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MALLIAVIN CALCULUS FOR NON-GAUSSIAN

DIFFERENTIABLE MEASURES AND SURFACE MEASURES

IN HILBERT SPACES

GIUSEPPE DA PRATO, ALESSANDRA LUNARDI, AND LUCIANO TUBARO

Abstract. We construct surface measures in a Hilbert space endowed with
a probability measure ν. The theory fits for invariant measures of some sto-

chastic partial differential equations such as Burgers and reaction–diffusion
equations. Other examples are weighted Gaussian measures and special prod-
uct measures ν of non-Gaussian measures. In any case we prove integration
by parts formulae on sublevel sets of good functions (including spheres and
hyperplanes) that involve surface integrals.
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1. Introduction

Let X be a separable infinite dimensional Hilbert space with norm ‖·‖ and inner
product 〈·, ·〉, endowed with a nondegenerate Borel probability measure ν.

In this paper we define Sobolev spaces with respect to ν, we construct surface
measures naturally associated to ν, and we describe their main properties. In par-
ticular, we aim at integration by parts formulae for Sobolev functions that involve
traces of Sobolev functions on regular surfaces and at an infinite dimensional (non-
Gaussian) version of the Divergence Theorem.
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The surfaces considered here are level surfaces of a Borel function g satisfying
some regularity and nondegeneracy assumptions which guarantee that such level
surfaces are smooth enough.

In the case of Gaussian measures this problem has been extensively studied
by different approaches. We quote here [Sk74,Ug79,AiMa88,FePr92,Ma97,Bo98,
Ug00,Hi10,CCKO10,AMMP10,DaLuTu14]; for an extensive bibliography see the
review paper [Bo17].

The approach initiated by Airault and Malliavin in [AiMa88] for the Wiener
measure in the space X = {f ∈ C([0, 1];R) : f(0) = 0} is naturally extendible to
many other settings. It consists of the study of the function

Fϕ(r) =

∫
{x: g(x)≤r}

ϕ(x)ν(dx), r ∈ R,

which is well defined for every ϕ ∈ L1(X, ν). If Fϕ is differentiable at r, its derivative
F ′
ϕ(r) is the candidate to be a surface integral,

(1.1) F ′
ϕ(r) =

∫
X

ϕdσg
r .

It turns out that Fϕ is differentiable for good enough functions ϕ, and the second
step of the construction is to show that there exists a measure σg

r such that (1.1)
holds. Then, one needs to show that for every r ∈ R, σg

r is supported in g−1(r)
for a suitable version of g, and to clarify the dependence on g. The equality (1.1)
is also a useful tool to prove an infinite dimensional version of the Divergence
Theorem (or of integration by parts formulae). This approach was followed, e.g.,
in [Bo98,DaLuTu14] for Gaussian measures in Banach spaces and in [BoMa16] for
general differentiable measures. Notice that if ϕ ≡ 1 and g(x) is the distance of x
from a given ν-negligible hypersurface Σ, F ′

1(0) is just the Minkowski content of Σ.
A completely different approach is the one by Feyel and de La Pradelle, who

constructed an infinite dimensional Hausdorff–Gauss surface measure by approxi-
mation with finite dimensional Hausdorff–Gauss surface measures [FePr92]. It uses
in a very important way the structure of Gaussian measures and it seems to be
hardly extendible to non-Gaussian settings, especially in the case of nonproduct
measures.

A third approach comes from the general geometric measure theory and relies on
the theory of the BV functions (functions with bounded variation). BV functions for
Gaussian measures in Banach spaces were studied, e.g., in [Fu00,FuHi01,AMMP10].
By definition, a Borel set B has finite perimeter if its characteristic function is BV;
in this case the perimeter measure is defined and its support is contained in the
boundary of B. For good enough sets B, the perimeter measure coincides with the
restriction to the boundary of B of the surface measure of Feyel and de La Pradelle;
for a proof see [CeLu14].

In our general framework we shall follow the first approach, and we are partic-
ularly interested in the case where ν is the invariant measure of some nonlinear
stochastic PDE. In the case of linear equations, ν is a Gaussian measure and we
refer to our paper [DaLuTu14]. In fact, if ν is a nondegenerate Gaussian measure,
our construction of surface measures coincides with the one of [DaLuTu14]; see
subsection 6.1.

Let us describe our procedure. As usual, we denote by C1
b (X) the space of

the bounded and continuously Fréchet differentiable functions f : X �→ R having
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gradient with bounded norm, by ∇f(x) the gradient of f at x, and by ∂zf(x) =
〈∇f(x), z〉 the derivative of f at x along any z ∈ X.

Our starting assumption is the following.

Hypothesis 1.1. There exists a linear bounded operator R ∈ L(X) such that R∇ :
dom (R∇) = C1

b (X) �→ Lp(X, ν;X) is closable in Lp(X, ν), for any p ∈ (1,+∞).

Then we denote by W 1,p(ν) the domain of the closure Mp of R∇ in Lp(X, ν).
W 1,p(ν) is a Banach space with the graph norm

(1.2) ‖f‖W 1,p(ν) =

(∫
X

|f(x)|pν(dx)
)1/p

+

(∫
X

‖Mpf(x)‖pν(dx)
)1/p

.

So, by definition an element f ∈ Lp(X, ν) belongs to W 1,p(ν) iff there exists a se-
quence of C1

b functions (fn) such that limn→∞ fn = f in Lp(X, ν) and the sequence
(R∇fn) converges in Lp(X, ν;X); the limit of the latter is just Mpf .

Different choices of R give rise to different Sobolev spaces. For instance, if ν is the
Gaussian measure N0,Q with mean 0 and covariance Q, Hypothesis 1.1 is satisfied
by R = Qα, for every α ≥ 0. Taking α = 0 and R = I we obtain the Sobolev spaces
studied in [DPZ02]. Taking α = 1/2 we obtain W 1,p(ν) = D

1,p(X, ν), the usual
Sobolev spaces of Malliavin calculus ([Bo98,Nu95]).

For general results ensuring that Hypothesis 1.1 holds we quote [AlRo90]. An
easy sufficient condition for R∇ to be closable in Lp(X, ν) is the following one.

Hypothesis 1.2. For any p > 1 and z ∈ X there exists Cp,z > 0 such that

(1.3)

∣∣∣∣
∫
X

〈R∇ϕ, z〉 dν
∣∣∣∣ ≤ Cp,z ‖ϕ‖Lp(X,ν), ϕ ∈ C1

b (X).

After the canonical identifications of the dual spaces (Lp(X, ν))′, (Lp(X, ν;X))′

with Lp′
(X, ν), Lp′

(X, ν;X) respectively, with p′ = p/(p − 1) (see, e.g., [DU77]),

we denote by M∗
p : D(M∗

p ) ⊂ Lp′
(X, ν;X) → Lp′

(X, ν) the adjoint of Mp. So, we
have

(1.4)

∫
X

〈Mpϕ, F 〉 dν =

∫
X

ϕM∗
p (F ) dν, ϕ ∈ D(Mp), F ∈ D(M∗

p ).

In the case that ν is the Gaussian measure N0,Q, taking R = Q1/2, M2 can be seen
as a Malliavin derivative and −M∗

2 is the Gaussian divergence or Skorohod integral.
See, e.g., [Bo98,Nu95, Sa05]. In any case, the operator −M∗

p plays the important
role of (generalized) divergence.

Hypothesis 1.2 is equivalent to the assumption that for every z ∈ X the constant
vector field Fz(x) := z belongs to D(M∗

p ) for every p > 1. Indeed, fix any p > 1,

Fz ∈ D(M∗
p ) iff the function W 1,p(ν) �→ R, ϕ →

∫
X
〈Mpϕ, z〉dν has a linear con-

tinuous extension to the whole Lp(X, ν). Since C1
b (X) is dense in W 1,p(ν), this is

equivalent to the existence of Cp,z such that (1.3) holds, and in this case (1.4), with
F = Fz and M∗

p (Fz) =: vz, reads as

(1.5)

∫
X

〈Mpϕ, z〉 dν =

∫
X

ϕ vz dν, ϕ ∈ D(Mp).

This is a natural generalization of the integration formula that holds for the Gauss-
ian measure N0,Q, in which case taking R = Q1/2, (1.3) holds for every z ∈ X.
Moreover vz is an element of Lq(X, ν) for every q ∈ (1,+∞); it coincides with
〈Q−1z, ·〉 if in addition z ∈ Q(X).
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We recall that a probability Borel measure μ on a Hilbert space is called Fomin
differentiable along an element y ∈ X if for every cylindrical smooth function
(namely, every ϕ : X �→ R of the type ϕ(x) = f(〈x, x1〉, . . . , 〈x, xn〉) with n ∈ N,
x1, . . . , xn ∈ X, f ∈ C∞

b (Rn)) there exists βy ∈ L1(X,μ) such that∫
X

∂ϕ

∂y
dμ =

∫
X

ϕβy dμ.

Since 〈Mpϕ(x), z〉 = 〈∇ϕ(x), R∗z〉 for every smooth cylindrical ϕ and for every x,
z ∈ X, formula (1.5) implies that ν is Fomin differentiable along any y ∈ R∗(X).
We refer to [Bo10] for a general treatment of differentiable measures.

Under Hypothesis 1.2, formula (1.1) is a useful tool to prove an integration
formula,

(1.6)

∫
{g<r}

〈Mpϕ, z〉 dν =

∫
{g<r}

vzϕdν +

∫
{g=r}

ϕ〈 Mpg

‖Mpg‖
, z〉 dρr,

for all z ∈ X, ρr = ‖Mpg‖σg
r , and for good enough ϕ and g. The normalized

measure ρr is particularly meaningful, since it is independent of the choice of g
within a large class of functions, being a sort of perimeter measure relevant to the
set Ω := g−1(−∞, r) (see Section 5).

We already mentioned that we need some regularity/nondegeneracy conditions
on g. Specifically, our assumption on g is

Hypothesis 1.3. g ∈ W 1,p(ν) and Mpg ‖Mpg‖−2 belongs to the domain of the
adjoint M∗

p , for every p > 1.

So, regularity is meant as Sobolev regularity. The nondegeneracy condition is
hidden in the condition that Mpg ‖Mpg‖−2 belongs to D(M∗

p ) for every p > 1.

Indeed, if a vector field F belongs to D(M∗
p ), then ‖F‖ ∈ Lp′

(X, ν). If g satisfies

Hypothesis 1.3, taking F = Mpg ‖Mpg‖−2, we obtain that 1/‖Mpg‖ ∈ Lp′
(X, ν),

for every p′ > 1. This condition is a generalization of the nondegeneracy condition
of [AiMa88]. We recall that if g is smooth, its level surfaces are smooth near every
point x such that ∇g(x) �= 0. Here what replaces the gradient of g is Mpg. Mpg
is allowed to vanish at some points, but not too much; otherwise 1/‖Mpg‖ cannot

belong to all Lp′
(X, ν) spaces.

Let us describe the content of the paper.
In Section 2 we define Sobolev spaces and we prove their basic properties and

their properties that are useful for the construction of surface measures.
In Section 3 we construct surface measures under Hypotheses 1.1 and 1.3.
In Section 4 we introduce and discuss the p-capacities that are used to obtain

further properties of the surface measures. In particular, we show that Borel sets
with null p-capacity for some p > 1 are negligible with respect to our surface
measures.

Section 5 deals with a comparison with a geometric measure theory approach and
to the proof of a variational result. Indeed, we show that for every ϕ ∈ C1

b (X) with
nonnegative values, the integral of ϕ with respect to ρr is equal to the maximum of∫

Ω

M∗
p (Fϕ) dν,

where Ω = g−1(−∞, r) and F runs among suitably smooth X-valued vector fields
such that ‖F (x)‖ = 1 for ν-a.e x ∈ X.
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Sections 6, 7, and 8 are devoted to examples. In all of them we show that
Hypothesis 1.2 holds, and therefore Hypothesis 1.1 holds. Moreover, in all of them
we prove that the functions g(x) = ‖x‖2 and g(x) = 〈b, x〉, with any b ∈ X \ {0},
satisfy Hypothesis 1.3.

In Section 6 we consider a nondegenerate centered Gaussian measure μ and a
weighted Gaussian measure, ν(dx) = w(x)μ(dx). In the case of a Gaussian measure,
we make a detailed comparison with notation and results of [DaLuTu14]. In the
case of a weighted Gaussian measure, under suitable conditions on the weight w
and on g we show that for every r ∈ (ess inf g, ess sup g), ρr coincides with the
restriction of the weighted measure w(x)ρ(dx) to the surface g−1(r), where ρ is the
above-mentioned Gauss–Hausdorff measure of Feyel and de La Pradelle. Here we
consider precise versions of w and g that are elements of Sobolev spaces without
a continuous version in general. The results of Section 6 rely on [Fe16], where
weighted Gaussian measures in Banach spaces are studied.

In Section 7 we introduce an infinite product of non-Gaussian measures on R,
which is one of the simplest generalizations of a Gaussian measure in a separable
Hilbert space. In this toy example we have explicit formulae for all the objects
involved: ν, vz.

In Section 8 we consider the invariant measures of two particular stochastic
PDEs. The first one is a reaction-diffusion equation with a polynomial nonlinearity,
and the second one is a Burgers equation. In both cases a unique invariant measure
ν exists, but it is not explicit in general. It is not a product measure or a Gaussian
measure with known weight (except in the case of reaction-diffusion equations, for
a particular value of a parameter). However, Hypothesis 1.2 is satisfied for every
p > 1 thanks to recent results ([DaDe16, DaDe17]) that allow our machinery to
work, taking as R a suitable power of the negative Dirichlet Laplacian.

The verification of Hypothesis 1.3 may be nontrivial, since ν is not explicit. (In
fact, it may be nontrivial even for Gaussian measures if g is particularly nasty).
It is reduced to showing that 1/‖Mpg‖ belongs to Lp(X, ν) for every p, and this
is difficult to check, except for hyperplanes, in which case g(x) = 〈b, x〉 for some
b ∈ X \{0} and Mpg is constant. We show that it holds also in the case of spherical
surfaces when g(x) = ‖x‖2. In this case, the problem is reduced to showing that
x �→ ‖R∇g(x)‖−1 = ‖2Rx‖−1 belongs to Lp(X, ν) for every p > 1. To show it
we need some technical tools; namely, we approximate ‖R∇g‖−1 by a sequence
of cylindrical functions ϕn belonging to the domain of the infinitesimal generator
L of the transition semigroup in L2(X, ν). For functions ϕ ∈ D(L) we know that∫
X
Lϕdν = 0, and we use this equality to estimate the Lp norm of ϕn by a constant

independent of n.
Section 9 contains some comments and bibliographical remarks.

2. Notation and preliminaries, Sobolev spaces

As mentioned in the introduction, we consider a separable Hilbert space X with
norm ‖·‖ and scalar product 〈·, ·〉, endowed with a Borel nondegenerate probability
measure ν.

We recall that for Fréchet differentiable functions ϕ : X �→ R we denote by
∇ϕ(x) the gradient of ϕ at x and by ∂zϕ(x) = 〈∇ϕ(x), z〉 its derivative along z,
for every z ∈ X.
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By Cb(X) (resp. UCb(X)) we mean the space of all real continuous (resp. uni-
formly continuous) and bounded mappings ϕ : X → R, endowed with the sup norm
‖ · ‖∞. Moreover, C1

b (X) is the subspace of Cb(X) of all continuously Fréchet dif-
ferentiable functions, with bounded (resp. uniformly continuous and bounded)
gradient.

For p > 1 we set as usual p′ = p/(p− 1).
Throughout the paper we assume that Hypothesis 1.1 holds. The spaces W 1,p(ν)

and the operators Mp are defined in the introduction. Here we collect some of their
basic properties.

Lemma 2.1. Let 1 < p < ∞.

(i) If ϕ ∈ W 1,p(ν), ψ ∈ C1
b (X), then the product ϕψ belongs to W 1,p(ν) and

Mp(ϕψ) = ψMpϕ+ϕMpψ. More generally, if ϕ ∈ W 1,p1(ν), ψ ∈ W 1,p2(ν),
and 1/p1+1/p2 < 1, then the product ϕψ belongs to W 1,p(ν) and Mp(ϕψ) =
ψMp1

ϕ+ ϕMp2
ψ, with

1

p
=

1

p1
+

1

p2
.

(ii) Let h ∈ C1
b (R) and ϕ ∈ W 1,p(ν). Then h ◦ ϕ ∈ W 1,p(ν) and we have

(2.1) Mp(h ◦ ϕ) = h′(ϕ)Mpϕ.

(iii) If ϕ ∈ W 1,p(ν), ϕ(x) ≥ 0 for ν-a.e. x ∈ X, then x �→ (ϕ(x))s ∈ W 1,p/s(ν),
for every s ∈ (1, p), and

(2.2) ‖ϕs‖W 1,p/s(ν) ≤ ‖ϕ‖sLp(X,ν) + s‖Mpϕ‖Lp(X,ν;X)‖ϕ‖s−1
Lp(X,ν).

(iv) For 1 < p < ∞, W 1,p(ν) is reflexive.
(v) If p ∈ (1,+∞) and fn ∈ W 1,p(ν), n ∈ N, are such that fn → f in Lp(X, ν)

and Mpfn is bounded in Lp(X, ν;X), then f ∈ W 1,p(ν).
(vi) W 1,p(ν) ⊂ W 1,q(ν) and Mpϕ = Mqϕ for every ϕ ∈ W 1,p(ν), for 1 < q < p.

Proof. The proof of statement (i) follows by approaching ϕψ by ϕnψn, for any
couple of sequences (ϕn), (ψn) ⊂ C1

b (X) that approach ϕ, ψ in W 1,p1(ν), W 1,p2(ν),
respectively. Of course if ψ ∈ C1

b (X) we take ψn = ψ for every n.

Concerning statement (ii) we have just to approach h ◦ ϕ by h ◦ ϕn, for any
sequence (ϕn) ⊂ C1

b (X) that approaches ϕ in W 1,p(ν).

Let us prove (iii). For every sequence (ϕn) ⊂ C1
b (X) such that limn→∞ ϕn = ϕ in

W 1,p(ν), the sequence ψn(x) :=
√
ϕn(x)2 + 1/n has a subsequence (ψnk

) such that
ψnk

(x) → ϕ(x), R∇ψnk
(x) → Mpϕ(x) for ν-a.e. x ∈ X, and it is easily seen that

ψs
nk

→ ϕs in Lp/s(X, ν) and Mpψ
s
nk

= sψs−1
nk

Mpψnk
= s(ϕ2

nk
+1/n)s−3/2ϕnk

Mpϕnk

converges to sϕs−1Mpϕ in Lp/s(X, ν;X). Therefore, ϕs ∈ W 1,p/s(ν), and the
Hölder inequality yields estimate (2.2).
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Let us prove statement (iv). The mapping u �→ Tu := (u,Mpu) is an isometry
from W 1,p(ν) to the product space E := Lp(X, ν)×Lp(X, ν;X), which implies that
the range of T is closed in E. Now, Lp(X, ν) and Lp(X, ν;X) are reflexive (for the
latter statement (see, e.g., [DU77, Ch. IV])) so that E is reflexive, and T (W 1,p(ν))
is reflexive too. Being isometric to a reflexive space, W 1,p(ν) is reflexive.

Statement (v) is a consequence of (iv). Since (fn) is bounded in W 1,p(ν), which
is reflexive, there exists a subsequence that weakly converges to an element of
W 1,p(ν). Since fn → f in Lp(X, ν), the weak limit is f . Therefore, f ∈ W 1,p(ν).

Statement (vi) is an immediate consequence of the definition. �

We shall use the following extension of Lemma 2.1(ii) to compositions with piece-
wise linear functions.

Lemma 2.2. Let α < β ∈ R, and set

(2.3) h(r) =

∫ r

−∞
�[α,β](s)ds =

⎧⎨
⎩

0 if r ≤ α,
r − α if α ≤ r ≤ β,
β − α if r ≥ β.

Then h ◦ ϕ ∈ W 1,p(ν) for every ϕ ∈ W 1,p(ν), and we have

(2.4) Mp(h ◦ ϕ) = �[α,β](ϕ)Mpϕ.

Proof. We approach h by a sequence of C1
b functions, choosing a sequence of smooth

compactly supported functions θn : R �→ R such that θn(ξ) → �[α,β](ξ) for every
ξ ∈ R, 0 ≤ θn(ξ) ≤ 1 for every ξ ∈ R, and setting

hn(r) =

∫ r

−∞
θn(s)ds, r ∈ R.

Since hn ∈ C1
b (R), by Lemma 2.1(ii), hn ◦ ϕ ∈ W 1,p(ν) and

Mp(hn ◦ ϕ) = (h′
n ◦ ϕ)Mpϕ.

By the Dominated Convergence Theorem, hn ◦ ϕ converges to h ◦ ϕ in Lp(X, ν).
Moreover,Mp(hn◦ϕ) converges pointwise to �[α,β](ϕ)Mpϕ. Since ‖Mp(hn◦ϕ)(x)‖ ≤
‖θn‖∞‖Mpϕ(x)‖ ≤ ‖Mpϕ(x)‖, still by the Dominated Convergence Theorem,
Mp(hn ◦ ϕ) converges to �[α,β](ϕ)Mpϕ in Lp(X, ν;X), and the statement fol-
lows. �

Corollary 2.3. For every ϕ ∈ W 1,p(ν), the positive part ϕ+ of ϕ, the negative
part ϕ− of ϕ, and |ϕ| belong to W 1,p(ν), and we have

Mp(ϕ+) = �ϕ−1(0,+∞)Mpϕ, Mp(ϕ−) = −�ϕ−1(−∞,0)Mpϕ,(2.5)

Mp(|ϕ|) = sign ϕ Mpϕ.

Moreover, Mpϕ vanishes ν-a.e. in the level set ϕ−1(c), for each c ∈ R.

Proof. The proof of the first statement is just a minor modification of the proof of
Lemma 2.2; it is sufficient to take α = 0, β = +∞, and approaching functions θn of
�[0,+∞) that vanish on some left half-line. The other statements are consequences
of the first one. �
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We remark that taking α = 0, β = 1, and p = 2 in Lemma 2.2, we obtain that for
every ϕ ∈ W 1,2(ν), the function ϕ+ ∧ 1 belongs to W 1,2(ν), and ‖ϕ+ ∧ 1‖W 1,2(ν) ≤
‖ϕ‖W 1,2(ν). Namely, the quadratic form

E(ϕ, ψ) :=

∫
X

(ϕψ + 〈M2ϕ,M2ψ〉)dν, ϕ, ψ ∈ W 1,2(ν),

is a Dirichlet form.
In the next lemma we exhibit a class of regular functions that belong to the

Sobolev spaces.

Lemma 2.4. Let ϕ ∈ C1(X) be such that ‖∇ϕ‖ is bounded in ϕ−1(−r, r) for every
r > 0, and ∫

X

(|ϕ|p + ‖R∇ϕ‖p)dν < ∞.

Then ϕ ∈ W 1,p(ν) for every p ∈ (1,+∞), and Mpϕ = R∇ϕ.

Proof. We approach ϕ by regularized truncations, introducing θ ∈ C1
b (R) such

that θ(ξ) = ξ for |ξ| ≤ 1 and θ = constant for ξ ≥ 2 and for ξ ≤ −2. The
functions ϕn(x) := nθ(ϕ(x)/n) belong to C1

b (X); they approach ϕ pointwise and
in Lp(X, ν) by the Dominated Convergence Theorem. Moreover, R∇ϕn(x) =
θ′(ϕ(x)/n)R∇ϕ(x), which coincides with R∇ϕ(x) if |ϕ(x)| ≤ n and vanishes if
|ϕ(x)| ≥ 2n. Still by the Dominated Convergence Theorem, R∇ϕn converges to
R∇ϕ in Lp(X, ν;X).

Notice that the assumption that ‖∇ϕ‖ is bounded in ϕ−1(−r, r) for every r > 0
guarantees that ‖∇ϕn‖ is bounded in X, so that ϕn ∈ C1

b (X), for every n ∈ N. �

Some properties of the operators M∗
p are in the next lemma.

Lemma 2.5. Let 1 < p < ∞.

(i) For any F ∈ D(M∗
p ) and any ϕ ∈ C1

b (X), the product ϕF belongs to D(M∗
p )

and

(2.6) M∗
p (ϕF ) = ϕM∗

p (F )− 〈Mpϕ, F 〉.
More generally, for any F ∈ D(M∗

p ) and any ϕ ∈ W 1,q(ν) with q > p, the
product ϕF belongs to D(M∗

s ) with s = pq/(q − p) and (2.6) holds with s
replacing p.

(ii) For any F ∈ D(M∗
p ),

(2.7)

∫
X

M∗
pF dν = 0.

(iii) D(M∗
p ) ⊃ D(M∗

q ) and M∗
pF = M∗

q F for every F ∈ D(M∗
q ), for 1 < q < p.

Proof. Let ψ ∈ C1
b (X). From the identity Mp(ϕψ) = ϕMpψ + ψMpϕ we obtain

(2.8)∫
X

〈Mpψ, ϕF 〉dν =

∫
X

〈Mp(ϕψ)− ψMpϕ, F 〉dν =

∫
X

ψ(ϕM∗
pF − 〈Mpϕ, F 〉)dν,

and the first part of statement (i) follows from the definition of M∗
p . The argument

is similar if ϕ ∈ W 1,q(ν); in this case ϕψ ∈ W 1,q(ν) ⊂ W 1,p(ν) since p < q, and we
have Mp(ϕψ) = ϕMpψ + ψMqϕ, while Mpψ = Msψ. Formula (2.8) reads as∫

X

〈Msψ, ϕF 〉dν =

∫
X

ψ g dν,
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where now g := ϕM∗
pF − 〈Mqϕ, F 〉 ∈ Ls′(X, ν).

Since 1 ∈ W 1,p(ν) and Mp1 = 0, statement (ii) follows from the definition of
M∗

p .
Statement (iii) is an obvious consequence of Lemma 2.1(vi). �

We state below some consequences of Hypothesis 1.2.

Lemma 2.6. Let Hypothesis 1.2 hold.

(i) For every z ∈ X the function vz in formula (1.5) is independent of p and
belongs to Lp(X, ν) for every p ∈ (1,+∞).

(ii) For every z ∈ X and f ∈ W 1,q(ν), the vector field

F (x) := f(x)z, x ∈ X,

belongs to D(M∗
p ) for every p > q′, and

(2.9) M∗
pF (x) = −〈Mpf(x), z〉+ vz(x)f(x), x ∈ X.

Proof. Statement (i) is an immediate consequence of Lemma 2.5(iii) and of Hy-
pothesis 1.2. Concerning statement (ii), for every ϕ ∈ C1

b (X) we have
(2.10)∫

X

〈R∇ϕ, F 〉 dν =

∫
X

〈fMϕ, z〉 dν

=

∫
X

(〈Mp(fϕ)− ϕMpf, z〉) dν =

∫
X

(fvz − 〈Mpf, z〉)ϕdν

by Lemma 2.1(i) and formula (1.5). Since vz ∈ Ls(X, ν) for every s ∈ (1,+∞), the
function (fvz − 〈Mpf, z〉) belongs to Ls(X, ν) for every s < q.

Approaching every ϕ ∈ W 1,p(ν) by a sequence (ϕn) of C1
b functions, the left-

hand side of (2.10) converges to
∫
X
〈Mpϕ, F 〉 dν. Since q > p′, there exists s ∈ (1, q)

such that s > p′. So, also the right-hand side converges, and we get∫
X

〈Mpϕ, F 〉 dν =

∫
X

(fvz − 〈Mqf, z〉)ϕdν

for every ϕ ∈ W 1,p(ν). (2.9) follows from the definition of M∗
p . �

3. Construction of surface measures

We recall that Hypothesis 1.1 holds throughout the paper. Moreover, from now
on, g : X �→ R is a Borel function that satisfies Hypothesis 1.3.

The elements of W 1,p(ν) are equivalence classes of functions. If g is a given
function, by g ∈ W 1,p(ν) we mean as usual that g is a fixed version of an element
of W 1,p(ν). The results of this section are independent of the particular chosen
version g. Instead, in the next section the choice of the version will be important.

We recall that Mpϕ = Mqϕ for every ϕ ∈ W 1,p(ν) (Lemma 2.1(vi)), and M∗
pF =

M∗
q F for every F ∈ D(M∗

q ) (Lemma 2.5(iii)) if p > q. To simplify notation we

shall write M instead of Mp and M∗ instead of M∗
p on

⋂
p>1 W

1,p(ν) and on⋂
p>1 D(M∗

p ), respectively. Moreover we set

(3.1) Ψ :=
Mg

‖Mg‖2 .
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We start our analysis by introducing the function

(3.2) Fϕ(r) :=

∫
{g≤r}

ϕ(x)ν(dx), r ∈ R, ϕ ∈ L1(X, ν).

We recall that the image measure (ϕν) ◦ g−1 is defined on the Borel sets B ⊂ R by

(ϕν) ◦ g−1(B) =

∫
g−1(B)

ϕ(x)ν(dx).

So, Fϕ(r) = (ϕν) ◦ g−1((−∞, r]). It is easy to see that Fϕ is continuously differen-
tiable if and only if (ϕν)◦g−1 is absolutely continuous with respect to the Lebesgue
measure λ, with continuous density qϕ. In this case we have

F ′
ϕ(r) = qϕ(r), r ∈ R.

So, our next step is to show that (ϕν) ◦ g−1 � λ, for all ϕ belonging either to
UCb(X) or to W 1,p(ν) for some p > 1. Also, we shall show that the density

(3.3)
d(ϕν) ◦ g−1

dλ
(r) =: qϕ(r)

is Hölder continuous if ϕ ∈ W 1,p(ν) for some p > 1.
It will follow easily that for any r ∈ R the mapping ϕ �→ F ′

ϕ(r) is a linear positive
functional on UCb(X), and by results of general measure theory it is indeed the
integral of ϕ with respect to a Borel measure. We shall see that such a measure is
concentrated on the surface {g = r} if g is continuous and on the surface {g∗ = r}
if g is not continuous, where g∗ is a suitable version of g.

The next lemma is the starting point of most sublevel sets’ approach to surface
measures. Its proof is an abstract version of a well-known procedure; see, e.g.,
[Nu95, First Edition, Prop. 2.1.1].

Lemma 3.1. Assume that Hypotheses 1.1 and 1.3 are fulfilled. Then for any p > 1
and ϕ ∈ W 1,p(ν), the measure (ϕν) ◦ g−1 is absolutely continuous with respect to
the Lebesgue measure λ. Its density

d[(ϕν) ◦ g−1]

dλ
(r) =: qϕ(r), r ∈ R,

is given by

(3.4) qϕ(r) =

∫
{g<r}

(
〈Mpϕ,

Mg

‖Mg‖2 〉 − ϕM∗
p

(
Mg

‖Mg‖2

))
dν,

and it is bounded and θ-Hölder continuous in R for every θ < 1− 1/p. There exists
Kp > 0, independent of ϕ, such that

(3.5) |qϕ(r)| ≤ Kp‖ϕ‖W 1,p(ν), r ∈ R.

Proof. Fix any interval [α, β] ⊂ R and consider the function h defined in (2.3). By
Lemma 2.2, h ◦ g ∈ W 1,p(ν) for every p > 1, and

M(h ◦ g) = �[α,β](g)Mg.

Therefore,

�[α,β] ◦ g =
〈M(h ◦ g),Mg〉

‖Mg‖2 = 〈M(h ◦ g),Ψ〉,
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where Ψ is defined in (3.1) and belongs to D(M∗
p ) for every p > 1 by Hypothesis

1.3. Let ϕ ∈ C1
b (X). Then ϕΨ ∈ D(M∗

p ) for every p > 1. Multiplying both sides
by ϕ and integrating yields∫

X

�[α,β](g(x))ϕ(x)ν(dx) =

∫
X

(h ◦ g)M∗
p (ϕΨ) dν.

On the other hand, by Lemma 2.5(i), M∗
p (ϕΨ) = M∗(Ψ)ϕ−〈Mpϕ,Ψ〉, and therefore

(3.6)

∫
X

�[α,β](g(x))ϕ(x)ν(dx) =

∫
X

(h ◦ g) (M∗(Ψ)ϕ− 〈Mpϕ,Ψ〉) dν.

Approaching any ϕ ∈ W 1,p(ν) by a sequence of C1
b functions, we see that formula

(3.6) holds for every ϕ ∈ W 1,p(ν). The right-hand side may be rewritten as∫
X

∫
R

�(−∞,g(x)](r)�[α,β](r)dr (M
∗(Ψ)ϕ− 〈Mpϕ,Ψ〉) dν,

so that by the Fubini Theorem,

(ϕν)(α ≤ g ≤ β) =

∫ β

α

dr

∫
{g≥r}

(M∗(Ψ)ϕ− 〈Mpϕ,Ψ〉) dν.

Therefore (ϕν) ◦ g−1 has density qϕ given by

qϕ(r) =

∫
{g≥r}

(M∗(Ψ)ϕ− 〈Mpϕ,Ψ〉) dν =

∫
{g<r}

(〈Mpϕ,Ψ〉 −M∗(Ψ)ϕ) dν,

where the last equality follows from Lemma 2.5(ii). Since Ψ ∈ Lq(X, ν;X) and
M∗Ψ ∈ Lq(X, ν) for every q > 1, the function 〈Mpϕ,Ψ〉 − M∗(Ψ)ϕ belongs to
Ls(X, ν) for every s ∈ [1, p) and there is Cp,s > 0 such that

‖〈Mpϕ,Ψ〉 −M∗(Ψ)ϕ‖Ls(X,ν) ≤ Cp,s‖ϕ‖W 1,p(ν).

Taking s = 1, estimate (3.5) is immediate.
Let us prove that qϕ is Hölder continuous. For r2 > r1 and for every s ∈ (1, p)

we have

|qϕ(r2)− qϕ(r1)| =
∣∣∣∣
∫
{r1<g≤r2}

(〈Mpϕ,Ψ〉 −M∗(Ψ)ϕ)dν

∣∣∣∣
≤ ‖〈Mpϕ,Ψ〉 −M∗(Ψ)ϕ‖Ls(X,ν)

(∫ r2

r1

q1(r)dr

)1/s′

≤ Cp,s‖ϕ‖W 1,p(ν)(‖q1‖∞(r2 − r1))
1−1/s.

Therefore, qϕ is Hölder continuous with any exponent less than 1− 1/p. �

Taking in particular ϕ ≡ 1, we obtain that ν(g−1(r0)) =
∫ r0
r0

dν = 0 for every

r0 ∈ R. Therefore, all the level surfaces of g are ν-negligible. In particular,

Fϕ(r) =

∫
{g≤r}

ϕdν =

∫
{g<r}

ϕdν, ϕ ∈ L1(X, ν).

Moreover, by Lemma 2.5, for every ϕ ∈ W 1,p(ν) the product ϕMg/‖Mg‖2 belongs
to D(M∗

s ) for every s > p′, and we have

(3.7) qϕ(r) = −
∫
{g<r}

M∗
s

(
ϕ

Mg

‖Mg‖2

)
dν.
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Let us now consider bounded and uniformly continuous functions ϕ. The proof
of the next proposition is a modification of the proof of [DaLuTu14, Prop. 3.4],
which deals with Gaussian measures. We use the following disintegration theorem,
whose proof may be found, e.g., in [DaLuTu14, Theorem A1].

Theorem 3.2. Let Γ : X → R be a Borel function, and set λ := ν ◦ Γ−1. Then
there exists a family of Borel probability measures {ms : s ∈ R} on X such that

(3.8)

∫
X

ϕ(x)μ(dx) =

∫
R

(∫
X

ϕ(x)ms(dx)

)
λ(ds),

for all ϕ : X → R bounded and Borel measurable.
Moreover the support of ms is contained in Γ−1(s) for λ-almost all s ∈ R.

Proposition 3.3. For any ϕ ∈ UCb(X), Fϕ is continuously differentiable.

Proof. Let ϕ : X → R be bounded and Borel measurable, and let r ∈ R. Taking
Γ = g and applying formula (3.8) to the function ϕ�g−1(−∞,r) we obtain

(3.9) Fϕ(r) =

∫ r

−∞

(∫
X

ϕ(x)ms(dx)

)
q1(s)ds,

since ν ◦ g−1(ds) = q1(s)ds (see Lemma 3.1).
If ϕ ∈ UCb(X) there exists a sequence (ϕn) ⊂ C1

b (X) convergent to ϕ in Cb(X)
(e.g., [LaLi86]). By (3.9) we get

(3.10) ‖Fϕn
− Fϕ‖L∞(R) ≤ ‖ϕn − ϕ‖L∞(R)‖q1‖L1(R), n ∈ N.

We recall that Fϕn
is continuously differentiable for every n ∈ N by Lemma 3.1.

Still by (3.9), for every n, m ∈ N and for a.e. r ∈ R we have

F ′
ϕn

(r)− F ′
ϕm

(r) = q1(r)

∫
X

(ϕn(x)− ϕm(x))mr(dx),

so that

‖F ′
ϕn

− F ′
ϕm

‖L∞(R) ≤ ‖ϕn − ϕ‖L∞(R)‖q1‖L∞(R), n, m ∈ N.

Therefore, (F ′
ϕn

) is a Cauchy sequence in Cb(R). Recalling (3.10), the conclusion
follows. �

The main result of this section is the following.

Theorem 3.4. Let Hypotheses 1.1 and 1.3 hold. Then the function Fϕ is differ-
entiable for every ϕ ∈ Cb(X). For every r ∈ R there exists a Borel measure σg

r on
X such that

(3.11) F ′
ϕ(r) =

∫
X

ϕ(x) σg
r (dx), ϕ ∈ Cb(X).

In particular, for ϕ ≡ 1 we obtain σg
r (X) = F ′

1(r) = q1(r). Therefore, σg
r is

nontrivial iff F ′
1(r) > 0.

Proof. Fix r ∈ R and ϕ ∈ Cb(X). To show that Fϕ is differentiable at r, we shall
show that for every vanishing sequence (εn) of nonzero numbers the incremental
ratio (Fϕ(r+εn)−Fϕ(r))/εn converges to a real limit independent of the sequence,
as n → ∞.
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Consider the measures mn defined by

mn =

⎧⎪⎨
⎪⎩

1

εn
�g−1(r,r+εn)ν if εn > 0,

− 1
εn
�g−1(r+εn,r)ν if εn < 0.

Then (mn) is a sequence of nonnegative finite Borel (and since X is separable,
Radon) measures, and we have∫

X

ϕdmn =
1

εn
(Fϕ(r + εn)− Fϕ(r)).

In particular, if ϕ is Lipschitz continuous and bounded by Proposition 3.3 Fϕ is
differentiable, and therefore

(3.12) lim
n→∞

∫
X

ϕdmn = F ′
ϕ(r) = qϕ(r).

So, the sequence
∫
X
ϕdmn converges to qϕ(r). By a corollary of the Prokhorov

Theorem (e.g., [Bo07, Cor. 8.6.3]), if a sequence of nonnegative Radon measures
(mn) is such that

∫
X
ϕdmn converges in R for every Lipschitz continuous and

bounded ϕ, there exists a limiting Borel measure such that (mn) converges weakly
to it. The weak limit is independent of the chosen vanishing sequence, because for
every Lipschitz continuous and bounded ϕ equality (3.12) holds, so that denoting
by m the weak limit obtained through a sequence (εn) and by m̃ the weak limit
obtained through another sequence (ε̃n), we have

∫
X
ϕdm =

∫
X
ϕdm̃ for every

Lipschitz continuous and bounded ϕ, and this implies that m = m̃. So, there exists
a Borel measure that we denote by σg

r , such that for every vanishing sequence (εn)
of nonzero numbers and for every ϕ ∈ Cb(X) we have

lim
n→∞

1

εn
(Fϕ(r + εn)− Fϕ(r)) =

∫
X

ϕdσg
r .

This means that for every ϕ ∈ Cb(X) the function Fϕ is differentiable at r, and
(3.11) holds. �

Remark 3.5. From the proof of Theorem 3.4 it follows easily that if g is continuous,
then σg

r has support in g−1(r). Indeed, for every ε > 0 and ϕ ∈ Cb(X) with
support contained in g−1(−∞, r− ε)∪ g−1(r+ ε,+∞), the function Fϕ is constant
in (r− ε, r+ ε), and therefore F ′

ϕ(r) = 0. By (3.11),
∫
X
ϕdσg

r = 0. So, the support

of σg
r is contained in

⋂
ε>0 g

−1[r − ε, r + ε] = g−1(r).
If g is not continuous, the existence of ϕ ∈ Cb(X) with support contained in

g−1(−∞, r−ε)∪g−1(r+ε,+∞) is not guaranteed, and this argument does not work.
However, the argument in Remark 3.6 of [DaLuTu14] shows that σg

r = q1(r)mr for
a.e. r ∈ R such that q1(r) > 0, where mr are the measures used in the proof of
Proposition 3.3. Since the support of mr is contained in g−1(r) for almost all r ∈ R,
the support of σg

r is contained in g−1(r) for almost all r ∈ R with q1(r) > 0.
In the next section we will show that for every r ∈ R the support of σg

r is contained
in g∗−1(r), for a suitable version g∗ of g (Proposition 4.5).

Theorem 3.4 asserts that σg
r is nontrivial iff q1(r) > 0. So, it is important to know

whether q1(r) > 0. An obvious sufficient condition for q1(r) > 0 (in view of the
identity q1(r) =

∫
g−1(r,+∞)

M∗Ψ dν) is that ν(g−1(r,+∞)) > 0, and M∗Ψ ≥ 0 on
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g−1(r,+∞), M∗Ψ > 0 on a subset of g−1(r,+∞) with positive measure. However,
this is not easy to check.

In the Gaussian case, under reasonable assumptions on g we have q1(r) > 0 if and
only if r ∈ (ess inf g, ess sup g) ([DaLuTu14, Lemma 3.9]). The proof is not easily
extendible to our general setting, and in the next proposition we use an argument
from [Nu95, Second Edition, Prop. 2.1.8]. We need a further hypothesis,

Hypothesis 3.6. If ϕ ∈ W 1,2(ν) and M2ϕ = 0, then ϕ is constant ν-a.e.

For Hypothesis 3.6 to be satisfied, one needs that R be one to one. However,
even in the case R = I, Hypothesis 3.6 is not obvious. If it holds, the Dirichlet
form E(ϕ, ψ) :=

∫
X
〈M2ϕ,M2ψ〉 dν is called irreducible.

Of course, a sufficient condition for Hypothesis 3.6 to be satisfied is that a
Poincaré inequality holds, namely, that there exists C > 0 such that

(3.13)

∫
X

(
ϕ−

∫
X

ϕdν

)2

dν ≤ C

∫
X

‖M2ϕ‖2dν, ϕ ∈ W 1,2(ν).

We shall use the following lemma.

Lemma 3.7. Let Hypothesis 3.6 hold. If B is a Borel set such that �B ∈ W 1,2(ν),
then either ν(B) = 0 or ν(B) = 1.

Proof. We follow [Nu95, Prop. 1.2.6]. Assume that �B ∈ W 1,2(ν) and let ϕ ∈
C∞

c (R) be such that

ϕ(r) = r2, ∀ r ∈ [0, 1].

Then ϕ ◦ �B = �B and ϕ′ ◦ �B = 2�B, since

ϕ′(�B(x)) =

{
ϕ′(1) = 2 if x ∈ [0, 1],
ϕ′(0) = 0 if x /∈ [0, 1].

Now by the chain rule (Lemma 2.1(ii))

M2(�B) = M2(ϕ ◦ �B) = ϕ′(�B)M2(�B) = 2�BM2(�B)

so that M2(�B) = 0. By Hypothesis 3.6, �B is constant a.e., and the conclusion
follows. �

Proposition 3.8. Under Hypotheses 1.1, 1.3, and 3.6, assume in addition that
M∗

pΨ ∈ W 1,p(ν) for every p > 1. Then for every r ∈ R we have

q1(r) > 0 ⇐⇒ r ∈ (ess inf g, ess sup g).

Proof. The function F1(r) = ν{x : g(x) ≤ r} is continuously differentiable, and
it is constant in (−∞, ess inf g) and in (ess sup g,+∞). Therefore, for every r ∈
(−∞, ess inf g] ∪ [ess sup g,+∞) we have F ′

1(r) = q1(r) = 0.
To prove the converse, let us fix r0 such that q1(r0) = 0. We shall show that the

characteristic function �{g>r0} belongs to W 1,2(ν). We approach �{g>r0} by the
functions ϕε defined by

ϕε(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, g(x) < r0 − ε,

1

2ε
(g(x)− (r0 − ε)), r0 − ε ≤ g(x) ≤ r0 + ε,

1, g(x) > r0 + ε,
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for ε > 0. By Lemma 2.2, ϕε ∈ W 1,p(ν) for every p, and

M(ϕε) =
1

2ε
�{r0−ε≤g≤r0+ε}Mg.

To estimate ‖M(ϕε)‖L2(X,ν;X), we preliminarily show that q′1 is Hölder continuous
and that q′1(r0) = 0.

The Hölder continuity of q′1 follows from the regularity assumption on M∗Ψ.
Indeed, by (3.4) we have

q1(r) = −
∫
{g<r}

M∗Ψ dν = −F
M∗Ψ

(r), r ∈ R.

By assumption, M∗Ψ ∈ W 1,p(ν) for every p > 1, so that by Lemma 3.1 q1 is
differentiable, and

q′1(r) = −q
M∗Ψ

(r), r ∈ R.

Still by Lemma 3.1, q′1 is Hölder continuous, with any exponent α ∈ (0, 1).
Let us prove that q′1(r0) = 0. Since q1(r0) = 0, σg

r0(X) = 0, and by Theorem

3.4 we get qϕ(r0) = 0 for every ϕ ∈ Cb(X). Approaching every ϕ ∈ W 1,p(ν) by a
sequence of C1

b functions and using estimate (3.5), we obtain qϕ(r0) = 0 for every
ϕ ∈ W 1,p(ν). In particular,

q
M∗Ψ

(r0) = −q′1(r0) = 0.

Therefore, for every α ∈ (0, 1) there exists Cα > 0 such that |q1(ξ)| ≤ Cα|ξ−r0|1+α,
for every ξ ∈ R. It follows that there exists Kα > 0 such that for every ε > 0 we
have ∣∣∣∣

∫ r0+ε

r0−ε

q1(ξ)dξ

∣∣∣∣ ≤ Kαε
2+α.

Now fix α ∈ (0, 1) and take p = 2 + 4/α, so that (α + 2)(p − 2)/p = 2. By the
Hölder inequality we have∫

X

‖Mϕε‖2dν =
1

(2ε)2

∫
X

‖Mg‖2�{r0−ε≤g≤r0+ε} dν

≤ 1

(2ε)2

(∫
X

‖Mg‖pdν
)2/p(∫ r0+ε

r0−ε

q1(ξ)dξ

)(p−2)/p

≤ 1

(2ε)2

(∫
X

‖Mg‖pdν
)2/p

(Kαε
2+α)(p−2)/p = C,

with C := 2−2(
∫
X
‖Mg‖pdν)2/pK(p−2)/p

α independent of ε.
So, ‖ϕε‖W 1,2(ν) is bounded by a constant independent of ε. By Lemma 2.1(v),

�{g>r0} belongs to W 1,2(ν). By Lemma 3.7, the measure of the set {x : g(x) > r0}
is either 0 or 1, namely r0 ≥ ess sup g or r0 ≤ ess inf g. �

3.1. Integration by parts formulae. We recall that by Lemma 2.1(i), the prod-
uct ϕψ belongs to W 1,p(ν) provided ϕ ∈ W 1,p1(ν), ψ ∈ W 1,p2(ν), with 1/p1 +
1/p2 ≤ 1/p. In this case, for all F ∈ D(M∗

p ) we may apply formula (1.4) with ϕψ
replacing ϕ, and we obtain

(3.14)

∫
X

〈Mp1
ϕ, F 〉ψ dν +

∫
X

〈Mp2
ψ, F 〉ϕdν =

∫
X

ϕψM∗
p (F ) dν.

The following proposition is a first basic step towards an integration by parts
formula.
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Proposition 3.9. Assume that Hypotheses 1.1 and 1.3 are fulfilled. Let p > 1,
F ∈ D(M∗

p ), ϕ ∈ W 1,p1(ν) for some p1 > p, and assume that 〈Mg,F 〉ϕ belongs to

Cb(X) or to W 1,q(ν) for some q > 1. Then

(3.15)

∫
{g<r}

〈Mp1
ϕ, F 〉 dν =

∫
{g<r}

ϕM∗
p (F ) dν + q〈Mg,F〉ϕ(r), r ∈ R.

Proof. For any ε > 0 we set

(3.16) θε(ξ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 if ξ ≤ r − ε,

−1

ε
(ξ − r) if r − ε < ξ < r,

0 if ξ ≥ r,

so that

(3.17) θ′ε(ξ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 if ξ < r − ε,

−1

ε
if r − ε < ξ < r,

0 if ξ > r.

By Lemma 2.2 (applied to −g), the composition θε◦g belongs to W 1,p2(ν) for every
p2 > 1, and

M(θε ◦ g) = (θ′ε ◦ g)M(g).

Since p1 > p, choosing p2 large enough we have 1/p1+1/p2 ≤ 1/p, and we may use
formula (3.14) with ψ = θε ◦ g to obtain

(3.18)

∫
X

〈Mϕ,F 〉 (θε◦g) dν =
1

ε

∫
{r−ε≤g≤r}

〈Mg,F 〉ϕdν+

∫
X

ϕ (θε◦g)M∗
p (F ) dν.

Since 〈Mg,F 〉ϕ ∈ Cb(X) ∪W 1,q(ν), by Lemma 3.1 or by Theorem 3.4 we have

lim
ε→0

1

ε

∫
{r−ε≤g≤r}

〈Mg,F 〉ϕdν = q〈Mg,F〉ϕ(r).

On the other hand, θε ◦ g converges a.e. to �{g≤r}, and by the Dominated Conver-
gence Theorem we have

lim
ε→0

∫
X

〈Mϕ,F 〉 (θε ◦ g) dν =

∫
{g≤r}

〈Mϕ,F 〉 dν,

lim
ε→0

∫
X

ϕ (θε ◦ g)M∗
p (F ) dν =

∫
{g≤r}

ϕM∗
p (F ) dν.

The conclusion follows. �

Note that by (3.11), if 〈Mg,F 〉ϕ ∈ Cb(X), then q〈Mg,F 〉ϕ(r) is just the integral
of 〈Mg,F 〉ϕ with respect to σg

r , and (3.15) may be rewritten as

(3.19)

∫
{g<r}

〈Mϕ,F 〉 dν =

∫
{g<r}

ϕM∗
p (F ) dν +

∫
X

〈Mg,F 〉ϕdσg
r .

To improve formula (3.19) and extend it to a wider class of functions we have to
work a bit. To this aim, in the next section we introduce the p-capacity and then
we use it as a tool.
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4. p-capacities

Definition 4.1. Let Hypothesis 1.1 hold. For every open set O ⊂ X and p > 1 we
define the p-capacity of O by

Cp(O) := inf{‖f‖W 1,p(ν) : f(x) ≥ �O ν − a.e., f ∈ W 1,p(ν)}.

If B is any Borel set, we define

Cp(B) := inf{Cp(O) : O is open, O ⊃ B}.

A function f : X �→ R is called Cp-quasicontinuous if for every ε > 0 there is an
open set O such that Cp(O) < ε and f is continuous in X \O.

This is just Definition 8.13.1 of [Bo10], with the choice F = W 1,p(ν). It follows
immediately from the definition that for every Borel set A, B we have

Cp(A ∪B) ≤ Cp(A) + Cp(B), Cp(B) ≥ (ν(B))1/p.

We recall some properties of the p-capacity taken from [Bo10, Sect. 8.13].

Proposition 4.2.

(i) Every element f ∈ W 1,p(ν) has a Cp-quasicontinuous version f∗ which
satisfies

Cp({x : f∗(x) > r}) ≤ 1

r
‖f‖W 1,p(ν), r > 0.

(ii) Let (fn)be a sequence that converges to f in W 1,p(ν). For every n let f∗
n be

any Cp-quasicontinuous version of fn. Then there is a subsequence (f∗
nk
)

that converges pointwise to f∗, except at most on a set with null p-capacity.
(iii) If O is an open set, f is Cp-quasicontinuous and f(x) ≥ 0 for ν-a.e. x ∈ O.

Then f(x) ≥ 0 in O, except at most on a set with null p-capacity.

We are ready to exhibit a class of sets that are negligible with respect to all the
measures σg

r constructed in Section 3.

Proposition 4.3. Under Hypotheses 1.1 and 1.3, let B ⊂ X be a Borel set with
Cp(B) = 0 for some p > 1. Then σg

r (B) = 0, for every r ∈ R.

Proof. For every ε > 0 let Oε ⊃ B be an open set such that Cp(Oε) < ε. Then
there exists fε ∈ W 1,p(ν) such that ‖fε‖W 1,p(ν) ≤ ε, fε ≥ 0 ν-a.e., and fε ≥ 1
ν-a.e. in Oε. Let us fix an increasing sequence (θn) ⊂ Cb(X) that converges to �Oε

pointwise. For instance, we can take

θn(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, x ∈ X \Oε,

n dist(x,X \Oε), 0 < dist(x,X \Oε) < 1/n,

1, dist(x,X \Oε) ≥ 1/n.

Then, limn→∞ θn(x) = �Oε
(x), for every x ∈ X. Using the Dominated Convergence

Theorem and then formula (3.11), we get

(4.1) σg
r (Oε) =

∫
X

�Oε
dσg

r = lim
n→∞

∫
X

θn dσ
g
r = lim

n→∞
qθn(r).
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On the other hand, fε(x) ≥ �Oε
(x) ≥ θn(x), for ν-a.e. x ∈ X, so that the function

Ffε−θn is increasing. In particular, F ′
fε−θn

(r) = qfε(r)− qθn(r) ≥ 0 for every r ∈ R

and n ∈ N. Therefore, (4.1) yields

σg
r (Oε) ≤ qfε(r), r ∈ R.

On the other hand, by (3.5) we have

|qfε(r)| ≤ Kp‖fε‖W 1,p(ν) ≤ Kpε,

with Kp independent of ε. Therefore, σg
r (Oε) ≤ Kpε for every ε > 0, which implies

σg
r (B) = 0. �

Now we extend formula (3.11) to Sobolev functions. The procedure is similar to
[CeLu14], where Gaussian measures were considered.

Theorem 4.4. Let Hypotheses 1.1 and 1.3 hold, and let ϕ ∈ W 1,p(ν) for some
p > 1. Fix any r ∈ R. There exists a unique ψ ∈ L1(X, σg

r ) such that every
sequence of C1

b functions (ϕn) that converges to ϕ in W 1,p(ν) also converges in
L1(X, σg

r ) to ψ. Setting Tϕ := ψ, we have

(4.2) F ′
ϕ(r) =

∫
X

Tϕ(x) σg
r (dx).

Moreover,

(i) (ϕn) converges to ψ in Lq(X, σg
r ), and T ∈ L(W 1,p(ν), Lq(X, σg

r )) for every
q ∈ [1, p);

(ii) for every p-quasicontinuous version ϕ∗ of ϕ, we have Tϕ(x) = ϕ∗(x) for
σg
r -a.e. x ∈ X. In particular, if ϕ is continuous, then Tϕ(x) = ϕ(x) for

σg
r -a.e. x ∈ X;

(iii) if ϕ1 ∈ W 1,p1(ν), ϕ2 ∈ W 1,p2(ν), and 1/p1 + 1/p2 < 1, then T (ϕ1ϕ2) =
T (ϕ1)T (ϕ2) (as elements of L1(X, σg

r )).

Proof. By (3.11), for every ϕ ∈ C1
b (X) we have

q|ϕ|(r) =

∫
X

|ϕ|σg
r (dx).

Take ϕ = ϕn − ϕm. By Corollary 2.3, |ϕn − ϕm| ∈ W 1,p(ν), and

lim
n,m→∞

‖ |ϕn − ϕm| ‖W 1,p(ν) = 0.

Using estimate (3.5) we get

(4.3) q|ϕn−ϕm|(r) =

∫
X

|ϕn − ϕm|σg
r (dx) ≤ Kp‖ |ϕn − ϕm| ‖W 1,p(ν).

Therefore, (ϕn) is a Cauchy sequence in L1(X, σg
r ), and it converges to a limit ψ

in L1(X, σg
r ). The limit function ψ is apparently the same for all sequences that

converge to ϕ in W 1,p(ν). Indeed, if ϕn → ϕ, ϕ̃n → ϕ̃ in W 1,p(ν) as n → ∞, the
difference ϕn − ϕ̃n vanishes in L1(X, σg

r ) by estimate (3.5) with ϕn − ϕm replaced
by ϕn − ϕ̃n.

Still by estimate (3.5), the sequence (qϕn
(r)) converges to qϕ(r), and (4.2) follows.

To prove statement (i) we follow the above procedure, replacing |ϕn − ϕm| with
|ϕn − ϕm|q, which belongs to C1

b (X) for q > 1 and vanishes in W 1,p/q(ν) as n,
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m → +∞ by (2.2). By estimate (3.5) we have

q|ϕn−ϕm|q (r) ≤ Kp/q‖ |ϕn − ϕm|q ‖W 1,p/q(ν),

so that (ϕn) is a Cauchy sequence in Lq(X, σg
r ), and its L1(X, σg

r )-limit ψ belongs
to Lq(X, σg

r ).

Let us prove (ii). By Proposition 4.2(ii), a subsequence (ϕnk
) converges to ϕ∗(x)

for every x ∈ X except at most on a set with zero p-capacity. By Proposition 4.3,
such a subsequence converges σg

r -a.e to ϕ∗. By the first part of this proposition,
(ϕnk

) converges to Tϕ in L1(X, σg
r ). A further subsequence of (ϕnk

) converges to
Tϕ, σg

r -a.e. Therefore, Tϕ = ϕ∗, σg
r -a.e.

To prove (iii) it is enough to approach ϕ1 and ϕ2 by sequences (ϕ1,n), (ϕ2,n) of
C1

b functions in W 1,p1(ν), W 1,p2(ν), respectively. The product ϕ1,nϕ2,n converges
to ϕ1ϕ2 in W 1,s(ν), for s = (p1 + p2)/p1p2; therefore T (ϕ1ϕ2) = limn→∞ ϕ1,nϕ2,n

in L1(X, σg
r ). On the other hand, T (ϕ1) = limn→∞ ϕ1,n in Lq(X, σg

r ) for every
q < p1, T (ϕ2) = limn→∞ ϕ1,n in Lr(X, σg

r ) for every r < p2. Choosing q < p1
and r < p2 such that 1/q + 1/r = 1, we obtain T (ϕ1)T (ϕ2) = limn→∞ ϕ1,nϕ2,n in
L1(X, σg

r ), and the statement follows. �

The results that we have proved up to now are independent of the version of g
that we have considered. Instead, from now on we fix a p-quasicontinuous version
g∗ of g, for some p > 1. This is because we shall consider the ν-negligible sets
(g∗)−1(r) for r ∈ R.

With the aid of Theorem 4.4 we can study the supports of the measures σg
r .

Proposition 4.5. For every r0 ∈ R, the support of σg
r0 is contained in g∗−1(r0).

Proof. Fix ε > 0, and set A := g∗−1(−∞, r0 − ε) ∪ g∗−1(r0 + ε,∞). Our aim is to
show that

(4.4)

∫
X

�Adσ
g
r0 = 0,

which implies that the support of σg
r0 is contained in g∗−1([r0 − ε, r0 + ε]). Since ε

is arbitrary, the statement will follow.
We approach �(−∞,r0−ε)∪(r0+ε,+∞) by a sequence of Lipschitz functions:

χn(ξ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, ξ ≤ r0 − ε− 1/n,
−n(ξ − (r0 − ε)), r0 − ε− 1/n ≤ ξ ≤ r0 − ε,
0, r0 − ε ≤ ξ ≤ r0 + ε,
n(ξ − (r0 + ε)), r0 + ε ≤ ξ ≤ r0 + ε+ 1/n,
1, ξ ≥ r0 + ε.

We have limn→∞ χn(ξ) = �(−∞,r0−ε)∪(r0+ε,+∞)(ξ), for every ξ ∈ R. Consequently,
χn ◦ g∗ converges pointwise, for every x ∈ X, to �A. Since 0 ≤ χn ◦ g∗ ≤ 1, by the
Dominated Convergence Theorem we get

(4.5)

∫
X

�Adσ
g
r0 = lim

n→∞

∫
X

χn ◦ g∗ dσg
r0 .

For every n, χn ◦ g ∈ W 1,p(ν), by Lemma 2.2. By Lemma 3.1, qχn◦g is continuous,
so that the function Fχn◦g(r) =

∫
g−1(−∞,r)

χn ◦ g dμ, whose derivative is qχn◦g, is

C1. By the definition of χn, Fχn◦g is constant, equal to Fχn◦g(r0−ε), in the interval
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[r0−ε, r0+ε], so that the derivative qχn◦g vanishes in (r0−ε, r0+ε). In particular,
it vanishes at r0.

By (4.2) we have

qχn◦g(r0) =

∫
X

T (χn ◦ g) dσg
r0 ,

where T is the operator defined in Theorem 4.4. Since g∗ is p-quasicontinuous and
χn is continuous, χn ◦ g∗ is p-quasicontinuous. It coincides with χn ◦ g outside a
ν-negligible set; therefore it is a p-quasicontinuous version of χn ◦ g. By Theorem
4.4, T (χn ◦ g) coincides with χn ◦ g∗, up to σg

r0-negligible sets. Therefore, for every
n ∈ N,

0 = qχn◦g(r0) =

∫
X

T (χn ◦ g) dσg
r0 =

∫
X

χn ◦ g∗ dσg
r0 ,

and (4.4) follows from (4.5). �

Proposition 4.5 justifies the following definition.

Definition 4.6. Let ϕ ∈ W 1,p(ν) for some p > 1, and let r ∈ R. We define the
trace of ϕ at g∗−1(r) as the function Tϕ given by Theorem 4.4.

Characterizing the range of the trace operator is a difficult problem that is out
of reach for the moment. In the case of Gaussian measures in Banach spaces the
range of the trace has been characterized only for g ∈ X∗ ([CeLu14]). Even worse,
for very smooth functions in Hilbert spaces such as g(x) = ‖x‖2 we do not know
whether the traces of elements of W 1,p(ν) belong to Lp(X, σg

r ) with the same p.
See the discussion in [CeLu14].

Now we read again formula (3.15) in terms of surface integrals.

Corollary 4.7. Assume that Hypotheses 1.1 and 1.3 are fulfilled. Let p > 1,
F ∈ D(M∗

p ), ϕ ∈ W 1,p1(ν) for some p1 > p, and assume that 〈Mg,F 〉ϕ belongs to

Cb(X) or to W 1,q(ν) for some q > 1. Then for every r ∈ R,
(4.6)∫

{g<r}
〈Mp1

ϕ, F 〉 dν =

∫
{g<r}

ϕM∗
p (F ) dν +

∫
X

T (〈Mg,F 〉ϕ) dσg
r

=

∫
{g<r}

ϕM∗
p (F ) dν +

∫
g∗−1(r)

T (〈Mg,F 〉ϕ) dσg
r .

Proof. By formula (4.2) for every r ∈ R we have∫
g∗−1(r)

T (〈Mg,F 〉ϕ) dσg
r =

∫
X

T (〈Mg,F 〉ϕ) dσg
r = q〈Mg,F〉ϕ(r).

On the other hand, Proposition 3.9 yields

q〈Mg,F〉ϕ(r) =

∫
{g<r}

〈Mp1
ϕ, F 〉 dν −

∫
{g<r}

ϕM∗
p (F ) dν,

and the statement follows. �

Since the operators Mp and M∗
p play the role of the gradient and of the negative

divergence, formula (4.6) is a version of the Divergence Theorem in our context.
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The similarity gets better if we assume that ‖Mg‖ ∈ W 1,q(ν) for every q > 1. In
this case, recalling Theorem 4.4(iii) we may rewrite (4.6) as
(4.7)∫

{g<r}
〈Mp1

ϕ, F 〉 dν =

∫
{g<r}

ϕM∗
pF dν +

∫
X

T (〈 Mg

‖Mg‖ , F 〉ϕ)T (‖Mg‖) dσg
r

=

∫
{g<r}

ϕM∗
pF dν +

∫
X

T (〈 Mg

‖Mg‖ , F 〉ϕ) dρr,

where

ρr(dx) := T (‖Mg‖)(x)σg
r (dx),

so thatMg/‖Mg‖ plays the role of the exterior normal vector to the surface g∗−1(r),
and the weighted measure ρr plays the role of normalized surface measure. In fact
ρr is a distinguished surface measure, and it will be discussed in the next section.

Let us consider now the case of constant vector fields F . Namely, we fix z ∈ X
and we assume that Fz(x) ≡ z belongs to D(M∗

p ) for some p > 1. We recall that
Fz ∈ D(M∗

p ) iff there exists Cp,z > 0 such that

(4.8)

∣∣∣∣
∫
X

〈R∇ϕ, z〉dν
∣∣∣∣ ≤ Cp,z‖ϕ‖Lp(X,ν), ϕ ∈ C1

b (X)

(see the Introduction). In this case, we set vz := M∗
p (Fz) and we rewrite (4.6) for

every ϕ ∈ W 1,p(ν) as

(4.9)

∫
g−1(−∞,r)

〈Mpϕ, z〉 dν =

∫
g−1(−∞,r)

ϕ vz dν +

∫
X

T (〈Mg, z〉ϕ) dσg
r ,

provided 〈Mg, z〉ϕ belongs to Cb(X) or to W 1,q(ν) for some q > 1.

5. Dependence on g: Comparison with the geometric measure

theory approach

Even for continuous or smooth g, the measures σg
r constructed in the previous

sections depend explicitly on the defining function g, and not only on the sets g−1(r)
or g−1(−∞, r). In particular, if we replace g by g̃ = θ ◦ g with a smooth θ : R �→ R

such that inf θ′ > 0, it is easy to check that g̃ satisfies Hypothesis 1.3, and using
the definition we see that for every r ∈ R, setting Σ := g−1(r) = g̃−1(θ(r)) we have∫

Σ

ϕdσg
r = θ′(r)

∫
Σ

ϕdσg̃
θ(r), ϕ ∈ Cb(X).

So, it is desirable to modify the construction of our surface measures in order to
get rid of the dependence on g and to get a surface measure with some intrinsic
analytic or geometric properties.

In the case of Gaussian measures in Banach spaces, for suitably regular hyper-
surfaces g−1(r) the measure |∇Hg|Hσg

r , where H is the Cameron–Martin space,
is independent of g, and it coincides with the restriction of the Hausdorff–Gauss
measure of Feyel and de La Pradelle ([FePr92]) to the hypersurface and with the
perimeter measure relevant to the set Ω = g−1(−∞, r) from the geometric measure
theory in abstract Wiener spaces ([Fu00,FuHi01,AMMP10]). See [CeLu14].

In our setting, what plays the role of |∇Hg|H is ‖Mg‖. We shall show that
‖Mg‖σg

r depends on g only through the set g−1(−∞, r), among a class of good
enough g, and it is a sort of perimeter measure.
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As a first step, we notice that if ‖Mg‖ ∈ W 1,q(ν) for some q > 1, then
Mg/‖Mg‖ ∈ D(M∗

s ) for every s > q/(q− 1). This comes from Lemma 2.5, writing

Mg

‖Mg‖ =
Mg

‖Mg‖2 ‖Mg‖,

and recalling thatMg/‖Mg‖2 ∈ D(M∗
p ) for every p > 1, by Hypothesis 1.3. Lemma

2.5 also yields

M∗
s

(
ϕ

Mg

‖Mg‖

)
= ϕ‖Mg‖M∗

p

(
Mg

‖Mg‖2

)
− 〈Mq(ϕ‖Mg‖), Mg

‖Mg‖2 〉,

for every ϕ ∈ C1
b (X). Comparing with (3.4), we obtain

(5.1) q‖Mg‖ϕ(r) = −
∫
{g<r}

M∗
s

(
ϕ

Mg

‖Mg‖

)
dν, r ∈ R,

and by Theorem 4.4,

(5.2)

∫
g∗−1(r)

ϕT (‖Mg‖)dσg
r = −

∫
{g<r}

M∗
s

(
ϕ

Mg

‖Mg‖

)
dν, r ∈ R.

The right-hand side of (5.1) and of (5.2) is the negative integral over g−1(−∞, r) of
M∗

s (ϕF ), where F = Mg/‖Mg‖ plays the role of the exterior unit normal vector to
the level surfaces of g. It is indeed the exterior unit normal vector to ∂{x : g(x) <
r} if g is smooth enough and R = I.

To go on, it is convenient to introduce spaces of W 1,p vector fields.

Definition 5.1. For every p > 1 we denote by W 1,p(X, ν;X) the space of vector
fields F : X �→ X such that for a given orthonormal basis {ei : i ∈ N}, the functions
fi := 〈F, ei〉 ∈ W 1,p(ν) for every i ∈ N, and (

∑∞
i=1 ‖Mpfi‖2)1/2 ∈ Lp(X, ν).

It is easy to see that the definition does not depend on the chosen orthonormal
basis. The standard proof of the following lemma is left to the reader.

Lemma 5.2.

(i) If F1 ∈ W 1,p1(X, ν;X), F2 ∈ W 1,p2(X, ν;X), with 1/p := 1/p1 +1/p2 < 1,
then x �→ 〈F1(x), F2(x)〉 belongs to W 1,p(ν).

(ii) If F ∈ W 1,p1(X, ν;X), ϕ ∈ W 1,p2(ν), with 1/p := 1/p1 + 1/p2 < 1, then
ϕF belongs to W 1,p(X, ν;X).

(iii) If F ∈ W 1,p(X, ν;X) for some p > 1, then x �→ ‖F (x)‖ belongs to W 1,p(ν).

The following theorem is the main result of this section.

Theorem 5.3. Let Hypotheses 1.1 and 1.3 hold, and assume in addition that
Mg ∈ W 1,q(X, ν;X) for some q > 2. Then for every ϕ ∈ C1

b (X) with nonnegative
values and for any t ∈ (q′, q), s > q′ we have
(5.3)∫

X

ϕT (‖Mg‖)dσg
r

= max

{∫
{g<r}

M∗
s (ϕF ) dν : F ∈W 1,t(X, ν;X) ∩D(M∗

s ), ‖F (x)‖ ≤ 1 a.e.

}
.

The maximum is attained at F = −Mg/‖Mg‖.
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Proof. By Lemma 5.2(iii), ‖Mg‖ ∈ W 1,q(ν) and therefore ‖Mg‖ϕ ∈ W 1,q(ν).
Then, by formulae (5.1) and (5.2),∫

X

ϕT (‖Mg‖)dσg
r = q‖Mg‖ϕ(r).

So, we have to show that q‖Mg‖ϕ(r) is equal to the right-hand side of (5.3). The
proof is in two steps.

In the first step we shall prove that the vector field F = Mg/‖Mg‖ is one of the
admissible vector fields in the right-hand side of (5.3), namely that it belongs to
D(M∗

s ) for every s > q′ = q/(q − 1) and to W 1,t(X, ν;X) for every t ∈ (q′, q).
In the second step we shall prove that for every admissible vector field F in the

right-hand side of (5.3), the integral
∫
{g<r}M

∗
s (ϕF )dν is equal to q〈Mg,F 〉ϕ(r) (of

course, we need to show that 〈Mg,F 〉ϕ belongs to W 1,p(ν) for some p). Then,
using the definition of qϕ, it will be easy to see that q〈Mg,F 〉ϕ(r) ≤ q‖Mg‖ϕ(r) if ϕ
has nonnegative values.

In view of formula (5.1), the statement will follow.
Throughout the proof we denote by {ei : i ∈ N} any orthonormal basis of X.

Step 1. F may be written as the product ofMg/‖Mg‖2 which is inD(M∗
p ) for every

p by Hypothesis 1.3 and the scalar function ‖Mg‖ ∈ W 1,q(ν) by Lemma 5.2(iii).
Lemma 2.5(i) implies that F ∈ D(M∗

s ) for s = pq/(q − p), for every p ∈ (1, q).
Letting p → 1, we obtain F ∈ D(M∗

s ) for every s > q/(q − 1) = q′.
Let us prove that F ∈ W 1,t(X, ν;X), for every t < q. We have F = Mgψ, with

ψ = 1/‖Mg‖. As easily seen approximating ψ by

ψn(x) :=

( n∑
i=1

〈Mg(x), ei〉2 + 1/n

)−1/2

,

ψ ∈ W 1,p(ν) for every p < q, and Mpψ = ‖Mg‖−2
∑∞

k=1 Mq(〈Mg, ek〉)ek. Using
Lemma 5.2(ii), we obtain F ∈ W 1,t(X, ν;X) if 1/t = 1/p + 1/q < 1, so that
F ∈ W 1,t(X, ν;X) for t ∈ (1, q/2). To avoid this restriction we use the definition of
the spacesW 1,t(X, ν;X) instead of Lemma 5.2, and we take advantage of ‖Mg‖−1 ∈
Lp(X, ν) for every p which is a consequence of Hypothesis 1.3 (see the Introduction).
Setting fi := 〈F, ei〉 = 〈Mg, ei〉/‖Mg‖ for i ∈ N, each fi belongs to W 1,p(ν) for
p ∈ (1, q) and

Mpfi =
Mq〈Mg, ei〉

‖Mg‖ − 〈Mg, ei〉
∑∞

k=1(Mq〈Mg, ek〉) ek
‖Mg‖2

so that

‖Mpfi‖ ≤ ‖Mq〈Mg, ei〉‖
‖Mg‖ +

|〈Mg, ei〉|
‖Mg‖2

( ∞∑
k=1

‖Mq〈Mg, ek〉‖2
)1/2

,

which implies that

( ∞∑
i=1

‖Mpfi‖2
)1/2

≤ 2

(∑∞
i=1 ‖Mq〈Mg, ei〉‖2

)1/2

‖Mg‖ .

Therefore, F ∈ W 1,t(X, ν;X), for every t < q.



5818 G. DA PRATO, A. LUNARDI, AND L. TUBARO

Step 2. Now we show that if F ∈ W 1,t(X, ν;X)∩D(M∗
s ) for some t > q′, s > q′ is

such that ‖F (x)‖ ≤ 1 ν-a.e., then we have

(5.4)

∫
{g<r}

M∗
s (ϕF ) dν ≤ q‖Mg‖ϕ(r).

To this aim, we prove that 〈Mg,F 〉 ∈ W 1,p(ν) for some p > 1.
Set fi(x) := 〈F (x), ei〉 for i ∈ N, x ∈ X. Since |〈Mg,F 〉| ≤ ‖Mg‖, 〈Mg,F 〉 ∈

Lq(X, ν), and the series sn =
∑n

i=1 fi〈Mg, ei〉 converges to 〈Mg,F 〉 in Lq(X, ν).
Let us prove that it converges in a Sobolev space. For every i ∈ N, we have
〈Mg, ei〉 ∈ W 1,q(ν), fi ∈ W 1,t(ν), and t > q′, so that 〈Mg, ei〉fi ∈ W 1,p(ν) with
p = qt/(q + t) by Lemma 2.1(i). Moreover,

Mpsn =
n∑

i=1

fiMq〈Mg, ei〉+
n∑

i=1

〈Mg, ei〉Mtfi,

so that

‖Mpsn‖ ≤
( n∑

i=1

‖Mq〈Mg, ei〉‖2
)1/2

+

( n∑
i=1

‖Mtfi‖2
)1/2

‖Mg‖,

and the series (Mpsn) converges in Lp(X, ν;X). Therefore, 〈Mg,F 〉ϕ ∈ W 1,p(ν)
for every ϕ ∈ C1

b (X), and Proposition 3.9 yields∫
{g<r}

M∗
s (ϕF ) dν = −q〈Mg,F〉ϕ .

We recall now that if ϕ1 ≤ ϕ2 a.e., then qϕ1
(r) ≤ qϕ2

(r), for every r. In our case,
ϕ has nonnegative values, so that

〈Mg(x), F (x)〉ϕ(x) = 〈Mg(x)/‖Mg(x)‖, F (x)〉ϕ(x)‖Mg(x)‖ ≤ ϕ(x)‖Mg(x)‖

for a.e. x, and therefore q〈Mg,F 〉ϕ(r) ≤ q‖Mg‖ϕ(r) and (5.4) follows. �

Corollary 5.4. Let g1, g2 satisfy the hypotheses of Theorem 5.3, and assume that
for some r ∈ R we have {x : g1(x) < r} = {x : g2(x) < r}. For i = 1, 2, denote
by Ti ∈ L(W 1,p(ν), L1(X, σgi

r )) the trace operator introduced in Theorem 4.4. Then
the weighted measures T1(‖Mg1‖) dσg1

r and T2(‖Mg2‖) dσg2
r coincide.

Proof. Set Ω := {x : g1(x) < r} = {x : g2(x) < r}. By Theorem 4.4, for every
ϕ ∈ C1

b (X),

q‖Mgi‖ϕ
(r) =

∫
X

Ti(ϕ‖Mgi‖) dσgi
r =

∫
X

ϕTi(‖Mgi‖) dσgi
r , i = 1, 2.

If in addition ϕ has nonnegative values, by Theorem 5.3 the left-hand side depends
only on the set Ω. Approximating every nonnegative ϕ ∈ UCb(X) by a sequence of
nonnegative C1

b functions, we obtain
∫
X
ϕT1(‖Mg1‖) dσg1

r =
∫
X
ϕT2(‖Mg2‖) dσg2

r ;

splitting every ϕ ∈ UCb(X) as ϕ = ϕ+ − ϕ− we obtain
∫
X
ϕT1(‖Mg1‖) dσg1

r =∫
X
ϕT2(‖Mg2‖) dσg2

r . The statement follows. �

Fix any g satisfying the assumptions of Proposition 5.3, and define

(5.5) ρr(dx) := T (‖Mg‖)σg
r (dx).
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Taking in particular ϕ ≡ 1, we get

ρr(g
−1(r)) = sup

{∫
{g<r}

M∗
s (F ) dν : F ∈ W 1,t(X) ∩D(M∗

s ), ‖F (x)‖ ≤ 1 a.e.

}
< +∞.

We recall that a bounded Borel set Ω ⊂ R
n has finite perimeter if �Ω is a function

with bounded variation, and in this case the perimeter measure m is defined as the
total variation measure of D�Ω. Equivalently, Ω has finite perimeter if and only if

sup

{∫
Ω

div F dx : F ∈ C1
c (Ω,R

n), ‖F (x)‖ ≤ 1 ∀x ∈ Ω

}
< +∞,

and in this case for every ϕ ∈ C1
b (R

n) with nonnegative values we have∫
ϕdm = sup

{∫
Ω

div (Fϕ) dx : F ∈ C1
c (Ω,R

n), ‖F (x)‖ ≤ 1 ∀x ∈ Ω

}
,

to be compared to formula (5.3). In our setting the operators −M∗
s play the role

of the divergence, the measure ρr plays the role of the perimeter measure, and
ρr(g

−1(r)) may be called the (generalized) perimeter of the set g−1(−∞, r). The
vector field Mg/‖Mg‖ plays the role of the exterior normal vector field at g−1(r).
It would be worth it (although it is not the aim of this paper) to develop a theory
of BV functions for general differentiable measures in Hilbert or Banach spaces and
to go on in the investigation of perimeter measures.

6. Gaussian and weighted Gaussian measures

6.1. Gaussian measures: Comparison with previous results. We refer to
[Bo98] for the general theory of Gaussian measures in Banach spaces. All the
results that we mention here about Sobolev spaces for general Gaussian measures
are contained in Chapter 5 of [Bo98].

Let Q ∈ L(X) be a self-adjoint positive trace class operator, and let μ := N0,Q

be the Gaussian measure in X with mean 0 and covariance Q. Choosing R = Q1/2,
the spaces W 1,p(μ) used here coincide with the spaces D

1,p(X,μ) of the standard
Gaussian measure theory. To prove this fact, we recall that the Cameron–Martin
space H is equal to Q1/2(X), with the scalar product

(6.1) 〈h, k〉H = 〈Q−1/2h,Q−1/2k〉, h, k ∈ H.

For every f ∈ C1
b (X) and x ∈ X, the H-gradient of f at x, denoted by ∇Hf(x),

is the unique y ∈ H such that lim‖h‖H→0(f(x + h) − f(x) − 〈y, h〉H)/‖h‖H =

0. Therefore, it is given by ∇Hf(x) = Q∇f(x). The space D
1,p(X,μ) is the

domain of the closure ∇H of ∇H : D(∇H) = C1
b (X) ⊂ Lp(X,μ) �→ Lp(X,μ;H).

Namely, an element f ∈ Lp(X,μ) belongs to D
1,p(X,μ) if and only if there exists

a sequence (fn) ⊂ C1
b (X) such that fn → f in Lp(X,μ) and (∇Hfn) is a Cauchy

sequence in Lp(X,μ;H); in this case ∇Hf = limn→∞ ∇Hfn in Lp(X,μ;H). Since
‖∇H(fn − fm)‖H = ‖Q1/2∇(fn − fm)‖, f ∈ D

1,p(X,μ) if and only if f ∈ W 1,p(μ),
and in this case

(6.2) Mpf = Q−1/2∇Hf.

We recall the definition of the Gaussian divergence of H-valued vector fields. For
a given Φ ∈ L1(X,μ;H), a function β ∈ L1(X,μ) is called Gaussian divergence of
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Φ, and is denoted by divμΦ, if∫
X

〈∇Hϕ,Φ〉Hdμ = −
∫
X

ϕβ dμ, ϕ ∈ C1
b (X).

Recalling that ∇Hϕ = Q∇ϕ for every ϕ ∈ C1
b (X) and using formula (6.1), this

means that ∫
X

〈Q1/2∇ϕ,Q−1/2Φ〉dμ = −
∫
X

ϕβ dμ, ϕ ∈ C1
b (X).

So, a vector field Φ ∈ Lp′
(X,μ;H) (namely, such that Φ̃ := Q−1/2Φ ∈ Lp′

(X,μ;X))

has Gaussian divergence divμΦ ∈ Lp′
(X,μ) if and only if Φ̃ belongs to D(M∗

p ), and
in this case

(6.3) M∗
p Φ̃ = −divνΦ.

In the paper [DaLuTu14] surface measures have been constructed on the level
surfaces of a suitable version of a Sobolev function g ∈ D

1,p(X,μ) for some p > 1,
such that the vector field ∇Hg/‖∇Hg‖2H belongs to D

1,p(X,μ;H) (the version is
chosen in terms of Gaussian capacities, as we did in Section 4). Since D1,p(X,μ;H)
is contained in the domain of divμ in Lp(X,μ) by, e.g., [Bo98, Prop. 5.8.8], the

latter condition implies that Ψ := Q−1/2∇Hg/‖∇Hg‖2H = Mpg/‖Mpg‖2 belongs to
D(M∗

p′). This is precisely the condition of Hypothesis 1.3.
The construction of the surface measures of the present paper follows the proce-

dure of [DaLuTu14]. Therefore the surface measures of the present paper coincide
with the ones of [DaLuTu14]. In particular, as proved in [DaLuTu14, Prop. 3.15],
if the conditions

(6.4) g ∈ D
2,p(X, ν),

1

‖∇Hg‖2H
∈

⋂
p>1

Lp(X, ν)

hold, all the assumptions of [DaLuTu14] and of the present paper are satisfied, and
the measures ρr coincide with the restrictions to {g∗ = r} of the Gauss–Hausdorff
surface measure ρ of Feyel and de La Pradelle [FePr92]. This implies that the traces
of Sobolev functions of Definition 4.6 coincide with the traces studied in [CeLu14].
Therefore, the “divergence theorem formula” (Remark 4.9(iii) of [CeLu14]) coin-
cides with our formula (4.7).

Of course the proofs of [DaLuTu14] that made use of specific properties of Gauss-
ian measures could not be adapted to the present context. In particular, we gave
completely different proofs of the fact that the support of ρr is contained in {g∗ = r}
(that worked only for continuous g in [DaLuTu14]), of the fact that ρr is not trivial
if and only if r ∈ (ess inf g, ess sup g), and of the independence of the measures ρr
on the defining function g.

Another remark about the notation in the literature is worth noting. For every
h ∈ H, h = Q1/2z, we have
(6.5)∫

X

〈Q1/2∇ϕ(x), z〉μ(dx) =
∫
X

∂hϕ(x)μ(dx) =

∫
X

ϕ(x)ĥ(x)μ(dx), ϕ ∈ C1
b (X),

where ĥ = R−1
μ h, Rμ being the usual extension ofQ to the closure ofX∗ in L2(X,μ).

In our setting the function ĥ is called vz (see formula (1.5)); in [DP06] it is called
the “white noise function” and is denoted by Wz.
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Eventually, let us consider Theorem 5.3. The space C1
b (X;H) is dense in

D
1,p(X, ν;H) for every p. A given vector field F : X �→ X belongs to W 1,t(μ) ∩

D(M∗
s ) iff Φ = Q1/2F belongs to D

1,t(X,μ;H) and to the domain of divμ in

Ls′(X,μ). Since C1
b (X;H) is dense in D

1,q(X, ν;H) for every q > 1, it is dense in

the intersection between D
1,t(X, ν;H) and the domain of divμ in Ls′(X,μ). There-

fore, the maximum in the right-hand side of (5.3) is equal to

sup

{∫
{g<r}

−divμ(ϕΦ) dν : Φ ∈ C1
b (X;H), ‖Φ(x)‖H ≤ 1 ∀x ∈ H

}
.

In particular, taking ϕ ≡ 1 in (5.3) we get

ρr(X) = sup

{∫
{g<r}

divμΦ dν : Φ ∈ C1
b (X;H), ‖Φ(x)‖H ≤ 1 ∀x

}
,

which shows that the perimeter of the set {g < r} (according to [AMMP10]) is
equal to ρr(X) = ρr({g∗ = r}). In fact under assumption (6.4) it was proved in
[CeLu14] that the perimeter measure relevant to the set {g < r} coincides with the
restriction of the Gauss–Hausdorff measure ρ to {g∗ = r}, and the latter coincides
with our ρr as we already remarked.

6.2. Weighted Gaussian measures. We refer to paper [Fe16], where weighted
Gaussian measures in Banach spaces were studied. Let ν(dx) = w(x)μ(dx), where
μ = N0,Q is a centered nondegenerate Gaussian measure with covariance Q. The
nonnegative weight w satisfies

(6.6) w, logw ∈ W 1,s(X,μ) ∀s > 1.

Of course, every C1 weight with positive infimum and such that w(x), ‖∇w(x)‖ ≤
C exp(α‖x‖) for some C, α > 0 satisfies assumption (6.6). Examples of discontin-
uous weights that satisfy (6.6) are in [Fe16] (in the space X = �2) and in [DaLu14]
(in the space X = L2(0, 1) with respect to the Lebesgue measure).

Since we are considering two different measures, μ and ν, it is convenient to
denote by Mμ

p , M
ν
p the operators obtained by our procedure using the measures μ,

ν, respectively. Instead, we consider only the covariance of μ, and we denote it by
Q without superindex.

The Sobolev spaces considered in [Fe16] are the spaces D1,p(X,μ) that coincide
with our spaces W 1,p(μ) with the choice R = Q1/2. See subsection 6.1.

It is convenient to introduce an orthonormal basis of X consisting of eigenvectors
of Q, Qek = μkek for every k ∈ N. For every z ∈ X, setting h = Q1/2z, formula

(6.5) holds, and the function ĥ is rewritten as

(6.7) ĥ(x) =

∞∑
k=1

μ
−1/2
k 〈x, ek〉〈z, ek〉,

the series being convergent in Lp(X,μ) for every p > 1. Formula (6.5) is readily
extended to any ϕ ∈ W 1,q(μ), with q > 1.

Now, let us consider the weighted measure ν. For ϕ ∈ C1
b (X), applying (6.5) to

ϕw which belongs to W 1,q(μ) for every q > 1, we get∫
X

〈Q1/2∇ϕ(x), z〉ν(dx) =
∫
X

∂hϕ(x)ν(dx) =

∫
X

ϕ(x)(ĥ(x)− ∂h logw(x))ν(dx),

ϕ ∈ C1
b (X).
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By the Hölder inequality, ĥ − ∂h logw ∈ Lq(X, ν) for every q > 1, and applying
once again the Hölder inequality we obtain that Hypothesis 1.2 is satisfied. Then,
we consider the Sobolev spaces W 1,p(ν) defined in the Introduction, still with R =
Q1/2. They coincide with the Sobolev spaces W 1,p(ν) of [Fe16]. We remark that the
test functions taken into consideration in [Fe16] are the smooth cylindrical functions
FC∞

b (X), namely functions of the type ϕ(x) = θ(〈x, v1〉, . . . , 〈x, vn〉) with n ∈ N,
θ ∈ C∞

b (Rn), v1, . . . , vk ∈ X, instead of C1
b (X) as we did. However, in the basic

definitions and estimates nothing changes if we replace FC∞
b (X) by C1

b (X).
The hypersurfaces considered in [Fe16] are level surfaces of functions g whose

regularity and summability properties are given in terms of the Gaussian measure
μ. Namely, as in [Fe01,CeLu14], g ∈ D

2,p(X,μ) for every p > 1, and there exists
δ > 0 such that 1/|∇Hg|H ∈ Lp(g−1(−δ, δ), μ) for every p > 1. Here we assume
for simplicity that g satisfies (6.4), so that 1/‖Mμg‖ ∈ Lp(X,μ) for every p, which
means that 1/|∇Hg|H ∈ Lp(X,μ) for every p. Now we prove that, under these
assumptions, g satisfies Hypothesis 1.3.

Lemma 6.1. Let g satisfy (6.4). Then g satisfies Hypothesis 1.3 for both measures
μ and ν.

Proof. The assumption g ∈ D
2,p(X,μ) is equivalent to ∇Hg ∈ D

1,p(X,μ;H), for
every p > 1. It follows that ∇Hg/|∇Hg|2H ∈ D

1,p(X,μ;H), for every p > 1.
Every vector field Φ ∈ D

1,p(X,μ;H) with p > 1 has Gaussian divergence divμΦ ∈
Lp(X,μ), by [Bo98, Prop. 5.8.8]. By the considerations of Subsection 6.1, Ψ =
Q−1/2∇Hg/|∇Hg|2H belongs to the domain of Mμ∗

p , for every p > 1. On the other

hand, Q−1/2∇Hg/|∇Hg|2H = Mg/‖Mg‖2. Then, g satisfies Hypothesis 1.3 for the
measure μ.

Concerning the weighted measure ν, again we have to compare the divergence
operator with our operators Mν∗

p . The divergence operator is defined in [Fe16] as

in the Gaussian case for vector fields Φ ∈ L1(X, ν;X). A function β ∈ L1(X, ν) is
called divergence of Φ and is denoted by divνΦ if∫

X

〈∇f(x),Φ(x)〉 ν(dx) = −
∫
X

f(x)β(x)ν(dx), f ∈ C1
b (X).

If Φ has values in the Cameron–Martin space Q1/2(X), the above formula reads as

(6.8)

∫
X

〈Q1/2∇f(x), Q−1/2Φ(x)〉 ν(dx) = −
∫
X

f(x)β(x)ν(dx), f ∈ C1
b (X).

If Φ̃ := Q−1/2Φ ∈ Lp′
(X, ν;X) and β ∈ Lp′

(X, ν), (6.8) means that Φ̃ ∈ D(Mν∗
p )

and Mν∗
p Φ̃ = −β. Conversely, if a vector field Φ̃ belongs to D(Mν∗

p ), then Φ :=

Q1/2Φ̃ has divergence in the sense of [Fe16], given by divνΦ = −Mν∗
p Φ̃. Taking

this equivalence into account, we use Proposition 5.5 of [Fe16], which states that
any vector field Φ ∈ D

1,q(X,μ;H) has divergence divνΦ belonging to Lr(X, ν) for
every r < q. In our case, Φ = ∇Hg/|∇Hg|2H belongs to D

1,q(X,μ;H) for every q,
so that divνΦ belongs to Lq(X, ν) for every q. Moreover, by the Hölder inequality

Φ̃ = Q−1/2Φ is in Lp′
(X, ν;X) for every p′ > 1. This implies that Φ̃ belongs to

D(Mν∗
p ) for every p; namely, Hypothesis 1.3 holds for the measure ν. �

The weighted surface measure considered in [Fe16] is w∗ρ, where w∗ is any Cp-
quasicontinuous version of w, in the sense of the Gaussian capacity, and ρ is the
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Gauss–Hausdorff measure of Feyel and de La Pradelle. Here we identify our surface
measures ρr with w∗ρ on every surface level g∗−1(r).

Proposition 6.2. Under the assumptions of Lemma 6.1, for every r ∈ R we have

(6.9)

∫
X

ϕT (‖Mνg‖) dσg
r =

∫
X

ϕdρr =

∫
g∗−1(r)

ϕw∗dρ, ϕ ∈ Cb(X).

Proof. Since any finite Borel measure is uniquely determined by its Fourier trans-
form, it is sufficient to show that (6.9) holds for every ϕ ∈ C1

b (X). Theorem 1.3 of
[Fe16] yields, for every Φ ∈ W 1,p(X, ν;H),

(6.10)

∫
{g<r}

divν(ϕΦ)dν =

∫
g∗−1(r)

ϕ〈TrΦ,Tr
(

∇Hg

|∇Hg|H

)
〉Hw∗dρ,

where Tr is the trace operator considered in [Fe16]. There, traces Trϕ of Sobolev
functions ϕ are defined as in the present paper, with the surface measure w∗ρ
replacing σg

r . Traces of vector fields Φ ∈ W 1,p(X, ν;H) are defined in a natural
way; namely, setting ϕn(x) = 〈Φ(x), hn〉H , where {hn : n ∈ N} is any orthonormal
basis of H, then TrΦ =

∑∞
n=1 Tr(ϕn)hn.

Taking in particular Φ = ∇Hg/|∇Hg|H that belongs to W 1,p(X, ν;H) for every
p > 1, we have |Tr Φ|2H ≡ 1 on g∗−1(r), and the right-hand side of (6.10) is equal
to ∫

g∗−1(r)

ϕw∗dρ.

Recalling that divν(ϕΦ) = −Mν∗
p (ϕMνg/‖Mνg‖), the left-hand side is equal to

−
∫
{g<r}

Mν∗
p

(
ϕ

Mνg

‖Mνg‖

)
dν,

which coincides with
∫
X
ϕT (‖Mνg‖)dσg

r by (5.2). �

Since the assumptions on g are the same as in [CeLu14, Fe16], the examples
exhibited in these papers fit here. In particular, functions such as

g(x) =

∞∑
k=1

αk〈x− x0, ek〉2

with αk ≥ 0 for every k, not eventually vanishing, and
∑∞

k=1 αkμk < ∞ satisfy
the assumptions of Lemma 6.1. Therefore, the theory may be applied to spherical
surfaces and surfaces of suitable ellipsoids. The elements of the dual space g(x) =
〈x, v〉 obviously satisfy the assumptions of Lemma 6.1, so that the theory may be
applied to hyperplanes. The hyperplane {x : 〈x, v〉 = r}, with v ∈ X \ {0},
may be seen as the graph of the function ϕ : span {ek : k �= h} �→ R, ϕ(x̃) =
(r −

∑
k 
=h x̃kvk)/vh, if vh �= 0. A generalization to graphs of other functions is in

[CeLu14].
When formula (6.9) holds, Proposition 3.8 is not needed. Since ρr coincides with

the restriction of w∗ρ to g∗−1(r), for ρr to be nontrivial it is sufficient
that w∗(r) �= 0 and that ρ(g∗−1(r)) �= 0. Under the assumptions of Lemma 6.1,
the latter condition holds iff r ∈ (ess inf g, ess sup g) by [DaLuTu14, Lemma 3.9,
Prop. 3.15].
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7. A family of non-Gaussian product measures

For any μ > 0, m ≥ 1, we define the probability measure on R,

(7.1) νm,μ(dξ) := am μ− 1
2m e−

|ξ|2m
2mμ dξ, ξ ∈ R,

where am is a normalization constant such that νm,μ(R) = 1,

am =
(2m)1−

1
2m

2Γ( 1
2m )

.

For every N > 0 we have

(7.2)

∫
R

|ξ|2Nνm,μ(dξ) = amμ− 1
2m

∫
R

|ξ|2Ne−
|ξ|2m
2mμ dξ =: bm,NμN/m,

where

bm,N = am

∫
R

|τ |N/me−
|τ|2m
2m dτ = (2m)

N
m

Γ( 2N+1
2m )

Γ( 1
2m )

.

The measure νm,μ has mean 0 and covariance bm,1μ
1
m . The following integration

by parts formula holds:

(7.3)

∫
R

ϕ′(ξ) νm,μ(dξ) =
1

μ

∫
R

|ξ|2m−2ξϕ(ξ) νm,μ(dξ), ϕ ∈ C1
b (R).

Next, we define a product measure on R
∞, the space of all sequences of real

numbers endowed with the product topology, associated to the distance d(x, y) =∑∞
n=1 2

−n|xn − yn|(1 + |xn − yn|)−1. We set

(7.4) νm =

∞∏
h=1

νm,μh
,

where the sequence of positive numbers (μh) is chosen such as

(7.5) Λm :=

∞∑
h=1

μ
1
m

h < ∞.

As usual, we denote by �2 the space of all sequences (xh) of real numbers such
that

∑∞
h=1 x

2
h < ∞, endowed with the scalar product

〈x, y〉 =
∞∑
h=1

xhyh, x, y ∈ �2.

One checks easily that �2 is a Borel set in R
∞ and that ν is concentrated on �2

because, in view of (7.2),∫
R∞

|x|2	2 ν(dx) =
∞∑
h=1

∫
R

x2
hνm,μh

(dxh) = bm,1

∞∑
k=1

μ
1
m

h < ∞.

So, from now on we may forget R
∞ and consider only �2, identifying it with X

through the mapping x �→ (xh), where xh = 〈x, eh〉 and {eh : h ∈ N} is any fixed
orthonormal basis of X.
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Remark 7.1. It is possible to show νm as an invariant measure of a transition
semigroup Pt, t ≥ 0, on X. Precisely, we consider the family of ordinary stochastic
differential equations, indexed by h ∈ N,

(7.6)

⎧⎨
⎩

dXh = − 1
2μh

|Xh|2m−2Xhdt+ dWh(t),

Xh(0) = xh ∈ R,

where (Wh) is a sequence of real mutually independent Brownian motions defined
in a probability space (Ω,F,P). Each equation has a unique solution Xh(t, xh).
Setting

X(t, x) :=
∞∑
h=1

Xh(t, xh)eh, t ≥ 0, x ∈ X,

one can show that X(t, x), t ≥ 0, is a stochastic process in X. Defining the
corresponding transition semigroup by

Ptϕ(x) := E[ϕ(X(t, x))], ϕ ∈ Cb(X),

it is not difficult to verify that νm is an invariant measure of Pt.

One can check easily that ν has mean 0 and that it possesses finite moments of
any order. The covariance Q of ν is given by

(7.7) Qeh = bm,1 μ
1
m

h eh, h ∈ N.

Notice that if m = 1, then ν1 is the Gaussian measure N0,Q. In this case Qeh =

μh eh, for all h ∈ N, and for all ϕ ∈ C1
b (X), z ∈ Q1/2(X) the classical integration

formula (6.5) holds.
We are going to generalize formula (6.5) to any νm with m ≥ 1.

Proposition 7.2. Let m ≥ 1, ϕ ∈ C1
b (X), z ∈ X. Then

(7.8)

∫
X

〈Q 1
2∇ϕ(x), z〉 νm(dx) =

∫
X

vmz (x)ϕ(x) νm(dx),

where

(7.9) vmz (x) := b
1/2
m,1

∞∑
h=1

μ
1

2m−1

h |xh|2m−2xhzh,

the series being convergent in Lp(X, νm) for every p ∈ (1,+∞). Consequently,
Hypothesis 1.2 is satisfied, with R = Q1/2 and Cp,z = ‖vmz ‖Lp′ (X,ν).

Proof. As a first step, we prove that for every ϕ ∈ C1
b (X), h ∈ N we have

(7.10)

∫
X

∂ϕ

∂eh
(x) νm(dx) = μ

1
2m−1

h

∫
X

|xh|2m−2xhϕ(x) νm(dx).

To this aim we approach ϕ by a sequence of cylindrical functions, ϕn(x) := ϕ(Pnx),
where Pn is the orthogonal projection

Pn(x) =

n∑
k=1

〈x, ek〉ek.

The sequence (ϕn) converges to ϕ in W 1,p(νm) for every p ∈ (1,+∞). Indeed, it
converges in Lp(X, νm) by the Dominated Convergence Theorem, and moreover

Q1/2∇ϕn(x) = Q1/2Pn∇ϕ(Pnx), n ∈ N,
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so that

‖Q1/2∇ϕn −Q1/2∇ϕ‖Lp(X,νm;X)

≤
(∫

X

‖Q1/2(Pn∇ϕ(Pnx)− Pn∇ϕ(x))‖p νm(dx)

)1/p

+

(∫
X

‖Q1/2(Pn∇ϕ(x)−∇ϕ(x))‖p νm(dx)

)1/p

≤ ‖Q1/2‖L(X)

(∫
X

‖∇ϕ(Pnx)−∇ϕ(x)‖p
)1/p

+ ‖Q1/2‖L(X)

(∫
X

‖Pn∇ϕ(x)−∇ϕ(x)‖p νm(dx)

)1/p

,

where both integrals in the right-hand side vanish as n → ∞ by the Dominated
Convergence Theorem.

So, it is enough to prove that (7.10) holds for cylindrical functions of the type
ϕ(x) = ϕ̃(x1, . . . , xn) for some ϕ̃ ∈ C1

b (R
n), n ∈ N. For such functions,∫

X

∂ϕ

∂eh
(x) νm(dx) =

∫
Rn

∂ϕ̃

∂ξh
Πn

k=1νm,μk
(dξ),

and (7.10) is an immediate consequence of (7.3).
Now let ϕ ∈ C1

b (X), z ∈ X. We have∫
X

〈Q 1
2∇ϕ(x), z〉 νm(dx) = lim

n→∞

∫
X

n∑
h=1

b
1/2
m,1μ

1/2m
h

∂ϕ

∂eh
(x)zh νm(dx)

= lim
n→∞

b
1/2
m,1

∫
X

n∑
h=1

μ
1

2m−1

h |xh|2m−2xhϕ(x) zh νm(dx).

To conclude the proof it is enough to show that the series

sn(x) :=

n∑
h=1

μ
1

2m−1

h |x2m−2
h |xh zh

is convergent in L2p(X, νm) for every p ∈ N. Recalling that

(a1 + · · ·+ an)
2p =

∑
k1,...,kn∈{0,...,2p},

∑n
j=1 kj=2p

(2p)!

(k1)! · . . . · (kn)!
ak1
1 · . . . · akn

n

for every l, n ∈ N we get

(sl+n(x)− sl(x))
2p

= (2p)!
∑

k1,...,kn∈{0,...,2p},
∑n

j=1 kj=2p

n∏
j=1

1

(kj)!
μ
( 1
2m−1)kj

l+j |xl+j |(2m−2)kj (xl+jzl+j)
kj .

Integrating with respect to νm, the integrals of the terms with some odd kj vanish.
What remains are the integrals of the terms where all the kj = 2hj are even, and
recalling that∫

X

x
2(2m−1)h1

l+1 · . . . · x2(2m−1)hn

l+n νm(dx) =
n∏

j=1

bm,(2m−1)hj
μ
(2−1/m)hj

l+j
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we get∫
X

(sl+nn(x)− sl(x))
2pνm(dx)

=
∑

h1,...,hn∈{0,...,p},∑n
j=1 hj=p

(2p)!

(2h1)! · . . . · (2hn)!

∫
X

n∏
j=1

μ
( 1
2m−1)2hj

l+j |xl+j |2(2m−1)hjz
2hj

l+j dνm

=
∑

h1,...,hn∈{0,...,p},
∑n

j=1 hj=p

(2p)!

(2h1)! · . . . · (2hn)!

n∏
j=1

bm,(2m−1)hj
z
2hj

l+j

≤ cm,p

( n∑
j=1

z2l+j

)p

,

where cm,p = (max{bm,(2m−1)h : h = 0, . . . , p})p. So, (sn) is a Cauchy series in

L2p(X, νm). �

Proposition 7.2 yields the following corollary.

Corollary 7.3. Let m ∈ N, and let (7.5) hold. For every ϕ, ψ ∈ C1
b (X), z ∈ X we

have

(7.11)

∫
X

〈Q 1
2∇ϕ(x), z〉ψ(x) νm(dx) = −

∫
X

〈Q 1
2∇ψ(x), z〉ϕ(x) νm(dx)

+

∫
X

vmz (x)ϕ(x)ψ(x) νm(dx).

In particular,∣∣∣∣
∫
X

〈Q 1
2∇ϕ(x), z〉 νm(dx)

∣∣∣∣ ≤ ‖ϕ‖Lp(X,νm)‖vmz ‖Lp′ (X,νm).

Consequently, Hypothesis 1.1 is satisfied, and all the results of Section 2 hold.
According to the notation of Section 1, we denote by Mp the closure of Q1/2∇ :

C1
b (X) �→ Lp(X, νm;X) in Lp(X, νm) and by W 1,p(νm) the domain of Mp.
We shall show that our surface measures are well defined on hyperplanes and

spherical surfaces. For simplicity, we consider only balls centered at the origin.

7.0.1. Spherical surfaces. Here we take g(x) = ‖x‖2, x ∈ X. Then g is smooth and
{g < r} is the open ball of center 0 and radius

√
r, for r > 0. In this case the vector

field Mg/‖Mg‖2 in Hypothesis 1.3 is given by

Ψ(x) =
Q1/2x

2‖Q1/2x‖2 .

We have to prove that Ψ ∈ D(M∗
p ) for every p > 1. We approach it by the

sequence of vector fields Sn(x) =
∑n

h=1〈Ψ(x), eh〉eh that are sums of vector fields
of the type considered in Lemma 2.6, with

fh(x) = 〈Ψ(x), eh〉 = b
1/2
m,1μ

1/2m
h xk/2‖Q1/2x‖2.

We use the following lemma.
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Lemma 7.4.

(i) The function x �→ ‖Q1/2x‖−1 belongs to Lq(X, νm) for every q > 1.
(ii) For every k ∈ N, the function ϕk(x) := xk/‖Q1/2x‖2 belongs to W 1,q(νm)

for every q > 1, and

(7.12) Mqϕk =
∞∑
h=1

b
1/2
m,1μ

1/2m
h

(
δh,k

‖Q1/2x‖2 − bm,1μ
1/m
h xhxk

(‖Q1/2x‖2)2

)
eh.

Proof. The proof of statement (i) is the same as in the Gaussian case m = 1 and it
is left to the reader.

Let us prove statement (ii). We approach ϕk by the functions

ϕk,n(x) =
xk

‖Q1/2x‖2 + 1/n
,

which belong to C1
b (X) and which are easily seen to converge to ϕk in Lq(X, νm)

for every q > 1, taking (i) into account. Moreover we have

〈Q1/2∇ϕk,n(x), eh〉 = b
1/2
m,1μ

1/2m
h

(
δh,k

‖Q1/2x‖2 + 1/n
− bm,1μ

1/m
h xhxk

(‖Q1/2x‖2 + 1/n)2

)
, h ∈ N.

Denoting by F the vector field in the right-hand side of (7.12) and using again (i),
we see that limn→∞ ‖Q1/2∇ϕk,n−F‖ = 0 in Lq(X, νm) for every q > 1. Statement
(ii) follows. �

Proposition 7.5. The function g(x) = ‖x‖2 satisfies Hypothesis 1.3, and Mg ∈
W 1,q(X, νm;X) for every q > 1.

Proof. By Lemma 7.4 and Lemma 2.6, for every k ∈ N the vector field fk(x)ek
belongs to D(M∗

p ) for every p > 1, and by (2.9) we have

M∗
p (fkek) = −bm,1μ

1/m
k

2

(
1

‖Q1/2x‖2 − 2bm,1
μ
1/m
k x2

k

‖Q1/2x‖4

)
+

bm,1

2

μ
1/m−1
k |xk|2m
‖Q1/2x‖2 .

Therefore, the series Sn(x) =
∑n

h=1 fk(x)ek converges pointwise to

(7.13)
1

2

(
− Tr Q

‖Q1/2x‖2 +
2‖Q2x‖2
‖Q1/2x‖4

)
+

bm,1

2‖Q1/2x‖2
∞∑
k=1

μ
1/m−1
k |xk|2m,

where the series
∑∞

k=1 μ
1/m−1
k x2m

k converges in Lq(X, νm) for every q > 1, since

(
∫
X
|xk|2mqνm(dx))1/q = b

1/q
m,mqμk. By Lemma 7.4(i), x �→ 1/‖Q1/2x‖2 ∈ Ls(X, νm)

for every s > 1. Therefore, (Sn) converges to the right-hand side of (7.13) in
Lp(X, νm) for every p > 1. So, Ψ ∈ D(M∗

p ) and

(7.14) M∗
pΨ =

1

2

(
− Tr Q

‖Q1/2x‖2 +
2‖Q2x‖2
‖Q1/2x‖4

)
+

bm,1

2‖Q1/2x‖2
∞∑
k=1

μ
1/m−1
k x2m

k .

Hypothesis 1.3 is so fulfilled. Moreover, the vector field Mg(x) = 2Q1/2x belongs

to W 1,q(X, νm;X) for every q > 1, since every component fi(x) = 2b
1/2
m,1μ

1/2m
i xi

is in W 1,p(νm), and
∑∞

i=1 ‖Mqfi(x)‖2 = 4b2m,1

∑∞
i=1 μ

1/m
i is a real constant by

assumption (7.5). Therefore, the assumptions of Proposition 5.3 are satisfied. �



SURFACE INTEGRALS FOR GENERAL MEASURES IN HILBERT SPACES 5829

For every r > 0, let σg
r be the measure given by Theorem 3.4. Setting

ρr(dx) := 2‖Q1/2x‖σg
r (dx),

formula (4.7) reads as∫
B(0,r)

〈Mpϕ, F 〉 dνm =

∫
B(0,r)

ϕM∗
pF dνm+

∫
∂B(0,r)

T

(
ϕ〈F (x),

Q1/2x

‖Q1/2x‖〉
)
ρr(dx),

for every F ∈ D(M∗
p ), ϕ ∈ W 1,q(νm) with q > p. In particular, for a constant

vector field F (x) ≡ z and ϕ ∈ C1(X) ∩W 1,q(X, νm) for some q we get∫
B(0,r)

〈Q1/2∇ϕ, z〉 dνm =

∫
B(0,r)

ϕWm
z dνm +

∫
∂B(0,r)

ϕ〈z, Q1/2x

‖Q1/2x‖〉 ρr(dx).

7.0.2. Hyperplanes. We take here g(x) = 〈x, a〉 where a ∈ X \ {0} is fixed. Then

∇g(x) = a, x ∈ X,

and the vector field Ψ(x) = Mg(x)/‖Mg(x)‖2 of Hypothesis 1.3 is constant, equal
to

Ψ(x) =
Q1/2a

‖Q1/2a‖2 , x ∈ X.

By Proposition 7.2, Hypothesis 1.2 is satisfied, and therefore Ψ ∈ D(M∗
p ) for every

p ∈ (1,+∞). By (7.9) it follows that

(7.15) M∗
p (Ψ)(x) =

vQ1/2a(x)

‖Q1/2a‖2 =
bm,1

‖Q1/2a‖2
∞∑
h=1

μ
−1+1/m
h |xh|2m−2xhah.

Therefore, g satisfies Hypothesis 1.3. Since Mg is constant, it belongs to all
W 1,q(νm) spaces, and also the hypotheses of Proposition 5.3 are satisfied. The
normalized surface measure ρr on the hyperplane {x : 〈x, a〉 = r} is now

ρr(dx) = ‖Q1/2a‖σg
r (dx),

for every r ∈ R, where σg
r is the measure given by Theorem 3.4. Formula (4.7)

reads as∫
{x: 〈x,a〉<r}

〈Mpϕ, F 〉 dνm

=

∫
{x: 〈x,a〉<r}

ϕM∗
pF dνm +

∫
{x: 〈x,a〉=r}

T

(
ϕ〈F (x),

Q1/2a

‖Q1/2a‖〉
)
ρr(dx),

for every F ∈ D(M∗
p ), ϕ ∈ W 1,q(νm) with q > p. In particular, for a constant

vector field F (x) ≡ z and ϕ ∈ C1(X) ∩W 1,q(νm) for some q we get∫
{x: 〈x,a〉<r}

〈Q1/2∇ϕ, z〉 dνm

=

∫
{x: 〈x,a〉<r}

ϕWm
z dνm + 〈z, Q1/2a

‖Q1/2a‖〉
∫
{x: 〈x,a〉=r}

ϕρr(dx).
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8. Some invariant measures of SPDEs

Here we consider the invariant measures of a stochastic reaction–diffusion equa-
tion (section 8.1) and of the stochastic Burgers equation (section 8.2) in the space
X = L2(0, 1). We shall show that surface integrals can be defined in both cases on
smooth surfaces such as spherical surfaces and hyperplanes of X.

Such equations look like

(8.1)

⎧⎨
⎩

dX(t) = [AX(t) + f(X(t))]dt+ (−A)−γ/2dW (t),

X(0) = x,

with γ ∈ [0, 1). In both cases, A is the realization of the second order derivative in
X = L2(0, 1) with Dirichlet boundary conditions

D(A) = H2(0, 1) ∩H1
0 (0, 1), Ax(ξ) = x′′(ξ).

W is an X-valued cylindrical Wiener process, and f is a suitable function: either

it is the composition with a polynomial, f(x)(ξ) =
∑d

k=0 ak(x(ξ))
k, or f(x)(ξ) =

x(ξ)x′(ξ) for x ∈ H1(0, 1), ξ ∈ (0, 1).
We consider the complete orthonormal system in X given by

{eh(ξ) :=
√
2 sin(hπξ), h ∈ N},

consisting of eigenfunctions of A, since

Aeh = −h2π2eh =: −αheh, h ∈ N.

We recall that D((−A)β) = H2β(0, 1) ∩H1
0 (0, 1) for all β ∈ (1/2, 1].

As in the previous section we set

xh := 〈x, eh〉, x ∈ X, h ∈ N,

and for every n ∈ N we denote by Pn the orthogonal projection on the subspace
generated by e1, . . . , en, namely

(8.2) Pnx :=
n∑

h=1

xheh.

Moreover, we consider the space EA(X), consisting of the linear span of real and
imaginary parts of the functions x �→ ei〈x,y〉 with y ∈ D(A).

The following approximation lemma will be used in both examples.

Lemma 8.1. Let h ∈ N ∪ {0}. For every ϕ ∈ Ch
b (R

n) there exists a sequence
of trigonometric polynomials ϕk (namely, functions in the linear span of real and
imaginary parts of the functions x �→ exp(i〈x, a〉Rn), with a ∈ R

n) such that for
every multi-index α with 0 ≤ |α| ≤ h we have

(i) limk→∞ Dαϕk(x) = Dαϕ(x), for every x ∈ R
n,

(ii) ‖Dαϕk‖∞ ≤ C‖Dαϕ‖∞,

where the constant C depends only on h and n.

Proof. The result is classical for functions that are periodic in each variable. Indeed,
if ϕ is 1-periodic in all the variables we can take the convolutions with the Fejer
kernels,

ϕN (x) =

∫
[−1/2,1/2]n

KN (y)ϕ(x− y)dy, N ∈ N,
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with

KN (y) =
n∏

j=1

1

N + 1

(
sinπ(N + 1)yj

sin πyj

)2

, N ∈ N.

Then, ‖KN‖L1([−1/2,1/2]n) = 1 for every N , and DαKN ∗ϕ = KN ∗Dαϕ converges
uniformly to Dαϕ, for |α| ≤ h. In this case, the constant C is 1. See, e.g.,
[DS58, Exercise 73] or [So84] for detailed proofs.

If ϕ is T -periodic in all variables, the convolutions over [−T/2, T/2]n with the
rescaled Fejer kernels KN,T (y) := KN (y/T )/Tn make the same job. The constant
C is still 1.

If ϕ is not periodic, there exists a sequence (ϕk) of smooth functions with com-
pact support that satisfy (i) and (ii). In its turn, the restriction of each ϕk to its
support may be approximated by a sequence of trigonometric polynomials (P k

h ),
considering any extension of ϕk|suppϕk

which is periodic in each variable and using

the first part of the proof. The diagonal sequence (P k
k ) is the sequence that we are

looking for. �

8.1. Reaction-Diffusion equations. Here we consider problem (8.1) where f(x)
is the composition of a decreasing polynomial of odd degree d greater than 1 with
x,

f(x)(ξ) =

d∑
k=1

ak(x(ξ))
k, x ∈ X, ξ ∈ (0, 1).

It is well known that for every x ∈ X equation (8.1) has a unique generalized
solution and that the associated transition semigroup T (t) defined by

(T (t)ϕ)(x) := E[ϕ(X(t, x))], ϕ ∈ Cb(X), t ≥ 0,

possesses a unique invariant measure νR; see, e.g., [DP04, Ch. 4]. So, T (t) may be
extended to a contraction semigroup Tp(t) to all spaces Lp(X, νR), p ∈ [1,+∞).

For γ = 0 the measure νR is an explicit weighted Gaussian measure,

νR(dx) =
1

Z
e2U(x)N0,Q(dx),

where N0,Q is the Gaussian measure with mean 0 and covariance Q = −A−1/2, the
function U is defined by

U(x) =

⎧⎪⎪⎨
⎪⎪⎩

−
∫ 1

0

f(x)dξ, x ∈ Ld(0, 1),

−∞, x /∈ Ld(0, 1),

and Z =
∫
X
e2UdN0,Q. See [DaLu14, Sect. 5]. Since U , e2U ∈ W 1,p(X,N0,Q) for

every p > 1 by [DaLu14, Sect. 5], νR is one of the measures considered in Section
6.

For γ > 0, νR is not explicit.
The following result is proved in [DaDe17, Thm. 1.2] for δ < 1 − γ, and in

[DaDe17, Thm. 10] for δ = 1− γ.
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Theorem 8.2. Let δ ∈ (0, 1− γ], p ∈ (1,∞). Then there exists Cp > 0 such that
for all ϕ ∈ C1

b (X) we have

(8.3)

∣∣∣∣
∫
X

〈∇ϕ(x), h〉 νR(dx)
∣∣∣∣ ≤ Cp‖ϕ‖Lp(X,νR) ‖h‖H1+δ+γ(0,1),

h ∈ H1+δ+γ(0, 1) ∩H1
0 (0, 1).

Setting h = (−A)−(1+δ+γ)/2k with k ∈ X, formula (8.3) may be rewritten as∣∣∣∣
∫
X

〈(−A)−(1+δ+γ)/2∇ϕ(x), k〉 νR(dx)
∣∣∣∣ ≤ Cp‖ϕ‖Lp(X,νR) ‖k‖, k ∈ X.

Therefore, fixing any β ∈ ((1+γ)/2, 1], Hypothesis 1.2 is fulfilled with R = (−A)−β.
With this choice of R, Hypothesis 1.1 too is fulfilled, and we can consider the
operators Mp and their adjoint operators M∗

p described in Sections 1, 2 for p ∈
(1,+∞). We do not know whether Hypothesis 3.6 holds.

To define surface measures on the level sets of a function g : X �→ R, we need that
g satisfies Hypothesis 1.3. If g : X �→ R is a twice Fréchet differentiable function,
the vector field Ψ in formula (3.1) is given by

(8.4) Ψ(x) =
(−A)−β∇g(x)

‖(−A)−β∇g(x)‖2 =
1

‖(−A)−β∇g(x)‖2
∞∑
h=1

α−β
h ∂ehg(x)eh, x ∈ X.

We present below two examples of smooth functions g that satisfy Hypothesis
1.3, namely such that g ∈ W 1,p(νR) and Ψ ∈ D(M∗

p ) for every p > 1.

8.1.1. Spherical surfaces. Let g(x) := ‖x‖2. Theorem 4.20 of [DP04] and the Hölder
inequality yield g ∈ Ld(X, νR), where d is the degree of f . The arguments of [DP04]
can be easily carried on to improve this result.

Lemma 8.3.

(i) νR(L
q(0, 1)) = 1 for every q ≥ 2;

(ii) x �→ ‖x‖2 ∈ Lp(X, νR) for every p > 1.

Proof. We follow the proof of Theorem 4.20 of [DP04], replacing 2d by 2m with
m ∈ N, and obtaining

(8.5)

∫
X

‖x‖2mL2m(0,1)νR(dx) < ∞, m ∈ N.

Therefore, the function x �→ ‖x‖L2m(0,1) has finite values νR-a.e., namely

νR(L
2m(0, 1)) = 1 for every m ∈ N, which is statement (i). By the Hölder inequal-

ity, ‖x‖X ≤ ‖x‖L2m(0,1) for every x ∈ L2m(0, 1), and statement (ii) follows. �

Lemma 8.3 yields that g ∈ Lp(X, ν) for every p > 1.
As we mentioned in the Introduction, the verification of Hypothesis 1.3 will be

reduced to checking that ‖Mg(·)‖−1 belongs to Lp(X, ν) for every p > 1. In this
case, ‖Mg(x)‖−1 = (2‖(−A)−βx‖)−1, and the p-summability of this function is not
obvious.

To begin with, we prove that suitable smooth cylindrical functions belong to the
domain of the infinitesimal generator L of T2(t). This will be used to get estimates
through the equality

∫
X
LϕdνR = 0, which holds for every ϕ ∈ D(L).
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Lemma 8.4. For every n ∈ N and θ ∈ C2
b (R

n) the function ϕ(x) := θ(〈x, e1〉, . . . ,
〈x, en〉) belongs to the domain of the infinitesimal generator L of T2(t), and

(8.6)

Lϕ(x) =
1

2
Tr [(−A)−γD2ϕ] + 〈x,A∇ϕ(x)〉+ 〈f(x),∇ϕ(x)〉

=
1

2

n∑
h=1

α−γ
h

∂2θ

∂ξ2h
(x1, . . . , xn)−

n∑
h=1

αhxh
∂θ

∂ξh
(x1, . . . , xn)

+

n∑
h=1

〈f(x), eh〉
∂θ

∂ξh
(x1, . . . , xn).

Proof. By [DP04, Thm. 4.23], L is the closure of the operator L0 : EA(X) �→
L2(X, νR) defined by L0ψ(x) =

1
2 Tr [(−A)−γD2ψ] + 〈x,A∇ψ(x)〉+ 〈f(x),∇ψ(x)〉

for ψ ∈ EA(X). To prove that ϕ ∈ D(L) it is sufficient to approach ϕ by a sequence
(ψk) of elements of EA(X) in L2(X, νR), such that the sequence L0ψk converges in
L2(X, νR).

By Lemma 8.1 there exists a sequence of trigonometric polynomials (θk) such
that θk and its first and second order derivatives converge pointwise to θ and to
its first and second order derivatives, respectively, and moreover ‖θk‖C2

b (R
n) ≤ C

independent of k. We set

(8.7) ψk(x) = θk(x1, . . . , xn), k ∈ N, x ∈ X.

Then ψk ∈ EA(X) for every k ∈ N, and it is not hard to see that the sequence
(L0ψk) converges to the function in the right-hand side of (8.6) in L2(X, νR). �

Proposition 8.5. If γ ≤ 1/2, x �→ ‖(−A)−βx‖−1 ∈ Lp(X, νR) for every p > 1.

Proof. Recalling that the sequence (αn) is increasing, for every n ∈ N we estimate

1

‖(−A)−βx‖2 ≤ 1

‖(−A)−βPnx‖2
≤ α2β

n

‖Pnx‖2
,

where Pn is the projection on span e1, . . . , en defined in (8.2). So, it is enough to
show that for every k ∈ N there exists n ∈ N such that

(8.8) x �→ 1

‖Pnx‖2
∈ Lk+1(X, νR).

We shall show that (8.8) holds for large enough n. To this aim we approach
1/‖Pnx‖2 by the smooth functions

ϕε(x) :=
1

(ε+ ‖Pnx‖2)k
, x ∈ X,

that belong to the domain of the infinitesimal generator L of the transition semi-
group by Lemma 8.4. For every h, h1, h2 ∈ X we have

〈∇ϕε(x), h〉 = − 2k〈Pnx, Pnh〉
(ε+ ‖Pnx‖2)k+1

and

D2ϕε(x)(h1, h2) = −2k
〈Pnh1, Pnh2〉

(ε+ ‖Pnx‖2)k+1
+ 4k(k + 1)

〈Pnx, Pnh1〉 〈Pnx, Pnh2〉
(ε+ ‖Pnx‖2)k+2

.
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Therefore,

1

2
Tr [(−A)−γD2ϕε(x)] = −

k
∑n

j=1 α
−γ
j

(ε+ ‖Pnx‖2)k+1
+ 2k(k + 1)

‖(−A)−γ/2Pnx‖2
(ε+ ‖Pnx‖2)k+2

.

So, (8.6) yields

(8.9)

Lϕε(x) = −
k
∑n

j=1 α
−γ
j

(ε+ ‖Pnx‖2)k+1
+ 2k(k + 1)

‖(−A)−γ/2Pnx‖2
(ε+ ‖Pnx‖2)k+2

− 2k〈APnx, x〉
(ε+ ‖Pnx‖2)k+1

− 2k〈Pnx, f(x)〉
(ε+ ‖Pnx‖2)k+1

.

Since νR is invariant we have ∫
X

Lϕε(x) νR(dx) = 0,

and therefore

(8.10)

k
n∑

j=1

α−γ
j

∫
H

1

(ε+ ‖Pnx‖2)k+1
νR(dx)

= 2k

∫
H

‖(−A)1/2Pnx‖2
(ε+ ‖Pnx‖2)k+1

νR(dx)

− 2k

∫
H

〈Pnx, f(x)〉
(ε+ ‖Pnx‖2)k+1

νR(dx)

+ 2k(k + 1)

∫
H

‖(−A)−γ/2Pnx‖2
(ε+ ‖Pnx‖2)k+2

νR(dx)

=: I1 + I2 + I3.

Let us estimate I1. Since (αn) is an increasing sequence,

‖(−A)1/2Pnx‖2 ≤ αn‖Pnx‖2 ≤ αn(ε+ ‖Pnx‖2),

and using the Hölder and Young inequalities we obtain that for any δ > 0 there is
C1(δ, k, n) such that
(8.11)

|I1 ≤ 2kαn

∫
X

1

(ε+ ‖Pnx‖2)k
νR(dx) ≤ 2kαn

(∫
X

1

(ε+ ‖Pnx‖2)k+1
νR(dx)

) k
k+1

≤ C1(δ, k, n) + δ

∫
X

1

(ε+ ‖Pnx‖2)k+1
νR(dx).

Let us estimate I2. Since

|〈Pnx, f(x)〉| ≤ ‖Pnf(x)‖ ‖Pnx‖ ≤ ‖f(x)‖ (ε+ ‖Pnx‖2)1/2,
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arguing as before and taking (8.5) into account, we see that for any δ > 0 there is
C2(δ, k) such that
(8.12)

|I2| ≤ 2k

∫
X

‖Pnf(x)‖
(ε+ ‖Pnx‖2)k+1/2

νR(dx)

≤ 2k

(∫
X

‖f(x)‖2k+2 νR(dx)

) 1
2k+2

(∫
X

1

(ε+ ‖Pnx‖2)k+1
νR(dx)

) 2k+1
2k+2

≤ C2(δ, k) + δ

∫
X

1

(ε+ ‖Pnx‖2)k+1
νR(dx).

To estimate I3 we recall once again that (αn) is an increasing sequence, so that

‖(−A)−γ/2Pnx‖2 ≤ α−γ
1 ‖Pnx‖2. Then

(8.13) |I3| ≤
2k(k + 1)

αγ
1

∫
X

1

(ε+ ‖Px‖2)k+1
νR(dx).

Estimates (8.11)–(8.13) yield
(8.14)

k
n∑

j=1

α−γ
j

∫
X

νR(dx)

(ε+ ‖Pnx‖2)k+1
≤ C1(δ, k, n) + C2(δ, k)

+

(
2k(k + 1)

αγ
1

+ 2δ

)∫
X

νR(dx)

(ε+ ‖Pnx‖2)k+1
.

Since γ ≤ 1/2, the series sn =
∑n

j=1 α
−γ
j is divergent (recall that αj = π2j2). Now

we choose n and δ such that

k
n∑

j=1

α−γ
j >

2k(k + 1)

αγ
1

+ 2δ

and we conclude that there exists M > 0, independent of ε, such that

(8.15)

∫
X

1

(ε+ ‖Pnx‖2)k+1
νR(dx) ≤ M.

Letting ε → 0 concludes the proof. �

With the aid of Lemma 8.3 and Proposition 8.5 we prove the main result of this
section.

Proposition 8.6. If 0 ≤ γ ≤ 1/2, the function g(x) = ‖x‖2 satisfies Hypothesis
1.3.

Proof. g is smooth and it belongs to Lp(X, νR) for every p > 1 by Lemma 8.3(ii).
Moreover, (−A)−β∇g(x) = 2(−A)−βx for every x ∈ X, and since ‖(−A)−βx‖ ≤
π−2β‖x‖, still by Lemma 8.3(ii) x �→ ‖(−A)−β∇g(x)‖ ∈ Lp(X, νR) for every p > 1.
By Lemma 2.4, g ∈ W 1,p(νR) for every p > 1.

It remains to prove that the vector field Ψ in formula (3.1) belongs to D(M∗
p )

for every p > 1. It is given by (see (8.4))

(8.16) Ψ(x) =
(−A)−βx

2‖(−A)−βx‖2 = lim
n→∞

Ψn(x),
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where

Ψn(x) =

n∑
h=1

α−β
h xh

2‖(−A)−βx‖2 eh =:

n∑
h=1

ψh(x)eh.

Approaching every ψh by the C1
b functions ψh,ε(x) := α−β

h xh/2(‖(−A)−βx‖2 + ε)
and using Proposition 8.5, one sees easily that ψh belongs to W 1,p(νR) for every
p > 1, and

〈Mψh(x), eh〉 = α−2β
h /2‖(−A)−βx‖2 − α−4β

h x2
h/‖(−A)−βx‖2.

By Lemma 2.6, Ψn belongs to D(M∗
p ) for every p > 1, and by (2.9) we get

(8.17) M∗
pΨn(x) = −

n∑
h=1

α−2β
h

2‖(−A)−βx‖2 +
n∑

h=1

α−4β
h x2

h

2‖(−A)−βx‖4 +
n∑

h=1

α−β
h xhveh(x)

2‖(−A)−βx‖2 .

Recalling that the series
∑n

h=1 α
−2β
h converges, that ‖veh‖Lp′ (X,νR) is bounded by

a constant independent of h, and using Lemma 8.3 and Proposition 8.5, we easily
deduce that (M∗

pΨn) converges in Lp′
(X, νR), for every p > 1. Therefore, Ψ ∈

D(M∗
p ) for every p > 1, and Hypothesis 1.3 is satisfied. �

8.1.2. Hyperplanes. Let g(x) = 〈x, b〉, where b ∈ X \ {0}. g is smooth, it has
constant gradient, and Mg(x) = (−A)−βb (constant). Therefore, g belongs to
all spaces W 1,p(νR), for p > 1, by Lemmas 8.3 and 2.4. The vector field Ψ =
Mg/‖Mg‖2 is also constant and it is given by

Ψ(x) =
(−A)−βb

‖(−A)−βb‖2 , x ∈ X.

Since Hypothesis 1.2 is satisfied, Ψ belongs to D(M∗
p ) for every p > 1, and we have

M∗
pΨ =

v(−A)−βb

‖(−A)−βb‖2 .

Therefore, g satisfies Hypothesis 1.3.

8.2. Burgers equation. We are concerned with the stochastic differential equa-
tion (8.1) with γ = 0 and

f(x) = 2xx′, x ∈ H1
0 (0, 1),

where the prime denotes the weak derivative. It is well known that for every
x ∈ X, equation (8.1) has a unique mild solution and that the associated transition
semigroup P (t), defined on Cb(X) by

P (t)ϕ(x) := E[ϕ(X(t, x))], t ≥ 0, x ∈ X,

possesses a unique invariant measure νB; see, e.g., [DPZ96, Thm. 14.4.4]. So, P (t)
may be extended to a strongly continuous semigroup Pp(t) in Lp(X, νB), for every
p ≥ 1.

A result analogous to Theorem 8.2 was proved in [DaDe16, Thm. 2].

Theorem 8.7. For any p > 1, δ > 0, there exists C > 0 such that for all ϕ ∈ C1
b (X)

and all h ∈ H1+δ(0, 1) ∩H1
0 (0, 1), we have

(8.18)

∣∣∣∣
∫
X

〈Dϕ(x), h〉 νB(dx)
∣∣∣∣ ≤ C‖ϕ‖Lp(X,νB) ‖h‖H1+δ(0,1).
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As in Section 8.1, it follows that Hypotheses 1.1 and 1.2 are fulfilled with R =
A−β for all β ∈ (1/2, 1). Also in this case, we do not know whether Hypothesis 1.3
holds. And also in this case we are going to show that our theory fits to spherical
surfaces and to hyperplanes. The proofs are similar to the proofs in Section 8.1 and
we only sketch them.

Let g(x) := ‖x‖2. It was proved in [DaDe07, Prop. 2.3] that

(8.19)

∫
X

‖x‖kLq(0,1) νB(dx) < +∞, k ∈ N, q ≥ 2.

It follows that νB(L
q(0, 1)) = 1 for every q ≥ 2 and that g ∈ Lp(X, νB) for every

p > 1. To prove that g satisfies Hypothesis 1.3, we argue as in Proposition 8.6. First,
we remark that g ∈ W 1,p(νB) for every p > 1 by (8.19) and Lemma 2.4. Second, the
vector field Ψ = Mg/‖Mg‖2 is still given by formula (8.16). Proving that it belongs
to D(M∗

p ) for every p > 1 amounts to showing that x �→ ‖(−A)−βx‖−2 belongs to
Lp(X, νB) for every p > 1. This can be proved as in the case of reaction-diffusion
equations, with the aid of the following lemma.

Lemma 8.8. For every n ∈ N and θ ∈ C2
b (R

n) the function ϕ(x) := θ(x1, . . . , xn)
belongs to the domain of the infinitesimal generator N of P2(t), and

(8.20)

Nϕ(x) = 1
2 Tr [D2ϕ] + 〈x,A∇ϕ(x)〉+ 〈x2, (∇ϕ(x))′〉

=
1

2

n∑
h=1

∂2θ

∂ξ2h
(x1, . . . , xn)−

n∑
h=1

αhxh
∂θ

∂ξh
(x1, . . . , xn)

−
n∑

h=1

∂θ

∂ξh
(x1, . . . , xn)〈x2, e′h〉.

Proof. By [DaDe07, §4.1], N is the closure of the operator N0 : EA(X) �→ L2(X, νR)
defined by N0ψ(x) =

1
2 Tr [D2ψ] + 〈x,A∇ψ(x)〉 − 〈x2, (∇ψ(x))′〉 for ψ ∈ EA(X).

In fact, N0ψ(x) is formally defined by

N0ψ(x) =
1

2
Tr [D2ψ] + 〈x,A∇ψ(x)〉+ 〈2xx′,∇ψ(x)〉,

which is meaningful for x∈H1(0, 1). However, we do not know whether νB(H
1(0, 1))

= 1 so that the scalar product 〈2xx′,∇ψ(x)〉 has to be rewritten in the more con-
venient way 〈x2, (∇ψ(x))′〉, obtained just integrating by parts.

As in Lemma 8.4, we approach ϕ by a sequence (ψk) of elements of EA(X)
in L2(X, νB), such that the sequence L0ψk converges in L2(X, νB). (ψk) is the
sequence defined in (8.7), and it converges to ψ in L2(X, νB) by the Dominated
Convergence Theorem. Moreover,

N0ψk(x) =
1

2

n∑
h=1

∂2θk
∂ξ2h

(x1, . . . , xn)−
n∑

h=1

αhxh
∂θk
∂ξh

(x1, . . . , xn)

−
n∑

h=1

∂θk
∂ξh

(x1, . . . , xn)〈x2, e′h〉,

which converges pointwise to the function in the right-hand side of (8.20). More-
over, |N0ψk(x)| ≤ C‖θ‖C2

b (R
n)(1+‖x‖+‖x‖2), which is in L2(X, νB) by (8.19), and
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again by the Dominated Convergence Theorem the sequence (N0ψk) converges to
the function in the right-hand side of (8.20) in L2(X, νB). �

Proposition 8.9.

x �→ 1

‖(−A)−βx‖2 ∈ Lk+1(X, νB), ∀ k ∈ N.

Proof. We follow the proof of Proposition 8.5. For every n ∈ N we estimate

1

‖(−A)−βx‖2 ≤ 1

‖(−A)−βPnx‖2
≤ αβ

n

‖Pnx‖2
.

Then it is enough to show that for each k ∈ N there is n ∈ N such that

(8.21)
1

‖Pnx‖2
∈ Lk+1(X, νB),

and to this aim we approach 1/‖Pnx‖2(k+1) by the functions

ϕε(x) =
1

(ε+ ‖Pnx‖2)k+1
,

which belong to D(N) by Lemma 8.8. Formula (8.20) (recall that now γ = 0) yields

(8.22)

Nϕε(x) = − kn

(ε+ ‖Pnx‖2)k+1
+ 2k(k + 1)

‖Pnx‖2
(ε+ ‖Pnx‖2)k+2

− 2k〈APnx, x〉
(ε+ ‖Px‖2)k+1

+
2k〈(Pnx)

′, x2〉
(ε+ ‖Px‖2)k+1

.

Since ∫
X

Nϕε(x) νB(dx) = 0

by the invariance of νB, we find that

(8.23)

kn

∫
X

1

(ε+ ‖Pnx‖2)k+1
νB(dx) = 2k

∫
X

‖(−A)1/2Pnx‖2
(ε+ ‖Pnx‖2)k+1

νB(dx)

+2k

∫
X

〈(Pnx)
′, x2〉

(ε+ ‖Pnx‖2)k+1
νB(dx) + 2k(k + 1)

∫
X

‖Px‖2
(ε+ ‖Px‖2)k+2

νB(dx)

=: I1 + I2 + I3.

Estimates of I1 and I3 are identical to the corresponding ones in the proof of
Proposition 8.5 with γ = 0; to estimate I2 we need different arguments. We have

〈x2, (Pnx)
′〉 =

∫ 1

0

(x(ξ))2
n∑

h=1

〈x, eh〉e′h(ξ) dξ

so that

|〈x2, (Pnx)
′〉| ≤

(∫ 1

0

x4dξ

)1/2(∫ 1

0

( n∑
h=1

〈x, eh〉e′h(ξ)
)2

dξ

)1/2

≤ ‖x‖2L4(0,1)Cn‖Pnx‖

≤ ‖x‖2L4(0,1)Cn(ε+ ‖Pnx‖2)1/2,
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and therefore
(8.24)

|I2| ≤ 2kCn

∫
X

‖x‖2L4(0,1)

(ε+ ‖Px‖2)k+1/2
νB(dx)

≤ 2kCn

(∫
X

‖x‖2k+2
L4(0,1) νB(dx)

) 1
2k+2

(∫
X

1

(ε+ ‖Px‖2)k+1
νB(dx)

) 2k+1
2k+2

.

Since
∫
X
‖x‖2k+2

L4(0,1) νB(dx) < ∞ by (8.19), there exists a constant C(k, n) > 0 such

that

(8.25)

|I2| ≤ C(k, n)

(∫
X

1

(ε+ ‖Pnx‖2)k+1
νB(dx)

) 2k+1
2k+2

≤ C(k, n, δ) + δ

∫
X

1

(ε+ ‖Pnx‖2)k+1
νB(dx),

for any δ > 0 and a suitable C(k, n, δ) > 0, by Young’s inequality. The conclusion
follows now as in the proof of Proposition 8.5 . �

The procedure of Subsection 8.1.2 works as well in this case, without any mod-
ification. Therefore, for every b ∈ X \ {0} the function g(x) := 〈x, b〉 satisfies
Hypothesis 1.3.

9. Final remarks and bibliographical notes

9.1. Sobolev spaces. The theory of Sobolev spaces for differentiable measures is
well developed only in the Gaussian case. See [Bo98] for Gaussian measures in
general locally convex spaces, [DPZ02] for Gaussian measures in Hilbert spaces.
Basic results for general differentiable measures are in [Bo10, Ch. 2].

We did not consider the space W 1,1(ν), which is a very special case (even for
Gaussian measures) and would deserve a specific treatment. Together withW 1,1(ν),
spaces of BV functions are still to be thoroughly investigated. Some initial results
are in [RoZhZh15]. The case of weighted Gaussian measures in Hilbert spaces was
considered in [AmDaGoPa12].

Sobolev spaces of functions defined in (smooth) domains rather than in the whole
X are even more puzzling. Even in the case of Gaussian measures the theory is far
from being complete. A major difficulty comes from the lack of a bounded extension
operator from W 1,p(Ω, ν) to W 1,p(ν); see [BoPiSh14] for a counterexample. If X is
a separable infinite dimensional Hilbert space and ν is a nondegenerate Gaussian
measure in X, the existence of a bounded extension operator from W 1,2(B(0, 1), ν)
to W 1,2(ν) is still an open question.

9.2. Surface measures. For a detailed account of the existing literature on surface
measures in infinite dimension, we refer to the survey paper [Bo17].

Hypothesis 1.3 on the defining function g is our main assumption. It could be
replaced by Mg/‖Mg‖2 ∈ D(M∗

p ) for some p, but this would lead to restrictions on
the validity of several results. For instance, in Lemma 3.1 and in all its consequences
we should take ϕ ∈ Lp(X, ν) only with p ≥ p′.

Checking Hypothesis 1.3 in specific examples is reduced to some regularity/sum-
mability assumptions on g, plus summability of ‖Mg‖−p for every p. While the
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regularity and summability properties of Mg can be considered standard conditions
and can be checked in standard ways, to prove that ‖Mg‖−p belongs to L1(X, ν) is
much more difficult. To overcome this difficulty, we could replace the function Fϕ

used throughout the paper by

F̃ϕ(r) =

∫
{g<r}

ϕ(x)‖Mg(x)‖2ν(dx), r ∈ R,

and replace Hypothesis 1.3 by Mg ∈ D(M∗
p ) for every p > 1, as suggested in

[Bo17]. Then, the procedure of Lemma 3.1 yields that the measure (ϕ‖Mg‖ν)◦g−1

is absolutely continuous with respect to the Lebesgue measure, with density

q̃ϕ(r) =

∫
{g<r}

(〈Mpϕ,Mg〉 − ϕM∗(Mg))dν, r ∈ R,

and the procedure of Theorem 3.4 gives a Borel measure σ̃g
r such that F̃ ′

ϕ(r) =∫
X
ϕ(x) σ̃g

r (dx), for every ϕ ∈ Cb(X). However, as for the measures σg
r , these mea-

sures depend explicitly on g and have no intrinsic geometric or analytic meaning.
The geometrically meaningful measure is what we called ρr (see Section 5), and to
obtain it the assumption ‖Mg‖−p ∈ L1(X, ν) for some p seems to be unavoidable.
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Scienze, 53/A, 43124 Parma, Italy

Email address: alessandra.lunardi@unipr.it
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