infn τ (an) if an → a. We do not
assume, however, that traces are densely finite. We denote the cone of all lower
semicontinuous traces by T(A). We prove below the following theorem.

Theorem 1.1. Let A be a unital C*-algebra. Let a, b ∈ A be selfadjoint elements.
The following are equivalent:

(i) a ∈ co{ubu∗ | u ∈ U(A)},
(ii) τ ((a− t)+) � τ ((b− t)+) and τ ((−a− t)+) � τ ((−b− t)+) for all τ ∈ T(A)

and all t ∈ R.
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In this theorem co(·) denotes the convex hull of a set and U(A) the unitary group
of A. If (i) holds we say that a is majorized by b. If A is a simple C*-algebra with
at least one bounded trace, then condition (ii) of Theorem 1.1 takes the following
form, which is closer to the matrix case: τ ((a− t)+) � τ ((b− t)+) and τ (a) = τ (b)
for all bounded traces τ and all t ∈ R (Corollary 4.6(i)). However, since we allow
for traces that are not densely finite, Theorem 1.1 covers the simple purely infinite
C*-algebras as well (Corollary 4.6(ii)); indeed, it covers all C*-algebras. A related
theorem, also valid for all C*-algebras, is [Rob09, Theorem 1.1], which shows that
the agreement of two positive elements on all traces in T(A) is equivalent to the
Cuntz–Pedersen relation.

A few words on the proof of Theorem 1.1: We use a well-known Hahn–Banach
argument going back to Day ([Day57]) to reduce the proof to the von Neumann
algebra A∗∗. In the von Neumann algebra setting, we deal first with finite von
Neumann algebras using arguments inspired by the II1 factor case and then extend
the proof to the general case. In the process we obtain a formula for the distance
from a to co{ubu∗ | u ∈ U(A)} in terms of tracial inequalities (the zero distance
case of this formula is Theorem 1.1).

In the context of majorization of matrices one encounters the following phe-
nomenon: For any given ε > 0 there exists N ∈ N such that if a, b ∈ Mn(C) are
selfadjoint matrices of norm at most 1 and a is majorized by b, then there exists a
convex combination of at most N unitary conjugates of b which is within a distance
of ε from a. Here the number N does not depend on a or b, as long as they are con-
tractions, or on the matrix size n (see [Sko16, Theorem 6.1] for an explicit formula).
We refer to this property as uniform majorization. (In the language of continuous
logic of C*-algebras, the fact that N depends solely on ε implies that the relation
of majorization is uniformly definable within the class of matrix C*-algebras; see
[FHL+16].) Uniform majorization does not hold for general C*-algebras and may
fail even in a single C*-algebra. We show below that the C*-algebra constructed
in [Rob15, Theorem 1.4] does not have uniform majorization (Example 5.7). This
C*-algebra, which is simple and nuclear, fails to have various regularity properties
of great significance in the classification of simple nuclear C*-algebras; to wit, it
has neither strict comparison of positive elements by traces nor finite nuclear di-
mension. We prove below that these very same regularity properties serve to ensure
uniform majorization.

Theorem 1.2. For every ε > 0 there exists N ∈ N such that if A is a unital
C*-algebra with strict comparison of positive elements by traces and a, b ∈ A are
selfadjoint contractions such that a ∈ co{ubu∗ | u ∈ U(A)}, then

∥∥∥a− 1

N

N∑
i=1

uibu
∗
i

∥∥∥ < ε

for some u1, . . . , uN ∈ U(A).

A version of Theorem 1.2 for C*-algebras with finite nuclear dimension is also
valid (Theorem 5.6). We obtain the following interesting application of uniform
majorization: Let A be a unital C*-algebra with either strict comparison by traces
or finite nuclear dimension. Let B ⊆ A∞ be a separable C*-subalgebra of the
sequence algebra A∞ :=

∏∞
i=1 A/

⊕∞
i=1 A. Then for every selfadjoint a ∈ A∞ the

set co({uau∗ | u ∈ U(A∞)}) has nonempty intersection with B′ ∩ A∞.
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This paper is organized as follows: In Section 2 we define the majorization and
submajorization relations and prove some of their general properties which will be
needed later on. In Section 3 we prove Theorem 1.1 when A is a von Neumann
algebra (at this point we assume that a and b are positive contractions as a matter
of convenience). In Section 4 we prove Theorem 1.1 together with a more general
distance formula and we derive some corollaries of these theorems. In Section 5
we investigate the property of uniform majorization described above. The proof
of Theorem 1.2, unlike the more hands-on methods used in [Sko16], does not yield
and explicit formula for the number N in terms of ε.

2. Preliminaries on majorization and submajorization

Let A be a C*-algebra. Let us denote by A+ and Asa the sets of positive and
selfadjoint elements of A, respectively. If A is unital, we let U(A) denote the unitary
group of A. If a ∈ Asa and t ∈ R we denote by (a− t)+ the element obtained from
a by functional calculus with the function x �→ (x− t)+ := max(x− t, 0).

Given a, b ∈ Asa let us say that a is submajorized by b, and denote it by a ≺c b,
if

a ∈ co({dbd∗ | ‖d‖ � 1}).
Suppose that A is unital. Let us say that a is majorized by b, and denote it by
a ≺u b, if

a ∈ co({uau∗ | u ∈ U(A)}).
It is possible to extend the relation of majorization to nonunital C*-algebras simply
by passing to the unitization. However, we will always assume that A is unital
when discussing majorization. Both submajorization and majorization are preorder
relations.

We use the following lemma quite frequently and without reference.

Lemma 2.1. Let a1, a2, b1, b2 ∈ Asa be such that a1 ≺c b1, a2 ≺c b2, a1a2 = 0 and
b1b2 = 0. Then a1 + a2 ≺c b1 + b2.

Proof. Let ε > 0. Suppose that

‖a1 −
1

N

N∑
i=1

di,1b1d
∗
i,1‖ < ε and ‖a2 −

1

N

N∑
i=1

di,2b2d
∗
i,2‖ < ε,

for some contractions di,1, di,2 ∈ A. Multiplying by an approximate unit of |a1|A|a1|
on the left and on the right of the first equation and replacing b1 by |b1|

1
n b1|b1|

1
n

for large enough n we can assume that di,1 ∈ |a1|A|b1| for all i. Similarly, we

can assume that di,2 ∈ |a2|A|b2| for all i. Define di = di,1 + di,2 for all i. A
straightforward calculation exploiting that a1a2 = b1b2 = 0 shows that

‖(a1 + a2)−
1

N

N∑
i=1

di(b1 + b2)d
∗
i ‖ < 2ε.

This proves the lemma. �

Lemma 2.2. Let a, b ∈ Asa.

(i) If a � b, then a+ ≺c b+.
(ii) If ‖a− b‖ � r, then (a− r)+ ≺c b+.
(iii) If a ≺c b, then (a− t)+ ≺c (b− t)+ for all t ∈ [0,∞).
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Proof.
(i) Assume first that a � 0 (so b � 0). Since a � b, a is in the hereditary C*-

subalgebra generated by b. Hence, b
1
n ab

1
n → a, which shows that a ≺c b, as desired.

Suppose now that a ∈ Asa. Let ε > 0. Let c ∈ C∗(a) be a positive contraction such
that ca = (a− ε)+. Multiplying by c1/2 on the left and on the right of a � b we get

(a− ε)+ � c
1
2 bc

1
2 � c

1
2 b+c

1
2 ≺c b+.

Since submajorization is transitive and we have already shown that the order on
positive elements is stronger than the submajorization relation, (a− ε)+ ≺c b+ for
all ε > 0. Letting ε → 0 we are done.

(ii) We have that a− r � b. So we can apply (i) to get that (a− r)+ ≺c b+.

(iii) Choose b′ = 1
N

∑N
i=1 dibd

∗
i , with ‖di‖ � 1 for all i, such that ‖a − b′‖ < ε.

From a− t− ε � b′ − t we get, by (i), that (a− t− ε)+ ≺c (b
′ − t)+. Also,

b′ − t � 1

N

N∑
i=1

di(b− t)d∗i � 1

N

N∑
i=1

di(b− t)+d
∗
i .

Hence, by (i), (b′ − t)+ is submajorized by 1
N

∑N
i=1 di(b − t)+d

∗
i , which in turn is

submajorized by (b − t)+. By the transitivity of submajorization, (a − t − ε)+ ≺c

(b− t)+ for all ε > 0, from which the desired result follows. �

Proposition 2.3. Let a, b ∈ Asa. Then a ≺c b if and only if a+ ≺c b+ and
a− ≺c b−.

Proof. Suppose first that a ≺c b. Let an ∈ Asa be elements such that an → a
and each an is a finite convex combination of elements of the form dbd∗. Since
(an)+ → a+ it suffices to show that (an)+ ≺c b+ for all n. Put differently, it

suffices to assume that a = 1
N

∑N
i=1 dibd

∗
i for some ‖di‖ � 1. In this case we have

that

a � 1

N

N∑
i=1

dib+d
∗
i .

By Lemma 2.2,

a+ ≺c (
1

N

N∑
i=1

dib+d
∗
i )+ =

1

N

N∑
i=1

dib+d
∗
i .

The rightmost side is clearly submajorized by b+. Thus, a+ ≺c b+. Since −a ≺c −b
we also have that a− = (−a)+ ≺c (b+) = b−. This proves one implication.

Suppose now that a+ ≺c b+ and a− ≺c b−. By Lemma 2.1 we have that
a+ − a− ≺c b+ − b−, i.e., a ≺c b, as desired. �

In light of the previous proposition we will largely focus on the study of the
submajorization relation among positive elements. It will be easy enough to extend
our main results to selfadjoint elements relying on this proposition.

We call trace on A a map τ : A+ → [0,∞] that is R+-linear, maps 0 to 0, and
satisfies that τ (x∗x) = τ (xx∗) for all x ∈ A. Notice that ∞ is in the range of
τ and that we do not assume that τ is densely finite. We denote by T(A) the
cone of all lower semicontinuous traces on A. The reader is referred to [ERS11] for
basic facts on T(A). Observe that for each closed two-sided ideal I ⊆ A the map
τI : A+ → [0,∞] defined as τI(a) = 0 if a ∈ I+ and τI(a) = ∞ otherwise is a lower
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semicontinuous trace. In particular, if we choose I = {0} we get a trace that is ∞
everywhere except at 0.

Let a, b ∈ A+. We say that a is tracially submajorized by b if

τ ((a− t)+) � τ ((b− t)+) for all τ ∈ T(A) and all t ∈ [0,∞).

We denote this relation by a ≺T b.
The following proposition clarifies the meaning of tracial submajorization in C*-

algebras with “very few” traces.

Proposition 2.4. Suppose that the C*-algebra A has no l.s.c. traces other than
the traces τI associated to its closed two-sided ideals (e.g., A is purely infinite). Let
a, b ∈ A+. Then a ≺T b if and only if ‖πI(a)‖ � ‖πI(b)‖ for all quotient maps
πI : A → A/I.

Proof. Let I be a closed two-sided ideal of A. Denote by πI : A → A/I the quotient
map. Let t ∈ [0,∞). Consider the inequality τI((a− t)+) � τI((b− t)+). The right
side is ∞ for all t < ‖πI(b)‖. So in this case the inequality is trivially valid. On the
other hand, if t � ‖πI(b)‖, then the inequality is valid if and only if the left side is
0, i.e., if (a−‖π(b)‖)+ ∈ I. This is equivalent to ‖πI(a)‖ � ‖πI(b)‖, as desired. �

We will show below that in any C*-algebra tracial submajorization is equiva-
lent to submajorization (for positive elements), but this will entail first elucidating
independently some of the properties of both relations.

Lemma 2.5. Let B ⊆ A be a hereditary C*-subalgebra. Let a, b ∈ B+.

(i) If a ≺c b in A, then a ≺c b in B.
(ii) If a ≺T b in A, then a ≺T b in B.

Proof.
(i) Let (eλ)λ be an approximate unit of B consisting of contractions. Let ε > 0.

Say d1, . . . , dN ∈ A are contractions such that

∥∥∥a− 1

N

N∑
i=1

dibd
∗
i

∥∥∥ < ε.

Call the left side of the above inequality ε′ and choose ε′ < ε′′ < ε. We have

∥∥∥a− 1

N

N∑
i=1

eλdibd
∗
i eλ

∥∥∥ � ‖a− eλaeλ‖+
∥∥∥eλ

(
a− 1

N

N∑
i=1

dibd
∗
i

)
eλ

∥∥∥
� ‖a− eλaeλ‖+ ε′.

Since eλaeλ → a, there exists λ0 such that the left side is less than ε′′ for all λ � λ0.
Moreover, since eλbeλ → b, there exists λ1 such that

‖a− 1

N

N∑
i=1

eλdi(eλbeλ)d
∗
i eλ‖ < ε

for all λ � λ1. Notice that eλdieλ ∈ B for all i. Thus, a ≺c b in B.
(ii) It suffices to show that every l.s.c. trace on B extends to A. Let us sketch the

proof of this known fact: Given positive elements e, f ∈ A+, let us write e �CP f if
e =

∑∞
i=1 x

∗
i xi and

∑∞
i=1 xix

∗
i � f for some xi ∈ A, where the series are convergent
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in norm. This transitive relation is studied in [CP79] and [Rob09]. To define an
extension of a trace τ on B to A we set

τ̃(x) = sup{τ (y) | y ∈ B+, y �CP x},

for all x ∈ A+. Then τ̃ is an l.s.c. trace on A extending τ . The proof of this claim
may be found in the proof of [CP79, Lemma 4.6]. �

Let K denote the C*-algebra of compact operators on a separable, infinite-
dimensional, Hilbert space. We regard A embedded in A⊗K in the usual manner,
i.e., by placing the elements of A in the upper-left corner of an infinite matrix whose
entries are 0 everywhere else.

Proposition 2.6. Let a, b ∈ A+. Then a ≺c b in A if and only if a ≺u b in
(A⊗K)∼ (i.e., in the unitization of the stabilization of A).

Proof. Suppose that a ≺u b in (A⊗K)∼. Since A is a hereditary C*-subalgebra of
(A⊗K)∼, we have a ≺c b in A by Lemma 2.5(i).

Let us prove the opposite implication. We consider first the case when a � b.
Let n ∈ N. We have

b =
(
a1/2 · · · (b− a)1/2

)
⎛
⎜⎝

a1/2

...
(b− a)1/2

⎞
⎟⎠

and⎛
⎜⎝

a1/2

...
(b− a)1/2

⎞
⎟⎠(

a1/2 · · · (b− a)1/2
)

=

⎛
⎜⎝

a · · · a1/2(b− a)1/2

...
...

(b− a)1/2a1/2 · · · b− a

⎞
⎟⎠ ∈ Mn(A),

where the omitted entries are all zeros. By changing n and averaging we find that
for any ε > 0 we can choose x1, . . . , xN ∈ A⊗K such that

‖a− 1

N

N∑
i=1

xix
∗
i ‖ < ε and b = x∗

i xi for all i.

But for all x ∈ A ⊗ K the elements x∗x and xx∗ are approximately unitarily
equivalent in (A ⊗ K)∼ ([BRT+12, Lemma 4.3.3]). This shows that a ≺u b in
(A⊗K)∼, as desired.

Suppose now that a = dbd∗, with ‖d‖ � 1. Let x = db1/2. Then a = xx∗

and x∗x � b. We have already shown that x∗x ≺u b in (A ⊗ K)∼. But, as
remarked above, x∗x and xx∗ are approximately unitarily equivalent in (A⊗K)∼.
So a = x∗x ≺u xx∗ ≺u b.

Consider the general case. Suppose that a ≺c b. Then a is a limit of convex
combinations of elements of the form dbd∗, with ‖d‖ � 1. We have already shown
that each of these elements is majorized by b in (A ⊗ K)∼. It follows that a ≺u b
in (A⊗K)∼, as desired. �
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Proposition 2.7. Let E : A → A be a positive contractive map that is also trace
decreasing, i.e., τ (E(a)) � τ (a) for all τ ∈ T(A) and all a ∈ A+. Then E(a) ≺T a
for all a ∈ A+.

Proof. Let t ∈ [0,∞) and let τ ∈ T(A). Let ε > 0. Since E is positive and
contractive we have that

E(a)− t · 1 � E(a− t · 1) � E((a− t)+).

Let c ∈ C∗(E(a)) be a positive contraction such that (E(a)− t)c = (E(a)− t− ε)+.
Then

(E(a)− t− ε)+ � c
1
2E((a− t)+)c

1
2 .

Evaluating both sides on τ and using the fact that E is trace decreasing we get
that

τ ((E(a)− t− ε)+) � τ (E((a− t)+)) � τ ((a− t)+).

Letting ε → 0 and using that τ is lower semicontinuous we get the desired inequality.
�

Proposition 2.8. Let a, b ∈ A+. If a ≺c b, then a ≺T b.

Proof. First suppose that a is exactly a convex combination of elements of the form
dbd∗, with ‖d‖ � 1. Say a =

∑n
i=1 tidibd

∗
i , where ‖di‖ � 1 for all i, 0 � ti � 1 for

all i, and
∑n

i=1 ti = 1. Let E : A → A be defined as E(y) =
∑n

i=1 tidiyd
∗
i for all

y ∈ A. Then E is positive, contractive, and trace decreasing. By Proposition 2.7,
a = E(b) ≺T b, as desired.

Suppose now that a, b ∈ A+ are arbitrary elements such that a ≺c b. Let an → a,
where an is a finite convex combination of elements of the form dbd∗, with ‖d‖ � 1.
Then an ≺T b for all n by the previous case. Let τ ∈ T(A) and t ∈ [0,∞). Then
τ ((an − t)+) � τ ((b − t)+) for all n and (an − t)+ → (a − t)+. By the lower
semicontinuity τ ,

τ ((a− t)+) � lim inf
n

τ ((an − t)+) � τ ((b− t)+),

as desired. (What we have shown is that the set of elements tracially submajorized
by b is closed.) �

3. von Neumann algebra case

In this section we work exclusively in the setting of von Neumann algebras. The
main results of this section, Propositions 3.13 and 3.15, characterize submajoriza-
tion and majorization in a von Neumann algebra in terms of tracial submajorization.
They are stepping stones towards proving the same results for all C*-algebras. (We
take up this task in the next section.)

Throughout this section M denotes a von Neumann algebra. We also fix the
following notation: The center of M is denoted by Z. Elements of Z are often

regarded as continuous functions on Ẑ (the spectrum of Z). Given a ∈ M we
denote by ca ∈ Z the central carrier or central support projection of a.

Lemma 3.1. Let a, b ∈ M+ be such that a ≺T b. Let λ ∈ Z+. The following are
true:

(i) λa ≺T λb.
(ii) (a− λ)+ ≺T (b− λ)+.
(iii) a+ λ ≺T b+ λ.
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Proof.
(i) Let τ ∈ T(M) and t ∈ [0,∞). We must show that τ ((λa−t)+) � τ ((λb−t)+).

Suppose first that λ = e is a central projection. Then τ ((ea− t)+) = τ (e(a− t)+),
and since x �→ τ (e · x) is a trace in T(M), τ (e(a − t)+) � τ (e(b − t)+). So
τ ((ea− t)+) � τ ((eb− t)+), as desired.

Suppose now that λ has finite spectrum. Then λ =
∑n

i=1 αiei, where e1, . . . , en
are pairwise orthogonal central projections and where α1, . . . , αn > 0 are positive
scalars. We have

τ ((λa− t)+) = τ
(( n∑

i=1

αieia− t
)
+

)

= τ
( n∑

i=1

αi

(
eia− t

αi

)
+

)
� τ

( n∑
i=1

αi

(
eib−

t

αi

)
+

)
= τ ((λb− t)+).

Finally, suppose that λ is an arbitrary positive central element. Making use
of the Borel functional calculus on λ, construct an increasing sequence of positive
central elements (λn)n each with finite spectrum and such that λn ↗ λ in norm.
We have already proven that τ ((λna− t)+) � τ ((λnb− t)+) for all n. Observe that
(λna − t)+ ↗ (λa − t)+ and (λnb − t)+ ↗ (λb − t)+. So passing to the limit as
n → ∞ and using the fact that τ is l.s.c. we get that τ ((λa− t)+) � τ ((λb− t)+),
as desired.

(ii) It suffices to show that τ ((a− λ)+) � τ ((b− λ)+) for all τ ∈ T(M). Making
use of the Borel functional calculus on λ, construct a decreasing sequence of positive
central elements (λn)n with finite spectrum and such that λn ↘ λ in norm. Then
(a− λn)+ ↗ (a− λ)+ and (b− λn)+ ↗ (b− λ)+. So, arguing as in (i), the proof is
reduced to the case of λ with finite spectrum.

Say λ =
∑n

i=1 αiei, where e1, . . . , en are pairwise orthogonal central projections
adding up to 1 and αi � 0 are scalars. Then

τ (ei(a− λ)+) = τ (ei(a− αi)+) � τ (ei(b− αi)+) = τ (ei(b− λ)+),

for all i. Adding over all i we get the result.
(iii) We can reduce the proof to the case of a λ with finite spectrum by choosing

an increasing sequence (λn)n such that λn ↗ λ in norm and arguing as in (i).
Passing to central cut-downs eiM , where e1, . . . , en are central projections adding
up to 1, we are further reduced to the case that λ is a nonnegative scalar. So
assume that this is the case. Then (a + λ − t)+ = a + (λ − t) if t � λ and
(a+λ− t)+ = (a− (t−λ))+ otherwise. This calculation shows that a ≺T b implies
that a+ λ ≺T b+ λ. �

Proposition 3.2. Let a, b ∈ M be positive elements with finite spectrum. Then

(3.1) a =

n∑
i=1

αiPi, b =

n∑
i=1

βiQi
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for some (Pi)
n
i=1 and (Qi)

n
i=1, pairwise orthogonal projections in M adding up to

1 such that Pi ∼ Qi for all i, and some decreasing sequences of positive central
elements (αi)

n
i=1 and (βi)

n
i=1 such that ‖αi‖ � ‖a‖ and ‖βi‖ � ‖b‖ for all i.

Proof. Since a and b have finite spectrum, we have decompositions

(3.2) a =

l∑
i=1

μiEi, b =

m∑
j=1

νjFj ,

where (Ei)
l
i=1 and (Fj)

m
j=1 are pairwise orthogonal projections adding up to 1, and

(αi)
m
i=1 and (βj)

m
j=1 are nonnegative scalars. We further assume that both sequences

have been arranged in decreasing order.
We will prove the representation for a and b in (3.1) by induction on l+m. The

base case is l+m = 2, i.e., l = m = 1. In this case both a and b are scalar multiples
of the identity. The desired representation has already been achieved.

Suppose that the desired representation is true for all pairs a and b as in (3.2)
such that l+m is less than a given number. Now suppose that l+m is that given
number. Observe that if (ek)

N
k=1 are central projections adding up to 1 and the

desired representation has been obtained for eka and ekb in ekM for all k, then
adding up these representations—adding zero terms if necessary so that they have
the same number of terms—we get the desired representation for a and b. Now recall
that there is a central projection e such that eE1 � eF1 and (1− e)F1 � (1− e)E1

([KR97, Theorem 6.2.7]). Hence, reducing the proof to eM and (1− e)M , we can
assume that E1 and F1 are Murray–von Neumann comparable. By symmetry, it
suffices to assume that E1 � F1. Recall also that for any projection P ∈ M there
exists a central projection e such that eP is a finite projection and (1 − e)P is
properly infinite ([KR97, Proposition 6.3.7]). Applying this to E1 and reducing the
proof to each central cut-down, we can assume that E1 is either finite or properly
infinite.

Case 1: E1 is finite. Let us find F ′
1 � F1 such that E1 ∼ F ′

1. Since E1 is finite,
there exists a unitary u such that uE1u

∗ = F ′
1 ([KR97, Exercise 6.9.7]). Since it is

sufficient to obtain the desired representation for uau∗ and b, let us rename uau∗

as a and assume that E1 = F ′
1. Let

a′ =
l∑

i=2

μiEi, b′ = ν1(F1 − F ′
1) +

m∑
j=2

νjFj .

Notice that the total number of projections supporting a′ and b′ is now l +m− 1.
We can thus apply the induction hypothesis in the von Neumann algebra (1 −
F ′
1)M(1− F ′

1) to get

a′ =
n∑

i=1

αiPi, b′ =
n∑

i=1

βiQi.

We also have by induction that α1 � ‖a′‖ and β1 � ‖b′‖. The map x �→ (1− F ′
1)x

is a surjective homomorphism from Z to the center of (1 − F ′
1)M(1 − F ′

1) (by
[SS08, Theorem 5.4.1]). Thus, the decreasing central elements (αi)

n
i=1 and (βi)

n
i=1

in (1 − F ′
1)M(1 − F ′

1) can be lifted to central elements in Z. Moreover, as is
clear for any surjective map between abelian von Neumann algebras, the decreasing
order and the inequalities α1 � ‖a′‖ and β1 � ‖b′‖ can be maintained after this
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lifting. Let us continue to denote these central liftings by αi and βi. Notice that
μ1 � μ2 = ‖a′‖ � αi for all i and ν1 � ‖b′‖ � βi for all i. So

a = μ1E1 +
n∑

i=1

αiPi, b = ν1F
′
1 +

n∑
i=1

βiQi

are the desired representations for a and b.

Case 2: E1 is properly infinite. We can find a central projection e such that eE1 �
e(1−E1) and (1− e)(1−E1) � (1− e)E1. By passing to the corresponding central
cut-down, we arrive at two cases.

Case 2(a): E1 � 1 − E1. Let us again find F ′
1 � F1 such that E1 ∼ F ′

1. Let us
moreover choose F ′

1 such that F ′
1 � 1−F ′

1. We can easily achieve this by exploiting
that E1 is properly infinite. We claim that 1 − E1 ∼ 1 ∼ 1 − F ′

1. Indeed, say
E′

1 � 1 − E1 is such that E1 ∼ E′
1. Since we have assumed that E1 is properly

infinite, E1 + E′
1 ∼ E1. Hence

1 = (1− E1 − E′
1) + E′

1 + E1 ∼ (1− E1 − E′
1) + E′

1 = 1− E1.

We prove similarly that 1 ∼ 1− F ′
1, thereby establishing our claim. From E1 ∼ F ′

1

and 1−E1 ∼ 1−F ′
1 we again deduce—as in the case where E1 is finite—that there

exists a unitary u such that uE1u
∗ = F ′

1. We can now continue arguing as in the
case where E1 is finite to complete the induction step.

Case 2(b): 1 − E1 � E1. Since E1 is properly infinite, E1 ∼ 1. (Proof: We have
E1 � 1. So, by Cantor–Bernstein, it suffices to show that 1 � E1. Indeed,

1 = (1− E1) + E1 � E1 ⊕ E1 ∼ E1.)

Moreover, since E1 � F1, we have F1 ∼ 1 as well. We can thus decompose E1

and F1 as follows: E1 = E′
1 + E′′

1 and F1 = F ′
1 + F ′′

1 , where E′
1, E

′′
1 , F

′
1, F

′′
1 are

projections such that E′
1 ∼ F ′

1 ∼ 1, E′′
1 ∼ 1 − F1, and F ′′

1 ∼ 1 − E1. Notice that
E′

1 ∼ F ′
1 and that

1− E′
1 = (1− E1) + E′′

1 ∼ F ′′
1 + (1− F1) = 1− F ′

1.

So there exists a unitary u such that uE′
1u

∗ = F ′
1. It suffices to find the desired

representations for uau∗ and b. Let us relabel uau∗ as a and assume that E′
1 = F ′

1.
We have that

a = μ1F
′
1 + μ1E

′′
1 +

l∑
i=2

μiEi,

while b has the form

b = ν1F
′
1 + ν1F

′′
1 +

m∑
j=2

νjFj .

It is thus clear that it suffices to find the desired representations for

a′ = μ1E
′′
1 +

l∑
i=2

μiEi, b′ = ν1F
′′
1 +

m∑
j=2

νjFj

in the von Neumann algebra (1−F ′
1)M(1−F ′

1) and then lift the central coefficients
to M (as in Case 1 above). Notice that the number of projections supporting a′ and
b′ is still l+m. However, repeating the arguments used above we will find ourselves
in either Case 1 or Case 2(a). More specifically, working in the von Neumann
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algebra (1− F ′
1)M(1− F ′

1), we can find central projections e1, e2, e3, e4 adding up
to the unit 1− F ′

1 and such that

(1) either eiE
′′
1 � eiF

′′
1 or eiF

′′
1 � eiE

′′
1 for all i = 1, 2, 3, 4,

(2) eiE
′′
1 is either finite or properly infinite for all i = 1, 2, 3, 4.

Passing to the algebra ei(1−F ′
1)M(1−F ′

1), let us assume first that E′′
1 � F ′′

1 . Then

E′′
1 � F ′′

1 ∼ 1− E1 = (1− E′
1)− E′′

1 = (1− F ′
1)− E′′

1 .

So we can continue arguing as in Cases 1 and 2(a). Similarly, if F ′′
1 � E′′

1 , then
F ′′
1 � (1−F ′

1)−F ′′
1 , so again we can continue arguing as in Cases 1 and 2(a). This

completes the induction.

�

Lemma 3.3. Let a, b ∈ M+ be positive elements with finite spectrum represented
as in (3.1) of Proposition 3.2. If a ≺T b, then

(3.3)
k∑

i=1

αiPi ≺T

k∑
i=1

βiQi

for k = 1, . . . , n.

Proof. Since Pi ∼ Qi for all i and both sets of projections add up to 1, there exists
a unitary u such that uQiu

∗ = Pi for all i. Let us relabel ubu∗ as b and assume
that Pi = Qi for all i.

We prove the lemma by induction on k. Let us first prove that α1cP1
� β1cP1

,
which clearly implies the case k = 1. Passing to the central cut-down cP1

M if
necessary, we may assume that cP1

= 1 (since a ≺T b implies that acP1
≺T bcP1

in cP1
M). Suppose for the sake of contradiction that α1 � β1. Then there exists

a projection e ∈ Z and a scalar ε > 0 such that α1e � β1e + εe. Since the central
coefficients (αi)

n
i=1 and (βi)

n
i=1 are decreasing, we deduce that ‖ea‖ > ‖eb‖. But

this contradicts that ea ≺T eb. Therefore, α1 � β1.
Suppose that the lemma is true for k−1. To prove (3.3) it suffices to do it on each

central cut-down eiM of a partition of unity by central projections e1, . . . , eN . Since
Z is an abelian von Neumann algebra, given any two positive elements α, β ∈ Z it
is possible to find a projection e ∈ Z such that eα � eβ and (1 − e)α � (1 − e)β.
Thus, we can reduce the proof to two cases: αk � βk or αk � βk. The second case
follows at once from the induction hypothesis. Let us assume that αk � βk. We
have that (a− βk+1)+ ≺T (b− βk+1)+, by Lemma 3.1(ii). Hence

k∑
i=1

(αi − βk+1)Pi �
n∑

i=1

(αi − βk+1)+Pi

= (a− βk+1)+ ≺T (b− βk+1)+ =
k∑

i=1

(βi − βk+1)Pi.

The above tracial submajorization holds in the hereditary subalgebra (P1 + · · · +
Pk)M(P1 + · · · + Pk) (by Lemma 2.5(ii)). Since βk+1(P1 + · · · + Pk) is a central
element of this von Neumann algebra, we can add it on both sides by Lemma
3.1(iii). This yields (3.3). �

Lemma 3.4. Let a, b, c ∈ M+ be such that a ≺u c and b ≺u c. Then for any central
element 0 � λ � 1 we have that λa+ (1− λ)b ≺u c.
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Proof. By a simple limiting argument it suffices to consider the case that λ has
finite spectrum (see the proof of Lemma 3.1). Say λ =

∑n
i=1 αiei, where e1, . . . , en

are pairwise orthogonal central projections adding up to 1 and αi ∈ [0, 1] for all i. In
order to show that λa+(1−λ)b ≺u c it suffices to show that ei(αia+(1−αi)b) ≺u eic
in eiM for all i. But eia, eib ≺u eic for all i and eiαia + ei(1 − αi)b is a scalar
convex combination of eia and eib. The lemma is thus proved. �

Lemma 3.5. Let P,Q ∈ M be orthogonal projections and let μ, ν ∈ Z+. There
exists ρ ∈ Z+ such that min(μ, ν) � ρ � max(μ, ν) and such that for any central
element 0 � λ � 1 we have

μ′P + ν′Q ≺u μP + νQ,

where

μ′ = μλ+ (1− λ)ρ,

ν′ = νλ+ (1− λ)ρ.

Proof. By Dixmier’s approximation theorem ([KR97, Theorem 8.3.5]) applied in
the von Neumann algebra (P +Q)M(P +Q) we have that

ρP + ρQ ≺u μP + νQ,

for some min(μ, ν) � ρ � max(μ, ν) in the center of (P + Q)M(P + Q). We can
lift ρ to an element in the center of M satisfying the same inequalities. Let λ ∈ Z
be such that 0 � λ � 1. Then, by the previous lemma,

(μλ+ ρ(1− λ))P + (νλ+ ρ(1− λ))Q ≺u μP + νQ,

as desired. �

Remark 3.6. In the case that M is finite one can show that ρ = μE(P )+νE(Q)
E(P+Q) , where

E : M → Z is the center-valued trace.

In the following proposition we assume that M is a finite von Neumann algebra.
We denote by E : M → Z the center-valued trace of M .

Proposition 3.7. Suppose that M is a finite von Neumann algebra. Let a, b ∈ M+

be positive elements of the form (3.1) in Proposition 3.2. If

(3.4)
k∑

i=1

αiE(Pi) �
k∑

i=1

βiE(Qi)

for all k = 1, . . . , n, then a ≺c b.

Proof. Conjugating b by a unitary we may assume that Pi = Qi for all i. Passing
to central cut-downs ejM for suitable projections e1, . . . , eN ∈ Z that partition the
unit, we may assume that cPi

= 1 for all i. Assuming these simplifications, we prove
the proposition by induction on n. More specifically, we will show by induction on
n that if P1, . . . , Pn are pairwise orthogonal projections in a finite von Neumann
algebra such that cPi

= 1 for all i, and (αi)
n
i=1 and (βi)

n
i=1 are decreasing positive

central elements such that

(3.5)

k∑
i=1

αiE(Pi) �
k∑

i=1

βiE(Pi) for all k = 1, . . . , n,
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then a =
∑n

i=1 αiPi ≺c

∑n
i=1 βiPi = b. We do not assume (mostly as a matter of

convenience) that the projections Pi add up to 1.
Consider the case n = 1. From the inequality (3.5) we get that α1E(P1) �

β1E(P1). Since cP1
= 1 this implies that α1 ≤ β1, which in turn implies that a � b.

By Lemma 2.2(i), a ≺c b, as desired.
Suppose now, by induction, that the desired result is valid whenever the number

of projections is less than n. Consider the case of n projections. Let us apply
Lemma 3.5 to β1P1+β2P2 with a suitable 0 � λ � 1 (to be specified soon) so as to
obtain ρ ∈ Z and β′

1P1 + β′
2P2 majorized by β1P1 + β2P2. Since β1 � β2 we have

β1 � ρ � β2 and β′
1 � β′

2. Let us choose λ such that the Ẑ (the spectrum of Z)
partitions into two clopen sets satisfying that

(C1) β′
1 = α1 on the first set,

(C2) β′
1 = β′

2 � α1 on the second set.

To see that this is possible, notice that the inequality β′
1 � α1, put in terms of λ,

has the form

κλ � γ,

for some κ ∈ Z+ and some γ ∈ Zsa such that κ � γ (in fact, κ = β1 − ρ ∈ Z+ and
γ = α1 − ρ ∈ Zsa). Let us choose λ = γ+/κ, where the fraction is defined to be

zero outside the set {x ∈ Ẑ | κ(x) > 0}. (Recall that we regard elements of Z as

continuous functions on its spectrum Ẑ.) The quotient γ+/κ is well defined in Z
since κ � γ+ and Z is an abelian von Neumann algebra. Observe that 0 � λ � 1.

Let us partition Ẑ into the sets {x ∈ Ẑ | λ(x) > 0} and its complement. These sets

are clopen since Ẑ is extremally disconnected. On the first set we have that κλ = γ,
which, put back in terms of β′

1, implies that β′
1 = α1. Thus, we are in case (C1)

above. On the second set we have that λ = 0. This implies that β′
1 = β′

2 � α1, i.e.,
we are in case (C2). Thus, λ is as desired.

Let

b′ = β′
1P1 + β′

2P2 +
∑
i>2

βiPi.

Then (3.5) continues to hold for a and b′. Indeed, for k = 1 because β′
1 � α1, and

for k > 1 because

β′
1E(P1) + β′

2E(P2) = β1E(P1) + β2E(P2).

Since b′ ≺u b, in order to prove the proposition it suffices to show that a ≺c b
′. So

let us rename b′ as b, β′
1 as β1, and β′

2 as β2.
We can restrict to the two clopen sets described above and prove the proposition

in each case. (In other words, if e1, e2 ∈ Z are the central projections corresponding
to these sets, then e1a and e1b continue to satisfy (3.5) in e1M (keep in mind that
the center valued trace of e1M is e1E(·)) and similarly for e2a and e2b in e2M .
Moreover, it suffices to show that eia ≺c eib in eiM for i = 1, 2.) We claim that
after restricting to the first set we are done by induction. Indeed, from (3.5), and
keeping in mind that β1 = α1 on this set, we obtain that the elements

a′ =
n∑

i=2

αiPi and b′′ =
n∑

i=2

βiPi
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satisfy the induction hypothesis. So a′ ≺c b
′′. By Lemma 2.5 this relation holds in

the hereditary subalgebra (P2 + · · ·+ Pn)M(P2 + · · ·+ Pn). Therefore,

a = α1P1 + a′ ≺c β1P1 + b′′ = b,

as desired.
Let us restrict to the second set where β1 = β2 � α1. Suppose more generally

that for some 1 < k � n we have that β1 = · · · = βk � α1. Assume first that
k < n. Let us apply Lemma 3.5 to β1(P1 + · · · + Pk) + βk+1Pk+1, yielding the
element β′

1(P1 + · · ·+ Pk) + β′
k+1Pk+1 majorized by β1(P1 + · · ·+Pk) + βk+1Pk+1.

We choose 0 � λ � 1 such that there exist two clopen sets such that

(C1’) β′
1 = α1 on the first set,

(C2’) β′
1 = β′

k+1 � α1, on the second set.

Such a choice is possible by the discussion above. Observe that the conditions in
(3.5) continue to hold for a and

b′ = β′
1(P1 + · · ·+ Pk) + β′

k+1Pk+1 +

n∑
i=k+2

βiPi.

They hold for l � k because β′
1 � α1 and for l � k + 1 because

β′
1E(P1 + · · ·+ Pk) + β′

k+1E(Pk+1) = β1E(P1 + · · ·+ Pk) + βk+1E(Pk+1).

We have already shown how to deal with the set where β′
1 = α1 by using the

induction hypothesis. It remains to consider the case when k = n, i.e., β1 = · · · =
βn � α1. But in this case we clearly have that a � b. So, by Lemma 2.2(i),
a ≺c b. �

Proposition 3.8. Suppose that M is a finite von Neumann algebra. Let a, b ∈ M+.
If a ≺T b, then a ≺c b.

Proof. We can reduce the proof to the case that a and b have finite spectrum. For
suppose ‖a − a′‖ < ε and ‖b − b′‖ < ε for some ε > 0 and some a′, b′ ∈ M+ of
finite spectrum (whose existence is guaranteed by the Borel functional calculus on
a and b). Then, relying on Lemma 2.2, we deduce that (a′ − 2ε)+ ≺c (a− ε)+ and
(b−ε)+ ≺c b

′. Hence (a′−2ε)+ ≺T b′. Suppose we have shown that (a′−2ε)+ ≺c b
′.

Then, again using Lemma 2.2, we obtain that (a−4ε)+ ≺c (a
′−3ε)+ ≺c (b

′−ε)+ ≺c

b. Since ε > 0 can be arbitrarily small, we arrive at a ≺c b, as desired. So let us
assume that a and b have finite spectrum.

Express a and b as in (3.1) of Proposition 3.2:

a =

n∑
i=1

αiPi, b =

n∑
i=1

βiPi.

(We have conjugated b by a unitary so that the projections in a and b are the
same.) We can take central cut-downs and reduce to the case that cPi

= 1 for all
i = 1, . . . , n. From a ≺T b we deduce from Lemma 3.3 that

τ
( k∑

i=1

αiPi

)
� τ

( k∑
i=1

βiPi

)

for all τ ∈ T(M) and all k = 1, . . . , n. Letting τ range through traces of the form
δx ◦ E, where δx is a point evaluation on the center, we deduce that (3.4) from
Proposition 3.7 holds. The desired result now follows from Proposition 3.7. �
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Recall that E : M → Z denotes the center-valued trace of M (whenever M is
assumed to be a finite von Neumann algebra).

Proposition 3.9. Suppose that M is a finite von Neumann algebra. Let a, b ∈ M+

be positive contractions of the form (3.1) in Proposition 3.2. Let r � 0. If

(a)

k∑
i=1

(αi − r)+E(Pi) �
k∑

i=1

βiE(Qi) for all k = 1, . . . , n

and

(a’)
n∑

i=k

(1− αi − r)+E(Pi) �
n∑

i=k

(1− βi)E(Qi) for all k = 1, . . . , n,

then there exists b′ ∈ M+ such that b′ ≺u b and ‖a− b′‖ � r.

Proof. Conjugating b by a unitary we may assume that Pi = Qi for all i. Passing
to central cut-downs ejM , for suitable projections e1, . . . , eN ∈ Z that partition
the unit, we may also assume that cPi

= 1 for all i. We will proceed by induction
on n under the additional assumptions that Pi = Qi and cPi

= 1 for all i.
If n = 1, then a = α1 · 1 and b = β1 · 1 are multiples of the identity. From

condition (a) we deduce that (α1 − r)+ � β1, whereas from (a’) we deduce that
(1− α1 − r)+ � 1− β1. Together they imply that ‖α1 − β1‖ � r.

Let us assume now by induction that the proposition is true when the number
of projections Pi is less than a given n. Let a and b be as in the statement of
the lemma. From condition (a) with k = 1 and from cP1

= 1 we deduce that
β1 � (α1 − r)+. Just as we did before in the proof of Proposition 3.7, let us apply
Lemma 3.5 in β1P1+β2P2 with a suitable central element 0 � λ � 1 (to be specified
soon) so as to obtain ρ ∈ Z+ and an element β′

1P1+β′
2P2 majorized by β1P1+β2P2.

We have that

β1 � β′
1 � ρ � β′

2 � β2

and that

β1E(P1) + β2E(P2) = β′
1E(P1) + β′

2E(P2).

Let

b′ = β′
1P1 + β′

2P2 +
n∑

i=3

βiPi.

Then for any λ ∈ Z such that 0 � λ � 1 the inequalities in (a), applied now to a
and b′, hold except possibly for k = 1. The inequalities in (a’) also hold for a and
b′, except possibly for k = 2. Let us choose λ such that each point of the spectrum
of Z is either λ = 0 or one of these two inequalities, k = 1 in (a) or k = 2 in (a’),
becomes an equality while the other one remains valid. More specifically, we choose
a central element 0 � λ � 1 such that the center is partitioned into three clopen
sets satisfying the following conditions:

(C1) β′
1 = (α1 − r)+, β

′
1 � β′

2, and

n∑
i=2

(1− αi − r)+E(Pi) � (1− β′
2)E(P2) +

n∑
i=3

(1− βi)E(Pi)

on the first set,
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(C2) β′
1 � (α1 − r)+, β

′
1 � β′

2, and

(3.6)
n∑

i=2

(1− αi − r)+E(Pi) = (1− β′
2)E(P2) +

n∑
i=3

(1− βi)E(Pi)

on the second set,
(C3) β′

1 � (α1 − r)+, β
′
1 = β′

2, and

n∑
i=2

(1− αi − r)+E(Pi) � (1− β′
2)E(P2) +

n∑
i=3

(1− βi)E(Pi)

on the third set.

To see that such a choice of λ is possible, notice first that the inequalities

β′
1 � (α1 − r)+

and
n∑

i=2

(1− αi − r)+E(Pi) � (1− β′
2)E(P2) +

n∑
i=3

(1− βi)E(Pi),

when put in terms of λ, take the general form

κ1λ � γ1 and κ2λ � γ2

for some κ1, κ2 ∈ Z+ and γ1, γ2 ∈ Zsa such that κ1 � γ1 and κ2 � γ2 (i.e., the
inequalities are valid for λ = 1). (In fact, κ1 = β1 − ρ, γ1 = (α1 − r)+ − ρ,
κ2 = (ρ− β2)E(P2), and

γ2 =
∑
i�2

(1− αi − r)+E(Pi)−
∑
i�2

(1− βi)E(Pi)− (1− ρ)E(P2).)

Let us choose

λ = max((γ1)+/κ1, (γ2)+/κ2).

These fractions are well defined in Z because Z is an abelian von Neumann algebra
and κ1 � (γ1)+ and κ2 � (γ2)+. Let us show that λ is as desired. It is clear that

0 � λ � 1. Exploiting that Ẑ is extremally disconnected, let us partition Ẑ into
four clopen sets X1, X2, X3, X4 such that γ1 � 0 and γ2 � 0 on X1, γ1 � 0 and
γ2 � 0 on X2, γ1 � 0 and γ2 � 0 on X3, and γ1 � 0 and γ2 � 0 on X4. It is
straightforward to check that λ = 0 on X1. Thus, on this set we find ourselves in
case (C3) above. It can also be checked that κ2λ = γ2 on X2 and κ1λ = γ1 on X3.
This value of λ yields cases (C1) and (C2) above, respectively. Finally, partition
X4 into two clopen sets such that γ1κ2 � γ2κ1 on one set and γ1κ2 � γ2κ1 on the
second. On the first of these sets we have that κ1λ = γ1 and on the other that
κ2λ = γ2 (again yielding cases (C1) and (C2) above).

Since b′ ≺u b, it suffices to prove that a ≺u b′. Equivalently, it suffices to prove
the proposition with b′ in place of b. So let us rename β′

1 and β′
2 as β1 and β2

and now assume that the conditions (C1)–(C3) for the three clopen sets described
above hold for β1 and β2.
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Let us show that on the clopen sets satisfying (C1) and (C2) we can argue by
induction. Indeed, restricting to the first set (while retaining the same names for
our variables) we have that

k∑
i=2

(αi − r)+E(Pi) �
k∑

i=2

βiE(Qi) for all k = 2, . . . , n,

n∑
i=k

(1− αi − r)+E(Pi) �
n∑

i=k

(1− βi)E(Qi) for all k = 2, . . . , n.

Thus

a′′ =
n∑

i=2

αiPi and b′′ =
n∑

i=2

β1Pi

satisfy conditions (a) and (a’) in the algebra PMP , where P = P2 + · · ·+ Pn. (To
see this we use that the center-valued trace EP : PMP → PZ can be computed

to be EP (x) = E(x)
E(P )P .) Hence, by the induction hypothesis applied in PMP ,

there exists b′′′ ∈ PMP majorized by b′′ and within r distance of a′′. The element
β1P1 + b′′ is within r of a and β1P1 + b′′ ≺u b. This proves the induction step.

Suppose now that we are in the second set. Consider the elements

a′′ =
n∑

i=2

(1− (1− αi − r)+)Pi, b′′ =
n∑

i=2

βiPi

in PMP , where P = P2 + · · ·+ Pn. From condition (a’) applied to a and b we get
that a′′ and b′′ satisfy condition (a’) with r = 0. Moreover, from (3.6) we deduce
that the center-valued traces of these two elements agree, i.e., EP (a

′′) = EP (b
′′)

(recall that we have relabeled β′
2 as β2, so (3.6) is now valid with β2 in place of β′

2).
This in turn implies that a′′ and b′′ satisfy condition (a) with r = 0 as well. By the
induction hypothesis with r = 0 applied in the von Neumann algebra PMP we get
that a′′ ≺u b′′ in PMP . Notice that

1− (1− αi − r)+ = min(1, αi + r).

From this we easily deduce that a′′ is within a distance r of
∑n

i=2 αiPi. Now, from
condition (a’) applied to a and b with k = 1, and keeping equality (3.6) in mind,
we deduce that (α1 + r)E(P1) � β1E(P1). This implies that α1 + r � β1 (since

cP1
= 1, which implies that the subset of Ẑ, where E(P1) is strictly positive is dense

in Ẑ). Similarly, from condition (a) with k = 1 we deduce that β1 � α1 − r. So
‖α1−β1‖ � r. Therefore, β1P1+a′′ is within a distance r of a and β1P1+a′′ ≺u b.
This again proves the induction step in this case.

Let us now examine the third set, where β1 = β2 while conditions (a) and (a’)
remain valid. Suppose more generally that for some k = 2, . . . , n we have that
β1 = · · · = βk while the conditions (a) and (a’) are valid. Suppose first that k < n.
Let us apply Lemma 3.5 to the element β1(P1+ · · ·+Pk)+βk+1Pk+1 with a suitable
central element 0 � λ � 1 (to be specified soon). Call β′

1(P1+ · · ·+Pk)+β′
k+1Pk+1

the resulting element. As before, we can choose λ such that conditions (a) and (a’)
remain valid for a and

b′ = β′
1(P1 + · · ·+ Pk) + β′

k+1Pk+1 +
∑

i>k+1

βiPi
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and such that either one of the following three cases occurs after restricting to

suitable clopen sets that partition Ẑ:

(C1’) β′
1 = (α1 − r)+,

(C2’)

(3.7)

n∑
i=k+1

(1− αi − r)+E(Pi) = (1− β′
k+1)E(Pk+1) +

n∑
i=k+2

(1− βi)E(Pi),

(C3’) β′
1 = β′

k+1.

Let us rename β′
1 and β′

k+1 as β1 and βk+1, respectively. We have already dealt
with the first of these three cases. The second is dealt with similarly as before: The
elements

a′′ =
n∑

i=k+1

(1− (1− αi − r)+)Pi and b′′ =
n∑

i=k+1

βiPi

satisfy the induction hypotheses with r = 0 in the von Neumann algebra PMP ,
where P = Pk+1 + · · ·+Pn. On the other hand, keeping in mind equality (3.7), we
deduce that

a′′′ =
k∑

i=1

αiPi, b′′′ =
k∑

i=1

βiPi

satisfy conditions (a) and (a’) with the same r in the von Neumann algebra (1 −
P )M(1− P ). We can thus apply the induction hypothesis in both cases to get the
desired result.

The remaining case to be considered is when k = n, i.e., β1 = · · · = βn, and
conditions (a) and (a’) are valid. From condition (a) with k = 1 we deduce that
β1 + r � α1, while from condition (a’) with k = n we deduce that αn + r � βn

(here we use that cPi
= 1 for all i). This clearly implies that ‖αi − βi‖ � r for all

i, implying that ‖a′ − b′‖ � r, as desired. �

Proposition 3.10. Suppose that M is a finite von Neumann algebra. Let r � 0.
If a, b ∈ M+ are contractions such that (a − r)+ ≺T b and (1 − a − r)+ ≺T 1 − b,

then a is within a distance r of co{ubu∗ | u ∈ U(M)}.

Proof. Let ε > 0. Let a′ and b′ be positive contractions of finite spectrum such
that ‖a− a′‖ < ε/2 and ‖b− b′‖ < ε/2 (whose existence is guaranteed by the Borel
functional calculus on a and b). Then, using Lemma 2.2, we find that (a′−r−ε)+ ≺T

b′ and (1− a′ − r − ε) ≺T 1− b′ (see the proof of Proposition 3.8). Let us express
a′ and b′ in the form of (3.1) from Proposition 3.2:

a′ =
n∑

i=1

αiPi, b′ =
n∑

i=1

βiQi.

Conjugating b′ by a unitary assume that Qi = Pi for all i. Cutting down the
center by central projections we assume that cPi

= 1 for all i. By Lemma 3.3, from
(a′ − r − ε)+ ≺T b′ we deduce that

(a)

k∑
i=1

(αi − r − ε)+E(Pi) �
k∑

i=1

βiE(Pi) for all k = 1, . . . , n,
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and from (1− r − ε− a′)+ ≺T (1− b′) that

(a’)
n∑

i=k

(1− αi − r − ε)+E(Pi) �
n∑

i=k

(1− βi)E(Pi) for all k = 1, . . . , n.

By Proposition 3.9, there exists b′′ majorized by b′ and within r+ ε distance of a′.
Since ε can be arbitrarily small, this proves the proposition. �

We now proceed to extend Propositions 3.8 and 3.10 to arbitrary von Neumann
algebras. This is accomplished in Propositions 3.13 and 3.15 below.

Lemma 3.11. Let a, b ∈ M+ be as follows:

a =
n∑

i=1

αiPi, b =
n∑

i=1

βiPi,

where (Pi)
n
i=1 are orthogonal projections adding up to 1 and such that cPi

= 1 for
all i and where (αi)

n
i=1 and (βi)

n
i=1 are decreasing nonnegative scalar coefficients.

Suppose that a ≺T b. Then:

(a) For all traces τ ∈ T(M) and all k = 1, . . . , n we have

τ
( k∑

i=1

αiPi

)
� τ

( k∑
i=1

βiPi

)
.

(b) α1 � β1.
(c) For each k = 2, . . . , n, if αk > βk, then Pk ∝

∑
i<k Pi. (Here P ∝ Q means

that P ≺c Q
⊕N for some N .)

Proof. Conditions (a) and (b) follow at once from Lemma 3.3. Suppose now that

αk > βk > 0 for some k. By Lemma 3.3,
∑k

i=1 αiPi ≺T

∑k
i=1 βiPi. Hence,

τ
( k∑

i=1

(αi − βk)Pj

)
� τ

( k−1∑
i=1

(βi − βk)Pi

)

for all τ ∈ T(M). Since we have assumed that αk − βk > 0, this implies that

τ (Pk) � Nτ (P1 + · · ·+ Pk−1)

for all τ ∈ T(M) and some suitable positive integer N (e.g., N � βi−βk

αk−βk
for all i).

By [KR97, Theorem 8.4.3 (vii)], this implies that Pk ∝ P1 + · · ·+ Pk−1. �

We start with the submajorization result. First, a lemma.

Lemma 3.12. Let P1, . . . , Pn be pairwise orthogonal projections such that P1 is
properly infinite and Pi � P1 for all i. Let α1, . . . , αn be central positive elements
such that αi � α1 for all i. Then

n∑
i=1

αiPi ≺c α1P1.

Proof. Let us write P1 = P ′
1 + Q2 + · · · + Qn, where P ′

1, Q2, . . . , Qn are pairwise
orthogonal projections such that P ′

1 ∼ P1 and Qi ∼ Pi for all i � 2. Let v ∈ M be
a partial isometry such that vP ′

1v
∗ = P1 and vQiv

∗ = Pi for i � 2. Then

v(α1P1)v
∗ = α1vP

′
1v

∗ +
n∑

i=2

α1vQiv
∗ =

n∑
i=1

α1Pi �
n∑

i=1

αiPi.



5744 PING WONG NG, LEONEL ROBERT, AND PAUL SKOUFRANIS

The result now follows from Lemma 2.2(i). �

Proposition 3.13. If a, b ∈ M+ are such that a ≺T b, then a ≺c b.

Proof. Arguing as in the proof of Proposition 3.8 we can reduce the proof to the
case that a and b have finite spectra. We then put them in the form (3.1) from
Proposition 3.2 assuming further that Pi = Qi for all i (conjugating b by a unitary
if necessary):

a =

n∑
i=1

αiPi, b =

n∑
i=1

βiPi.

Again arguments as in the proof of Proposition 3.8 allow us to assume that the
coefficients (αi)

n
i=1 and (βi)

n
i=1 have finite spectrum.

Notice that if e is a central projection, then the hypothesis of the theorem hold
for ea and eb in eM (by Lemma 3.1). On the other hand, if central projections
(ej)

N
j=1 partition the unit and we have proven the theorem for eja and ejb in ejM

for all j, then we conclude the same for a and b. This allows us to make the following
reductions:

(1) each Pi is either finite or properly infinite for all i,
(2) the projections Pi are pairwise orthogonal, pairwise Murray–von Neumann

comparable, and add up to 1,
(3) cPi

= 1 for all i.

Recall that we have assumed that the central coefficients (αi)
n
i=1 and (βi)

n
i=1

have finite spectra. By passing to cut-downs of M by central projections we can
assume that these coefficients are scalars. Observe that the decreasing ordering of
(αi)

n
i=1 and (βi)

n
i=1 is maintained by doing this and that properties (1)–(3) above

are not destroyed in the process. Thus, we further assume that

(4) the coefficients (αi)
n
i=1 and (βi)

n
i=1 are decreasing scalars.

We proceed by induction on the number of projections. If n = 1, then Lemma
3.11(b) implies that α1 � β1. Hence a � b.

Let us now consider the general case. The case when all the projections Pi are
finite has already been dealt with in Proposition 3.8. So let us assume that one of
the projections is properly infinite. Let Pk be a projection larger than the rest in
the Murray–von Neumann sense. By assumption, Pk is properly infinite.

Case k < n. From a ≺T b we know, by Lemma 3.3, that
∑k

i=1 αiPi ≺T

∑k
i=1 βiPi.

This relation also holds in the hereditary subalgebra (P1+ · · ·+Pk)M(P1+ · · ·+Pk)

(by Lemma 2.5). By induction,
∑k

i=1 αiPi ≺c

∑k
i=1 βiPi. Hence

k∑
i=1

αiPi +
∑
i>k

βiPi ≺c b.

But
∑n

i=k αiPi ≺c αkPk +
∑

i>k βiPi, by Lemma 3.12. Hence,

a =

n∑
i=1

αiPi ≺c

k−1∑
i=1

αiPi + αkPk +
∑
i>k

βiPi ≺c b.

Case k = n. Suppose that Pn is the largest projection in the Murray–von Neumann
sense (and it is properly infinite). If αn > βn, then from condition (c) of Lemma
3.11 we get that Pn ∝

⊕
i<n Pi. But we have assumed that the projections Pi are
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pairwise Murray–von Neumann comparable. So Pn ∝ Pk′ for some k′ < n. The
projection Pk′ is also properly infinite (since it cannot be finite). Hence, Pn � Pk′ .
We are then in a case previously dealt with, since Pk′ is properly infinite and larger
than the other projections. So let us assume that αn � βn.

By Lemma 3.3 we have
∑n−1

i=1 αiPi ≺c

∑n−1
i=1 βiPi, which also holds in the hered-

itary subalgebra (P1 + · · ·+ Pn−1)M(P1 + · · ·+ Pn−1) (by Lemma 2.5). Hence, by
induction,

n−1∑
i=1

αiPi ≺c

n−1∑
i=1

βiPi.

Since αn � βn we get that a ≺c b, as desired. �

Lemma 3.14. Let P be a properly infinite projection such that P ∼ 1. Let a, b ∈
(1− P )M(1− P ) be positive contractions.

(i) If (1−P )− a ≺c (1−P )− b, then βP + a ≺u βP + b for any scalar β such
that a, b � β � 1.

(ii) If a ≺c b, then a + αP ≺u b + αP for any scalar α � 0 such that a, b �
α(1− P ).

Proof. (i) By Lemma 2.2,

((1− P )− a− t)+ ≺c ((1− P )− t− b)+

for any t ∈ [0,∞). Choosing t = 1−β we obtain that β(1−P )−a ≺c β(1−P )−b in
(1−P )M(1−P ). Since 1−P � P and P is properly infinite, we can find countably
many orthogonal copies of 1 − P in PMP . So (1 − P )M(1 − P ) ⊗ K embeds in
M mapping (1 − P )M(1 − P ) to itself. By Proposition 2.6, submajorization in a
C*-algebra is equivalent to majorization in the unitization of the stabilization of
that C*-algebra. Hence β(1− P )− a ≺u β(1− P )− b in M . So,

β − (β(1− P )− a) = βP + a

is majorized by βP + b in M , as desired.
(ii) By (i) applied to a′ = (1− P )− a and b′ = (1− P )− b with β = 1 − α, we

get that
(1− α)P + (1− P )− a ≺u (1− α)P + (1− P )− b.

Hence
1− ((1− α)P + (1− P )− a) = a+ αP

is majorized by b+ αP , as desired. �

Proposition 3.15. Let r ∈ [0,∞). Let a, b ∈ M+ be contractions such that
(a − r)+ ≺T b and (1 − a − r)+ ≺T 1 − b. Then a is within a distance r of
co{ubu∗ | u ∈ U(M)}.

Proof. Let a, b ∈ M+ be as in the statement of the theorem. Let ε > 0. Using the
Borel functional calculus on a and b, let us find contractions with finite spectrum
a′, b′ ∈ M+ such that ‖a− a′‖ < ε/2 and ‖b− b′‖ < ε/2. Express them in the form

a′ =
n∑

i=1

αiPi, b′ =
n∑

i=1

βiQi

as in (3.1) of Proposition 3.2. From (a − r)+ ≺T b and (1 − a − r)+ ≺T 1 − b we
deduce that (a′ − r − ε)+ ≺T b′ and (1 − a′ − r − ε)+ ≺T 1 − b′. Having proven
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the theorem for a′ and b′ it is clear that, by letting ε → 0, we deduce the theorem
for a and b. So let us instead assume that a and b, as in the statement of the
theorem, have finite spectra. Conjugating b by a unitary, we may also assume that
Pi = Qi for all i. We assume further that the central coefficients (αi)

n
i=1 and (βi)

n
i=1

have finite spectra, which can be attained by a small enough approximation when
moving from a, b to a′, b′, respectively.

Notice that if e is a central projection, then the hypothesis of the theorem holds
for ea and eb in eM (by Lemma 3.1). On the other hand, if central projections
(ej)

N
j=1 partition the unit and we have proven the theorem for eja and ejb in ejM

for all j, then we conclude the same for a and b. This allows us to make the following
reductions:

(1) each projection Pi is either finite or properly infinite for all i,
(2) the projections Pi are pairwise orthogonal, pairwise Murray–von Neumann

comparable, and add up to 1,
(3) cPi

= 1 for all i.

In the case that all the projections P1, . . . , Pn, are finite, the unit 1 is finite, and
so the desired conclusion follows from Proposition 3.10. Thus, we can make the
following additional assumption:

(4) at least one of the projections Pi is properly infinite.

Recall that we have assumed that the central coefficients (αi)
n
i=1 and (βi)

n
i=1 have

finite spectra. Passing to cut-downs of M by central projections that partition the
unit, we can assume that these coefficients are scalars. Observe that the decreasing
ordering of the coefficients (αi)

n
i=1 and (βi)

n
i=1 is maintained by doing this and that

properties (1)–(4) above are not destroyed in the process. Thus, we further assume
that

(5) the coefficients (αi)
n
i=1 and (βi)

n
i=1 are decreasing scalars.

By Lemma 3.11, (a− r)+ ≺T b implies the following conditions:

(a) τ (
∑k

i=1(αi − r)+Pi) � τ (
∑k

i=1 βiPi) for all τ ∈ T(M) and k = 1, . . . , n.
(b) β1 � α1 − r.
(c) If for some k � 2 we have that αk − r > βk, then Pk ∝ Pk′ for some k′ < k.

That is, Pk is Murray–von Neumann smaller than finitely many copies of
some Pk′ with k′ < k. (Indeed, by Lemma 3.11, Pk ∝

⊕
i<k Pi. But we

have assumed that the projections Pi are pairwise Murray–von Neumann
comparable. So

⊕
i<k Pi ∝ Pk′ for some k′ < k.)

Let us call the conditions stated above left-to-right conditions. One derives similar
conditions from (1− a− r)+ ≺T 1− b. They take the form

(a’) τ (
∑n

i=k(1 − αi − r)+Pi) � τ (
∑n

i=k(1 − βi)Pi) for all τ ∈ T(M) and k =
1, . . . , n.

(b’) βn � αn + r.
(c’) If for some k � n − 1 we have that αk + r < βk, then Pk is Murray–von

Neumann smaller than finitely many copies of some Pk′ with k′ > k.

We’ll call the above right-to-left conditions.
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Let k = 1, . . . , n be the least index such that Pk is larger (in the Murray–von
Neumann sense) than the other projections. By assumption Pk is also properly
infinite. Notice that by conditions (b) and (c) we cannot have that αk > βk + r.
So either |αk − βk| � r or βk > αk + r. We consider these two cases next:

Case |αk − βk| � r. Let us write Pk = P ′
k + P ′′

k , where Pk ∼ P ′
k ∼ P ′′

k . Consider
the pair of elements

a′ =
k−1∑
i=1

max(αi − r, βk)Pi + βkP
′
k, b′ =

k−1∑
i=1

βiPi + βkP
′
k

and the pair

a′′ = βkP
′′
k +

n∑
i=k+1

min(αi + r, βk)Pi, b′′ = βkP
′′
k +

n∑
i=k+1

βiPi.

We claim that a′ ≺u b′ in PMP , where P = P1+ · · ·+Pk−1+P ′
k, and that a′′ ≺u b′′

in (1− P )M(1− P ). Since b = b′ + b′′ and ‖a− (a′ + a′′)‖ � r, the desired result
will follow from this claim.

Let us prove that a′ ≺u b′ in PMP . If k = 1, this holds trivially, so assume that
k > 1. Let 1 � i0 � k− 1 be the largest index such that αi − r � βk and if there is
no such index set i0 = 0. From (a− r)+ ≺T b and Lemma 3.3 we get that

i0∑
i=1

(αi − r)Pi ≺T

i0∑
i=1

βiPi.

Furthermore, by Proposition 3.13, the above relation is in fact a submajorization.
On the other hand,

k−1∑
i=i0+1

βkPi �
k−1∑

i=i0+1

βiPi.

Hence,
k−1∑
i=1

max(αi − r, βk)Pi ≺c

k−1∑
i=1

βiPi.

That a′ ≺u b′ now follows from Lemma 3.14(ii).
The proof that a′′ ≺u b′′ in (1 − P )M(1 − P ) is entirely analogous (recall that

we have written P = P1 + · · ·+Pk−1 + P ′
k): By Lemma 3.14(i), it suffices to check

that

(1− P − P ′′
k )−

n∑
i=k+1

min(αi + r, βk)Pi

is submajorized by

(1− P − P ′′
k )−

n∑
i=k+1

βiPi.

To check this, let i0 � k + 1 be the largest index such that αi + r � βk. Then

i0∑
i=k+1

(1− βk)Pi �
i0∑

i=k+1

(1− βi)Pi.
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On the other hand, from (1− a− r)+ ≺T 1− b and Lemma 3.3 we get that
n∑

i=i0+1

(1− αi − r)Pi ≺T

n∑
i=i0+1

(1− βi)Pi.

Moreover, by Proposition 3.13, this relation is of submajorization. Hence
n∑

i=k+1

(1−min(αi + r, βk))Pi ≺c

n∑
i=k+1

(1− βi)Pi,

as desired.

Case βk > αk+r. By condition (c’), there must exist an index k′ > k such that Pk′

is also properly infinite and larger than every other projection. Let k′ be the largest
such index. Notice that we cannot have that βk′ > αk′ + r by conditions (b’) and
(c’) from the right-to-left conditions. So we must have that either |αk′ − βk′ | � r
or that αk′ > βk′ + r. The first of these two cases has already been dealt with. So
let us assume that αk′ > βk′ + r.

We claim that b majorizes

a′ =
k−1∑
i=1

(αi − r)+Pi +

k′∑
i=k

αiPi +

n∑
i=k′+1

(αi + r)Pi.

Since a′ is within a distance r of a, this is sufficient to complete the proof of this case.
Let us prove our claim. Notice first that, as argued in the previous paragraphs,
from Lemma 3.14(i) we obtain the majorization

(3.8) βkPk +
n∑

i=k′+1

(αi + r)Pi ≺u βkPk +
n∑

i=k′+1

βiPi

in (Pk+Pk′+1+ · · ·+Pn)M(Pk+Pk′+1+ · · ·+Pn). Similarly, from Lemma 3.14(ii)
we obtain that

(3.9)
k−1∑
i=1

(αi − r)Pi + βk′Pk′ ≺u

k−1∑
i=1

βiPi + βk′Pk′

in (P1 + · · ·+Pk−1 +Pk′)M(P1 + · · ·+Pk−1 +Pk′). We will be done once we have
shown that

k′∑
i=k

αiPi ≺u

k′∑
i=k

βiPi

in (Pk + · · ·+ Pk′)M(Pk + · · ·+ Pk′). Let us show this. We have

k′−1∑
i=k

αiPi ≺c

k′−1∑
i=k

βiPi

by Lemma 3.12. So
k′−1∑
i=k

αiPi + βk′Pk′ ≺u

k′∑
i=k

βiPi

by Lemma 3.14(ii). Repeating the same argument, symmetrically,

k′∑
i=k+1

(1− αi)Pi ≺c

k′−1∑
i=k+1

(1− αi)Pi + (1− βk′)Pk′
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by Lemma 3.12. So
k′∑
i=k

αiPi ≺u

k′−1∑
i=k

αiPi + βk′Pk′

by Lemma 3.14(i).

�

4. Majorization and submajorization in C*-algebras

Proposition 4.1. Let A be a C*-algebra. Let a, b ∈ A.

(i) The distance from a to co{dbd∗ | d ∈ A∗∗, ‖d‖ � 1} is equal to the distance
from a to co{dbd∗ | d ∈ A, ‖d‖ � 1}.

(ii) Suppose A is unital. Then the distance from a to co{ubu∗ | u ∈ U(A∗∗)}
is equal to the distance from a to co{ubu∗ | u ∈ U(A)}.

Proof.
(i) It is clear that the distance from a to co{dbd∗ | d ∈ A, ‖d‖ � 1} is greater

than or equal to the distance from a to co{dbd∗ | d ∈ A∗∗, ‖d‖ � 1}. Denote the
latter distance by r. Let ε > 0. Suppose that

∥∥∥a− 1

n

n∑
i=1

dibd
∗
i

∥∥∥ < r + ε

for some contractions d1, . . . , dn ∈ A∗∗. For each i = 1, . . . , n let us find a net of
contractions (di,λ)λ in A such that di,λ → di in the ultrastrong* topology. Such a
net exists by Kaplansky’s density theorem. Then the ultrastrong* closure of the
set {

a− 1

n

n∑
i=1

di,λbd
∗
i,λ | λ

}

intersects the ball Br+ε(0). By the Hahn–Banach theorem, the convex hull of this
set also intersects that ball. A convex combination of elements of this set again has
the form a − a′ with a′ a convex combination of elements of the form dbd∗ with
d ∈ A a contraction.

(ii) It is clear that the distance from a to co{ubu∗ | u ∈ U(A)} is greater than or
equal to the distance from a to co{ubu∗ | u ∈ U(A∗∗)}. Denote the latter distance
by r. Let ε > 0. Suppose that

∥∥∥a− 1

n

n∑
i=1

uibu
∗
i

∥∥∥ < r + ε

for some unitaries ui ∈ A∗∗. By Kaplansky’s density theorem for unitaries, there
exist nets of unitaries (ui,λ)λ in A converging to ui in the ultrastrong* topology.
Then the ultrastrong* closure of the set

{
a− 1

n

n∑
i=1

ui,λbu
∗
i,λ | λ

}

intersects the ball Br+ε(0). This implies that the convex hull of this set also inter-
sects that ball. But a convex combination of elements of this set again has the form
a−a′ with a′ a convex combination of elements of the form ubu∗ with u ∈ U(A). �
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Theorem 4.2. Let A be a C*-algebra. Let a, b ∈ Asa. The distance from a to the
set co{dbd∗ | d ∈ A, ‖d‖ � 1} is equal to the infimum r ∈ [0,∞) such that

τ ((a− r − t)+) � τ ((b− t)+) for all t ∈ [0,∞) and all τ ∈ T(A),(4.1)

τ ((−a− r − t)+) � τ ((−b− t)+) for all t ∈ [0,∞) and all τ ∈ T(A).(4.2)

Moreover, if r is such infimum, then (a− r)+ − (a+ r)− ≺c b.

Proof. Let r̃ ∈ (0,∞) be such that ‖a−b′‖ < r̃ for some b′ ≺c b. Then (a−r̃)+ ≺c b
′
+

by Lemma 2.2(ii). Also, b′ ≺c b implies that (b′)+ ≺c b+ by Proposition 2.3. Hence
(a − r̃)+ ≺c b+. Starting from ‖(−a) − (−b′)‖ < r̃ and following the same line of
reasoning we obtain that (a + r̃)− ≺c b−. Since submajorization implies tracial
submajorization (Proposition 2.8), (a − r̃)+ ≺T b+ and (a + r̃)− ≺T b−. These
relations translate at once into (4.1) and (4.2) (for the number r̃).

Assume now that (4.1)–(4.2) hold for some r ∈ [0,∞). Let us show that (a −
r)+ − (a+ r)− ≺c b. Since the distance from a to (a− r)+ − (a+ r)− is r, this will
complete the proof of the theorem. As remarked above, (4.1)–(4.2) can be restated
as saying that (a − r)+ ≺T b+ and (a + r)− ≺T b−. In view of Proposition 2.3,
it remains to show that (a − r)+ ≺c b+ and (a + r)− ≺c b−. This boils down to
showing that if c, d ∈ A+ are such that c ≺T d, then c ≺c d. Let us prove this. It
is clear from c ≺T d in A that c ≺T d in the von Neumann algebra A∗∗ (indeed,
in any C*-algebra containing A), since traces in T(A∗∗) restrict to traces in T(A).
Then, by Proposition 3.13, c ≺c d in A∗∗. Finally, by Proposition 4.1(i), c ≺c d in
A, as desired. �

Theorem 4.3. Let A be a unital C*-algebra. Let a, b ∈ A be selfadjoint elements.
Then the distance from a to co{ubu∗ | u ∈ U(A)} is equal to the infimum r ∈ [0,∞)
such that

τ ((a− r − t)+) � τ ((b− t)+) for all t ∈ R and all τ ∈ T(A),(4.3)

τ ((−a− r − t)+ � τ ((−b− t)+) for all t ∈ R and all τ ∈ T(A).(4.4)

Proof. If we replace a by a+ s · 1 and b by b+ s · 1 for some s ∈ R, then neither the
infimum r satisfying (4.3)–(4.4) nor the distance from a to co{ubu∗ | u ∈ U(A)}
is changed. Thus, by choosing a sufficiently large s we may assume that a and b
are positive. A simple calculation also shows that if we replace a by a/s′ and b
by b/s′ for some s′ ∈ (0,∞), then both the infimum r satisfying (4.3)–(4.4) and
the distance from a to co{ubu∗ | u ∈ U(A)} get multiplied by a factor of 1/s′.
Thus, by choosing a sufficiently large s′ we may assume that a and b are positive
contractions. We do so henceforth.

Let r ∈ (0,∞) be any number satisfying (4.3)–(4.4). From (4.3) we deduce that
(a − r)+ ≺T b, while from (4.4) we deduce that (1 − a − r)+ ≺T 1 − b. Thus,
by Proposition 3.15, a is within a distance r of co{ubu∗ | u ∈ U(A∗∗)}. Then, by
Proposition 4.1(ii), a is within a distance r of co{ubu∗ | u ∈ U(A)}. This proves
one inequality.

Let r̃ ∈ (0,∞) be any number such that ‖a − b′‖ < r̃ for some b′ ∈
co{ubu∗ | u ∈ U(A)}. By Lemma 2.2(ii), (a− r̃)+ ≺c b

′ ≺c b. Since submajorization
implies tracial submajorization (for positive elements) we have that (a− r̃)+ ≺T b.
That is,

τ ((a− r̃ − t)+) � τ ((b− t)+)
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for all t ∈ [0,∞) and all τ ∈ T(A). Using that b is positive we can extend this
inequality to all t < 0. Indeed, if t < 0, then (a− r̃ − t)+ � (a− r̃)+ − t, and so

τ ((a− r̃ − t)+) � τ ((a− r̃)+) + τ (−t)

� τ (b) + τ (−t)

= τ ((b− t)+),

for all τ ∈ T(A). Thus, (4.3) holds for r̃. Applying the same arguments starting
from ‖(1− a)− (1− b′)‖ < r̃ we deduce that τ ((1− a− r̃ − t)+ � τ ((1− b− t)+)
for all τ ∈ T(A) and all t ∈ R. This is equivalent to (4.4). �

Proof of Theorem 1.1. This is the case r = 0 of Theorem 4.3. �

Remark 4.4. The following observation, whose verification is left to the reader, will
be useful below: if a, b ∈ A are positive contractions the tracial inequalities in
Theorem 1.1(ii) are equivalent to the tracial submajorizations a ≺T b and 1−a ≺T

1− b.

Let us explore some consequences of Theorem 1.1.
The following simple properties of the relation ≺u follow from Theorem 1.1

(although they do not seem to follow directly from the definition of ≺u).

Corollary 4.5. Let a, b, c, d ∈ Asa. Let k ∈ N.

(i) If a⊗ 1k ≺u b⊗ 1k in Mk(A) then a ≺u b in A.
(ii) If a � b � c, a ≺u d and c ≺u d, then b ≺u d.
(iii) If b � c � d, a ≺u b and a ≺u d, then a ≺u c.

Proof.
(i) Let t ∈ R and τ ∈ T(A). Then τ extends to a lower semicontinuous trace on

Mk(A) by setting τ ((ai,j)) =
∑k

i=1 τ (ai,i). We have

τ ((a− t)+) =
1

k
τ ((a⊗ 1k − t)+) �

1

k
τ ((b⊗ 1k − t)+) = τ ((b− t)+).

We deduce similarly that τ ((−a− t)+) � τ ((−b− t)+). By Theorem 1.1, a ≺u b.
(ii) Let t ∈ R and τ ∈ T(A). We have (b + t)+ ≺c (c + t)+ by Lemma 2.2(i).

Hence, τ ((b + t)+) � τ ((c + t)+), and since c ≺u d, τ ((b + t)+) � τ ((d + t)+).
Exploiting that a � b and a ≺u d we deduce similarly that τ ((−b + t)+) �
τ ((−d+ t)+).

(iii) The proof is very similar to (ii). �

Corollary 4.6. Let A be a simple unital C*-algebra. Let a, b ∈ Asa.

(i) If A has at least one non-zero bounded trace, then a ≺u b if and only if
τ (a) = τ (b) and τ ((a − t)+) � τ ((b − t)+) for all t ∈ R and all bounded
traces τ on A.

(ii) If A has no bounded traces, then a ≺u b if and only if sp(a) ⊆ co(sp(b)).

Proof. The implications starting with a ≺u b in both (i) and (ii) are straightforward
from Theorem 1.1. To prove the converse we will show in both cases that the tracial
inequalities from Theorem 1.1 hold.
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(i) Let us suppose that A has at least one nonzero bounded trace. Since A is
simple and unital, T(A) consists of the bounded traces on A and the trace τ∞(a) :=
∞ for all a �= 0 and τ∞(0) := 0. We have assumed that τ ((a− t)+) � τ ((b− t)+)
for all bounded traces and all t ∈ R. Let us show that

(4.5) τ∞((a− t)+) � τ∞((b− t)+)

for all t ∈ R. It suffices to show that the left side is zero for all t � ‖b+‖. We have
that

τ ((a− ‖b+‖)+) � τ ((b− ‖b+‖)+) = 0

for all bounded traces τ . Since A has at least one nonzero bounded trace—which is
necessarily faithful because A is simple—we get that (a−‖b+‖)+ = 0. This implies
(4.5).

Let us prove that τ ((−a − t)+) � τ ((−b − t)+) for all τ ∈ T(A) and all t ∈ R.
Let t ∈ R. Let τ be a bounded trace (which we assume defined on all A). Observe
that

(−c− t)+ = (c+ t)+ − (c+ t)

for any selfadjoint element c. Thus, as τ (a) = τ (b),

τ ((−a− t)+) = τ ((a+ t)+)− τ (a+ t)

� τ ((b+ t)+)− τ (b+ t) = τ ((−b− t)+).

To get that τ∞((−a−t)+) � τ∞((−b−t)+) we proceed as in the previous paragraph.
Exploiting the existence of a nonzero (faithful) bounded trace we deduce that (a+
‖b−‖)− = 0 (since (b + ‖b−‖)− = 0), from which the desired inequality readily
follows.

(ii) Suppose that A has no nonzero bounded traces. Then T(A) consists only
of τ∞ and the zero trace. Since sp(a) ⊆ co(sb(b)), we have that ‖a+‖ � ‖b+‖ and
‖a−‖ � ‖b−‖. It is readily verified from this that τ∞((a− t)+) � τ∞((b− t)+) and
τ∞((−a− t)+) � τ∞((−b− t)+) for all t ∈ R, as desired. �

Theorem 4.7. Let A be a unital C*-algebra. Let a be a selfadjoint element in A.
Then 0 ∈ co{uau∗ | u ∈ U(A)} if and only if

(a) τ (a) = 0 for all bounded traces τ on A and
(b) in no nonzero quotient of A can the image of a be either invertible and

positive or invertible and negative.

Proof. The necessity of the conditions is relatively straightforward. Since all the el-
ements in the set co{uau∗ | u ∈ U(A)} agree on bounded traces, we have (a). If a �
α·1 for some α ∈ (0,∞), then the same holds for all elements in co{uau∗ | u∈U(A)},
which prevents 0 from belonging to this set. Similarly, we cannot have that
a � −α1. Moreover, if 0 is in the closure of the convex hull of the unitary conjugates
of a, the same holds for the image of a on any quotient. So we have (b).

Suppose now that (a) and (b) hold. To prove the theorem we use Theorem 1.1.
We must check that τ ((0− t)+) � τ ((a− t)+) for all t ∈ R and all τ ∈ T(A). This
boils down to showing that τ (t) � τ ((a+ t)+) for all t > 0 and all τ ∈ T(A). Let
t > 0. Suppose first that τ is a bounded trace (so assume that it is defined on all
A). Evaluating τ on (a+ t)+ � a+ t we get τ ((a+ t)+) � τ (t), as desired. Suppose
now that τ is unbounded. Since τ (t) = ∞ we must show that τ ((a + t)+) = ∞.
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Equivalently, we must show that (a+ t)+ is full, i.e., it generates A as a closed two-
sided ideal. But if this were not the case, then in the quotient by the closed two-
sided ideal generated by (a+ t)+ we would have that a+ t � 0 (where a denotes the
image of a in this quotient). This contradicts (2). Thus, (a+ t)+ is full, as desired.
Since −a satisfies (1) and (2) too, we also arrive at τ ((−0 − t)+) � τ ((−a − t)+)
for all t ∈ R and all τ ∈ T(A). By Theorem 1.1, 0 ≺u a, as desired. �

5. Uniform majorization

In this section we discuss the majorization relation in the context of regularity
properties of C*-algebras. We show that one has a uniform version of majorization
holding across all C*-algebras of either one of the following classes:

(1) C*-algebras satisfying Blackadar’s strict comparison of positive elements by
traces,

(2) C*-algebras having a uniform bound on their nuclear dimension.

In both cases we derive the uniform majorization from the preservation of the
relation of tracial submajorization under products of C*-algebras in the given class
(Propositions 5.1 and 5.5).

Let us recall some definitions. Let A be a C*-algebra. Let K denote the C*-
algebra of compact operators on a separable infinite-dimensional Hilbert space. Let
τ ∈ T(A). We can extend τ to a trace on (A⊗K)+ by setting

τ ((ai,j)) =

∞∑
i=1

τ (ai,i)

for all (ai,j)i,j ∈ (A ⊗ K)+. From τ we obtain a “dimension function” dτ : (A ⊗
K)+ → [0,∞] defined as

dτ (a) = lim
n

τ (a
1
n )

for all a ∈ (A ⊗ K)+. (Alternatively, dτ (a) is the norm of the restriction of τ to

a(A⊗K)a.)
Next, let us recall the definition of the Cuntz comparison relation among positive

elements: Given positive elements a, b ∈ A⊗K, a is said to be Cuntz subequivalent
to b if there exist e1, e2, . . . ∈ A⊗K such that enbe

∗
n → a. We denote this relation

by a �Cu b.
The C*-algebra A is said to have the property of strict comparison of positive

elements by traces if for all a, b ∈ (A⊗K)+ and ε > 0 we have that

(5.1) dτ (a) � (1− ε)dτ (b) for all τ ∈ T(A) implies that a �Cu b.

(Note: A number of different variations on “strict comparison” exist in the litera-
ture; e.g., one may restrict τ to be a bounded trace or allow it to be a 2-quasitrace;
one may restrict a, b to be in A, etc.)

We will make use of the topology on T(A) introduced in [ERS11]. Let us recall
it here: a net (τλ)λ in T(A) converges to τ if for all a ∈ A+ and ε > 0 we have

lim sup
λ

τλ((a− ε)+) � τ (a) � lim inf
λ

τλ(a).

It is shown in [ERS11, Theorem 3.7] that T(A) is compact and Hausdorff under
this topology.

The following variation on the strict comparison property has been introduced in
[NR16]: Let K ⊆ T(A) be a compact set. Then A is said to have strict comparison
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of positive elements by traces in K if for all a, b ∈ (A⊗K)+ and ε > 0 it suffices to
let τ range through K in (5.1) for this implication to hold.

The following proposition is essentially obtained in [NR16]:

Proposition 5.1. Let A1, A2, . . . be C*-algebras with strict comparison of positive
elements by traces. Let a = (an)

∞
n=1 and b = (bn)

∞
n=1 be positive elements in∏∞

n=1 An such that an ≺T bn for all n. Then a ≺T b in
∏∞

n=1 An.

Proof. Let us regard T(An) embedded in T(
∏∞

n=1 An) via the map induced by the

projection from
∏∞

n=1 An onto An. Let K =
⋃∞

n=1 T(An) ⊆ T(
∏∞

n=1 An). In the
course of the proof of [NR16, Theorem 4.1] it is shown that the C*-algebra

∏∞
n=1 An

has strict comparison of positive elements by traces in K. The elements a and b
from the statement of the theorem satisfy that τ ((a − t)+) � τ ((b − t)+) for all
τ ∈

⋃∞
n=1 T(An) and t � 0 (this holds by assumption). Let us show that these

inequalities extend to all traces in K. Let τ ∈ K and choose a net τλ → τ with
τλ ∈

⋃∞
n=1 T(An). From the definition of the topology in T(A) we get that

τ ((a− t− ε)+) � lim inf τλ((a− t− ε)+)

� lim inf τλ((b− t− ε)+)

� τ ((b− t)+)

for all t � 0 and ε > 0. Thus, τ ((a − t − ε)+) � τ ((b − t)+). Letting ε → 0 and
using the lower semicontinuity of τ we get that τ ((a − t)+) � τ ((b − t)+) for all
τ ∈ K and all t � 0. Now, [NR16, Lemma 3.4] asserts that if a C*-algebra A
has strict comparison by traces in a compact set K, then for any given c, d ∈ A+,
if τ (c) � τ (d) for all τ ∈ K, then τ (c) � τ (d) for all τ ∈ T(A). Applied in
A =

∏∞
n=1 An with K as above, this lemma implies that a ≺T b, as desired. �

Proof of Theorem 1.2. Let ε > 0. Suppose for the sake of contradiction that no
N as in the statement of the theorem exists. Then there exist unital C*-algebras
A1, A2, . . . with strict comparison by traces and selfadjoint contractions an, bn ∈ An

such that an ≺u bn for all n but

‖an − 1

n

n∑
i=1

uibnu
∗
i ‖ � ε

for all n-tuples of unitaries u1, . . . , un ∈ An. Let a′n = an+1
2 and b′n = bn+1

2 .
Observe that these are positive contractions such that a′n ≺u b′n for all n and

‖a′n − 1

n

n∑
i=1

uib
′
nu

∗
i ‖ � ε

2

for all n-tuples of unitaries u1, . . . , un ∈ An. Consider the positive elements a =
(a′n)

∞
n=1 and b = (b′n)

∞
n=1 in

∏∞
n=1 An. Since a′n ≺u b′n for all n we have, by

Proposition 5.1, that a ≺T b. Also, 1−a′n ≺T 1−b′n for all n, and so 1−a ≺T 1−b.
By Theorem 1.1 (keeping Remark 4.4 in mind), we have that a ≺u b. Hence, there
exists N ∈ N and unitaries w1, w2, . . . , wN ∈

∏∞
n=1 An such that

‖a− 1

N

N∑
i=1

wibw
∗
i ‖ <

ε

2
.

Projecting onto AN we arrive at a contradiction. �
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Theorem 5.2. For each ε > 0 there exists N ∈ N such that if A is a C*-algebra
with strict comparison of positive elements by traces and a, b ∈ Asa are contractions
such that a ≺c b, then

‖a− 1

N

N∑
i=1

dibd
∗
i ‖ < ε

for some contractions d1, . . . , dN ∈ A.

Proof. It is easy to argue, using Proposition 2.3, that it suffices to prove the theorem
letting a and b range through all positive contractions. One can then proceed as in
the proof of Theorem 1.2, arguing by contradiction and relying on Proposition 5.1.
The details are left to the reader. �

Next we prove the same uniform majorization among C*-algebras with a uniform
bound in their nuclear dimension. We start by recalling the definition of nuclear
dimension and some background facts.

A completely positive contractive (c.p.c.) map φ : A → B is called of order zero
if it preserves orthogonality, i.e., ab = 0 implies φ(a)φ(b) = 0 for all a, b ∈ A. By
[WZ09, Theorem 2.3], such a map has the form φ(a) = hπφ(a), where πφ : A →
M(C∗(φ(A)) is a homomorphism and where h ∈ M(C∗(φ(A))) is a positive element
commuting with πφ(A). (Here M(C∗(φ(A))) denotes the multiplier algebra of the
C*-algebra generated by φ(A).) With the aid of this theorem one can easily deduce
the preservation of various relations under c.p.c. order zero maps. For example, if
a = x∗x and b = xx∗ for some x ∈ A, then φ(a) = y∗y and φ(b) = yy∗ for some y ∈
B (we can choose y = h1/2πφ(x)). The submajorization relation is also preserved

under c.p.c. order zero maps. For if a, b ∈ Asa are such that a = 1
N

∑N
i=1 dibd

∗
i for

some contractions di ∈ A, then φ(a) = 1
N

∑N
i=1 πφ(di)φ(b)πφ(di)

∗. Although the
contractions πφ(di) belong to M(C∗(φ(A))) rather than B, by Lemma 2.5(i) we
still have that φ(a) ≺c φ(b) in B. If, more generally, a ≺c b in A, then an argument
passing to limits readily proves that φ(a) ≺c φ(b) in B.

Let m ∈ N. Following Winter and Zacharias [WZ10] we say that a C∗-algebra
A has nuclear dimension at most m if for each finite set F ⊂ A and ε > 0 there

exist c.p.c. maps A
ψk−→ Ck

φk−→ A with k = 0, 1, . . . ,m such that Ck is a finite-
dimensional C*-algebra for all k, φk is an order zero map for all k, and

‖a−
m∑

k=0

φkψk(a)‖ < ε for all a ∈ F.

In [WZ10, Proposition 3.2], Winter and Zacharias show that it is possible to arrange
for the maps ψk to be asymptotically of order zero. In this way one obtains c.p.c.
order zero maps

A
ψk−→ Nk

φk−→ A∞

for k = 0, . . . ,m such that

ι =

m∑
k=0

φkψk.

Here A∞ = (
∏

λ Aλ)/(
⊕

λ Aλ) is a sequence algebra over some upward directed
set Λ, ι : A → A∞ denotes the canonical embedding of A in A∞ as “constant
sequences”, and Nk = (

∏
λ Ck,λ)/(

⊕
λ Ck,λ), where Ck,λ is a finite-dimensional

C*-algebra for all λ ∈ Λ and all k = 0, . . . ,m.
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Lemma 5.3. Each C*-algebra Nk as defined above has the property of strict com-
parison of positive elements by traces.

Proof. This is a consequence of Nk being the quotient of a product of finite-
dimensional C*-algebras. More specifically, as remarked in the proof of Proposition
5.1, a product of C*-algebras with strict comparison by traces again has strict com-
parison by traces (in fact, by traces ranging in a suitable compact set K). Since
each Ck,λ is finite dimensional it has strict comparison by traces. Thus, the same
holds for

∏
λ Ck,λ. Also, the property of strict comparison by traces also passes

to quotients. Indeed, by [NR16, Proposition 3.6 (i)], strict comparison by traces is
equivalent to “strict comparison by 2-quasitraces and 2-quasitraces are traces”. It
is clear that if all the lower semicontinuous 2-quasitraces of a C*-algebra are traces,
the same holds for its quotients. Strict comparison by 2-quasitraces also passes to
quotients since, by [ERS11, Proposition 6.2], it is equivalent to almost unperforation
in the Cuntz semigroup and the latter passes to quotients by [RT17, Proposition
2.2] (it is called 0-comparison in this reference). �

Lemma 5.4. For each ε > 0 there exists N ∈ N such that if A is a C*-algebra of
nuclear dimension at most m and a, b ∈ A+ are such that a ≺T b, then

(a− ε)+ =

N(m+1)∑
i=1

x∗
i xi and

N(m+1)∑
i=1

xix
∗
i � b

for some x1, . . . , xN(m+1) ∈ A.

Proof. Let A
ψk−→ Nk

φk−→ A∞, for k = 0, . . . ,m, be c.p.c. order zero maps as
in the discussion above. Fix k = 0, . . . ,m. We have remarked above that c.p.c.
order zero maps preserve the submajorization relation (which, by Theorem 4.2,
agrees with ≺T). Hence, a ≺T b implies that ψk(a) ≺T ψk(b) in Nk. By Lemma
5.3 the C*-algebra algebra Nk has the property of strict comparison of positive
elements. Hence, by Theorem 5.2, there exists a number N ∈ N and elements
dk,1, . . . , dk,N ∈ Nk such that

∥∥∥ψk(a)−
N∑
i=1

d∗k,iψk(b)dk,i

∥∥∥ <
ε

m+ 1
and

N∑
i=1

dk,id
∗
k,i � 1.

The number N depends only on ε and m. If we set yk,i = (ψk(b))
1
2 dk,i then we can

rewrite these inequalities as

∥∥∥ψk(a)−
N∑
i=1

y∗k,iyk,i

∥∥∥ <
ε

m+ 1
and

N∑
i=1

yk,iy
∗
k,i � ψk(b).

Applying φk on both inequalities and using that it is an order zero map we deduce
that ∥∥∥φkψk(a)−

N∑
i=1

ỹ∗k,iỹk,i

∥∥∥ <
ε

m+ 1
and

N∑
i=1

ỹk,iỹ
∗
k,i � φkψk(b)

for some ỹk,i ∈ A∞. Adding over all k we get that

∥∥∥a−
m∑

k=0

N∑
i=1

ỹ∗k,iỹk,i

∥∥∥ < ε and
m∑

k=0

N∑
i=1

ỹk,iỹ
∗
k,i � b.
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We can lift the elements ỹk,i to
∏

λ A so that these inequalities are preserved. Then
from those lifts we find elements xk,i ∈ A such that the same inequalities hold in
A; namely,

∥∥∥a−
m∑

k=0

N∑
i=1

x∗
k,ixk,i

∥∥∥ < ε and

m∑
k=0

N∑
i=1

xk,ix
∗
k,i � b.

By a well-known lemma of Kirchberg and Rørdam, if ‖a− a′‖ < ε, then (a− ε)+ =
da′d∗ for some contraction d ∈ A ([KR02, Lemma 2.2]). Applying this lemma

with a′ =
∑m

k=0

∑N
i=1 x

∗
k,ixk,i we can turn the inequalities above into the relations

claimed by the lemma. �

Proposition 5.5. Let A1, A2, . . . be a sequence of C*-algebras with uniformly
bounded nuclear dimensions. Let a = (an)

∞
n=1 and b = (bn)

∞
n=1 be positive ele-

ments in
∏∞

n=1 An such that an ≺T bn for all n. Then a ≺T b in
∏∞

n=1 An

Proof. It suffices to show that τ (a) � τ (b) for all τ ∈ T(
∏∞

n=1 An), for then the
same argument applied to (a − t)+ and (b − t)+ in place of a and b gives us that
τ ((a− t)+) � τ ((b− t)+) for all τ . Let ε > 0. From the previous lemma we deduce
that for each n there exist x1,n, . . . , xN(m+1),n ∈ An such that

(an − ε)+ =

N(m+1)∑
i=1

x∗
i,nxi,n and

N(m+1)∑
i=1

xi,nx
∗
i,n � bn.

The sequences (xi,n)n are necessarily bounded. So if we set xi = (xi,n)n ∈
∏∞

n=1 An,
then

(a− ε)+ =

N(m+1)∑
i=1

x∗
i xi and

N(m+1)∑
i=1

xix
∗
i � b.

This implies that τ ((a − ε)+) � τ (b) for all lower semicontinuous traces τ on∏∞
n=1 An. Since ε > 0 is arbitrary, we get that τ (a) � τ (b) for all τ , as desired. �

Theorem 5.6. Let m ∈ N. For every ε > 0 there exists N such that if A is a
unital C*-algebra with nuclear dimension at most m and a, b ∈ A are selfadjoint
contractions such that a ∈ co{ubu∗ | u ∈ U(A)}, then

∥∥∥a− 1

N

N∑
i=1

uiau
∗
i

∥∥∥ < ε

for some u1, . . . , uN ∈ U(A).

Proof. The same proof of Theorem 1.2 applies here relying on Proposition 5.5 rather
than on Proposition 5.1. �

Example 5.7. In [Rob15, Theorem 1.4] an example is given of a simple unital
C*-algebra A with a unique tracial state τ such that for each n ∈ N there exists a
selfadjoint element an ∈ A of norm 1 such that τ (an) = 0 and the distance from an
to the set {

∑n
i=1[b

∗
i , bi] | bi ∈ A} is 1. In this C*-algebra the property of uniform

majorization cannot hold. Indeed, by Haagerup and Zsidó’s theorem from [HZ84],
we have 0 ≺u an for all n. We claim, however, that no convex combination of at
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most n unitary conjugates of an can have norm less than 1. For suppose that there
were unitaries u1, . . . , un ∈ A such that

∥∥∥
n∑

i=1

tiuianu
∗
i

∥∥∥ < 1

for some ti ∈ [0, 1] such that
∑n

i=1 ti = 1. Then

∥∥∥an −
n∑

i=1

[b∗i , bi]
∥∥∥ < 1,

where bi = t
1
2

i ui(1 + an)
1
2 for i = 1, . . . , n. This contradicts the property of an.

Thus, no such unitaries exist.

Theorem 5.8. Let A1, A2, . . . be unital C*-algebras with strict comparison of pos-
itive elements by traces or with a uniform bound on their nuclear dimensions. Let
A =

∏∞
i=1 Ai/

⊕∞
i=1 Ai and let B ⊆ A be a separable C*-subalgebra. Then for each

a ∈ Asa we have that

co({uau∗ | u ∈ U(A)}) ∩ (B′ ∩ A) �= ∅.

Proof. Let (an)n ∈
∏∞

n=1 An be a lift of a with an ∈ (An)sa and ‖an‖ � ‖a‖ for

all n. Let (b
(1)
n )n, (b

(2)
n )n, . . . ∈

∏∞
n=1 An be lifts of a sequence b(1), b(2), . . . ∈ B

dense in B. [KR14, Lemma 6.4] asserts that given an element and a finite set in
a C*-algebra we can find a convex combination of unitary conjugates of the given
element that almost commutes with the given finite set. (This is derived from
Dixmier’s approximation property in A∗∗.) Applying this lemma, we can find for

each an ∈ An a selfadjoint element a′n ≺u an such that ‖[a′n, b
(j)
i ]‖ � 1

n‖a‖‖b(j)‖ for

all 1 � i, j � n. Let a′ denote the image of (a′n)n in A. Then a′ commutes with b(j)

for all j, and so a′ ∈ B′ ∩ A. On the other hand, from the fact that a′n ≺u an for
all n we get that (a′n)n ≺u (an)n in

∏∞
n=1 An. In the case that all the C*-algebras

have strict comparison by traces, this follows from Proposition 5.1. If their nuclear
dimensions are uniformly bounded, this follows from Proposition 5.5. Passing to
the quotient we get that a′ ≺u a in A. That is, a′ ∈ co({uau∗ | u ∈ U(A)}). �

References

[And94] T. Ando, Majorizations and inequalities in matrix theory, Linear Algebra Appl. 199

(1994), 17–67, DOI 10.1016/0024-3795(94)90341-7. MR1274407
[BRT+12] Bruce Blackadar, Leonel Robert, Aaron P. Tikuisis, Andrew S. Toms, and Wilhelm

Winter, An algebraic approach to the radius of comparison, Trans. Amer. Math. Soc.
364 (2012), no. 7, 3657–3674, DOI 10.1090/S0002-9947-2012-05538-3. MR2901228

[CP79] Joachim Cuntz and Gert Kjaergaard Pedersen, Equivalence and traces on C∗-
algebras, J. Funct. Anal. 33 (1979), no. 2, 135–164, DOI 10.1016/0022-1236(79)90108-3.
MR546503

[Day57] Mahlon M. Day, Amenable semigroups, Illinois J. Math. 1 (1957), 509–544.
MR0092128

[ERS11] George A. Elliott, Leonel Robert, and Luis Santiago, The cone of lower semicon-
tinuous traces on a C∗-algebra, Amer. J. Math. 133 (2011), no. 4, 969–1005, DOI
10.1353/ajm.2011.0027. MR2823868

[FHL+16] Ilijas Farah, Bradd Hart, Martino Lupini, Leonel Robert, Aaron Tikuisis, Alessandro
Vignati, and Wilhelm Winter, The Model theory of C*-algebras (2016), available at
https://arxiv.org/abs/1602.08072.

http://www.ams.org/mathscinet-getitem?mr=1274407
http://www.ams.org/mathscinet-getitem?mr=2901228
http://www.ams.org/mathscinet-getitem?mr=546503
http://www.ams.org/mathscinet-getitem?mr=0092128
http://www.ams.org/mathscinet-getitem?mr=2823868
https://arxiv.org/abs/1602.08072


MAJORIZATION IN C*-ALGEBRAS 5759
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