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ON THE EXISTENCE OF F -THRESHOLDS

AND RELATED LIMITS

ALESSANDRO DE STEFANI, LUIS NÚÑEZ-BETANCOURT, AND FELIPE PÉREZ

Dedicated to Professor Craig Huneke on the occasion of his sixty-fifth birthday

Abstract. We show the existence of F -thresholds in full generality. In ad-
dition, we study properties of standard graded algebras over a field for which
F -pure threshold and F -threshold at the irrelevant maximal ideal agree. We
also exhibit explicit bounds for the a-invariants and Castelnuovo-Mumford
regularity of Frobenius powers of ideals in terms of F -thresholds and F -pure
thresholds, obtaining the existence of related limits in certain cases.

1. Introduction

In recent years there has been intense research in algebraic geometry and commu-
tative algebra, moving towards a better understanding of what are nowadays known
as F -singularities. Particular attention has been given to F -pure [HR76,Fed83] and
F -regular singularities [HH90,HH94a,HH94b,FW89]. Attached to these singular-
ity types, there are numerical invariants that measure how good or bad a singular
point is; for instance, the F -thresholds [MTW05,HMTW08], the F -pure thresholds
[TW04], and the F -signature [SVdB97,HL02,Tuc12]. In this manuscript, we study
these numbers, compare them, and obtain consequences regarding the singularities
of the ring.

The F -thresholds were first introduced for regular rings by Mustaţă, Takagi, and
Watanabe [MTW05] as a positive characteristic analogue of log-canonical thresh-
olds. In a subsequent joint work with Huneke [HMTW08], F -thresholds were de-
fined in general rings of prime characteristic as limits of normalized Frobenius
orders, provided they exist. In the same article, the authors showed compelling
relations that F -thresholds have with the Hilbert-Samuel multiplicity, tight clo-
sure, and integral closure. However, a drawback of using these methods was that
the convergence of the sequence defining the F -thresholds had been shown only in
some partial cases [HMTW08,HTW11, Li13]. We settle this problem by proving
the existence of F -thresholds in full generality.

Theorem A (See Theorem 3.4). Let R be a Noetherian ring of prime characteristic

p. Let a, J ⊆ R be ideals such that a ⊆
√
J . If νJa (p

e) := max{t ∈ N | at �⊆ J [pe]},
then the F -threshold cJ (a) = lim

e→∞
νJ
a (pe)
pe exists.
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In the rest of this article, we study relations between F -thresholds and other
invariants in prime characteristic: namely, F -pure thresholds, a-invariants, and
asymptotic Castelnuovo-Mumford regularity of Frobenius powers.

The F -pure threshold of an ideal a ⊆ R, denoted fpt(a), was defined by Tak-
agi and Watanabe [TW04]. Roughly speaking, the F -pure threshold of an ideal
measures its splitting order. The general expectation is that the higher the F -
pure threshold, the better the singularities [HY03,BFS13]. Takagi and Watanabe
[TW04] write: “Although our first motivation was to investigate the log canonical
threshold via the F-pure threshold, we find that the F-pure threshold itself is an
interesting invariant in commutative algebra”.

If (R,m,K) is regular, either local or standard graded, then fpt(a) = cm(a) for
any ideal a ⊆ R. In contrast, this is often not the case for singular rings. However,
the inequality fpt(a) ≤ cm(a) holds true in general. In this article, we focus on the
study of the following question, asked in different settings by several researchers.

Question 1.1 ([Hir09,MOY10,HWY14]). What are necessary and sufficient con-
ditions for the equality fpt(m) = cm(m) to hold?

Our first step towards an answer to Question 1.1 is a characterization of the
F -pure threshold as a limit of F -thresholds (see Theorem 4.6 and Corollary 4.7).
If we restrict ourselves to standard graded Gorenstein K-algebras, we are able
to partially answer Question 1.1, giving a necessary condition for the equality to
hold. In a sense, this result says that standard graded Gorenstein rings such that
fpt(m) = cm(m) have the best possible type of F -singularities.

Theorem B (See Theorem 6.13). Let (R,m,K) be a d-dimensional standard graded
Gorenstein K-algebra that is F -finite and F -pure. If fpt(m) = cm(m), then R is
strongly F -regular. Furthermore,

s(R) ≥ e(R)

d!
,

where e(R) denotes the Hilbert-Samuel multiplicity and s(R) the F -signature of R.

Using recent results of Singh, Takagi, and Varbaro [STV17], we can extend The-
orem B to normal standard graded Cohen-Macaulay algebras whose anti-canonical
cover is Noetherian (see Corollary 6.16). These include Q-Gorenstein algebras.

The inequality for the F -signature in the previous theorem is particularly mean-
ingful because lower bounds for this invariant are typically hard to produce. The
first two authors proved that fpt(m) ≤ −adim(R)(R) ≤ cm(m) [DSNB]. To ob-
tain Theorem B, we need to extend these relations to the Castelnuovo-Mumford
regularity and a-invariants of Frobenius powers. Recall that, for a finitely gener-
ated R-module M , the Castelnuovo-Mumford regularity of M can be defined as
reg(M) = max{ai(M) + i | i ∈ N}, where ai(M) = sup{s ∈ Z | [Hi

m(M)]s �= 0},
with the convention that sup(∅) = −∞. We point out that the growth of ai(R/J [pe])
and reg(R/J [pe]) are of independent interest, since they are connected to discrete-
ness of F -jumping coefficients [KZ14, KSSZ14, Zha15], localization of tight clo-
sure [Kat98, Hun00], and existence of the generalized Hilbert-Kunz multiplicity
[DS13,Vra16]. The following theorem is the main result we prove in this direction,
and it is a key ingredient in the proof of Theorem B.

Theorem C (See Theorems 5.4, 5.7, and 5.8). Let (R,m,K) be a standard graded
K-algebra that is F -finite and F -pure. Suppose that J ⊆ R is a homogeneous ideal.
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If there exists a constant C such that reg(R/J [pe]) ≤ Cpe for all e 
 0, then

lim
e→∞

reg(R/J [pe])
pe exists, and it is bounded below by maxi∈N{ai(R/J)}+ fpt(m).

Furthermore, for t = dim(R/J) and D = max{t ∈ N | [J/mJ ]t �= 0} + 1, if

Ht−1
m (R/J [pe]) �= 0 for some e ∈ N, then

lim
e→∞

at(R/J [pe])

pe
≤ at(R/J) + cm(m) and lim

e→∞

at−1(R/J [pe])

pe
≤ D(cJ(J) + 1).

In particular, the two limits exist.

As a consequence of Theorem C, we obtain explicit formulas for the top a-
invariant of the ring modulo Frobenius powers of an ideal under the assumption
that fpt(m) = cm(m) (see Proposition 6.1).

2. Notation and preliminaries

Throughout this article, R denotes a Noetherian commutative ring with identity.
We write (R,m,K) to mean either a local ring or a standard graded K-algebra. A
standard graded algebra is a positively graded algebra over a field K, generated by
finitely many elements of degree one. The ideal generated by the positive degree
elements, that we denote by m, is called the irrelevant maximal ideal. We denote
by μ(M) the minimal number of generators of an R-module M , homogeneous in
the graded case. We use λ(M) to denote its length as an R-module. We make the
convention that 0 ∈ N.

When the characteristic of R is a positive prime integer p, we can consider the
Frobenius endomorphism F : R → R, which raises any element of R to its p-th
power. In this way, R can be viewed as an R-module by restriction of scalars via
F , and we denote this module action on R by F∗R. The action is explicitly given
as follows: for r ∈ R and F∗x ∈ F∗R, we have r · F∗x = F∗(r

px) ∈ F∗R. For an
integer e ≥ 1, we can also reiterate the map F and obtain a ring endomorphism
F e : R → R which is such that F e(r) = rp

e

for all r ∈ R. For any R-module M , we
can consider the R-module F e

∗M , whose action is induced by restriction of scalars
via F e, as illustrated above in the case e = 1 and M = R. For an ideal J ⊆ R, we
denote by J [pe] the ideal generated by F e(J), that is, the ideal generated by the

pe-th powers of elements in J . We note that J [p0] = J .
If R is reduced, then, for all integers e ≥ 1, the map F e can be identified with

the R-module inclusion R ⊆ R1/pe

, where R1/pe

denotes the ring of pe-th roots
of elements in R. This viewpoint can be helpful to keep in mind, but it is not
exploited further in this article.

Definition 2.1. The ring R is called F -finite if F∗R is a finitely generated R-
module.

Equivalently, R is F -finite if F e
∗R is a finitely generated R-module for some

(equivalently, for all) integer e ≥ 1.

Remark 2.2. If (R,m,K) is local, then R is F -finite if and only if it is excellent,
and [F∗K : K] < ∞ [Kun76, Corollary 2.6]. If (R,m,K) is standard graded, then
R is F -finite if and only if [F∗K : K] < ∞ [Fed83, Lemma 1.5].

The notion of F -purity was introduced by Hochster and Roberts [HR76]. Since
then, it has played a very crucial role in the theory of singularities of rings of
positive characteristic.
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Definition 2.3 ([HR76]). Let R be a Noetherian ring of prime characteristic, and
let F : R → R be the Frobenius endomorphism. Then R is called F -pure if F is a
pure morphism, that is, F ⊗ 1 : R⊗M → R⊗M is injective for all R-modules M .
The ring R is called F -split if F is a split monomorphism.

If R is F -finite, then R is F -split if and only if R is F -pure [HR76, Corollary 5.3
and Proposition 5.5]. More explicitly, when R is F -finite, we have that R is F -pure
if and only if it is reduced, and the natural inclusion R ⊆ F e

∗R of R-modules splits
for some (equivalently, for all) e ≥ 1.

We now recall the graded version of Fedder’s Criterion, which characterizes F -
pure rings that are quotients of regular rings. This result is needed to establish
some reductions for Theorem 6.13.

Theorem 2.4 ([Fed83, Theorem 1.12]). Let S = K[x1, . . . , xn] be a polynomial
ring over a field of prime characteristic p. Suppose that deg(xi) = 1 and n =
(x1, . . . , xn). Let I ⊆ n be a homogeneous ideal. Under these assumptions S/I is
F -pure if and only if (I [p] :S I) �⊆ n[p].

3. The F -threshold of a with respect to J

The F -thresholds are invariants of rings in positive characteristic obtained by
comparing powers of an ideal a with Frobenius powers of another ideal J . They
were first introduced in the regular ring setting [MTW05] and, later, generalized
to a wider class of rings [HMTW08]. The F -thresholds were originally defined as
limits of sequences of rational numbers whenever such sequences were convergent.
However, their existence remained an open problem. In this section, we show that
F -thresholds exist in general.

Definition 3.1. Let R be a ring of prime characteristic p. For a, J two ideals of
R satisfying a ⊆

√
J and a non-negative integer e, we define

νJa (p
e) := max{t ∈ N | at �⊆ J [pe]}.

The following lemma is well-known. We include the proof for the sake of com-
pleteness.

Lemma 3.2. Let R be a ring of prime characteristic p, and let a be an ideal. Then,
for every s, e ∈ N and r ≥ (μ(a) + s− 1)pe, we have that ar = ar−spe (

a[p
e]
)s
.

Proof. Let u = μ(a), and let f1, . . . , fu denote a minimal set of generators for I. We

proceed by induction on s. For s = 0, the statement is clear as ar−0pe (
a[p

e]
)0

=
arR = ar.

We now assume that our claim is true for s and prove it for s+ 1. Suppose that
r ≥ (u+ s)pe. Then

ar = ar−spe
(
I [p

e]
)s

by induction hypothesis since r ≥ (u+ s− 1)pe

= a
r−(s+1)pe

a
[pe]

(
a
[pe]

)s

by the case s = 1 because r − spe ≥ upe

= a
r−(s+1)pe

(
a
[pe]

)s+1

.

�
We point out that the following lemma has been previously stated, without proof,

for reduced rings [HTW11, Remark 1.5].
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Lemma 3.3. Let R be a ring of prime characteristic p. Let a, J ⊆ R be ideals such
that a ⊆

√
J . Then,

νJa (p
e1+e2)

pe1+e2
− νJa (p

e1)

pe1
≤ μ(a)

pe1

for every e1, e2 ∈ N.

Proof. Taking s = νJa (p
e1) + 1 in Lemma 3.2 yields

a
pe2μ(a)+pe2νJ

a (pe1 ) ⊆ a
pe2μ(a)−pe2

(
a
[pe2 ]

)νJ
a (pe1 )+1

⊆
(
a
[pe2 ]

)νJ
a (pe1 )+1

=
(
a
νJ
a (pe1 )+1

)[pe2 ]

⊆
(
J [pe1 ]

)[pe2 ]

= J [pe1+e2 ].

Hence, νJa (p
e1+e2) ≤ pe2μ(a) + pe2νJa (p

e1). The result follows from dividing by
pe1+e2 . �

We now show the existence of F -thresholds in full generality.

Theorem 3.4. Let R be a ring of prime characteristic p. If a, J ⊆ R are ideals

such that a ⊆
√
J , then lim

e→∞
νJ
a (pe)
pe exists.

Proof. From Lemma 3.3 we have

νJa (p
e1+e2)

pe1+e2
≤ νJa (p

e1)

pe1
+

μ(a)

pe1
.

Therefore,

lim sup
e→∞

νJa (p
e)

pe
= lim sup

e2→∞

νJa (p
e1+e2)

pe1+e2
≤ νJa (p

e1)

pe1
+

μ(a)

pe1
.

Hence,

lim sup
e→∞

νJa (p
e)

pe
≤ lim inf

e1→∞

(
νJa (p

e1)

pe1
+

μ(a)

pe1

)
= lim inf

e→∞

νJa (p
e)

pe
.

We conclude that lim
e→∞

νJ
a (pe)
pe exists. �

After Theorem 3.4, we can define F -thresholds in full generality.

Definition 3.5. Let R be a ring of prime characteristic p. Let a, J be ideals of R
such that a ⊆

√
J . We define the F -threshold of a with respect to J by

cJ(a) = lim
e→∞

νJa (p
e)

pe
.

We recall some known properties of F -thresholds that we need in what follows.

Proposition 3.6 ([MTW05, Proposition 2.7], [HMTW08, Proposition 2.2]). Let
R be a ring of prime characteristic p, and let a, I, J be ideals of R. Then

(a) If I ⊇ J and a ⊆
√
J , then cI(a) ≤ cJ(a).

(b) If a ⊆
√
J , then cJ

[p]

(a) = p · cJ (a).
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4. A characterization of fpt(a)

In this section, we give a characterization of the F -pure threshold of a ring as the
limit of certain F -thresholds. We start by recalling its definition and elementary
properties. Before doing this, we need some auxiliary definitions.

Let (R,m,K) be either a local ring or a standard graded K-algebra. The follow-
ing ideals, introduced by Aberbach and Enescu [AE05], keep track of the R-linear
homomorphisms from F e

∗R to R that do not give splittings. For e ∈ N, we set

Ie := {f ∈ R |ψ(F e
∗ f) ∈ m, for all R-linear maps ψ : F e

∗R → R} .
In particular, I0 = m.

Remark 4.1. Let (R,m,K) be a local ring. If f /∈ Ie for some e, then there ex-
ists a map ψ : F e

∗R → R that splits the R-module inclusion F e
∗ f · R ⊆ F e

∗R.
When (R,m,K) is standard graded, the ideals Ie are homogeneous, and the same
conclusion is true for a homogeneous element f /∈ Ie and homogeneous splitting
maps.

Definition 4.2. Let (R,m,K) be either a local ring or a standard graded K-
algebra. Suppose that R is an F -pure ring. For e ∈ N, we associate to the ideals
Ie the following integers:

ba(p
e) := max

{
t ∈ N | at �⊆ Ie

}
.

Given a proper ideal a ⊆ R, homogeneous when R is graded, we define the F -pure
threshold of a in R as

fpt(a) := lim
e→∞

ba(p
e)

pe
.

When a = m, the F -pure threshold fpt(m) is often simply denoted by fpt(R).

Remark 4.3. The definition presented above is not the original given by Takagi
and Watanabe [TW04]. For a real number λ ≥ 0, we say that (R, aλ) is F -pure if
for every e 
 0, there exists an element f ∈ a�(p

e−1)λ� such that the inclusion of
R-modules F e

∗ f · R ⊆ F e
∗R splits. The original definition of the F -pure threshold

of a is

fpt(a) = sup
{
λ ∈ R>0 | (R, aλ) is F -pure

}
.

We refer to [DSNB, Proposition 3.10] for a proof that both definitions coincide.

Remark 4.4. If (R,m,K) is a standard graded F -pure K-algebra, then b := bm(pe)
pe

is the highest possible degree for a minimal generator of the free part of F e
∗R with

the natural 1
peN grading. In other words, if F e

∗R
∼= ⊕ (R(−γi)) ⊕ Me as 1

peN-

graded modules, where Me is a graded R-module with no free summands, then
b = max{γi}. This follows from the definition of bm(p

e) and by Remark 4.1.

Proposition 4.5 ([Tuc12, Lemma 4.4]). Let (R,m,K) be either a standard graded
K-algebra or a local ring. Assume that R is F -finite. If R is an F -pure ring, then

I
[p]
e ⊆ Ie+1 for all e ∈ N.

We now present the main result of this section. Namely, we show that the F -pure
threshold of an ideal is a limit of F -thresholds. For principal ideals, this follows
from the characterization of the digits in the base p-expansion of fpt(a) [Her12, Key
Lemma].



ON THE EXISTENCE OF F -THRESHOLDS AND RELATED LIMITS 6635

Theorem 4.6. Let (R,m,K) be either a standard graded K-algebra or a local ring.
Assume further that R is F -finite and F -pure. If a is an ideal of R, homogeneous
in case R is graded, then

fpt(a) = lim
e→∞

cIe(a)

pe
.

Proof. By Propositions 4.5 and 3.6(a) we have that cIe+1(a) ≤ cI
[p]
e (a) for all e ∈ N.

In addition, cI
[p]
e (a) = p · cIe(a) by Proposition 3.6(b). Hence,

0 ≤ cIe+1(a)

pe+1
≤ cIe(a)

pe
,

for all e ∈ N, which shows the sequence { cIe (a)
pe }e∈N is non-increasing and bounded

below by zero. As a consequence, it does converge to a limit as e approaches infinity.
Note that, for all e ∈ N, we have ba(p

e) = max {t ∈ N | at �⊆ Ie} = νIea (p0). Let
s ∈ N be an arbitrary integer. By taking e1 = 0 and e2 = s in Lemma 3.3, we
deduce that

νIea (ps)

ps
− ba(p

e) ≤ μ(a).

In addition,

0 ≤ νIea (ps)

ps
− ba(p

e) ≤ μ(a),

because the sequence
{

νIe
a (ps)
ps

}
e∈N

is non-decreasing, as R is F -pure. Hence

0 ≤ νIea (ps)

ps
− ba(p

e) ≤ μ(a)

for all e, s ∈ N. We take the limit as s → ∞ to get

0 ≤ cIe(a)− ba(p
e) ≤ μ(a),

and dividing this expression by pe gives

0 ≤ cIe(a)

pe
− ba(p

e)

pe
≤ μ(a)

pe
.

Taking the limit over e gives the result. �

The previous result emulates a relation showed by Tucker [Tuc12] between the
Hilbert-Kunz multiplicity [Mon83] and the F -signature [SVdB97,HL02,Tuc12]:

s(R) = lim
e→∞

eHK(Ie)

ped
.

As a corollary, we obtain a characterization of rings (R,m,K) for which fpt(a) =
cm(a), for any ideal a ⊆ R. This gives a first answer to Question 1.1. We study in
more detail the condition fpt(m) = cm(m), for standard graded algebras, in Section
6.

Corollary 4.7. Let (R,m,K) and a ⊆ R be as in Theorem 4.6. Then, fpt(a) =

cm(a) if and only if cIe(a) = cm
[pe]

(a) for all integers e ∈ N.
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Proof. We first assume that cIe(a) = cm
[pe]

(a) for all e ∈ N. Then, by Proposition

3.6(b), cIe(a) = cm
[pe]

(a) = pecm(a), from which we have

fpt(a) = lim
e→∞

cIe(a)

pe
= lim

e→∞

pecm(a)

pe
= cm(a).

Assume now that fpt(a) = cm(a). Since
{

cIe (a)
pe

}
e∈N

forms a non-increasing

sequence, with first term cm(a) and limit fpt(a), we have that the sequence is

constant. Then, cIe (a)
pe = fpt(a) = cm(a) for all e ∈ N, and thus cIe(a) = pecm(a) =

cm
[pe]

(a). �

5. Limits of a-invariants for graded rings

In this section, we investigate the growth of the a-invariants of R/J [pe] for a
homogeneous ideal J over a standard graded algebra (R,m,K). This study is mo-
tivated by the problem of bounding the Castelnuovo-Mumford regularity of R/J [pe]

[Kat98,KZ14] which, in turn, is related to the localization of tight closure at one el-
ement [Kat98], the LC condition [Hun00,HH00], and the discreteness of F -jumping
numbers [KZ14].

Definition 5.1 ([GW78]). Let (R,m,K) be a standard graded K-algebra. Let M
be a non-zero 1

peN-graded R-module. If Hi
m(M) �= 0, we define the i-th a-invariant

of M by

ai(M) = sup

{
s ∈ 1

pe
Z
∣∣[Hi

m(M)
]
s
�= 0

}
.

If Hi
m(M) = 0, we set ai(M) = −∞. We define the Castelnuovo-Mumford regular-

ity of M by reg(M) = max{ai(M) + i | i ∈ N}.

We first present lower bounds for a-invariants of F -pure rings modulo Frobenius
powers of an ideal.

Lemma 5.2. Let (R,m,K) be a standard graded K-algebra that is F -finite and
F -pure. If J ⊆ R is a homogeneous ideal and i ∈ N, then

ai(R/J [ps])

ps
+

bm(p
e)

pe+s
≤ ai(R/J [pe+s])

pe+s

for all e, s ∈ N.

Proof. For every e ∈ N, let be =
bm(pe)

pe . By Remark 5.5, there exists a 1
peN graded

R-module, Me, such that F e
∗R

∼= R(−be) ⊕ Me as 1
peN graded R-modules. Let s

be a non-negative integer. Applying the functor −
⊗

R R/J [ps] to the homogeneous

split inclusion R(−be) ↪→ F e
∗R, we obtain that R

J [ps] (−be) is a direct summand of
F e

∗R
J [ps ]F e

∗R
. Consequently, Hi

m(
R

J [ps] (−be)) splits out of Hi
m(

F e
∗R

J [ps ]F e
∗R

). Looking at

graded components, we conclude that

ai

(
R

J [ps]

)
+

bm(p
e)

pe
≤ ai

(
F e
∗R

J [ps]F e
∗R

)
=

ai(R/J [pe+s])

pe

for all e, s ∈ N, where the last step follows from the fact that

F e
∗R

J [ps]F e
∗R

∼= F e
∗

(
R

J [pe+s]

)
.
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Our claim follows after dividing by ps. �

Theorem 5.3. Let (R,m,K) be a standard graded K-algebra that is F -finite and
F -pure. Suppose that J ⊆ R is a homogeneous ideal, and let i ∈ N. If there exists a
constant C such that ai(R/J [pe]) ≤ Cpe for all e ∈ N, then either Hi

m(R/J [ps]) = 0
for all s ∈ N or

lim
e→∞

ai(R/J [pe])

pe

exists. Furthermore, we have inequalities

ai(R/J) + fpt(m) ≤ max
s∈N

{
ai(R/J [ps])

ps
+

fpt(m)

ps

}
≤ lim

e→∞

ai(R/J [pe])

pe
.

Proof. Assume that Hi
m(R/J [pe]) �= 0 for some e ∈ N. By Lemma 5.2, for any s ∈ N

we have

(1)
ai(R/J [ps])

ps
+

fpt(m)

ps
≤ lim inf

e→∞

ai(R/J [pe+s])

pe+s
= lim inf

e→∞

ai(R/J [pe])

pe
.

In particular, since there exists e ∈ N for which ai(R/J [pe]) > −∞, we have that

lim inf
e→∞

ai(R/J [pe])
pe is finite. By assumption, we have that ai(R/J [pe]) ≤ Cpe for all

e ∈ N. Therefore, lim sup
e→∞

ai(R/J [pe])
pe is also finite. Taking limsup with respect to s

in (1) gives

lim sup
s→∞

ai(R/J [ps])

ps
≤ lim inf

e→∞

ai(R/J [pe])

pe
,

which implies that the limit exists. The last claim now follows from the fact that

ai(R/J [ps])

ps
+

fpt(m)

ps
≤ lim

e→∞

ai(R/J [pe+s])

pe+s
= lim

e→∞

ai(R/J [pe])

pe

for all s ∈ N, by Lemma 5.2. �

Theorem 5.4. Let (R,m,K) be a standard graded K-algebra that is F -finite and
F -pure. Suppose that J ⊆ R is a homogeneous ideal. If there exists a constant C
such that reg(R/J [pe]) ≤ Cpe for all e ∈ N, then

lim
e→∞

reg(R/J [pe])

pe

exists, and it is bounded below by max{ai(R/J) | i ∈ N}+ fpt(m).

Proof. Let I = {i ∈ N | Hi
m(R/J [ps]) �= 0 for some s ∈ N}. Note that, for

all e ∈ N, we have reg(R/J [pe]) = maxi∈I{ai(R/J [pe]) + i}. In addition, since
ai(R/J [pe]) ≤ reg(R/J [pe]) ≤ Cpe for all e 
 0, by Theorem 5.3 we obtain that
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lim
e→∞

ai(R/J [pe])
pe exists for all i ∈ I. We have that

lim
e→∞

reg(R/J [pe])

pe
= lim

e→∞

maxi∈I{ai(R/J [pe]) + i}
pe

= lim
e→∞

max
i∈I

{
ai(R/J [pe]) + i

pe

}

= max
i∈I

{
lim
e→∞

ai(R/J [pe]) + i

pe

}

= max
i∈I

{
lim
e→∞

ai(R/J [pe])

pe

}
.

Therefore lime→∞
reg(R/J [pe])

pe exists. The claim about the lower bound follows from

the inequality in Theorem 5.3. �

In Theorems 5.7 and 5.8 below, we recover linear upper bounds for ai(R/J [pe])
when i ≥ dim(R/J)− 1. This type of bound has already been discovered by Zhang
[Zha15, Corollary 1.3]. However, our proof is more direct and does not make use

of spectral sequences. In addition, we prove the existence of lim
e→∞

ai(R/J [pe])
pe for

i ≥ dim(R/J)− 1, and we obtain specific lower and upper bounds for the limits.

Remark 5.5 ([DSNB, Remark 4.8]). If (R,m,K) is a standard graded F -pure K-

algebra, then
νm
m (pe)
pe is the highest possible degree of a minimal homogeneous gen-

erator of F e
∗R, with the natural 1

peN grading. More specifically, we have that

νmm(pe)

pe
= sup

{
s ∈ 1

pe
N

∣∣∣∣
[

F e
∗R

mF e
∗R

]
s

�= 0

}
.

Lemma 5.6. Let (R,m,K) be an F -finite standard graded K-algebra. Let J ⊆ R
be a homogeneous ideal, and let t = dim(R/J). Then,

at(R/J [pe])

pe
≤ at(R/J) +

νmm (pe)

pe

for every e ∈ N.

Proof. Let u1, . . . , u� be a minimal set of homogeneous generators for F e
∗R, with

degrees γ1 ≤ · · · ≤ γ�. We note that γ� =
νm
m (pe)
pe by Remark 5.5. Consider the

homogeneous surjection
⊕

R(−γi) � F e
∗R obtained from this minimal generating

set. Since tensor product is right exact, we have a surjection
⊕

R/J(−γi) �
F e
∗R/JF e

∗R of R/J-modules that, in turn, induces a surjective map⊕
Ht

m(R/J(−γi)) � Ht
m(F

e
∗R/JF e

∗R).

We note that Ht
m(R/J) �= 0. Then,

at(R/J [pe])

pe
= at

(
F e
∗R

JF e
∗R

)
≤ at (R/J) + γ�,

where the first step follows from the fact that
F e
∗R

JF e
∗R

∼= F e
∗

(
R

J [pe]

)
. �
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Theorem 5.7. Let (R,m,K) be an F -finite standard graded K-algebra. Let J ⊆ R
be a homogeneous ideal, and let t = dim(R/J). Then, there exists a constant A
such that at(R/J [pe]) ≤ Ape for all e ∈ N. In addition, if R is F -pure, the limit

lim
e→∞

at(R/J [pe])

pe

exists. Moreover, we have that

at(R/J) + fpt(m) ≤ lim
e→∞

at(R/J [pe])

pe
≤ at(R/J) + cm(m).

Proof. By Lemma 5.6, for all e ∈ N we have an inequality

at(R/J [pe])

pe
≤ at(R/J) +

νmm(pe)

pe
.

Since { νm
m (pe)
pe }e∈N converges by Theorem 3.4, the sequence is bounded. Let A′ be

any upper bound. If we let A = A′+at(R/J), then at(R/J [pe]) ≤ Ape for all e ∈ N,

as desired. If R is assumed to be F -pure, then lim
e→∞

at(R/J [pe])
pe exists by Theorem

5.3. In addition, Theorem 5.3 and Lemma 5.6 yield the following inequalities:

at(R/J) + fpt(m) ≤ lim
e→∞

at(R/J [pe])

pe
≤ at(R/J) + cm(m).

�

Theorem 5.8. Let (R,m,K) be an F -finite standard graded K-algebra. Let J ⊆ R
be a homogeneous ideal, and let t = dim(R/J). Then, there exists a constant B
such that at−1(R/J [pe]) ≤ Bpe for all e ∈ N. In addition, if R is F -pure and
Ht−1

m (R/J [pe]) �= 0 for some e ∈ N, then

lim
e→∞

at−1(R/J [pe])

pe

exists. Furthermore, we have that

at−1(R/J) + fpt(m) ≤ lim
e→∞

at−1(R/J [pe])

pe
≤ D(cJ (J) + 1),

where D = max{t ∈ N | [J/mJ ]t �= 0}+ 1.

Proof. Since { νJ
J (pe)
pe }e∈N converges by Theorem 3.4, there exists an integer B′ such

that νJJ (p
e) ≤ B′pe for all e ∈ N, yielding inclusions JB′pe+1 ⊆ JνJ

J (pe)+1 ⊆ J [pe].
For each e ∈ N, the short exact sequence

0 �� J [pe]/JB′pe+1 �� R/JB′pe+1 �� R/J [pe] �� 0

induces the following exact sequence in local cohomology:

Ht−1
m (R/JB′pe+1) �� Ht−1

m (R/J [pe]) �� Ht
m(J

[pe]/JB′pe+1).

For ordinary powers of an ideal, an explicit linear upper bound for the Castelnuovo-
Mumford regularity in terms of the degree of minimal generators is known [TW05,
Theorem 3.2] (see also [CHT99,Kod00]). As a consequence of [TW05, Theorem 3.2],

there exists a constant C such that at−1(R/JB′pe+1) ≤ D′(B′pe + 1) + C for all
e 
 0, whereD′ = D−1 is the maximal degree of a minimal homogeneous generator
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of J . Since B′pe + 1 ≥ C for e large enough, we deduce that at−1(R/JB′pe+1) ≤
D(B′pe + 1) for all e 
 0. For a given e ∈ N, if dim(J [pe]/JB′pe+1) < t, then

Ht
m(J

[pe]/JB′pe+1) = 0, and we obtain

at−1(R/J [pe]) ≤ at−1(R/JB′pe+1) ≤ D(B′pe + 1).

On the other hand, if dim(J [pe]/JB′pe+1) = t and e 
 0, the short exact sequence
above gives

at−1(R/J [pe]) ≤ max{at−1(R/JB′pe+1), at(J
[pe]/JB′pe+1)}(2)

≤ max{D(B′pe + 1), at(J
[pe]/JB′pe+1)}.

We claim that the inequality at(J
[pe]/JB′pe+1) ≤ D(B′+1)pe+Dpe holds true for all

e 
 0. Let f1, . . . , fs be minimal homogeneous generators of J , of degrees d1, . . . , ds.
Note that D = max{dj | j = 1, . . . , s} + 1. In addition, note that J [pe]/JB′pe+1

is an R/JB′pe+1 module generated by the residue classes of fpe

1 , . . . , fpe

s . We have
the following surjection, which is homogeneous of degree zero:

s⊕
j=1

R

JB′pe+1
(−djp

e) �� �� J [pe]

JB′pe+1
.

Taking local cohomology we obtain a surjection

s⊕
j=1

Ht
m

(
R

JB′pe+1
(−djp

e)

)
�� �� Ht

m

(
J [pe]

JB′pe+1

)
,

which, in turn, gives

at(J
[pe]/JB′pe+1) ≤ max{at(R/JB′pe+1) + djp

e | 1 ≤ j ≤ s}(3)

≤ D(B′pe + 1) +Dpe,

as claimed. Putting (2) and (3) together, we conclude that there exists e0 ∈ N such
that at−1(R/J [pe]) ≤ D(B′pe + 1) +Dpe ≤ D(B′ + 2)pe for all e > e0. Taking

B = max

{
D(B′ + 2),

at−1(R/J [ps])

ps
| 0 ≤ s ≤ e0

}

we finally obtain that at−1(R/J [pe]) ≤ Bpe for all e ∈ N, as desired.
Now assume that R is F -pure and Ht−1

m (R/J [pe]) �= 0 for some e ∈ N. Theorem

5.3 implies that lim
e→∞

at−1(R/J [pe])
pe exists and gives the lower bound for the limit.

For the upper bound, note that we can set B′ = cJ(J), because cJ (J) ≥ νJ
J (pe)
pe

for all e ∈ N for F -pure rings. With this choice of B′, combining (2) and (3), we
deduce that at−1(R/J [pe]) ≤ D(cJ (J)pe + 1) +Dpe = D(cJ(J) + 1)pe +D for all
e 
 0. This gives

lim
e→∞

at−1(R/J [pe])

pe
≤ lim

e→∞

D(cJ(J) + 1)pe +D

pe
= D(cJ(J) + 1).

�
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6. The equality fpt(m) = cm(m) for standard graded rings

In this section we prove that for a Gorenstein standard graded algebra (R,m,K),
the equality between fpt(m) and the so-called diagonal F -threshold cm(m) implies
that R is strongly F -regular. Throughout this section we assume that (R,m,K) is
a standard graded ring. We start by making some observations about a-invariants
for rings satisfying fpt(m) = cm(m).

Proposition 6.1. Let (R,m,K) be a standard graded d-dimensional K-algebra that
is F -finite and F -pure. Let J ⊆ R be a homogeneous ideal, and let t = dim(R/J).
If fpt(m) = cm(m), then for all e ∈ N we have

at(R/J [pe])

pe
= at(R/J)− ad(R) +

ad(R)

pe
.

Proof. In our assumptions, fpt(m) = −ad(R) = cm(m) [DSNB, Theorem B]. From
Lemmas 5.2 and 5.6, for all homogeneous ideals a ⊆ R we obtain that

lim
s→∞

adim(R/a)(R/a[p
s])

ps
= adim(R/a)(R/a)− ad(R).

In particular, choosing a = J [pe] and dividing by pe, this implies that

at(R/J [pe])− ad(R)

pe
= lim

s→∞

at(R/J [p(e+s)])

p(e+s)
= lim

s→∞

at(R/J [ps])

ps
= at(R/J)−ad(R).

Hence, for every e ∈ N, we have at(R/J [pe])
pe = at(R/J)− ad(R) + ad(R)

pe . �

Remark 6.2. Suppose that (R,m,K) is a standard graded K-algebra. If J is an
m-primary homogeneous ideal, then for all e ∈ N,

νJm(p
e) = max{s ∈ N | ms �⊆ J [pe]} = max{s ∈ N | ms(R/J [pe]) �= 0} = a0(R/J [pe]).

The following corollary gives a formula to compute cJ (m) in terms of certain
a-invariants.

Corollary 6.3. Let (R,m,K) be a standard graded d-dimensional K-algebra that
is F -finite and F -pure. Let J ⊆ R be a homogeneous m-primary ideal. If fpt(m) =
cm(m), then

νJm(p
e)

pe
= a0(R/J)− ad(R) +

ad(R)

pe
.

In particular, cJ(m) = a0(R/J)− ad(R).

Proof. This follows immediately from Proposition 6.1, Remark 6.2, and the fact
that dim(R/J) = 0. �

We recall the definition of compatible ideals, which play an important role in
showing that the equality fpt(m) = cm(m) implies that R is a domain for Gorenstein
rings.

Definition 6.4 ([Sch10]). Let (R,m,K) be a reduced F -finite standard graded
K-algebra. An ideal J ⊆ R is said to be compatible if ϕ(F e

∗J) ⊆ J for all integers
e ≥ 1 and all R-homomorphisms ϕ ∈ HomR(F

e
∗R,R).
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Lemma 6.5. Let (R,m,K) be a d-dimensional standard graded Gorenstein K-
algebra that is F -finite and F -pure. Let J ⊆ R be a homogeneous compatible ideal,
n = m(R/J), and t = dim(R/J). If fpt(m) = cm(m), then fpt(m) = fpt(n) =
cn(n) = cm(m). In particular, ad(R) = at(R/J).

Proof. We note that mr ⊆ m[pe] implies that nr = mr(R/J) ⊆ m[pe](R/J) = n[p
e].

As a consequence, we have that cn(n) ≤ cm(m). We also know that fpt(m) ≤ fpt(n)
[DSNB, Theorem 4.7]. Since fpt(m) = cm(m), we obtain fpt(m) = fpt(n) = cn(n) =
cm(m). The last statement follows from the fact that fpt(m) ≤ −ad(R) ≤ cm(m)
and fpt(n) ≤ −at(R/J) ≤ cn(n) [DSNB, Theorem B]. �

The following lemma is a key ingredient in the proof of Theorem 6.13.

Lemma 6.6. Let (R,m,K) be a standard graded Gorenstein K-algebra that is F -
finite and F -pure. If fpt(m) = cm(m), then R is a domain.

Proof. We proceed by way of contradiction. Let Q1, . . . , Q� be the minimal primes
of R. Since R is not a domain, � ≥ 2. We set J = Q2∩· · ·∩Q�, and we note that Q1

and J are compatible ideals [Sch10, Corollary 4.8 and Lemma 3.5]. Furthermore,
we have d := dim(R) = dim(R/Q1) = dim(R/J), because R is a standard graded
Cohen-Macaulay K-algebra; hence it is equidimensional. In addition, since R is
F -pure, it is reduced. There is a short exact sequence

0 → R → R/Q1 ⊕R/J → R/(Q1 + J) → 0,

which induces a long exact sequence on local cohomology:

· · · → Hd−1
m (R/(Q1 + J)) → Hd

m(R) → Hd
m(R/Q1)⊕Hd

m(R/J) → 0.

We point out that Hd
m(R/(Q1 + J)) = 0 because dimR/(Q1 + J) ≤ d − 1. Let

a = ad(R). Then [
Hd

m(R)
]
a
→

[
Hd

m(R/Q1)
]
a
⊕
[
Hd

m(R/J)
]
a

is surjective, and thus

1 = dimK

[
Hd

m(R)
]
a
because R is Gorenstein

≥ dimK

[
Hd

m(R/Q1)
]
a
+ dimK

[
Hd

m(R/J)
]
a

≥ 2 because a = ad(R/Q1) = ad(R/J) by Lemma 6.5.

Hence, we get a contradiction, and R must be a domain. �

The following lemma allows us to reduce to the case of an infinite coefficient
field.

Lemma 6.7. Let (R,m,K) be a standard graded d-dimensional Gorenstein K-
algebra that is F -finite and F -pure. Let K be the algebraic closure of K and let
m be the irrelevant maximal ideal of the ring R ⊗K K. Then, R ⊗K K is also a
Gorenstein F -pure ring, fpt(m) = fpt(m), and cm(m) = cm(m).

Proof. The map R → R ⊗K K =: R is faithfully flat, and the irrelevant maximal
ideal m of R extends to the irrelevant maximal ideal m of R under such extension.
It follows that R is Cohen-Macaulay of dimension d and has the same type as R.
Hence R is a Gorenstein standard graded K-algebra. Moreover, we have that R is
an F -pure ring as consequence of Fedder’s Criterion, Theorem 2.4, since colon ideals
and non-containments are preserved under faithfully flat extensions. We also note
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that ad(R) = ad(R⊗K K), because there is a graded isomorphism Hd
m(R)⊗K K ∼=

Hd
m
(R ⊗K K). By these observations and the fact that R and R are Gorenstein

standard graded K-algebras, we see that fpt(m) = fpt(m), since in this case the
F -pure thresholds coincide with the respective a-invariants [DSNB, Theorem B]. In
addition, νmm(pe) = νm

m
(pe) for all e ∈ N; therefore cm(m) = cm(m). �

We now recall the definitions and concepts that are relevant towards presenting
Theorem 6.13. We restrict ourselves to the standard graded setting, since this is
the level of generality in which we work for the rest of the article. We refer the
reader to [HH90,Hun13] for more general definitions and statements.

Definition 6.8 ([HH89a, AE05]). Let (R,m,K) be an F -finite standard graded
K-algebra. We say that R is strongly F -regular if, for all homogeneous elements
c �= 0, there exists e 
 0 such that c /∈ Ie. Equivalently, R is strongly F -regular if⋂

e∈N
Ie = (0).

We point out that there are several characterizations of strong F -regularity. The
original definition given by Hochster and Huneke is in terms of existence of splitting
maps. The definition we give is equivalent in view of Remark 4.1. For the purposes
of this article, it is helpful to recall an equivalent formulation in terms of the (big)
test ideal τ (R). Namely, a ring R is strongly F -regular if and only if τ (R) = R
[LS01, Theorem 7.1(5)].

Another characterization of strong F -regularity can be given in terms of the
F -signature, which we now introduce formally in the graded setup.

Definition 6.9 ([SVdB97,HL02,Tuc12]). Let (R,m,K) be a d-dimensional F -finite
standard graded K-algebra. The F -signature of R is defined by

s(R) = lim
e→∞

λ(R/Ie)

ped
.

One can show that s(R) equals the F -signature s(Rm) of the local ring Rm.
In addition, in our assumptions, s(R) also coincides with the global F -signature
of R [DSPY16a]. The F -signature is an important invariant for rings of positive
characteristic. For example, R is regular if and only if s(R) = 1 [HL02, Corollary
16], and R is strongly F -regular if and only if s(R) > 0 [AL03, Theorem 0.2]. See
also [DSPY16b, Theorem B] for a global version of these results.

Definition 6.10 ([Mon83]). Let (R,m,K) be a d-dimensional standard graded
K-algebra, and let J be an m-primary homogeneous ideal. The Hilbert-Kunz mul-
tiplicity of J is defined by

eHK(J) = lim
e→∞

λ(R/J [pe])

ped
.

This invariant measures the singularities of a ring. For instance, R is regular if
and only if it is formally unmixed and eHK(m) = 1 [WY00]. Furthermore, smaller
values of eHK(m) typically imply better properties of the ring [BE04,AE08].

Remark 6.11 ([HL02, Proof of Theorem 11]). If (R,m,K) is a Gorenstein graded
algebra, J is a homogeneous system of parameters, and a = (J :R m), we have that
s(R) = eHK(J)− eHK(a).
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Definition 6.12. Let (R,m,K) be a standard graded K-algebra of dimension d.
We denote by e(R) the Hilbert Samuel multiplicity of the irrelevant maximal ideal
m in R, that is,

e(R) = lim
n→∞

d!

nd
λ(R/mn).

When (R,m,K) is Cohen-Macaulay, e(R) = e(J) = λ(R/J) for any homoge-
neous ideal J that is a minimal reduction of m.

We are now ready to present the main result of this section. For this, we need
the preparatory results obtained in this section and, as a crucial tool, we invoke a
characterization of tight closure and integral closure for parameter ideals in terms
of F -thresholds [HMTW08, Section 3].

Theorem 6.13. Let (R,m,K) be a d-dimensional standard graded Gorenstein K-
algebra that is F -finite and F -pure. If fpt(m) = cm(m), then R is strongly F -regular.
In addition,

s(R) ≥ e(R)

d!
.

Proof. Let K be the algebraic closure of K. If R⊗K K is strongly F -regular, then
so is R [AE03, Corollary 3.8]. Furthermore, since the closed fiber of the extension
R → R ⊗K K is regular, we have s(R) ≥ s(R ⊗K K) [Yao06, Theorem 5.4]. In
light of Lemma 6.7, we can assume that K = K and, in particular, that K is
infinite. As a consequence, there exists a homogeneous ideal J , generated by a
homogeneous system of parameters, such that J = m. If we let a = J :R m, then
a0(R/a) ≤ a0(R/J)− 1, and we have

ca(J) = ca(m)

= a0(R/a)− ad(R) by Corollary 6.3

≤ a0(R/J)− ad(R)− 1

= cJ (m)− 1.

Let T = R̂m. We note that T is a domain because the associated graded ring
grm(T ) =

⊕
i(mT )i/(mT )i+1 is isomorphic to R, which is a domain. In this case,

ca(J) = caT (JT ) and cJ (m) = cJT (mT ), because a, J, and m are m-primary ideals.
Then, caT (JT ) = ca(J) ≤ cJ (m)− 1 = cJT (mT )− 1 ≤ d− 1 [HMTW08, Theorem
3.3], and it follows that aT �⊆ (JT )∗ [HMTW08, Corollary 3.2]. Since T is Goren-
stein, this means that the socle of JT does not intersect (JT )∗, and we conclude
that JT = (JT )∗. In addition, for a Gorenstein ring, a parameter ideal being
tightly closed is an equivalent condition to being strongly F -regular [HH89b] (see
also [Hun96]). Finally, since the test ideal commutes with localization and comple-
tion for Gorenstein rings [LS01, Theorem 7.1], we have that T = τ (T ) = τ (R)T .
Because the test ideal is a homogeneous ideal [LS99, Lemma 4.2], we obtain that
τ (R) = R; hence R is a strongly F -regular ring.

We now focus on proving the inequality involving the F -signature. With the
same reductions and the same notation introduced in the first part of the proof,

recall that ca(J) ≤ d− 1. In addition, since R is F -pure, note that
νa
J (p

e)
pe ≤ ca(J)

for all e ∈ N. Then, for all non-negative integers e, we have a series of containments

Jpe(d−1)+1 ⊆ Jpeca(J)+1 ⊆ Jνa
J (p

e)+1 ⊆ a[p
e],
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and therefore we get λ((Jpe(d−1)+1+J [pe])/J [pe]) ≤ λ(a[p
e]/J [pe]). Consider the set

Ae = {(α1, . . . , αd) ∈ Nd | αi ≤ pe−1 for all i and α1+ · · ·+αd ≥ pe(d−1)+1}.
Since R is Cohen-Macaulay and J is a parameter ideal, J is generated by a reg-
ular sequence f = f1, . . . , fd. The monomials in f with exponents in Ae induce a

filtration on (Jpe(d−1)+1 + J [pe])/J [pe]:

0 = N0 ⊆ N1 ⊆ · · · ⊆ N|Ae| = (Jpe(d−1)+1 + J [pe])/J [pe],

with the property that Ni+1/Ni
∼= R/J for all 0 ≤ i ≤ |Ae| − 1. As a consequence,

for all e ∈ N we see that λ((Jpe(d−1)+1 + J [pe])/J [pe]) = λ(R/J)|Ae|. We note that
the set

Be = {(β1, . . . , βd) ∈ Nd | β1 + · · ·+ βd ≤ pe − d− 1}
is in bijective correspondence with Ae via the function ϕ : Ae → Be, given by

ϕ((α1, . . . , αd)) = (pe − 1 − α1, . . . , p
e − 1 − αd). Since |Ae| = |Be| =

(
pe−1

d

)
, we

obtain the following relations:

s(R) = eHK(a)− eHK(J) by Remark 6.11

= lim
e→∞

λ(R/a[p
e])

ped
− lim

e→∞

λ(R/J [pe])

ped

= lim
e→∞

λ(a[p
e]/J [pe])

ped
because J ⊆ a

≥ lim
e→∞

λ((Jpe(d−1)+1 + J [pe])/J [pe])

ped

= lim
e→∞

λ(R/J)|Ae|
ped

= λ(R/J) lim
e→∞

(
pe−1

d

)
ped

= e(R) lim
e→∞

(
pe−1

d

)
ped

because J = m

= e(R)
1

d!
.

�

Example 6.14. Let K be a perfect field of prime characteristic p, let n ≥ 2 be
an integer, and let S = K[xij | 1 ≤ i, j ≤ n]. Consider the ideal I2(X) ⊆ X
generated by the 2 × 2 minors of the matrix X = (xij)1≤i,j≤n. The ring R =
S/I2(X) is Gorenstein of dimension d = 2n− 1, and the a-invariant a := ad(R) is
equal to −n. Let m be the irrelevant maximal ideal of R. Since R is Gorenstein,
we have that fpt(m) = −a = n. The ring R can be viewed as a Segre product
K[X1, . . . , Xn] # K[Y1, . . . , Yn], and then, by [HWY14, Example 6.2], we have that
cm(m) = n. Since R is Gorenstein and fpt(m) = cm(m), Theorem 6.13 shows that
R is strongly F -regular. Even though this was already known, because R is a free
summand of a polynomial ring [HH89a, Theorem 3.1 (e)], Theorem 6.13 gives an
alternative proof.

Remark 6.15. We think that the inequality proved in Theorem 6.13 may not provide
very meaningful bounds for the Hilbert-Samuel multiplicity. In fact, there are
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known bounds for multiplicities for F -pure and F -rational rings [HW15], which are
better in several examples. However, Theorem 6.13 is helpful to find lower bounds
for the F -signature of rings as shown in Example 6.18.

Using recent results of Singh, Takagi, and Varbaro [STV17], we can extend The-
orem 6.13 to a more general setting. For a standard graded F -pure normal ring
(R,m,K), let X = Spec(R), and let KX be the canonical divisor on X. The
anti-canonical cover of X is defined as R =

⊕
n≥0 OX(−nKX), and it is a very im-

portant object of study. It is known to be Noetherian in certain cases, which include
the class of Q-Gorenstein rings, semigroup rings, and determinantal rings. Moti-
vated by recent results on the minimal model program [BCHM10,HM10,HX15], it is
expected that R is Noetherian when R is strongly F -regular (see also [Kol10, The-
orem 92]).

Corollary 6.16. Let (R,m,K) be a d-dimensional normal standard graded K-
algebra that is Cohen-Macaulay, F -finite, and F -pure. Assume that the anti-
canonical cover of R is Noetherian. If fpt(m) = cm(m), then R is Gorenstein

and strongly F -regular. Furthermore, s(R) ≥ e(R)
d! .

Proof. The equality fpt(m) = cm(m) forces fpt(m) = −ad(R) [DSNB, Theorem B],
and the latter implies that R is quasi-Gorenstein [STV17, Theorem A]. Since R is
assumed to be Cohen-Macaulay, R is Gorenstein. The rest of the corollary now
follows from Theorem 6.13. �

We present a class of standard graded Gorenstein rings (R,m,K) that satisfy the
equality fpt(m) = cm(m). In addition, we use Theorem 6.13 to find a lower bound
for the F -signature. This example is possible thanks to recent computations of top
socle degrees for diagonal hypersurfaces [Vra15].

Remark 6.17. Let S = K[x1, . . . , xn] be a polynomial over an F -finite field of
positive characteristic. Let f = xb

1+ · · ·+xb
n, where b ∈ N, and set R = S/fS, with

maximal ideal m. Suppose that min{p, n} > b, and set κ =
⌊
p
b

⌋
. If

⌈
nκ−n

2

⌉
1
p ≥ 1,

then cm(m) = n− b [Vra15, Theorem 4.2].

Example 6.18. Let S = K[x1, . . . , xn] be a polynomial over an F -finite field of
positive characteristic, and let m = (x1, . . . , xn). Let f = xb

1 + · · · + xb
n, where

b ∈ N, and let R = S/fS. Suppose that p ≡ 1 mod b, p ≥ 2(b+1), and n ≥ 4b. Let
κ =

⌊
p
b

⌋
, and note that κ = p−1

b . We have that⌈
nκ− n

2

⌉
1

p
≥ nκ− n

2
·1
p
=

n

2
·κ− 1

p
=

n

2
·p− b− 1

pb
=

n

2
·
(
1

b
− b+ 1

pb

)
≥ n

2
· 1
2b

≥1.

It follows that cm(m) = n− b, by Remark 6.17. In addition, the top a-invariant
of R is an−1(R) = b − n. In order to show that fpt(m) = n − b, we only need to
prove that R is an F -pure ring [DSNB, Theorem B], because R is Gorenstein. By
Fedder’s Criterion, Theorem 2.4, it suffices to show that fp−1 �∈ m[p]. We note that
xbκ
1 · · ·xbκ

n = (x1 · · ·xn)
p−1 �∈ m[p]. Since nκ ≥ bκ = p − 1, there exist γ1, . . . , γn

such that 0 ≤ γi ≤ κ and γ1+· · ·+γn = p−1. Therefore, xbγ1 · · ·xbγn
n is a monomial

appearing with non-zero coefficient in fp−1, and it does not belong to m[p]. Hence,
R is F -pure, and fpt(m) = cm(m). In addition, since e(R) = b, we conclude that

b
(n−1)! ≤ s(R) by Theorem 6.13.

We conclude this article with one question motivated by Theorem B.
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Question 6.19. Let (R,m,K) be a standard graded K-algebra that is F -finite and
F -pure. Does the equality fpt(m) = cm(m) imply that R is F -rational?
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[MTW05] Mircea Mustaţǎ, Shunsuke Takagi, and Kei-ichi Watanabe, F-thresholds and
Bernstein-Sato polynomials, European Congress of Mathematics, Eur. Math. Soc.,
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