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LARGE DEVIATION PRINCIPLE

FOR SOME BETA ENSEMBLES

TIEN-CUONG DINH AND VIÊT-ANH NGUYÊN

Abstract. Let L be a positive line bundle over a projective complex manifold
X, Lp its tensor power of order p, H0(X,Lp) the space of holomorphic sections
of Lp, andNp the complex dimension ofH0(X,Lp). The determinant of a basis
of H0(X,Lp), together with some given probability measure on a weighted

compact set in X, induces naturally a β-ensemble, i.e., a random Np-point
process on the compact set. Physically, depending on X and the value of β,
this general setting corresponds to a gas of free or interacting fermions on X
and may admit an interpretation in terms of some random matrix models.
The empirical measures, associated with such β-ensembles, converge almost
surely to an equilibrium measure when p goes to infinity. We establish a
large deviation theorem (LDT) with an effective speed of convergence for these
empirical measures. Our study covers a large class of β-ensembles on a compact
subset of the unit sphere Sn ⊂ Rn+1 or of the Euclidean space Rn.

1. Introduction

Let K be a metric space and let N be a positive integer. If x = (x1, . . . , xN )
is a point in the N -fold product KN , then the associated empirical measure is the
probability measure

μx :=
1

N

N∑
k=1

δxk
,

which is equidistributed on x1, . . . , xN . Here, δx denotes the Dirac mass at x. Any
probability measure ν on KN induces a random N -point process on K, and ν is
the law of this random process.

Let {Np}p≥1 be a sequence of positive integers such that Np → ∞ as p → ∞ and
let {νp}p≥1 be a sequence of probability measures on KNp . In many problems from
mathematics or mathematical physics, a central question is to study the eventual

convergence of the sequence μx (p)

to an equilibrium measure, where x (p) is the
random Np-point process on K described by the law νp. A significantly interesting
setting considered in literature is the case of β-ensembles on a compact subset of
the unit sphere Sn in Rn+1 or a compact subset of Rn. We will obtain in this paper
a large deviation theorem for such β-ensembles with an explicit rate of convergence.
Our approach uses however techniques from complex analysis, and therefore we will
first describe the general setting, which, physically, corresponds to a gas of fermions
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and may admit an interpretation in terms of some random matrix models (when
X = P1). The reader will find in the paper of Berman [1] a detailed exposition
and a list of references; see also [12] for some random matrix models. The case of
β-ensembles on the unit sphere or on the real Euclidean space, mentioned above,
will be obtained as a corollary; see Examples 1.5 and 1.6 below.

Let X be a compact Kähler manifold of dimension n. Let L → X be a positive
line bundle endowed with a given smooth Hermitian metric h0. We assume that
the metric h0 is positively curved; that is, the Chern form ω0 associated with h0

is a Kähler form on X. For simplicity, we will use the Riemannian metric on X
induced by ω0. The space of holomorphic sections of Lp := L⊗ · · · ⊗L (p times) is
denoted by H0(X,Lp). Since L is ample, by Kodaira-Serre vanishing and Riemann-
Roch-Hirzebruch theorems (see [21, Thms. 1.5.6 and 1.4.6]), we have

(1.1) Np := dimH0(X,Lp) =
pn

n!
‖ωn

0 ‖+O(pn−1).

Here, ‖ωn
0 ‖ denotes the mass of the volume form ωn

0 . It depends only on the Chern
class of L.

If L1, L2 are line bundles over complex manifolds X1 and X2 respectively, we
denote by L1 � L2 the line bundle over the product manifold X1 ×X2 defined as
L1�L2 := π∗

1(L1)⊗π∗
2(L2), where π1, π2 are the natural projections from X1×X2

to its factors. If L1 and L2 are endowed with some Hermitian metrics, then L1�L2

carries also a metric induced by those on L1 and L2.
Let Sp = (s1, . . . , sNp

) be a basis of H0(X,Lp). We define the section detSp of

the line bundle (Lp)�Np := Lp � · · ·� Lp (Np times) over XNp by the identity

detSp(x
(p)) :=

∑
σ∈SymNp

sgn(σ)

Np⊗
i=1

si(xσ(i)) for x (p) = (x1, . . . , xNp
) ∈ XNp ,

where SymNp
denotes the permutation group of {1, . . . , Np}. Note that when we

change the basis Sp, this section changes only by a non-zero multiplicative constant.
Let K be a compact set in X and let φ be a continuous real-valued function on

K. We say that the pair (K,φ) is a weighted compact set. Let μ be a probability
measure on K.

Definition 1.1. Let β > 0 be a constant. The β-ensemble associated with the line
bundle Lp, the weighted compact set (K,φ), and the probability measure μ is the
random Np-point process on K whose joint distribution is given by

(1.2) νβp := cp,β‖ detSp(x
(p))‖βe−βp(φ(x1)+···+φ(xNp ))dμ(x1)⊗ · · · ⊗ dμ(xNp

),

where cp,β is the normalizing constant so that νβp is a probability measure on KNp .

Observe that the constant cp,β depends also on Lp,K, φ, μ, but the above random
point process, i.e., the measure νβp , is independent of the choice of the basis Sp of

H0(X,Lp). Understanding the behavior of cp,β and νβp when p tends to infinity is
a challenging problem which may have many applications in differential geometry
and mathematical physics; see [13, 15] for references and some recent results.

In this paper, we will study the above β-ensembles when p goes to infinity. We
need some assumptions on the regularity of K,φ, and μ. Under such conditions, we

will see later that the sequence μx (p)

converges almost surely to a limit μeq(K,φ),
which is called the equilibrium measure of the weighted compact set (K,φ).



LARGE DEVIATION PRINCIPLE FOR SOME BETA ENSEMBLES 6567

Recently, Berman [1] obtained a large deviation principle in the spirit of Donsker
and Varadhan [8] using some functionals on the space of measures. In the case where
K = X, φ = 0, and μ is the Lebesgue measure on X, Carroll, Marzo, Massaneda,
and Ortega-Cerdà obtained precise and optimal estimates on the expectation of

the Kantorovich-Wasserstein distance between μx (p)

and μeq(K,φ) when p → ∞
[6]. An advantage of the latter work is that Kantorovich-Wasserstein distance gives

us very explicit information about the convergence of μx (p)

to μeq(K,φ). Our aim
is to establish a large deviation theorem (LDT) with precise estimations in a quite
general setting and in the sprit of the work by Carroll, Marzo, Massaneda, and
Ortega-Cerdà. In order to state the main result, we need to introduce some more
notions.

Let M (X) denote the space of all (Borel) probability measures on X. For γ > 0,
define the distance distγ between two measures μ and μ′ in M (X) by

distγ(μ, μ
′) := sup

‖v‖Cγ≤1

∣∣〈μ− μ′, v〉
∣∣,

where v is a test smooth real-valued function. This distance induces the weak
topology on M (X). By interpolation between Banach spaces (see [10, 25]), for
0 < γ ≤ γ′, there exists a constant c > 0 such that

distγ′ ≤ distγ ≤ c[distγ′ ]γ/γ
′
.(1.3)

Note that dist1 is equivalent to the classical Kantorovich-Wasserstein distance.
In Section 2 below, we will single out a very large class of compact sets K

which enjoy the so-called (C α,C α′
)-regularity. We will also introduce the notion

of δ-Bernstein-Markov measures which enjoy a quantified version of the Bernstein-
Markov property. Here, δ is a constant such that 0 < δ < 1. Having in hand these
natural notions, we are in the position to state the main result of the paper.

Theorem 1.2. Let X be a complex projective manifold of dimension n. Let L be
a positive line bundle over X endowed with a smooth positively curved Hermitian
metric h0. Let β > 0 and 0 < γ ≤ 2 be constants. Let K be a (C α,C α′

)-regular
compact subset of X and let φ be a C α real-valued function on K for some constants
0 < α ≤ 2 and 0 < α′ ≤ 1. Let μ be a probability measure on K which is δ-
Bernstein-Markov with respect to (K,φ) for some 0 < δ < 1. Then, for every
λ > 0, there are c > 0 and Borel sets Ep ⊂ KNp such that

(a) νβp (Ep) ≤ e−λpn+1−δ

;

(b) if μx
p denotes the empirical measure associated with x ∈ KNp \ Ep, then

distγ(μ
x, μeq(K,φ)) ≤ cqγ .

Here, q := p−δ/4 if δ/4 < α′′, q := p−α′′
(log p)3α

′′
if δ/4 ≥ α′′, and α′′ := α′/

(24 + 12α′).

If a sequence of points x (p) ∈ KNp satisfies x (p) �∈ Ep for p large enough, then

we deduce from the last theorem that μx (p) → μeq(K,φ) when p goes to infinity.

Therefore, μx (p)

converge almost surely to μeq(K,φ) when p goes to infinity. More

precisely, the infinite product νβ := νβ1 × νβ2 × · · · is a probability measure on the

space of all sequences (x (p))∞p=1. With respect to this measure, the convergence

μx (p) → μeq(K,φ) holds for almost every sequence (x (p))∞p=1.
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The estimate on the size of Ep is a version of LDT. Our result also implies that

(1.4)

∫
XNp

distγ
(
μx , μeq(K,φ)

)
dνβp (x ) = O(qγ).

This distance expectation estimate is similar to the one obtained by Carroll, Marzo,
Massaneda, and Ortega-Cerdà in [6] that we mentioned above. These authors
proved for K = X, φ = 0, and μ the normalized Lebesgue measure on X that there
is a constant c > 0 satisfying

c−1p1/2 ≤
∫
XNp

dist1
(
μx , μeq(K,φ)

)
dνβp (x ) ≤ cp1/2(1.5)

for all p.
In order to get more concrete applications of our main result, we need the fol-

lowing natural class of positive Borel measures.

Definition 1.3. We say that a positive measure μ on X satisfies the mass-density
condition with respect to a compact W ⊂ X if there are two constants c > 0 and
ρ > 0 such that

μ(B(x, r)) ≥ crρ for x ∈ W and 0 < r < 1.

Here, B(x, r) denotes the ball in (X,ω0) of radius r and centered at the point x.

Assume now that K is a smooth real manifold in X with piecewise smooth
boundary such that the tangent space of K at each point is not contained in a
complex hyperplane of the tangent space of X at that point. It was shown in
[9, 24], for 0 < α < 1, that K is (C α,C α/2)-regular and is (C α,C α)-regular when
its boundary is smooth; see Theorem 2.3 below. In this case, if μ is a probability
measure on K satisfying the above mass-density condition for W = K, we will show
in Corollary 2.13 below that it satisfies the δ-Bernstein-Markov property required
in Theorem 1.2. Therefore, the following result is a direct consequence of that
theorem.

Corollary 1.4. Let X,L, h0, β, γ be as in Theorem 1.2. Let K be a smooth real
manifold in X with piecewise smooth boundary such that the tangent space of K at
each point is not contained in a complex hyperplane of the tangent space of X at that
point. Let μ be a probability measure on K satisfying the mass-density condition
with respect to K. Let φ be a C α real-valued function on K with 0 < α < 1. Then,
for every 0 < δ < 1, the conclusion of Theorem 1.2 holds for α′′ := α/(48 + 24α).
Moreover, if the boundary of K is smooth, then the same statement holds for α′′ :=
α/(24 + 12α).

Of course, Corollary 1.4 holds when μ is given by the normalized volume form
on K. It is worth noting that the assumption on the mass-density condition of the
measure μ in this result can be weakened. In fact, we only need that μ satisfies the
mass-density condition on a subset W ⊂ K which satisfies a maximum principle;
see Corollary 2.13 below. Finally, note that our approach also allows us to treat
the case where β depends on p, but for simplicity, we will not consider this case
here.

Example 1.5. LetK be the closure of an open set with piecewise smooth boundary
in Rn. Let φ be a C α real-valued function on K and let μ be a probability measure
on K which satisfies the mass-density condition with respect to K. It is already
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interesting to consider the case where μ is the normalization of the restriction to
K of the Lebesgue measure on Rn. Denote by Pp the set of real polynomials of
degree at most p and by Np the dimension of Pp. Choose a basis (P1, . . . , PNp

) of

Pp. Define the probability measure νβp at a point x = (x1, . . . , xNp
) on KNp by

cp,β | det(Pi(xj))|βe−βp(φ(x1)+···+φ(xNp ))e−
1
2βp(log(1+‖x1‖2)+···+log(1+‖xNp‖

2))

× μ(x1)⊗ · · · ⊗ μ(xNp
),

where cp,β is a normalizing constant so that νβp is a probability measure. Here,
det(·) denotes the standard determinant of a square matrix. Then the conclusion
of Theorem 1.2 holds for α′′ := α/(48 + 24α). If the boundary of K is smooth, we
can take α′′ := α/(24 + 12α). The equilibrium measure μeq(K,φ) is a probability
measure supported by K. Its definition is given in Section 2.

In order to obtain this result as a consequence of Theorem 1.2 and Corollary 1.4,
consider R

n as the real part of Cn and C
n as a Zariski open set of the projective

space Pn. Denote by [z0 : · · · : zn] the homogeneous coordinates of Pn. We identify
Cn with the open set {z0 = 1}. Define X := Pn. We can identify, in the natural
way, the polynomials of degree ≤ p on Rn with holomorphic sections of Lp with
L = O(1) the tautological line bundle of X = P

n. We consider the standard
Hermitian metrics on these line bundles. So {P1, . . . , PNp

} is identified to a basis

of H0(X,Lp). If a section s in H0(X,Lp) is identified to a polynomial P , then

‖s(z)‖ = |P (z)|e− 1
2 p log(1+‖z‖2) for z ∈ C

n.

So the factor involving log(1 + ‖xi‖2) in the definition of νβp is due to the standard
Hermitian metric of Lp. We can now apply Theorem 1.2 and Corollary 1.4 and
get the LDT in this case. An interesting particular situation is the case where the
weight φ is equal to − 1

2 log(1 + ‖ · ‖2).
Example 1.6. LetK be the closure of an open set with piecewise smooth boundary
in the unit sphere Sn of Rn+1. Let φ be a C α real-valued function on K and let
μ be a probability measure on K which satisfies the mass-density condition with
respect to K. It is already interesting to consider the case where φ = 0 and μ is
the normalization of the restriction to K of the Haar measure on Sn. Consider the
functions which are restrictions of (real) polynomials on Rn+1 to Sn. Denote by
Pp the set of these functions obtained by using polynomials of degree at most p
and by Np the dimension of Pp. Note that Pp is isomorphic to the quotient of
the space of polynomials of degree ≤ p by the subspace of polynomials divisible
by x2

1 + · · · + x2
n+1 − 1, where (x1, . . . , xn+1) is the standard coordinate system of

Rn+1.
Choose a basis (P1, . . . , PNp

) of Pp. Define the probability measure νβp on KNp

by

νβp (x ) := cp,β | det(Pi(xj))|βe−βp(φ(x1)+···+φ(xNp ))μ(x1)⊗ · · · ⊗ μ(xNp
),

where x = (x1, . . . , xNp
) is a point in KNp and cp,β is a normalizing constant so

that νβp is a probability measure. Then the conclusion of Theorem 1.2 holds for
α′′ := α/(48+24α). If the boundary ofK is smooth, we can take α′′ := α/(24+12α).
The measure μeq(K,φ) is supported by K. In the case where K = Sn and φ = 0,
by symmetry, this measure coincides with the Haar measure on S

n.
In order to obtain this result as a consequence of Theorem 1.2 and Corollary

1.4, we need to complexify Sn. Consider Rn+1 as the real part of Cn+1 and Cn+1
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as a Zariski open set of the projective space Pn+1. Denote by [z0 : · · · : zn+1] the
homogeneous coordinates of Pn+1. We identify Cn+1 with the open set {z0 = 1}.
The sphere S

n is then the intersection of R
n+1 with the complex hypersurface

z21 + · · · + z2n+1 = z20 in Pn+1. Denote by X this hypersurface. We can identify,
in the natural way, the polynomials of degree ≤ p on Rn+1 with holomorphic
sections of Lp with L = O(1) the tautological line bundle of Pn+1. As in Example
1.5, we consider the standard Hermitian metrics on these line bundles. Note that
|z1|2 + · · · + |zn+1|2 is constant on S

n, and therefore the formula for νβp is simpler
than the one in Example 1.5. Observe also that a section of Lp vanishes on X if
and only if it vanishes on Sn. Therefore, {P1, . . . , PNp

} is identified to a basis of

H0(X,Lp). We can now apply Theorem 1.2 and Corollary 1.4.

The plan of the paper is as follows. In Section 2, we discuss different notions
of regularity for the weighted compact set (K,φ) and the measure μ. We also give
criteria to check the regularity conditions used in our study. In Section 3, we prove
the main theorem (Theorem 1.2), which uses an equidistribution result for almost
Fekete configurations. The last result has been obtained in collaboration with Ma
in the last version of [9, Remark 3.17]. For the reader’s convenience, we provide here
a detailed proof that we need in this paper. Note that the case of Fekete points can
be seen as the limit case of β-ensembles when β → ∞. We refer to [3,9,16–18,24],
the references therein, and also the end of this paper for more results on Fekete
points and other configurations.

2. Pluri-regularity for weighted compact sets and measures

As we have seen in the Introduction, our study requires some regularity prop-
erties of the weighted compact set (K,φ) and the probability measure μ on K.
In this section, we will recall some known facts and also introduce and study new
notions that will be used in the proof of our main theorem. The reader will find in
[7, 10, 14, 21] basic notions and results from complex geometry and pluripotential
theory.

Let L be a positive (i.e., ample) holomorphic line bundle over a projective man-
ifold X of dimension n. Fix a smooth Hermitian metric h0 on L such that its first
Chern form ω0 is a Kähler form on X. Define μ0 := ‖ωn

0 ‖−1ωn
0 , the probability

measure associated with the volume form ωn
0 . Here, ‖ωn

0 ‖ is the total mass of ωn
0

which is the integral of this volume form on X. Recall that a real-valued function
on X is quasi-p.s.h. if it is locally the difference between a p.s.h. function and a
smooth one. Let PSH(X,ω0) be the cone of ω0-p.s.h. functions, i.e., the quasi-p.s.h.
functions ϕ such that ddcϕ+ ω0 ≥ 0.

Definition 2.1. We call a weighted compact subset of X a data (K,φ), where K
is a non-pluripolar compact subset of X and φ is a real-valued continuous function
on K. The function φ is called a weight on K. The equilibrium weight associated
with (K,φ) is the upper semi-continuous regularization φ∗

K of the function

φK(z) := sup
{
ψ(z) : ψ ω0-p.s.h. such that ψ ≤ φ on K

}
.

We also call the equilibrium measure of (K,φ) the normalized Monge-Ampère mea-
sure

μeq(K,φ) := ‖ωn
0 ‖−1(ddcφ∗

K + ω0)
n.
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Note that the equilibrium measure μeq(K,φ) is a probability measure supported
by K and φ∗

K = φK almost everywhere with respect to this measure; see, e.g., [2].
The following notions are important in our study; see [9].

Definition 2.2. Denote by PK the projection onto PSH(X,ω0) which associates
φ with φ∗

K . We say that (K,φ) is regular if φK is upper semi-continuous, i.e.,
PKφ = φK . Let (E, ‖ ‖E) be a normed vector space of continuous functions on K
and let (F, ‖ ‖F ) be a normed vector space of functions on X. We say that K is
(E,F )-regular if (K,φ) is regular for φ ∈ E and if the projection PK sends bounded
subsets of E into bounded subsets of F .

We have the following result.

Theorem 2.3 ([9,24]). Let X and L be as above. Let K be a smooth compact real
manifold in X with piecewise smooth boundary. Assume that the tangent space to
K at any point is not contained in a complex hyperplane of the tangent space to X
at that point. Let 0 < α < 1 be any real number. Then K is (C α,C α/2)-regular.
Moreover, it is (C α,C α)-regular if the boundary of K is smooth.

Consider now a real-valued function ψ on X. We can associate the line bundle
L with a singular Hermitian metric h := e−2ψh0. More precisely, if v is a vector in
the fiber of L over a point x ∈ X, its norms with respect to the metrics h and h0

are related by the formula
|v|h = e−ψ(x)|v|h0

.

The metrics h0 and h induce in a canonical way metrics h⊗p
0 and h⊗p on the

power Lp of L. They are related by the formula h⊗p = e−2pψh⊗p
0 . Recall that for

simplicity, we will use the notation | · |pψ instead of | · |h⊗p for the norm of a vector
in Lp with respect to the metric h⊗p. We also drop the subscript h0; e.g., |v| means
|v|h0

.
Consider now a weighted compact set (K,φ) in X. We can, in a similar way,

define the metric h = e−2φh0 on L over K. Let μ be a probability measure with
support in K. Consider the natural L∞ and L2 semi-norms on H0(X,Lp) induced
by the metric h on L and the measure μ, which are defined for s ∈ H0(X,Lp) by

‖s‖L∞(K,pφ) := sup
K

|s|pφ and ‖s‖2L2(μ,pφ) :=

∫
X

|s|2pφdμ.(2.1)

We will only use measures μ such that the above semi-norms are norms; i.e., there
is no section s ∈ H0(X,Lp) \ {0} which vanishes on K or on the support of μ. The
first semi-norm is a norm when K is not contained in a hypersurface of X. The
second one is a norm when the support of μ is not contained in a hypersurface of X
(recall that we only work with φ continuous). In particular, this is the case when μ
is the normalized Monge-Ampère measure with continuous potentials because such
a measure has no mass on hypersurfaces of X.

We need the following quantified Bernstein-Markov property; see also [2,3,19,22].

Definition 2.4. Let δ be a real number with 0 < δ < 1 and let (K,φ) be a weighted
compact subset ofX. We say that a positive measure μ on K is δ-Bernstein-Markov
with respect to (K,φ) if there is a constant A > 0 such that

(2.2) ‖s‖L∞(K,pφ) ≤ AeAp1−δ‖s‖L2(μ,pφ) for s ∈ H0(X,Lp) and p ≥ 1.

If μ is δ-Bernstein-Markov with respect to (K,φ) for all 0 < δ < 1, then we say
that μ is 1-Bernstein-Markov with respect to (K,φ).
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The following lemma shows that we can use the notion for other norms Lr.

Lemma 2.5. Let δ, r be real numbers with 0 < δ < 1 and r > 0. Let (K,φ) be
a weighted compact subset of X and μ a positive measure on K. Then μ is δ-
Bernstein-Markov with respect to (K,φ) if and only if there is a constant A′ > 0
such that

‖s‖L∞(K,pφ) ≤ A′eA
′p1−δ‖s‖Lr(μ,pφ) for s ∈ H0(X,Lp) and p ≥ 1.

Proof. Assume that μ is δ-Bernstein-Markov with respect to (K,φ). We will only
show the existence of A′ as in the lemma because the converse property can be
obtained in the same way. So we have property (2.2). Without loss of generality,
we can assume that μ is a probability measure. If r ≥ 2, then the Lr-norm is larger
than or equal to the L2-norm. Therefore, we can just take A′ := A.

Assume now that 0 < r < 2. By Hölder’s inequality, we have

‖s‖L2(μ,pφ) ≤ ‖s‖r/2Lr(μ,pφ)‖s‖
1−r/2
L∞(K,pφ).

This, together with (2.2), gives us the desired property for a suitable value of A′. �
In order to get a simple criterium for a measure to have the δ-Bernstein-Markov

property, we need the following notion.

Definition 2.6. A compact set W is said to satisfy the maximum principle relative
to a weighted compact set (K,φ) if W ⊂ K and

sup
K

(ψ − φ) = sup
W

(ψ − φ) for every ψ ∈ PSH(X,ω0).

Clearly, W = K satisfies the maximum principle relative to (K,φ). In general,
W may be much smaller than K; see Remark 2.9 below.

Proposition 2.7. Let (K,φ) be a weighted compact set and let W be a compact
subset of K. Define

∂φ
ω0
K := {z ∈ K : PKφ(z) = φ(z)} .

Then W satisfies the maximum principle relative to (K,φ) if and only if W ∩∂φ
ω0
K

satisfies the same property. In particular, ∂φ
ω0
K satisfies the maximum principle

relative to (K,φ).

Proof. Observe that the second assertion is a consequence of the first one and
Definition 2.6 by taking W = K. We prove now the first assertion. If W ∩ ∂φ

ω0
K

satisfies the maximum principle relative to (K,φ), then clearly W satisfies the same
property. Assume that W satisfies this maximum principle. It remains to prove
the same property for W ∩ ∂φ

ω0
K.

Recall that PKφ is upper semi-continuous and φ is continuous. Since PKφ ≤ φ,
we deduce that

∂φ
ω0
K = {z ∈ K : PKφ(z) ≥ φ(z)} .

So it is a compact set.
Let ψ ∈ PSH(X,ω0) and set m := maxK(ψ − φ). Note that ψ is also upper

semi-continuous. Since W satisfies the maximum principle relative to (K,φ), there
is a point z0 ∈ W such that ψ − φ attains its maximum value at z0. We have
ψ(z0) − m = φ(z0) and ψ − m ≤ φ on K. Since ψ − m ∈ PSH(X,ω0), the last
inequality implies that ψ −m ≤ PKφ. In particular,

ψ(z0)−m ≤ (PKφ)(z0).
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This, combined with the equality ψ(z0)−m = φ(z0) and the inequality (PKφ)(z0) ≤
φ(z0), implies that (PKφ)(z0) = φ(z0). Hence, z0 ∈ ∂φ

ω0
K, and the proposition

follows. �

Remark 2.8. By [2, Prop. 2.10, Cor. 2.5], the equilibrium measure μeq(K,φ) is
supported by ∂φ

ω0
K, and its support also satisfies the maximum principle.

Remark 2.9. Let X be the projective space Pn, seen as the natural compactification
of Cn. Let L be the tautological line bundle O(1) over Pn. Then the holomorphic
sections of Lp = O(p) can be identified to the complex polynomials of degree ≤ p on
Cn. With the standard Fubini-Study metric on O(p), if a section s of Lp corresponds
to a polynomial P (z) of degree ≤ p, then

|s(z)| = |P (z)|(1 + ‖z‖2)−p/2.

Consider a compact subset K of Cn and take φ := − 1
2 log(1+ ‖z‖2) on K. It is not

difficult to check that the boundary of K satisfies the maximum principle relative
to (K,φ).

Theorem 2.10. Let X,L, h0 be as above, let (K,φ) be a weighted compact subset
of X, and let μ be a probability measure on K. Let W ⊂ K be a compact set and
let 0 < δ < 1 be a real number. Assume in addition the following conditions:

(i) the functions φ and PKφ are Hölder continuous;
(ii) W satisfies the maximum principle relative to (K,φ);
(iii) μ satisfies the mass-density condition with respect to W ; see Definition 1.3.

Then μ is a δ-Bernstein-Markov measure with respect to (K,φ).

Remark 2.11. We will see in the proof of this theorem that the condition (i) can
be replaced by the following much weaker condition: there are constant c > 0 such
that for z ∈ X and w ∈ K,

|(PKφ)(z)− (PKφ)(w)| ≤ c(1 + log− dist(z, w))−
δ

1−δ ,

and for z, w ∈ K,

|φ(z)− φ(w)| ≤ c(1 + log− dist(z, w))−
1

1−δ ,

where log− := max(0,− log).

We are inspired by an idea of Bloom [5, Thm. 4.1]. Define ε := p−δ and r :=

e−c′p1−δ

where c′ > 0 is a large enough constant independent of p. It follows from
assumption (i) (see also Remark 2.11) that

(2.3)
∣∣(PKφ

)
(z)− (PKφ)(z0)

∣∣ ≤ ε for z ∈ B(z0, 2r) and z0 ∈ K.

Fix p ≥ 1 and s ∈ H0(X,Lp) \ {0}. We need to prove inequality (2.2) for some
constant A > 0 independent of p and s. Observe that

ddc
1

p
log |s| = 1

p
[s = 0]− ω0 ≥ −ω0,

where [s = 0] is the current of integration on the hypersurface {s = 0}. So 1
p log |s|

is ω0-p.s.h. This, together with assumption (ii), implies the existence of a point
z0 ∈ W such that

(2.4) |s(z0)|pφ = max
z∈K

|s(z)|pφ.
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Lemma 2.12. We have

∣∣|s(z)| − |s(z0)|
∣∣ ≤ 1

4
|s(z0)| for z ∈ B(z0, r

2).

Proof. Consider a section s′ = cs where the constant c is chosen so that ‖s′‖L∞(K,pφ)

= 1. The last property implies the inequality 1
p log |s′| ≤ φ on K. We have seen

that 1
p log |s| is ω0-p.s.h. So s′ satisfies a similar property. Hence, 1

p log |s′| ≤ PKφ

on X. We then deduce the following Bernstein-Walsh type inequality:

|s(z)| ≤ ‖s‖L∞(K,pφ)e
p(PKφ)(z) for z ∈ X.

Using (2.4), we rewrite the last inequality for z ∈ B(z0, 2r) as

|s(z)| ≤ |s(z0)|pφep(PKφ)(z) = |s(z0)|e−p
(
φ(z0)−(PKφ)(z0)

)
ep
(
(PKφ)(z)−(PKφ)(z0)

)
.

Using φ(z0) ≥ (PKφ)(z0) and (2.3), we obtain

(2.5) |s(z)| ≤ |s(z0)|epε for z ∈ B(z0, 2r).

Let σ be a holomorphic frame for L on an open neighborhood U of z0 with
|σ(z0)| = 1. Write s = hσ⊗p with h a holomorphic function on U . Using local
coordinates near z0 and shrinking U if necessary, we may identify U with the open
unit ball in C

n. We can also assume that∣∣|σ(z)| − 1
∣∣ ≤ c‖z − z0‖

for some constant c > 0 independent of z ∈ U . For z ∈ B(z0, 2r), we have
‖z − z0‖ � p−1, and the previous inequality implies that |σ⊗p(z)| belongs to the
interval [7/8, 9/8] when z ∈ B(z0, 2r). So the norm |s(z)| is bounded below and
above by 7|h(z)|/8 and 9|h(z)|/8 respectively.

Consider the unit vector v := z−z0
‖z−z0‖ in C

n and the following holomorphic func-

tion of one variable:

f(ζ) := h(z0 + ζv), ζ ∈ D.

We have for z ∈ B(z0, r),

(2.6) |h(z)− h(z0)| = |f(‖z − z0‖)− f(0)| ≤ ‖z − z0‖ sup
|ζ|≤r

|f ′(ζ)|.

On the other hand, for |ζ| ≤ 2r, we have (z0 + ζv) ∈ B(z0, 2r), and by using
the definition of f, h, (2.5), and the fact that |s(z)| is in-between 7|h(z)|/8 and
9|h(z)|/8, we obtain

sup
|ζ|≤2r

|f(ζ)| ≤ c|s(z0)|epε

for some constant c > 0. By Cauchy’s formula,

sup
|ζ|≤r

|f ′(ζ)| ≤ c

r
|s(z0)|epε.

This, together with (2.6) and the choice of ε, r, implies for z ∈ B(z0, r
2) that

|h(z)− h(z0)| ≤ cr|s(z0)|epε � |s(z0)|.

Recall that |h(z0)| = |s(z0)| and |s(z)| is bounded by 7|h(z)|/8 and 9|h(z)|/8. So
the last inequality implies the lemma. �
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End of the proof of Theorem 2.10. We only need to consider p large enough.
We will prove that

(2.7) |s(z)|pφ ≥ 1

2
‖s‖L∞(K,pφ) for z ∈ K ∩B(z0, r

2).

We have∣∣|s(z)|pφ − |s(z0)|pφ
∣∣ ≤ ∣∣|s(z)|pφ(z0) − |s(z0)|pφ(z0)

∣∣+ ∣∣|s(z)|pφ(z) − |s(z)|pφ(z0)
∣∣.

Denote respectively by A1 and A2 the first and second terms in the last sum. By
Lemma 2.12, we have

A1 ≤ 1

4
|s(z0)|e−pφ(z0).

On the other hand, by Lemma 2.12 again, we have

A2 = |s(z)||e−pφ(z) − e−pφ(z0)| ≤ 2|s(z0)|e−pφ(z0)|1− e−p(φ(z)−φ(z0))|.
Since z ∈ B(z0, r

2), we deduce from assumption (i) of the theorem (see also Remark
2.11) that |p(φ(z)− φ(z0))| ≤ 1/16. Hence, |1 − e−p(φ(z)−φ(z0))| ≤ 1/8. Combining
the above estimates for A1 and A2, we obtain

∣∣|s(z)|pφ − |s(z0)|pφ
∣∣ ≤ 1

2
|s(z0)|pφ for z ∈ K ∩B(z0, r

2).

This, combined with (2.4), implies (2.7).
Now, using (2.7) and assumption (iii), we get∫

K

|s(z)|2pφdμ ≥
∫
K∩B(z0,r2)

|s(z)|2pφdμ

≥
(

min
K∩B(z0,r2)

|s(z)|2pφ
)
μ(K ∩B(z0, r

2))

≥ 1

4
cr2ρ‖s‖2L∞(K,pφ),

where c > 0 is the constant in Definition 1.3. Hence,

‖s‖L∞(K,pφ) ≤ 2c−1/2eρc
′p1−δ‖s‖L2(μ,pφ).

So μ is δ-Bernstein-Markov with respect to (K,φ). �
We have the following result where condition (ii) is automatically satisfied for

W = K. It allows us to obtain Corollary 1.4 as a direct consequence of Theorem
1.2. Note that in Corollary 1.4 we only need to assume that the measure μ satisfies
the mass-density condition with respect to a compact W ⊂ K which satisfies the
maximum principle relative to (K,φ).

Corollary 2.13. Let X,L, h0 be as above, let K be a compact subset of X, let W
be a compact subset of K, and let μ be a probability measure on K. Assume in
addition the following conditions:

(i) K is (C α,C α′
)-regular for some constants α > 0 and α′ > 0;

(ii) W satisfies the maximum principle relative to (K,φ);
(iii) μ satisfies the mass-density condition with respect to W.

Then μ is a 1-Bernstein-Markov measure with respect to (K,φ) for every φ ∈
C α(K).

Proof. Since φ ∈ C α(K) and K is (C α,C α′
)-regular, (K,φ) satisfies the hypotheses

of Theorem 2.10. According to that theorem, μ is δ-Bernstein-Markov with respect
to (K,φ) for every 0 < δ < 1. The corollary follows. �



6576 TIEN-CUONG DINH AND VIÊT-ANH NGUYÊN

3. Almost-Fekete configurations and proof of the main result

In this section, we will give the proof of the main theorem. An important in-
gredient is the equidistribution of almost-Fekete points towards the equilibrium
measure. This property is already mentioned in the last version of [9]; see also [20].
For the reader’s convenience, we will give here some details. We also give at the
end of this section another application of this result.

Theorem 3.1 ([9]). Let X,L, h0 be as above and let K be a compact subset of
X. Let 0 < α ≤ 2, 0 < α′ ≤ 1, and 0 < γ ≤ 2 be constants. Assume that K is
(C α,C α′

)-regular. Let φ be a C α real-valued function on K and let μeq(K,φ) be
the equilibrium measure associated with the weighted set (K,φ). Then, there is a
constant c > 0 with the following property. For every p ≥ 1 and every configuration
x = (x1, . . . , xNp

) ∈ KNp , denote by μx the empirical measure associated with x

and let Sp be any basis of H0(X,Lp). Define

σx :=
1

pNp
log ‖ detSp‖L∞(K,pφ) −

1

pNp
log ‖ detSp(x)‖pφ.

Then we have for all p > 1,

distγ(μ
x, μeq(K,φ)) ≤ cp−α′′γ(log p)3α

′′γ + cσγ/4
x with α′′ := α′/(24 + 12α′).

Note that detSp is a section of the line bundle (Lp)�Np over XNp . The given
metric h0 on L and the weight φ induces naturally a metric and a weight for this line
bundle. So ‖ detSp‖L∞(K,pφ) is the sup-norm of detSp on KNp , and ‖ detSp(x )‖pφ
is the norm of the value of this section at the point x . Both of them are measured
using the above natural metric and weight. Observe that σx is independent of the
choice of Sp and we always have σx ≥ 0. When σx = 0, the point x is called
a Fekete configuration of order p of L with respect to the weighted compact set
(K,φ). The theorem shows that if σx is small enough (e.g., when σx = 0), then μx

tends to μeq(K,φ) as p → ∞.
We now sketch the proof of Theorem 3.1. Recall that the Monge-Ampère energy

functional E , defined on bounded weights in PSH(X,ω0), is characterized by

d

dt

∣∣∣∣
t=0

E((1− t)φ1 + tφ2) = ‖ωn
0 ‖−1

∫
X

(φ2 − φ1)(dd
cφ1 + ω0)

n.

So E is only defined up to an additive constant, but the differences such as E(φ1)−
E(φ2) are well-defined; see [2] and also (3.2) below.

Consider a non-pluripolar compact set K ⊂ X and a continuous weight φ on K.
Define the energy at the equilibrium weight of (K,φ) as

Eeq(K,φ) := E(PKφ).

This functional is also well-defined up to an additive constant. We have the follow-
ing property.

Lemma 3.2 ([2], Thm. B). The map φ �→ Eeq(K,φ), defined on the affine space
of continuous weights on K, is concave and Gâteaux differentiable, with directional
derivatives given by integration against the equilibrium measure:

d

dt

∣∣∣∣
t=0

Eeq(K,φ+ tv) =
〈
v, μeq(K,φ)

〉
for every continuous function v on K.
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Let μ be a probability measure on X and let φ be a continuous function on
the support of μ. The semi-norm ‖ · ‖L2(μ,pφ) on H0(X,Lp) is defined as in (2.1),
and recall that we only consider measures μ for which this semi-norm is a norm.
Let B2

p(μ, φ) denote the unit ball in H0(X,Lp) with respect to this norm and let

Np := dimH0(X,Lp). Consider the Lp-functional

Lp(μ, φ) :=
1

2pNp
log volB2

p(μ, φ).(3.1)

Here, vol denotes the Lebesgue measure on the vector space H0(X,Lp) which de-
pends on the choice of a Euclidean norm on H0(X,Lp). So the volume is only
defined up to a multiplicative constant. Nevertheless, the differences such as
Lp(μ1, φ1) − Lp(μ2, φ2) are well-defined and do not depend on the choice of vol
for any probability measures μ1 and μ2; see [2] and also (3.2) below.

Consider the norm ‖ · ‖L∞(K,pφ) on H0(X,Lp) defined in (2.1). Let B∞
p (K,φ)

denote the unit ball in H0(X,Lp) with respect to this norm. Define

Lp(K,φ) :=
1

2pNp
log volB∞

p (K,φ).

Let {s1, . . . , sNp
} be an orthonormal basis of H0(X,Lp) with respect to the above

L2-norm; see (2.1).

Definition 3.3. We call the Bergman function of Lp, associated with (μ, φ), the
function ρp(μ, φ) on the support of μ given by

ρp(μ, φ)(x) := sup
{
|s(x)|2pφ : s ∈ H0(X,Lp), ‖s‖L2(μ,pφ) = 1

}
=

Np∑
j=1

|sj(x)|2pφ,

and we define the Bergman measure associated with (μ, φ) by

Bp(μ, φ) := N−1
p ρp(μ, φ)μ.

It is not difficult to obtain the identity in the definition of ρp(μ, φ) and to check
that Bp(μ, φ) is a probability measure. Note also that when μ is the average of
Np Dirac masses at generic points, one can easily deduce from Definition 3.3 that
Bp(μ, φ) = μ, by considering sections vanishing on supp(μ) except at a point. Such
sections exist because Np = dimH0(X,Lp). In fact, this property holds for all
points x1, . . . , xNp

such that the section detSp considered in the Introduction does
not vanish at (x1, . . . , xNp

).

Lemma 3.4. We have the following:

(a) The functional φ �→ Lp(μ, φ) is concave on the space of all continuous
weights on the support of μ.

(b) The directional derivative of Lp(μ, ·) at a continuous weight φ on the support
of μ is given by the integration against the Bergman measure Bp(μ, φ), that
is,

d

dt
Lp(μ, φ+ tv)

∣∣∣∣
t=0

= 〈v,Bp(μ, φ)〉, with v, φ continuous on the support of μ.

(c) Let μ be a probability measure with supp(μ) ⊂ K such that the L2-semi-
norm in (2.1) is a norm. Assume also that (K,φ) is a regular weighted
compact set. Then

Lp(K,φ) = Lp(X,PKφ) and Lp(K,φ) ≤ Lp(μ, φ).



6578 TIEN-CUONG DINH AND VIÊT-ANH NGUYÊN

Proof. The concavity property of the functional Lp in part (a) has been established
in [3, Prop. 2.4]. Part (b) has been established in [2, Lem. 5.1]. The property was
stated there for smooth φ, but the proof also works for continuous functions; see
also [4, Lem. 3.1] and [11, Lem. 2]. For part (c), see [9, Prop. 2.5, Lem. 3.4]. �

From now on, in order to simplify the notation, we use the following normaliza-
tion:

(3.2) Eeq(X, 0) = 0 and Lp(μ
0, 0) = 0 for p ≥ 1.

Here, the function identically 0 is used as a smooth strictly ω0-p.s.h. weight. Recall
also that μ0 = ‖ωn

0 ‖−1ωn
0 is the probability measure associated with the volume

form ωn
0 .

The following result is an immediate consequence of [9, Lem. 3.7, Prop. 3.10].
Recall that C k,α = C k+α for 0 ≤ α < 1 and C k,1 is the space of C k functions
whose partial derivatives of order k are Lipschitz.

Proposition 3.5. Let 0 < α ≤ 1 and A > 0 be constants. Let φ be an ω0-p.s.h.
weight of class C 0,α on X such that ‖φ‖C 0,α ≤ A. Then, there is a constant
cA,α > 0 depending only on X,L, ω0, A, and α such that we have for all p > 1,∣∣Lp(μ

0, φ)− Eeq(X,φ)
∣∣ ≤ cA,α(log p)

3βαp−βα

and ∣∣(Lp(X,φ)− Eeq(X,φ)
∣∣ ≤ cA,α(log p)

3βαp−βα ,

where βα := α/(6 + 3α).

For the following proposition, we refer to the discussion after Theorem 3.1 for
the notation.

Proposition 3.6. Let K be a compact subset of X. Let 0 < α ≤ 2 and 0 < α′ ≤ 1
be constants. Assume that (K,φ) is a weighted compact set with φ ∈ C α(K) such

that K is (C α,C α′
)-regular. Then there is a constant c > 0 with the following

property. For p ≥ 1 and x = (x1, . . . , xNp
) ∈ KNp , denote by μx the empirical

measure associated with x and let Sp be a basis of H0(X,Lp). Define

σx :=
1

pNp
log ‖ detSp‖L∞(K,pφ) −

1

pNp
log ‖ detSp(x)‖pφ.

We have for all p > 1,

|Lp(μ
x, φ)− Eeq(K,φ)| ≤ c

(
p−1 log p+ σx +

∣∣Lp(μ
0, PKφ)− Eeq(K,φ)

∣∣).
Proof. Observe that σx does not depend on the choice of Sp. So choose Sp which
is an orthonormal basis of H0(X,Lp) with respect to the L2-norm without weight.
Let μp be the empirical measure associated with a Fekete configuration of order p.
Using identity [3, (2.4)], we get

1

2pNp
log

volB2
p(μ

0, 0)

volB2
p(μp, φ)

=
1

pNp
log ‖ detSp‖L∞(K,pφ) −

1

2p
logNp

and
1

2pNp
log

volB2
p(μ

0, 0)

volB2
p(μ

x , φ)
=

1

pNp
log ‖ detSp(x )‖pφ − 1

2p
logNp.

Subtracting the last line from the previous one and using (3.1), we obtain

σx = Lp(μ
x , φ)− Lp(μp, φ).
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On the other hand, with the normalization (3.2), [9, Prop. 3.12] tells us that there
is a constant c > 0 satisfying

|Lp(μp, φ)− Eeq(K,φ)| ≤ c
(
p−1 log p+

∣∣Lp(μ
0, PKφ)− Eeq(K,φ)

∣∣) for p > 1.

This, combined with the previous identity, implies the proposition. �

The following two lemmas were obtained in [9, Lems. 3.13 and 3.14].

Lemma 3.7. There is a constant c > 0 such that for every continuous weight φ on
K and every function v of class C 1,1 on X, we have∣∣〈μeq(K,φ+ tv)− μeq(K,φ), v〉

∣∣ ≤ c|t|‖v‖L∞(K)‖ddcv‖∞ for t ∈ R.

Lemma 3.8. Let ε > 0 and M > 0 be constants. Let F and G be functions defined
on [−ε1/2, ε1/2] such that

(i) F (t) ≥ G(t)− ε and |F (0)−G(0)| ≤ ε;
(ii) F is concave on [−ε1/2, ε1/2] and differentiable at 0;
(iii) G is differentiable in [−ε1/2, ε1/2], and its derivative G′ satisfies |G′(t) −

G′(0)| ≤ Mε1/2 for t ∈ [−ε1/2, ε1/2]. The last inequality holds when |G′(t)−
G′(0)| ≤ M |t|.

Then we have

|F ′(0)−G′(0)| ≤ (2 +M)ε1/2.

End of the proof of Theorem 3.1. By (1.3), we only need to consider the case
γ = 2, i.e., to prove that∣∣〈μx − μeq(K,φ), v〉

∣∣ � p−2α′′
(log p)6α

′′
+ σ1/2

x

for every test C 2 function v such that ‖v‖C 2 ≤ 1. Recall that α′′ := α′/(24+12α′).
Define

F (t) := Lp(μ
x , φ+ tv) and G(t) := Eeq(K,φ+ tv) = Eeq(X,PK(φ+ tv))

for t in a neighborhood of 0 ∈ R. By Lemma 3.4(c),

Lp(μ
x , φ+ tv) ≥ Lp(K,φ+ tv) = Lp(X,PK(φ+ tv)).

As 0 < α ≤ 2, we infer that φ + tv ∈ C α(K). Since K is (C α,C α′
)-regular, we

deduce that PK(φ+ tv) is an ω0-p.s.h. weight on X with bounded C α′
-norm. This,

coupled with the second inequality in Proposition 3.5, applied to PK(φ + tv) and
α′ instead of α, shows that

F (t)−G(t) � −p−4α′′
(log p)12α

′′
.(3.3)

An application of the first inequality in Proposition 3.5 for α′ instead of α gives∣∣Lp(μ
0, PKφ)− Eeq(K,φ)

∣∣ � p−4α′′
(log p)12α

′′
.

Consequently, applying Proposition 3.6 yields

|F (0)−G(0)| � p−4α′′
(log p)12α

′′
+ σx .

Recall from Lemma 3.4(a) that F is concave. Moreover, by Lemma 3.4(b), we have

F ′(0) = 〈v,Bp(μ
x , φ)〉.

On the other hand, by Lemma 3.2, G is differentiable with

G′(t) = 〈v, μeq(K,φ+ tv)〉.(3.4)



6580 TIEN-CUONG DINH AND VIÊT-ANH NGUYÊN

Finally, by Lemma 3.7, condition (iii) in Lemma 3.8 is satisfied for a suitable
constant M > 0. Combining this and the discussion between (3.3)-(3.4), we are in

the position to apply Lemma 3.8 to a constant ε of order p−4α′′
(log p)12α

′′
+ σx .

Using the above expression for F ′(0) and G′(0), we get∣∣〈Bp(μ
x , φ), v〉 − 〈μeq(K,φ), v〉

∣∣ � p−2α′′
(log p)6α

′′
+ σ1/2

x .

Recall from the discussion before Lemma 3.4 that Bp(μ
x , φ) = μx . Hence, the

desired estimate follows immediately. �
We continue the proof of the main theorem. We need the following result, which

is a consequence of [2, Lem. 5.3].

Lemma 3.9. Consider a probability measure μ supported on a compact set K ⊂ X
such that the L2-semi-norm in (2.1) is a norm. If Sp is an orthonormal basis of
H0(X,Lp) with respect to this norm, then the positive measure ‖ detSp‖2pφμ⊗Np is
of mass Np!.

End of the proof of Theorem 1.2. Fix an orthonormal basis Sp of H0(X,Lp)
with respect to the L2-norm induced by μ and φ. We first show that there is a
constant c > 0 such that for p ≥ 1,

(3.5) 0 ≤ log ‖ detSp‖L∞(K,pφ) − log ‖ detSp‖L2(μ,pφ) ≤ cNpp
1−δ.

Here, similar to the discussion after Theorem 3.1, the norm ‖ detSp‖L2(μ,pφ) is

defined using the product probability measure μ⊗Np on KNp ⊂ XNp together with
the metric and weight for (Lp)�Np , naturally induced by h0 and φ.

Since μ is a probability measure, we have

‖ detSp‖L∞(K,pφ) ≥ ‖ detSp‖L2(μ,pφ).

Now, to complete the proof of (3.5), we only need to show that

(3.6) log ‖ detSp‖L∞(K,pφ) ≤ log ‖ detSp‖L2(μ,pφ) +O(Npp
1−δ).

By (2.2), we get

|s(x)|2pφ ≤ A2e2Ap1−δ‖s‖2L2(μ,pφ)

for every section s ∈ H0(X,Lp), p ≥ 1, and x ∈ X. If x1, . . . , xNp
are points in X,

then for each j,

x �→ detSp(x1, . . . , xj−1, x, xj+1, . . . , xNp
)

is a holomorphic section inH0(X,Lp). A successive application of the last inequality
for j = 1, 2, . . . , Np and Fubini’s theorem yield

‖ detSp‖2L∞(K,pφ) ≤ A2Npe2ANpp
1−δ‖ detSp‖2L2(μ,pφ).

Estimates (3.6) and (3.5) follow.
Recall that Np = O(pn) and by Stirling’s formula Np! ≈ (Np/e)

Np
√
2πNp.

Therefore, Lemma 3.9 implies that

1

pNp
log ‖ detSp‖L2(μ,pφ) =

1

pNp
log

√
Np! = O(p−1 log p).

It follows from (3.5) that

(3.7) 0 ≤ 1

pNp
log ‖ detSp‖L∞(K,pφ) ≤ c1p

−δ with some constant c1 > 0.
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Let λ0 > 0 be a constant whose value will be determined later. For every p ≥ 1,
consider the set

Ep :=
{
x ∈ KNp :

1

pNp
log ‖ detSp(x )‖pφ ≤ −λ0p

−δ
}
.

So for x ∈ KNp \ Ep, using (3.7), we obtain σx ≤ (c1 + λ0)p
−δ, where as above

σx :=
1

pNp
log ‖ detSp‖L∞(K,pφ) −

1

pNp
log ‖ detSp(x )‖pφ.

Hence, applying Theorem 3.1 yields

distγ(μ
x , μeq(K,φ)) ≤ cp−α′′γ(log p)3α

′′γ + cp−γδ/4,

for some constant c > 0.
To complete the proof of the theorem, it remains to bound the size of Ep. Fix a

constant λ as in Theorem 1.2. Consider two different cases according to the value
of β.

Case 1. Assume that β ≥ 2. Choose λ0 = λ/β. We first bound the mass of

‖ detSp‖βpφμ⊗Np from below. Recall that μ⊗Np is a probability measure. Applying
Hölder’s inequality and using Lemma 3.9, we obtain∫

‖ detSp‖βpφdμ⊗Np ≥
(∫

‖ detSp‖2pφdμ⊗Np

)β/2

= (Np!)
β/2.

Consequently, νβp ≤ ‖ detSp‖βpφμ⊗Np . Hence, by definition of Ep, we get

νβp (Ep) ≤
∫
Ep

‖ detSp(x )‖βpφdμ⊗Np(x ) ≤
∫
Ep

e−λp1−δNpdμ⊗Np(x ) ≤ e−λp1−δNp .

This completes the proof for the case β ≥ 2.

Case 2. Assume that 0 < β ≤ 2. Combining (3.7) and Lemma 3.9, we get∫
KNp

‖ det(S)‖βpφdμ⊗Np ≥ e−(2−β)c1p
1−δNp

∫
KNp

‖ det(S)‖2pφdμ⊗Np

≥ e−(2−β)c1p
1−δNp .

Consequently,

νβp ≤ e(2−β)c1p
1−δNp‖ detSp‖βpφμ⊗Np .

Hence, we infer that

νβp (Ep) ≤ e(2−β)c1p
1−δNp

∫
Ep

‖ detSp(x )‖βpφdμ⊗Np(x )

≤ e(2−β)c1p
1−δNp

∫
Ep

e−βλ0p
1−δNpdμ⊗Np(x )

≤ ep
1−δNp

(
(2−β)c1−βλ0

)
.

Choose λ0 � c1 and the result follows. This ends the proof of our main theorem. �

As mentioned above, Theorem 3.1 can be applied to other situations. We present
now one more application. Consider the same setting as in Theorem 3.1 and a
probability measure μ on K. Recall the following notion; see [3].
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Definition 3.10. Let 0 < r ≤ ∞ and 0 < r′ ≤ ∞. We say that y ∈ KNp is an
(r, r′)-optimal configuration of order p if the function in x ∈ KNp ,

τx := sup
s∈H0(X,Lp)\{0}

‖s‖Lr(μ,pφ)

‖s‖Lr′ (μx ,pφ)

,

attains its minimum at y .

We have the following elementary property; see also [3, Prop. 2.10].

Lemma 3.11. If y ∈ KNp is (r, r′)-optimal, then τy ≤ N
1+1/r′

p .

Proof. Let x = (x1, . . . , xNp
) be a Fekete configuration of order p. We only need

to check that τx ≤ N
1+1/r′

p . Choose a basis Sp = (s1, . . . , sNp
) of H0(X,Lp) such

that si(xj) = 0 when i �= j and ‖si(xi)‖pφ = 1. Since x is a Fekete configuration,
we have ‖ detSp(·)‖pφ ≤ 1 on KNp . This inequality on Ki := {x1}× · · ·× {xi−1}×
K ×{xi+1}× · · · × {xNp

} implies that ‖si(·)‖pφ ≤ 1 on K. Finally, if s is a section

in H0(X,Lp) \ {0}, write s = λ1s1 + · · ·+ λNp
sNp

, and we have

‖s‖Lr(μ,pφ)

‖s‖Lr′ (μx ,pφ)

≤
∑

|λi|
(N−1

p
∑

|λi|r′)1/r′
≤ Np max |λi|

(N−1
p max |λi|r′)1/r′

= N1+1/r′

p .

The lemma follows. �

We deduce from Theorem 3.1 the following result, where the simple convergence
of μy when p → ∞ was established in [3].

Corollary 3.12. In the setting of Theorem 1.2, consider two numbers 0 < r, r′ ≤
∞. There is a constant c > 0 such that if y is an (r, r′)-optimal configuration of
order p for some p > 1, then

distγ(μ
y, μeq(K,φ)) ≤ cqγ .

Proof. We only have to check that

σx ≤ c(p−1 log τx + p−δ) for x ∈ KNp

for some constant c > 0. Then, Theorem 3.1, Lemma 3.11, and the estimate
Np = O(pn) imply the result.

We can assume that detSp(x ) �= 0 because the case detSp(x ) = 0 is trivial. So
we can choose Sp = (s1, . . . , sNp

) as in the proof of Lemma 3.11, but here x is no
longer a Fekete configuration. By definition of τx , we have

‖si‖Lr(μ,pφ) ≤ τx‖si‖Lr′ (μx ,pφ) = N−1/r′

p τx ≤ τx .

Hence, it follows from Lemma 2.5 that

‖si‖L∞(K,pφ) ≤ A′eA
′p1−δ

τx .

Therefore, we get

‖ detSp(·)‖pφ ≤ Np!
(
A′eA

′p1−δ

τx
)Np on KNp .

We then deduce the desired estimate using the definition of σx and the fact that
‖ detSp(x )‖pφ = 1 by the choice of Sp. �
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