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AN EXPLICIT WALDSPURGER FORMULA
FOR HILBERT MODULAR FORMS

NICOLAS SIROLLI AND GONZALO TORNARIA

ABSTRACT. We describe a construction of preimages for the Shimura map on
Hilbert modular forms and give an explicit Waldspurger type formula relating
their Fourier coefficients to central values of twisted L-functions. Our con-
struction is inspired by that of Gross and applies to any nontrivial level and
arbitrary base field, subject to certain conditions on the Atkin-Lehner eigen-
values and on the weight.

INTRODUCTION

Computing central values of L-functions attached to modular forms is interest-
ing because of the arithmetic information they encode. These values are related
to Fourier coefficients of half-integral weight modular forms and the Shimura cor-
respondence, as shown in great generality in [Wal81]. For classical modular forms,
explicit formulas of Waldspurger type can be found in [Gro87], [BSP90], [MRVT07],
among other works. In the Hilbert setting there are Waldspurger type formulas
available in [Shi93], [BMOT7]. More explicit formulas for computing central values
in terms of Fourier coefficients can be found in [HI13|] in the case of trivial level
and in [Xuell], where the result is restricted to modular forms of prime power level
over fields with odd class number. In [CST14] the authors give a formula in terms
of heights in the case of parallel weight 2.

In this article we prove a formula relating central values of twisted L-functions
attached to a Hilbert cuspidal newform g to Fourier coefficients of certain modular
forms of half-integral weight, which are constructed explicitly as theta series and
map to g under the Shimura correspondence. Our result applies to any nontrivial
level and arbitrary base field and to a broader family of twists than the one consid-
ered in [Xuell]. In the classical case it is more general than [Gro87] and [BSP90],
where the authors consider prime and square-free levels respectively.

Let g be a normalized Hilbert cuspidal newform over a totally real number field
F, of level 1 C Op, weight 2 + 2k and trivial central character. For each p | ¢
denote by e4(p) the eigenvalue of the p-th Atkin-Lehner involution acting on g, and
let W™ ={p | N : g4(p) = —1}. We make the following hypotheses on W~ and k:

H1. |W~| and [F : Q] have the same parity.

H2. v,(M) is odd for every p € W~.

H3. (-1)k=1.
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For D € F* denote by Lp(s,g9) = L(s,9)L(s,g ® xp) the Rankin-Selberg con-
volution L-function of g by the quadratic character xp associated to the extension
F(v/=D)/F, normalized with center of symmetry at s = 1/2. The main result of
this article is stated in Theorem B3 in the simpler form given by Corollary B.7] it
claims that there exists a Hilbert cuspidal form f of weight 3/2 + k whose Fourier
coefficients A(D, a; f) satisty

cp
Lp(1/2,9) = Figiz MD e £,

for every D such that xp(p) = e4(p) whenever v,(N) is odd and such that the
conductor of yp is prime to 291. Here c¢p and a are, respectively, an explicit
positive rational number and a fractional ideal of F', both depending only on D.
If L(1/2,g9) # 0, then f # 0 and it maps to g under the Shimura correspondence.
Actually, in this case we construct a linearly independent family of preimages for
the Shimura correspondence, as shown in Corollary

A different generalization of Gross’s formula in [MRVT07,Maol2] gets rid of the
restriction on D for classical modular forms of prime level. In future work we will
combine this idea with our methods to obtain a formula without restrictions on D.

This article is organized as follows. In Section [I] we state some basic facts about
the space of quaternionic modular forms. In Section 2] we show how to obtain half-
integral weight Hilbert modular forms out of quaternionic modular forms and give a
formula for their Fourier coefficients in terms of special points and the height pairing
on the space of quaternionic modular forms. In Section [3] we relate central values
of twisted L-functions to the height pairing, using results of [Zha0l] and [Xue(6]
about central values of Rankin L-functions. In Section [ we state an auxiliary result
needed for the proof of the main result of this article, which we give in Section

Notation summary. We fix a totally real number field F of discriminant dg, with
ring of integers Op. We denote by Jr the group of fractional ideals of F', and we
write C1(F') for the class group and hp for the class number. We denote by a the
set of embeddings 7: F — R, and we let Ft ={¢ € F : 7(§) > 0Vr € a}. Given
k= (k.)€ Z* and £ € F, we let & =[], 7(£)*". By p we always denote a prime
ideal of Op, and we use p as a subindex to denote completions of global objects at
p. Given an integral ideal 91 C Op we let w(9) = |{p : p | 91}|. Given p we denote
by m, a local uniformizer at p, and we let v, denote the p-adic valuation.

Given a totally imaginary quadratic extension K/F we let Ok be the maximal
order and let D C Op denote the relative discriminant. We let tx = [OF : O],
and let mg € {1,2} be the order of the kernel of the natural map CI(F') — CI(K).

Given a quaternion algebra B/F we denote by N : B* - F* and T : B —» F
the reduced norm and trace maps, and we use N and 7 to denote other norms
and traces as well. We denote by B = H; B, and Bx = H; By the corresponding
restricted products, and we let By, =[], ., B. Finally, given a level 0t C O, an
integral or half-integral weight k, and a Hecke character x, we denote by My (N, x)
and Sk (91, x) the corresponding spaces of Hilbert modular and cuspidal forms.

1. QUATERNIONIC MODULAR FORMS

Let B be a totally definite quaternion algebra over F. Let (V, p) be an irreducible
unitary right representation of B> /F*, which we denote by (v,7y) — v-~. Let R
be an order of (reduced) discriminant 9 in B. A quaternionic modular form of
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weight p and level R is a function ¢ : B* — V such that for every x € B* the
following transformation formula is satisfied:
pluxy) = ¢(x) - v Vue RX, v e B*.

The space of all such functions is denoted by M, (R). We let £,(R) be the subspace

of functions that factor through the map N : BX — F*. These spaces come
equipped with the action of Hecke operators T,, indexed by integral ideals m C Op,
and given by

Taplx)= > olha),
h€R*\Hpn
where Hy, = {h €R: @FN(h) N Or :m}.
Given z € B>, we let
R,=z'Rz, R,=BnNR, T.=R/O, w,=]|T.

The sets I, are finite since B is totally definite. Let CI(R) = R*\B*/B*. We
define an inner product on M,(R), called the height pairing, by

(p) = D a(e(@),9(z).

2€CI(R)
The space of cuspidal forms S,(R) is defined as the orthogonal complement of
E,(R) with respect to this pairing.

Let N(R) = {z € BX : R, = R} be the normalizer of R in BX. We let
l§ﬂ(R) = R*\N(R)/F*. We have an embedding CI(F) < l%Tl(R) The group
]é\i/l(R), and in particular CI(F'), acts on M, (R) by letting (¢ - 2)(z) = ¢(zx). This
action restricts to S,(R) and is related to the height pairing by the equality

The action of Bil(R) commutes with the action of the Hecke operators. The adjoint
of Ty, with respect to the height pairing is given by ¢ +— Ty - m™L.

The subspaces of M,(R) and S,(R) fixed by the action of CI(F') are denoted
by M,(R,1) and S,(R,1). Let Bil(R) = R*\N(R)/F*. Then Bil(R) acts on
M, (R,1) and S,(R, 1), and we have a short exact sequence

(1.1) 1 —s CI(F) —» Bil(R) — Bil(R) —» 1.

Forms with minimal support. Given x € BX and v € V, let vz € M,(R) be
the quaternionic modular form given by

Pz0(y) = Z v,

YEL: y

where I, , = (B* N x_lﬁxy)/(?;. Note that ¢, , is supported in R*zB*. Fur-
thermore, we have that

(1.2) Puayw = Pz pmy—1 Yu € ﬁx, ~v e B*,
(1.3) Gow 2= 0,15,  VzeBil(R).
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Given ¢ € M,(R), using that ¢(z) € V= for every x € B* we get that

z€CI(R)

Proposition 1.5. Let x € B* and v € V. Then T Qo = ZheHm/ﬁx On-1zv -
Proof. Giveny € B*,let I = (BX Nz~ 'Hy y)/Op. Then
I'= J] Tow= [] Doy
hERX\Hy, h€H, /R
The first decomposition implies that
Topen®) = Y. @eolby)= > > wvy=)Y v-8,
heﬁX\Hm hEﬁX\Hm YEL: hy per
whereas the second decomposition implies that
PR E D DD DRI e DUNCE
h€H /R h€Huy/Rx V€0, —1, 4 Ber

which completes the proof. (Il

Proposition 1.6. Given x,y € B> and v,w €V, we have
<90m7v ) Soy,w> = Z <U e w>
YEL,y

Proof. Since Ty =T}, ,, acts on I, , on the right, using that (p, V) is unitary we get
that

(Pa,0: Pyw) = 5= (o0 (¥), Lyw(¥)) = & Y weaw-p)

Y

a€ly , BeTy
=5 Y Y (wasw)= Y ). 0
o€l , BEL, YEL: y

2. HALF-INTEGRAL WEIGHT MODULAR FORMS AND SPECIAL POINTS

From now on we specify the representation (V,p). Let k = (k.) € Z&,. For
each 7 € a we consider the real vector space W, = B,/F,, with inner ‘product
induced by the totally positive definite quadratic form — A(x) = 4N (z) — T (z)2.
By letting BX/F* act on W, by conjugation we get an orthogonal representa-
tion. This gives naturally an orthogonal representation of B} /FX on Ry [W,] =
Sym"" (Homg (W, R)), the space of homogeneous polynomials on W, of degree k,
with coefficients in R, and hence a unitary representation of B /FX on Cy_[W;] =
Ry, [W:] ®r C. We let Vi, denote the B /F-submodule of Cj_[W;] of harmonic
polynomials with respect to — A. This is, up to isomorphism, the unique irreducible
unitary representation of BX/F of dimension 2k, 4+ 1. We let Vi = @, Vi, ,
and through the embedding B* — BX we get an irreducible unitary representation
(Vk, px) of B*/F*. We denote the corresponding spaces of quaternionic modular
forms by My (R), etc.

Denote by H the complex upper half-plane. Let ep : F x H® — C be the
exponential function given by ep (¢, 2) = exp (21 Y. ., 7(£) 2;). Given z € B,
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let L, C B/F be the lattice given by L, = R, /Op. Given P € Vi, we let ¥, p :
‘H?® — C be the function given by

9o.p(2) = > Py)er(—Aly),2/2).

YyELy
These theta series satisfy
(21) /191:,P - (_1)k19z,P7
(2.2) Doy Py = VP s vz € N(R), v € B*.

The following two propositions extend the results about theta series from [Sir14}
Section 4] to arbitrary weights.

Proposition 2.3. Let © € B* and let P € Vi. Then Uz p € Mga11 (40, x1),
where X1 is the Hecke character associated to the extension F(v/—1)/F. Further-
more, for D € F* U{0} and a € Jp, the D-th Fourier coefficient of 9, p at the
cusp a is given by

(2.4) )\(D,a;ﬁ%p):/\ﬁ S Py,
yEAD,a(x)

where Ap o(z) ={y € a”'L, : A(y) = —D}.

Proof. Let B = {v1,v2,v3} be a basis of B/F such that there exist a;, as, a3 € Jr
satisfying L, = @3:1 a;v;. Let S € GL3(F) be the matrix of the quadratic
form — A with respect to this basis. For each 7 € a write 7(S) = AL A,, with
A; € GL3(R). Then there exist homogeneous harmonic polynomials @, (X) of
degree k; such that
P(y) = H QT(AT T([y]B)) )
TEA

where we denote by [y]s the coordinates of y with respect to the basis B. For each
7 we may assume that Q,(X) = (2L X)*r, with z, € C? such that zL 2, = 0 (see
[fwa97, Theorem 9.1]). Let p, = (A;!2,)%. Then we have that pt 7(S)p, = 0.
Let o : F? — C be the function given by (&) = [],ca(pk 7(S) 7(€))*, so that
P(y) = o([y]s), and let 1 : F? — C be the characteristic function of a; @ as @ as.
Then we have that

Oap(2) = D n(€)o(€)er(€'SE, 2/2).

§EF3
The modularity of ¥, p follows applying [Shi87, Proposition 11.8]. Finally, ([2.4)
follows as in the case k = 0 considered in [Sir14, Proposition 4.4]. ]

The theta series ¥, p defines a linear map ¥ : My (R) — Mg,24k (4N, x1), given
by ¥(pz,p) = Uz p. This map is well-defined by ([4) and (Z2]) and satisfies

I@O)= Y aVre -
2€CI(R)
Note that if hypothesis [H3] does not hold, then ¥ = 0 by ZI)).
Proposition 2.5. The map ¥ is Hecke-linear and satisfies that
p-2z)=9(p) VzeBil(R).
Furthermore, ¥(p) is cuspidal if and only if ¢ is cuspidal.
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Proof. For z € ]j%vil(R) we have, by (L3) and [22), that

"9(9093,13 . Z) = 19((,0271%,13) = 19(‘)01,13) .
The Hecke-linearity was proved in [Sirl4] Theorem 4.11] when k = 0 and can be
proved in the general case following the same lines. The assertion on the cuspidality

was proved in [Sir14] Theorem 4.11] when k = 0, and in the remaining cases follows
from the facts that My (R) = Sk(R) and that every theta series is cuspidal. O

From now on D denotes an element in F*, and we denote K = F(v/—D).
Assume that there exists an embedding K < B, which we fix. Let Pp € Vi be the
polynomial characterized by the property

(2.6) P(w) = (P, Pp) VP e Vi,
where w € K/F is such that A(w) = —D. Note that w is uniquely determined up
to sign. By hypothesis [H3] we have P(—w) = P(w) for every P € Vi, which implies

that Pp does not depend on w. Since (P-a)(w) = P(w) for every a € K*, we have
that

(2.7) Pp-a=Pp Vae K*/F*.

Proposition 2.8. The polynomial Pp satisfies

(2.9) (Pp, Pp) = D* [] s, .
TEa

where for k € Z>o we denote by s the positive rational number given by

|5
B 1 L(k+1/2—q)
(2.10) kT Tk + 1/2) ZO q! (k —2¢)! 220"

q=

Proof. We have that Pp = @
acterized by the property

Pr(w) = (Py,Pp,) VP, eV .

Identifying B, with Hamilton quaternions (1,i,7,ij)p and letting X; = /2,
Xo = j/2, X3 = ij/2, we have that {X;, X2, X3} is an orthonormal basis for
W, with respect to —A. Then the monomials X¢ X} X57~*"% ¢ C,_[W,] are
orthogonal and have norm equal to a!b! (k; — a — b)!, which implies that the inner
product (,) we consider on Vj_ is related to the inner product (,)) considered
in [Geb09, Section 4.1] by (,) = k! {(,)). Hence ([29) follows from the explicit
formulas for the Gegenbauer polynomials given in [Geb09, Proposition 4.1.9], which
imply that

Pp -, where Pp . € Vj,_ is the polynomial char-

TEA

7(D)kr sy,
k! '

Given a € Jp, we say that the pair (—D,a) is a discriminant if there exists
w € K with A(w) = —D such that O @ aw is an order in K. In this case it is
the unique order in K of discriminant Da?, and in particular it does not depend
on w. We denote it by Op . We say that the discriminant (—D, a) is fundamental
it Op,q = Ok.

<<PD,T> PD,T» = 0

Proposition 2.11. Let O be an Op-order in K. Then there exists a unique a € Jp
such that (=D, a) is a discriminant with Op o = O.
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Proof. Let r be an Op-linear retraction for the embedding Op — O, which we
extend to an F-linear map r : K — F. Let w’ € K be any element satisfying
A(w') = =D, and let w = w’ —r(w’). Then, since w ¢ F, we have that kerr = F w.
Hence letting a = (Ow™!) N F we have that O = Or @ aw. Note that the ideal a
is uniquely determined since Da? is the discriminant of O. ]

Proposition 2.12. Let p be a prime ideal. If (—D,a) is a discriminant, then
(=D, pa) is a discriminant, and the converse is true if p12 and D € a=2.

Proof. The first statement is trivial. To prove the converse, assume that Or @ paw
is an order in K, with A(w) = —D. In particular, we have that 7 (w) € (pa)~!
and N (w) € (pa)~2. Since p { 2, there exists £ € O such that 1 — 26 € p. Then,
changing w by w — ¢ T (w), we may assume that 7 (w) € a=!.

By hypothesis we have that A(w) = T (w)? — 4N (w) € a~2. In particular, since
T (w) € a=! we have that 4 N'(w) € a=2. Since p {2 and N(w) € (pa)~2 we have
that A'(w) € a=2, which allows us to conclude that Op @ aw is an order in K. [

Let (=D, a) be a discriminant, and let Xp o = {z € B* . Op.a € R,;}. We
define a set Xp o of special points associated to the discriminant (—D, a) by

Xpo=R\Xpa/K*.

If (—D,a) is not a discriminant, we let Xp = @. Let

1
NMD,a = Z W Pz, Pp € Mx(R),
2€XD,a T YF

where O, = R, N K. This is well-defined by (L2) and 27). When (—D,a) is
fundamental then

(2.13) Ma =1 Y. Purp
IEXD,n

because in this case O, = Ok for every z € Xp 4. It can be proved that np , does
not depend on the choice of the embedding K < B. When there does not exist
such an embedding, we let np o = 0.

Proposition 2.14. Let ¢ € My(R). Let D € F* and let a € Jr. Then the D-th
Fourier coefficient of 9(p) at the cusp a is given by

(2.15) (D, 65 9(9)) = o {9, 1.a)

N(a)
Proof. By ([[4) we can assume that ¢ = ¢, p with P € Vlf””, so that ¥(¢) = U, p.
If K does not embed into B, then Ap o(z) = @ and both sides of ([ZI5) vanish.
Fix w € K with A(w) = —D, and let I’; act on Ap q(x) by conjugation. Given
y € Ap 4(z), since A(y) = A(w), we can assume there exists v € B* such that
y = ywy~ L. In particular Op 4 = Op @ aw. The map y + 2y induces an injection

I\Ap.a(z) — Xpa-
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Note that Stabr, y = (R.NF(y))/Op ~ (R.yNK)/Op = O /O . Note also that
P(y)=(P-v,Pp) = sz<(px7p, P, Pp ), Using that P is fixed by I';. Hence

N@AD,a;0.p)= >  Ply)= Y [::Stabr, yl P(y)
YEAD, a(T) YyETL\Ap,a(x)
w
= 5% (P Pp)
L2 o5
1
= Z T PPy P2,Pp) = (P2, 7ID,a) -
X ., X ) LD ) ’
X O - OF]
Note that in the last sum (@, p, . p,) = 0 unless z = x. O

By analogy with the case F' = Q (see [Koh82]), we consider the plus subspace of
Mg 24k (4, x1), which, under hypothesis [H3] is given by

M;/2+k(4m7><1) = {f € M3/24(49, x1) :

A(D,a; f) =0 unless (—D,a) is a discriminant} ,

and we let S;'/2+k(4‘ﬁ,xl) = ./\/l;/2+k(4‘ﬂ,xl) N S3/24% (491, x1). Using the for-
mula for the action of the Hecke operators in terms of Fourier coefficients (see
[Shi87, Proposition 5.4]) together with Proposition it is easy to prove that
M;'/2+k(4‘ﬁ, X1) is stable by the Hecke operators T}, with p { 2.

Corollary 2.16. The Hecke-linear map ¥ sends My(R) into M;r/2+k(4‘)’t, X1)-

3. HEIGHT AND GEOMETRIC PAIRINGS

We start this section by comparing the geometric pairing on CM-cycles of [Zha01]
(see [Xue(6] for the case of higher weight) with the height pairing introduced in
Section [T}

Let K/F be a totally imaginary quadratic extension. As in Section [2] we assume
that there exists an embedding K < B, which we fix. Furthermore, we assume
Ok CR. Let C = (Ex/ﬁx)/(l(X/FX)7 and let 7 : BX /F* — C be the projection
map. We fix a Haar measure y on Ex/ﬁx. On K*/F* we consider the discrete
measure, and we let i be the quotient measure on C. We write ug = ,u(}A%X / (’3}?)

We consider the space D(C) of CM-cycles on C. These are locally constant
functions on C with compact support. This space comes equipped with the action
of Hecke operators T, given by

(3.1) Twa(z) = HLR / _a(hx)dh.
Hw /Of

Given v € V which is fixed by K*/F*, we let M,, : B*/F* — C be the matrix
coefficient given by v — (v -~,v). Then M, is bi-K*/F*-invariant and satisfies
that M,(vy) = M,(y~1). We call M, a multiplicity function. We let k, : C x C — C

be the map given by
kv(xu y) = Z’yef‘,’ / Mv(’Y)y

where for z,y € B* we denote I',, = (BX Na~'FXR*y)/F*. We consider the

T,y

geometric pairing on D(C) induced by M,, which for o, 8 € D(C) that are left
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invariant by R*/ @; is given by
(32) @B, = ([ a@ B ko) dedy.
CcxC

Lemma 3.3. Let x,y € BX. The natural map 'y — F;) is injective, and

I, = H Ceny-

£eCI(F)

Y

Proof. Let u,v € R* be such that there exists n € F* with z~luyn = 2~ lvy.
Then n = u~'v € F* N R* = Op. This proves the first statement.
It is clear that the union gives all of Fé,y' To see that it is disjoint, suppose that

€, € F* are such that there exist u,v € R* and 5 € F* with z~ éuyn = =~ Cvy.
Then £ 'p=vu~t € F* N R* = O, and hence ¢ = ¢ in CI(F). O
The following result is immediate from this lemma and Proposition
Proposition 3.4. Let z,y € BX. Then k,(z,y) = Yceci(r) (Peaw  Pyv)-
Given a € K*, we let oy € D(C) be the characteristic function of W(ﬁxa) ccC.

Since Ok C R, the CM-cycle «, depends only on the element in C1(K) determined
by a. The same holds for the quaternionic modular form ¢, by (L2]).

Proposition 3.5. Let m C O be an ideal. For a,b € CI(K) we have that
T gy ),
M - t% Z <Tm Péa,vy ¢b7v> .
MR
£eCI(F)
Proof. Using (B)) and (3.2]), we obtain that

x

T as
Motoetile o [ auo) auly) bulasy) dhdedy
KR i JJexe JHy 0
:#//A ~ /  ky(hta,y) dhda dy.
R m(R¥a)xm(R*b) J Hum /OX
Note that
L[ k(hTmydh= Y k(h ')
Hw/Op hEHy /RX

is constant on w(R*a) x w(R*b), and MR/ﬂ(ﬂ(ﬁx)) =|K*/F*n ﬁx/@;| = tg.
Using this and Proposition 3.4l we get that

Infatly 00 SY et =d Y S (onsennona):

=
HR h€Hy /RX £€CU(F) heH,, /R
Then the result follows from Proposition a

Let agx € D(C) be the characteristic function of 7(R* K*). We have that
aKg = 7;;—;( Z Qg .
aeCI(K)
Similarly we define

(3.6) bo=2 > Pan  EM,(RI).

a€CI(K)
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After these definitions and Proposition we get the following result, analogous
to [Xuel@, Corollary 3.5], where the author only considers the case when F' = Q
and 91 is square-free.

Corollary 3.7. Let m C O be an ideal. Then

Tk, m;2
<‘“;<—RK>v = h—:f(Tm1/)va77[}v>-

Central values. Let g be a normalized Hilbert cuspidal newform over F' of level
91 and trivial central character as in the introduction. Write K = F(y/=D) with
D € FT, and denote by xp the Hecke character corresponding to the extension
K/F. We assume that

(3.8) Sp=aU {p N xp(p) ™ = —1}

is of even cardinality. For the rest of this section we let B be the quaternion algebra
ramified exactly at X p. Note that this satisfies the assumption that K embeds into
B.

Let T be a polynomial in the Hecke operators prime to 91 giving the g-isotypical
projection. The following result is [Xue06, Theorem 1.2], which was originally
proved for parallel weight 2 in [ZhaO1].

Theorem 3.9. Assume M C Or and Dk is prime to 201. Then
a2 O (T ax. ax)
N(Dg)1/? PR ’
where C(MN) is the positive rational constant given by

o) = [[Ww) + )N ()=,

p|N

and where {(, ) denotes the geometric pairing in D(C) given in [Xue06, (3.4)].

Remark 3.11. The constant Cy mentioned in [Xue06, Theorem 1.2] contains a wrong
factor, so we refer to [Xue06l (3.65)], The constants pm oy, ta+, and ua appearing
in the latter satisfy

forby, = C(MDk) = C(M) C(Dx ), pa= = C(Dc) pia = 2% .
Using this we obtain (BI0).

Remark 3.12. The proof given in [Xue(] is valid for a particular order in B con-
taining Ok. Since by [Gro88|, Proposition 3.4] any two orders in B containing Ok
are locally conjugate by an element of K* and the right hand side of BI0) is in-
variant by such a conjugation, it follows that Theorem 3.9 holds for any order in B
containing Ok.

Corollary 3.13. Under the hypotheses above, assume that V = Vi as in Section
2, and let Pp € Vi as in (26). Then

Lp(1/2,9) =(9,9) ——

d2'? (k) C(M) m2
ZF GBEE D—Ilf (TyYpy,Vpp) -
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TkT
rea s where for

Here c(k) is the positive rational constant given by c(k) = []
k € Z>o we denote

22k (k1)2
Tk = )
(2k)!
and sy, is given by (210).
Proof. Follows from Corollary B7 Theorem [3.9] and the next lemma. O

Lemma 3.14. Assume that V = Vi as in Section 2 and let Pp € Vi as in (2.0).
Then

=2 ().

Proof. Let Mo, : BX/FX — R denote the multiplicity function considered in
[Xue06l (3.9)]. Note that Mp, factors through B /FJ, since the representation
(px, Vi) does. Furthermore, Mp, and M., are, locally, the matrix coefficient of
the (up to multiplication by scalars) unique vector in Vj_ fixed by the action of
KX/FX: the first claim follows by definition; for the second, see [Xue06, Lemma

3.13]. This implies Mo = q7={5 Mp,.
D

Since ((,)) is defined in the same fashion as (,)p ~but using M instead of
Mp,,, we have that

_ Mo (1)
<<a>> - MPD(l) <a>PD'

Since Moo(1) = [],ca 7, and Mp,(1) = (Pp, Pp), this together with (23) com-
pletes the proof. O

4. A RESULT FOR CERTAIN ORDERS

Assume in this section that R C B is an order of discriminant 91 satisfying that
for every p | 91 the Eichler invariant e(R,) is not zero. If e(R,) = 1, then

(4.1) sz{(,r%cg) : a,b,c,dEOpp},

where 7 = v,(M). If e(R,) = —1 and we let L be the unique unramified quadratic
extension of Fy, then

(4.2) By={(157%) rabea},

where ¢t € {0,1} and 2r +t = v,(M).
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Proposition 4.3. Let p be a prime ideal of F', and let Bil(R,) = Ry \N(R,)/F,*.
(1) Ifpt M, then Bil(Ry) is the trivial group.

(2) Ifp | M, then Bil(Ry) is a group of order two generated by the equivalence

class of an element w, € Ry, N N(Ry,), which, in terms of the identifications

gien by [@I)) and [@2), is given by
0o 1 ‘
(ﬂ.T 0 )7 Zfe(RP):la

(L 5)s ifelRy) =-1.

Proof.
(1) See [Vig80, II.§4, Théoreme 2.3].
(2) See [Hij74, (2.2)] and [Piz76, Proposition 3] for the cases e(R,) = 1 and
e(Rp) = —1 respectively. In the latter the author considers the case when
t = 1, but the proof is valid in the general case. O

From these local facts and (II)) we get the following statement.

Proposition 4.4. The group Bil(R) is isomorphic to [[, 0 Z/2Z, and ﬁfl(R) is a

finite group of order hy 29V

Let D € F*. Let K = F(v/—D). By Proposition EI1] there exists a unique
a € Jr such that (—D,a) is a fundamental discriminant. Since a is determined by
D, we omit it in the subindexes for the rest of this section.

As in Section [Bl we assume that there exists an embedding K < B such that

Ok C R, i.e., such that 1 € X’D. There is a left action of ]§1/1(R) on Xp, induced
by the action of N (ﬁ) on X p by left multiplication. There is also a right action
of CI(K) = (5; \K*/K* on Xp, induced by the action of K* on Xp by right
multiplication.
Lemma 4.5. Let Xp, = {z, € By : Ky Nz, Ryxy = Ok, }.
(1) The action of Og \Ky" on Ry\Xpy is free.
(2) Xpy = N(R,)K; .
Proof.
(1) Let ap € K, and 2, € Xp be such that there exists u, € R, with
Tpay = upzy. Then ap, = xp 'upzy € Ky Ny 'Ry wy, = O, -
(2) Given =, € Xp,, let Q, = xglRpxp. Since R, and @, contain Ok,
and have the same discriminant, by [Gro88|, Proposition 3.4] there exists
ap € K¢ such that a, ' Rpay = Qp. Then z, € N(Ry)ay. O

Lemma 4.6. Letp | N. Let w, € N(Ry) be as in Proposition @3l If w, € Ry K,
then the extension K, /F), is ramified.

Proof. Write w, = upa, with u, € Ry and a, in K. Then a, € Og,. Using
the explicit description of wj, given in Proposition .3 we see that 7, t ap in Of, .
Furthermore, we see that m, | T (ap), N'(ap) in Op,, hence 7, | aj in Ok, . Thus m,
is ramified in K. O

As a consequence of these lemmas and Proposition 3] we obtain the following
result.
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Proposition 4.7. The group CI(K) acts freely on Xp, and the action of Bil(R)
on Xp/ClK) is transitive. Furthermore, the latter action is free if (D : M) = 1.

Let np € Mk(R) be as in (ZI3) and let ¢p, € Mx(R,1) be as in (B.0). We
conclude this section by relating these quaternionic modular forms.

Proposition 4.8. Assume that (D : N) = 1. Then

np = Z Ypp 2.

z€Bil(R)
In particular, np € Mx(R, ]1)1311(1%).

Proof. Since 1 € Xp, using (I3) and Proposition &7 we get that

Z wPD 2= % Z Z Pz=1la,Pp — % Z Pz, Pp = 1D -

z€BIl(R) z€BIil(R) acCI(K) z€Xp

The following statement follows from this result and Proposition [£.4]
Corollary 4.9. Assume that (D : M) = 1. If o € My (R, 1)B) | then
{p1p) = 2V (0, 9pp) -

5. MAIN THEOREM

Let k € 7%, let 91 C O be an integral ideal, and let g € Sz (M, 1) be
a normalized cuspidal newform with Atkin-Lehner eigenvalues gq(p) for p | M, as
in the introduction. Let & denote the set of functions ¢ : {p : p | N} — {£1}
satisfying

(5.1) e =g4(p)  Vp|N.

Note that this set is not empty. This is equivalent to hypothesis [H2l

Given D € F* we let K = F(/—D), and we denote by xp the Hecke character
corresponding to the extension K/F. Given ¢ € & we say that D is of type ¢
when xp(p) = e(p) for all p | M. In particular the conductor of xp is prime to
M. Hypothesis [HIl implies that for such D the sign of the functional equation for
Lp(s,g) equals 1.

Let B be the quaternion algebra over F' ramified exactly at a U W™, which is
possible by hypothesis [HIl Fix ¢ € &, and let R = R. C B be an order with
discriminant 9 and Eichler invariant e(R,) = e(p) for every p | 91. Such order
exists by (5.1 and belongs to the class of orders considered in Section [l

Note that for D of type e the set Xp given in ([B.8]) is precisely the ramification
of B and moreover O C R, as required by Theorem and Corollary

Let 7 be the irreducible automorphic representation of GLy corresponding to
g. For every prime p where B is ramified v,(91) is odd by hypothesis [H2 hence
the local component of 7 at p is square integrable. It follows that there is an
irreducible automorphic representation wg of B* which corresponds to 7 under the
Jacquet-Langlands map.

In |[Gro88l Proposition 8.6] it is shown that R* fixes a unique line in the rep-
resentation space of mg. This line gives an explicit quaternionic modular form
e € Sk(R, 1), which is well-defined up to a constant.
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Lemma 5.2. The quaternionic modular form . is fized by the action of Bil(R).

Proof. Let p be a prime dividing O, and let w, € N(R,) be the generator for
Bil(R,) given in Proposition B3l Since w, has order two and normalizes R*, it
acts on ¢, by multiplication by d, € {£1}.

When B is split at p we have 0, = g4(p), and §, = —e4(p) when B is ramified
at p (for instance, see [Rob89) Theorem 2.2.1]). Thus 6, = 1 for every p | N by our
choice of B, and the result follows since {w, : p | 9} generates Bil(R). O

Let ¢4 be the positive real number given by

ooy G0 el OO
cg =1(9,9) F T o2w(m)

where (g, g) is the Petersson norm of g, ¢(k) is as in Corollary BI3] and C'(N) is as
in Theorem [3.9

Theorem 5.3. Let f. = d(p.) € S;/2+k(4‘ﬁ,xl), For every D € F* of type ¢

such that the conductor of xp s prime to 291 we have

co AD,a fo)?
(5.4) Lp(1/2,9) = ¢y micriza (@e, Pc)

where a € Jr is the unique ideal such that (—D,a) is a fundamental discriminant,
cp s the positive rational number given by cp = mZ2 N (a), and N(D,a; f) is the
D-th Fourier coefficient of f. at the cusp a.

)

Remark 5.5. Hypothesis [HI] implies that the sign of the functional equation for
L(s,g) equals (—1)¥. If hypothesis 3] does not hold, then both sides of (5.4
vanish trivially, since ¥ = 0 and L(1/2,g) = 0. In particular (5.4]) still holds, but it
cannot be used to compute L(1/2,g® xp). This issue will be addressed in a future
work by the authors.

Proof. Let T be the polynomial in the Hecke operators prime to 91 giving the g-
isotypical projection. Let 1p, and np be as in Corollary Since T, ¢ p,, is the

p.-isotypical projection of ¢ p, we have that T;¢p, = % @e. Combining

this with Proposition 214 Corollary €9 and Lemma we get that

@Wepe )2 by N(@)? IND, g fo)?
(Typp,Yp,) = (o) 22O (o o) 22200 (g o)

Then (&3] follows from Corollary BI3l O

Corollary 5.6. Assume that L(1/2,g) # 0. Then f. # 0 and it maps to g under the
Shimura correspondence. Moreover, the set {f. : € € &} is linearly independent.

In particular, this proves [Sirl4, Conjecture 5.6].

Proof. By hypotheses [HI] and [H3] the sign of the functional equation for L(s,g)
equals 1. Hence by [Wal91, Théoréme 4] for every € € & there exists D. € F'T of
type € with ®. = Dy /=p:) prime to 291 such that L(1/2,9 ® xp.) # 0. Then by
B4 we have that A(De, ag; fe) # 0, where (—D., a.) is the discriminant satisfying
D.a? = .. This, together with the Hecke-linearity of the map 1J, proves the the
first assertion. The second assertion follows from the fact that if & # e, then
X De,az; for) = 0. O
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We say that D € F' is permitted if the conductor of yp is prime to 291 and
xp(p) = e4(p) for all p | 9 such that v, (M) is odd. By hypothesis [H2] every
permitted D is of type € for some € € &.

Corollary 5.7. There exists f € S3+/2+k(4‘ﬁ, X1) whose Fourier coefficients satisfy
CD
Lp(1/2,9) = picayz D, alk
for every permitted D, where a € Jr is the unique ideal such that (—D,a) is a
fundamental discriminant. Moreover, if L(1/2,g) # 0, then f # 0 and it maps to
g under the Shimura correspondence.

In particular, this proves [RI'V14l Conjecture 2.8].
Proof. This follows from Theorem 5.3 and Corollary 56| letting

1/2 Je
/= cg/ Z 12" 0
ey <8057<P5>

ACKNOWLEDGMENTS

The first author would like to thank both IMERL and CMAT, Universidad de
la Reptblica, for hosting him during the postdoctoral stay in which this article was
written.

REFERENCES

[BMO7] Ehud Moshe Baruch and Zhengyu Mao, Central value of automorphic L-functions,
Geom. Funct. Anal. 17 (2007), no. 2, 333-384, DOI 10.1007/s00039-007-0601-3.
MR2322488

[BSP90]  Siegfried Bocherer and Rainer Schulze-Pillot, On a theorem of Waldspurger and on
Eisenstein series of Klingen type, Math. Ann. 288 (1990), no. 3, 361-388, DOI
10.1007/BF01444538. MR1079868

[CST14] Li Cai, Jie Shu, and Ye Tian, Exzplicit Gross-Zagier and Waldspurger formulae, Al-
gebra Number Theory 8 (2014), no. 10, 2523-2572, DOI 10.2140/ant.2014.8.2523.
MR3298547

[Geb09] Ute Gebhardt, Ezplicit construction of spaces of Hilbert modular cusp forms using
quaternionic theta series, Thesis (Ph.D.)-Universitat des Saarlandes, 2009.

[Gro87] Benedict H. Gross, Heights and the special values of L-series, Number theory
(Montreal, Que., 1985), CMS Conf. Proc., vol. 7, Amer. Math. Soc., Providence, RI,
1987, pp. 115-187. MR894322

[Gro8g] Benedict H. Gross, Local orders, root numbers, and modular curves, Amer. J. Math.
110 (1988), no. 6, 1153-1182, DOI 10.2307/2374689. MR970123
[HI13] Kaoru Hiraga and Tamotsu Ikeda, On the Kohnen plus space for Hilbert modular

forms of half-integral weight I, Compos. Math. 149 (2013), no. 12, 1963-2010, DOI
10.1112/S0010437X13007276. MR3143703

[Hij74] Hiroaki Hijikata, Explicit formula of the traces of Hecke operators for T'o(N), J. Math.
Soc. Japan 26 (1974), 56-82, DOI 10.2969/jmsj/02610056. MR0337783
[Iwa97] Henryk Iwaniec, Topics in classical automorphic forms, Graduate Studies in Mathe-

matics, vol. 17, American Mathematical Society, Providence, RI, 1997. MR1474964

[Koh82] Winfried Kohnen, Newforms of half-integral weight, J. Reine Angew. Math. 333
(1982), 32-72, DOI 10.1515/¢rl1.1982.333.32. MR660784

[Maol2]  Zhengyu Mao, On a generalization of Gross’s formula, Math. Z. 271 (2012), no. 1-2,
593-609, DOI 10.1007/s00209-011-0879-6. MR2917160

[MRVTO07] Z. Mao, F. Rodriguez-Villegas, and G. Tornarfa, Computation of central value of qua-
dratic twists of modular L-functions, Ranks of elliptic curves and random matrix
theory, London Math. Soc. Lecture Note Ser., vol. 341, Cambridge Univ. Press, Cam-
bridge, 2007, pp. 273-288, DOI 10.1017/CB09780511735158.018. MR2322352


http://www.ams.org/mathscinet-getitem?mr=2322488
http://www.ams.org/mathscinet-getitem?mr=1079868
http://www.ams.org/mathscinet-getitem?mr=3298547
http://www.ams.org/mathscinet-getitem?mr=894322
http://www.ams.org/mathscinet-getitem?mr=970123
http://www.ams.org/mathscinet-getitem?mr=3143703
http://www.ams.org/mathscinet-getitem?mr=0337783
http://www.ams.org/mathscinet-getitem?mr=1474964
http://www.ams.org/mathscinet-getitem?mr=660784
http://www.ams.org/mathscinet-getitem?mr=2917160
http://www.ams.org/mathscinet-getitem?mr=2322352

6168

[Piz76]
[Rob8&9]

[RTV14]

[Shi87]

[Shi93]

[Sir14]

[Vig80]
[Wal81]
[Wal91]
[Xue06]

[Xuell]

[Zha01]

NICOLAS SIROLLI AND GONZALO TORNARIA

Arnold Pizer, On the arithmetic of quaternion algebras. II, J. Math. Soc. Japan 28
(1976), no. 4, 676688, DOI 10.2969/jmsj/02840676. MR0432600

David Peter Roberts, Shimura curves analogous to Xo(N), ProQuest LLC, Ann Arbor,
MI, Thesis (Ph.D.)-Harvard University, 1989. MR2637583

Nathan C. Ryan, Gonzalo Tornaria, and John Voight, Nonvanishing of twists of
L-functions attached to Hilbert modular forms, LMS J. Comput. Math. 17 (2014),
no. suppl. A, 330-348, DOI 10.1112/S1461157014000278. MR3240813

Goro Shimura, On Hilbert modular forms of half-integral weight, Duke Math. J. 55
(1987), no. 4, 765-838, DOI 10.1215/S0012-7094-87-05538-4. MR916119

Goro Shimura, On the Fourier coefficients of Hilbert modular forms of half-integral
weight, Duke Math. J. 71 (1993), no. 2, 501-557, DOI 10.1215/S0012-7094-93-07121-9.
MR1233447

Nicolas Sirolli, Preimages for the Shimura map on Hilbert modular forms, J. Number
Theory 145 (2014), 79-98, DOI 10.1016/j.jnt.2014.05.006. MR3253294

Marie-France Vignéras, Arithmétique des algébres de quaternions (French), Lecture
Notes in Mathematics, vol. 800, Springer, Berlin, 1980. MR580949

J.-L. Waldspurger, Sur les coefficients de Fourier des formes modulaires de poids
demi-entier (French), J. Math. Pures Appl. (9) 60 (1981), no. 4, 375-484. MR646366
Jean-Loup Waldspurger, Correspondances de Shimura et quaternions (French), Forum
Math. 3 (1991), no. 3, 219-307, DOI 10.1515/form.1991.3.219. MR1103429

Hui Xue, Central values of Rankin L-functions, Int. Math. Res. Not., posted on 2006,
Art. ID 26150, 41 pp., DOI 10.1155/IMRN /2006 /26150. MR2249999

Hui Xue, Central values of L-functions and half-integral weight forms, Proc.
Amer. Math. Soc. 139 (2011), no. 1, 21-30, DOI 10.1090/S0002-9939-2010-10660-3.
MR2729067

Shou-Wu Zhang, Gross-Zagier formula for GLg, Asian J. Math. 5 (2001), no. 2, 183—
290, DOI 10.4310/AJM.2001.v5.n2.a1l. MR1868935

DEPARTAMENTO DE MATEMATICA, OFICINA 2096, FACULTAD DE CIENCIAS EXACTAS Y NATU-
RALES (C1428EGA) PABELLON I, CIUDAD UNIVERSITARIA, CIUDAD AUTONOMA DE BUENOS AIRES,

ARGENTINA

Email address: nsirolli@dm.uba.ar

CENTRO DE MATEMATICA, UNIVERSIDAD DE LA REPUBLICA, 11400 MONTEVIDEO, URUGUAY
Email address: tornaria@cmat.edu.uy


http://www.ams.org/mathscinet-getitem?mr=0432600
http://www.ams.org/mathscinet-getitem?mr=2637583
http://www.ams.org/mathscinet-getitem?mr=3240813
http://www.ams.org/mathscinet-getitem?mr=916119
http://www.ams.org/mathscinet-getitem?mr=1233447
http://www.ams.org/mathscinet-getitem?mr=3253294
http://www.ams.org/mathscinet-getitem?mr=580949
http://www.ams.org/mathscinet-getitem?mr=646366
http://www.ams.org/mathscinet-getitem?mr=1103429
http://www.ams.org/mathscinet-getitem?mr=2249999
http://www.ams.org/mathscinet-getitem?mr=2729067
http://www.ams.org/mathscinet-getitem?mr=1868935

	Introduction
	Notation summary

	1. Quaternionic modular forms
	Forms with minimal support

	2. Half-integral weight modular forms and special points
	3. Height and geometric pairings
	Central values

	4. A result for certain orders
	5. Main theorem
	Acknowledgments
	References

