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MULTI-TRAVELLING WAVES FOR THE NONLINEAR

KLEIN-GORDON EQUATION

RAPHAËL CÔTE AND YVAN MARTEL

Abstract. For the nonlinear Klein-Gordon equation in R1+d, we prove the
existence of multi-solitary waves made of any number N of decoupled bound
states. This extends the work of Côte and Muñoz (Forum Math. Sigma 2
(2014)) which was restricted to ground states, as were most previous similar
results for other nonlinear dispersive and wave models.

1. Introduction

In this paper we extend previous constructions of multi-solitary wave solutions
for the nonlinear Klein-Gordon equation (NLKG) in R1+d, d � 1,

(NLKG) ∂ttu−Δu+ u− f(u) = 0, u(t, x) ∈ R, (t, x) ∈ R× Rd.

This equation arises in quantum field physics as a model for a self-interacting,
nonlinear scalar field, invariant under Lorentz transformations (see below). We focus
on the particular case where

(1) f(u) = |u|p−1u for 1 < p <
d+ 2

d− 2
(p > 1 for d = 1 or 2)

but the arguments can be extended to more general situations. We set

F (u) =

∫ u

0

f(v)dv =
|u|p+1

p+ 1
.

As usual, we see the (NLKG) equation as a first order system of equations

∂t

(
u
∂tu

)
=

(
∂tu

Δu− u+ f(u)

)
.(2)

In this framework, we work with vector data U = (u, ∂tu)
�. We use upper-case

letters to denote vector-valued functions and lower-case letters for scalar functions.
Recall that the corresponding Cauchy problem for (NLKG) is locally well-posed

in Hs(Rd)×Hs−1(Rd) for any s � 1; we refer to Ginibre-Velo [22] and Nakamura-
Ozawa [40] (when d = 2) for more details.
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Also under the above conditions, the energy and momentum (every integral is
taken over Rd),

E [u, ut](t) =
1

2

∫ [
|∂tu(t, x)|2 + |∇u(t, x)|2 + |u(t, x)|2 − 2F (u(t, x))

]
dx,(3)

P[u, ut](t) =
1

2

∫
∂tu(t, x)∇u(t, x) dx,(4)

are conserved along the flow. In this paper, we will work in the energy space
H1(Rd)×L2(Rd) endowed with the following scalar product: denote U = (u1, u2)

�,
V = (v1, v2)

�, and define

(5) 〈U, V 〉 := (u1, v1) + (u2, v2), where (u, v) :=

∫
uvdx.

We will refer to the orthogonality with respect to 〈·, ·〉 as L2-orthogonality (for
vector-valued functions). We also define the energy norm

‖U‖2 := 〈U,U〉+ (∇u1,∇u1) = ‖u1‖2H1 + ‖u2‖2L2 .(6)

Looking for stationary solutions u(t, x) = q(x) of (NLKG) in H1(Rd) we reduce
to the elliptic PDE

−Δq + q − f(q) = 0, q ∈ H1(Rd).(7)

Let us recall well-known results for equation (7) from [5] (see also the references
therein). We call the solutions of (7) bound states ; the set of bound states is denoted
by B,

B = {q : q is a nontrivial solution of (7)}.
Standard elliptic arguments (see e.g. [21] or Theorem 8.1.1 in [5]) show that if
q ∈ B, then q is of class C2(Rd) and has exponential decay as |x| → +∞, as well
as its first and second order derivatives.

Let

W (u) =
1

2

∫
(|∇u|2 + |u|2 − 2F (u))dx.

We call ground states the solutions of (7) that minimize the functional W ; the set
of ground states is denoted by G ,

G = {qGS : qGS ∈ B and W (qGS) � W (q) for all q ∈ B}.
Ground states are now well understood. In particular, it is well known (Berestycki-
Lions [2], Gidas-Ni-Nirenberg [20], Kwong [28], Serrin-Tang [45]) that there exists
a radial positive function q0 of class C2, exponentially decreasing, along with its
first and second derivatives, such that

G = {q0(x− x0) : x0 ∈ Rd}.
In dimension 1, it is well known (by ODE arguments) that B = G . In contrast,

for any d � 2, it is known that G � B; see Remark 8.1.16 in [5], we also refer to Ding
[15], where it is proven that B (up to translation) is infinite. Functions q ∈ B\G are
referred to as excited states. Few papers in the literature deal with excited states.
Here are some references on the construction of such solutions. Berestycki-Lions [3]
showed the existence of infinitely many radial nodal (i.e., sign changing) solutions
(see also [25] and the references therein). More recently, Del Pino, Musso, Pacard
and Pistoia constructed in [13] solutions to the massless version of equation (7) with
a centered soliton crowned with negative spikes (rescaled solitons) at the vertices
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of a regular polygon of radius 1; in [14], they constructed sign changing, nonradial
solutions to (7) on the sphere Sd (d � 4) whose energy is concentrated along special
submanifolds of Sd.

The main difficulty in dealing with excited states in the evolution equation
(NLKG) is the lack of information on the linearized operator −Δz + z − f ′(q)z.
Whereas for ground states, it is known that the linearized operator has a unique
simple negative eigenvalue, and a (nondegenerate) kernel given by Span(∂xj

q; j =
1, . . . , d); the detailed spectral properties of the linearized operator around general
bound states are not known. See Section 2 of this paper.

Since (NLKG) is invariant under Lorentz boosts, given a bound state q, we can
define its boosted counterpart, with relative velocity β = (β1, . . . , βd) ∈ Rd, where
|β| < 1 (we denote by | · | the euclidean norm on Rd), as

(8) qβ(x) := q(Λβ(x)), Λβ(x) := x+ (γ − 1)
β(β · x)
|β|2 , γ :=

1√
1− |β|2

.

Note that the function qβ satisfies

−(Δ− (β · ∇)2)qβ + qβ − f(qβ) = 0.

In particular,

R(t, x) =

(
qβ(x− βt)

−β · ∇qβ(x− βt)

)
is a solution of the (first order system form of the) Klein-Gordon equation (2).

It is well known (see e.g. Grillakis-Shatah-Strauss [23]) that the ground state
(q0, 0) is unstable in the energy space (this result is known in the physics literature
as Derrick’s Theorem [15]). For recent works on the instability properties of q0 and
on general solutions with energy slightly above E [(q0, 0)], we refer to Nakanishi-
Schlag [41,42] and subsequent works. We also refer to Duyckaerts-Merle [18], in the
context of the energy critical nonlinear wave equation for related works.

In this paper, we continue the study of the dynamics of large, quantized en-
ergy solutions. Specifically, we deal with solutions describing multi-bound states
for (NLKG), i.e., solutions u to (NLKG) defined on a semi-infinite interval of time,
such that

u(t, x) ∼
N∑

n=1

qn,βn
(x− βnt) as t → +∞

for given speeds βn (all distinct). Such solutions were constructed in the context of
the nonlinear Schrödinger equations, the generalized Korteweg-de Vries equations,
the Hartree equation, the energy critical wave equation, and the water wave system,
by Merle [32], Martel [30], Martel-Merle [33], Côte-Martel-Merle [9], Combet [6,7],
Krieger-Martel-Raphaël [26], Martel-Merle [35], and Ming-Rousset-Tzvetkov [37],
both in stable and unstable contexts (see also the references in these works). For
(NLKG), the same result was proved by Côte-Muñoz [10]: there exist multi-solitary
waves based on the ground state for the whole range of parameters β1, . . . , βN ∈ Rd

(two by two distinct), with |βn| < 1.
We point out that the above results all concern ground states q ∈ G , and rely

on the complete description of the linearized operator around the ground state in
these cases. To our knowledge, the only work related to excited states is by Côte-Le
Coz [8] for the nonlinear Schrödinger equation. In this work, the lack of information
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on the linearized operator is counterbalanced by assuming that solitary waves are
well separated (high-speed assumption).

The main goal of this paper is to extend the construction of multi-solitary waves
to a bound state q ∈ B of the (NLKG) equation, without assumption on the speeds
(besides their being distinct), thus completing Theorem 1 in [10], and opening the
way to treat such questions for other models.

Theorem 1. Let N ∈ N \ {0} and β1, β2, . . . , βN ∈ Rd such that

∀n, |βn| < 1 and ∀n′ �= n, βn′ �= βn.

Let q1, q2, . . . , qN ∈ B be any bound state solution of equation (7).
Then there exist T0 > 0, ω > 0, and a solution U of (2) in the energy space,

defined for t � T0, satisfying

∀t � T0,

∥∥∥∥∥U(t)−
N∑

n=1

Rn(t)

∥∥∥∥∥ � e−ωt,

where

Rn(t, x) =

(
qn,βn

(x− βnt)
−βn · ∇qn,βn

(x− βnt)

)
.

Using the techniques of this paper, it is possible to extend the main result to
more general H1 subcritical nonlinearities. See e.g. [10] for standard conditions on
the nonlinearity.

Recall that for integrable models, like the (KdV) and (mKdV) equations, or the
1D cubic nonlinear Schrödinger equation, multi-solitons are explicitly derived from
the inverse scattering method. Such solutions are quite special since they are global
multi-solitons, both for t → ±∞ and describe elastic collisions of solitons. See
e.g. the classical references [39,50,51]. For nonintegrable equations, in general, the
asymptotic behavior as t → −∞ of multi-bound states as constructed in Theorem 1
is not known.

Recall also that the importance of multi-solitons among all solutions is clearly
established by the so-called soliton resolution conjecture, which says roughly speak-
ing that any solution of a nonlinear dispersive equation should decompose in large
time as the sum of a certain number of solitons and a dispersive part. See e.g. [44]
for a proof in the case of the KdV equation. We refer to recent works of Duyckaerts,
Kenig, and Merle [16,17], and the references therein for general soliton decomposi-
tion results in the nonintegrable situation of the energy critical wave equation.

The scheme of the proof is the same as for previous related results, notably
[9, 10, 30]: Theorem 1 can be reduced to the existence of solutions to (NLKG)
satisfying uniform estimates, which is the following proposition.

Proposition 2. There exist T0 > 0 and ω0 > 0 such that for any S0 � T0 there
exists U0 such that the solution U(t) of (2) with data U(S0) = U0 is defined in the
energy space on the time interval [T0, S0] and satisfies

(9) ∀t ∈ [T0, S0],

∥∥∥∥∥U(t)−
N∑

n=1

Rn(t)

∥∥∥∥∥ � e−ω0t.

Indeed, let Sm → +∞, and assuming that Proposition 2 holds, let Um be
one solution to (NLKG) satisfying the uniform estimates (9) on the time inter-
val [T0, Sm]. Using the compactness arguments of Section 4 of [10], one observes
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that (Um(T0))m∈N has a weak-H1 ×L2 limit U∗
0 . Then consider the solution U∗ to

(NLKG) with data U∗
0 at time T0: the key feature is that the flow of (NLKG) is

continuous for the weak-H1 × L2 topology, and this allows us to conclude that U∗

is the desired multi-soliton. We refer to [10, Section 4] for further details.
We are therefore left with solely the proof of Proposition 2, to which the re-

mainder of this paper is devoted. To prove it for any bound state, we use two new
points:

(1) a general coercivity argument with no a priori knowledge of the spectral
properties of the linearized operator (see Section 2);

(2) a simplification of the existence proof so as to deal with possibly multiple
degenerate directions, not related to translation invariance (see Section 3).

2. Spectral theory for bound states

We consider a bound state q ∈ B, a velocity β ∈ Rd, |β| < 1, and the corre-
sponding Lorentz state qβ defined by (8). In this section we are interested in the
linearized flow around the solution R(t, x) of (2),

R(t, x) =

(
qβ(x− βt)

−β · ∇qβ(x− βt)

)
.

Define the matrix operator

H =

(
−Δ+ 1− f ′(qβ) −β · ∇

β · ∇ 1

)
and J =

(
0 1
−1 0

)
.

The (NLKG) equation around R, i.e., for solutions of the form

U(t, x) = R(t, x) + V (t, x− βt),

where V is a small perturbation, rewrites as

(10) ∂tV = JHV + N (V ),

where N (V ) denotes nonlinear terms in V .

2.1. Spectral analysis of JH. First, following [10], we study the spectral prop-
erties of the operator JH appearing in equation (10),

JH =

(
β · ∇ 1

Δ− 1 + f ′(qβ) β · ∇

)
,

in terms of the spectral properties of the elliptic operator

L = −Δ+ 1− f ′(q).

Lemma 1. (i) Spectral properties of L. The self-adjoint operator L has essential
spectrum [1,+∞), a finite number k̄ � 1 of negative eigenvalues (counted with
multiplicity), and its kernel is of finite dimension �̄ � d. Let (φk)k=1,...,k̄ be an L2-

orthogonal family of eigenfunctions of L with negative eigenvalues (−λ2
k)k=1,...,k̄,

and let (φ0
�)�=1,...,�̄ be an L2-orthogonal basis of ker(L), i.e.,

Lφk = −λ2
kφk, λk > 0, k = 1, . . . , k̄,(11)

Lφ0
� = 0, � = 1, . . . , �̄.(12)
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Then, there exists c > 0 such that for any v ∈ H1 satisfying (v, φk) = (v, φ�
0) = 0

for all k = 1, . . . , k̄, � = 1, . . . , �̄, the following holds:

(Lv, v) � c‖v‖2H1 .(13)

(ii) Spectral properties of JH. For k = 1, . . . , k̄ and � = 1, . . . , �̄ and signum ±,
let

Y ±
k (x) = e∓γλkβ·x

(
φk

∓γβ · ∇φk ± γλkφk

)
(Λβ(x)),(14)

Φ0
� (x) =

(
φ0
�

−γβ · ∇φ0
�

)
(Λβ(x)).(15)

Then

(JH)Y ±
k = ±λk

γ
Y ±
k ,(16)

kerH = ker(JH) = Span(Φ0
� , � = 1, . . . , �̄).(17)

Moreover,

(18) 〈HY +
k , Y +

k′ 〉 = 〈HY −
k , Y −

k′ 〉 = 0 for all k, k′ = 1, . . . , k̄.

Finally, the family (Y ±
k )±,k=1,...,k̄ is linearly independent. As a consequence, the

family (HY ±
k )±,k=1,...,k̄ is linearly independent.

(iii) Exponential decay. There exist C0 > 0 and ω0 > 0, such that for all α ∈ Nd,
|α| � 1, and for all x ∈ Rd,

(19) |∂αq(x)|+ |∂αφk(x)|+ |∂αY ±
k (x)|+ |∂αφ0

�(x)| � C0e
−ω0|x|.

Proof. We start by noticing that by rotation (with first vector β/|β| for β �= 0), we
can assume that the Lorentz boost is of the form (β, 0, . . . , 0), where (with slight
abuse of notation) β ∈ (−1, 1). Observe that in this case Λβ(x) = (γx1, x

′), where
x = (x1, x

′), x′ = (x2, . . . , xd).
(i) The operator L is a compact perturbation of −Δ + 1, and so the two op-

erators have the same essential spectrum [1,+∞). In particular, for any δ > 0,
both operators have a finite number of eigenvalues (counting their multiplicities)
on (−∞, 1− δ]. We define (φk)k=1,...,k̄, (λk)k=1,...,k̄, and (φ0

�)�=1,...,�̄ as in the state-
ment of the lemma. From the spectral theorem, the following coercivity holds:
there exists c′ > 0 such that for any v ∈ H1 satisfying (v, φk) = (v, φ�

0) = 0 for
all k = 1, . . . , k̄, � = 1, . . . , �̄, we have (Lv, v) � c′‖v‖2L2 . Since f ′(q) is bounded, a
standard argument proves that the coercivity property (13) holds.

Note that by direct computations (Lq, q) = (1− p)
∫
|q|p+1 < 0 and thus k̄ � 1.

Moreover, it is clear by differentiating (7) with respect to xj that ∂jq ∈ kerL. Since
the family (∂jq)j=1,...,d is linearly independent, we obtain �̄ � d.

(ii) Looking for an eigenfunction Y = (ρ1, ρ2)
� of the operator JH, with eigen-

value λ, we are led to the system{
β∂1ρ1 + ρ2 = λρ1,

(Δ− 1 + f ′(qβ))ρ1 + β∂1ρ2 = λρ2.

The first equation gives ρ2 = (λ− β∂1)ρ1 which we plug into the second equation:

(−Δ+ 1− f ′(qβ))ρ1 + (λ− β∂1)
2ρ1 = 0,
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which rewrites as

−(1− β2)∂11ρ1 −Δ′ρ1 − 2λβ∂1ρ1 + ρ1 − f ′(qβ)ρ1 = −λ2ρ1,

where Δ′ is the Laplace operator with respect to the variable x′ = (x2, . . . , xd).
Write

ρ1(x) = e−γ2λβx1σ1(γx1, x
′) = e−γλβy1σ1(y), y = (γx1, x

′).

Then the equation on ρ1 rewrites as

e−γλβy1
[
−(1− β2)

(
γ2∂2

11 − 2γ2λβγ∂1 + (γ2λβ)2
)

−Δ′ − 2λβ(γ∂1 − γ2λβ) + (1 + λ2)− f ′(q)
]
σ1(y) = 0,

which simplifies to

−Δσ1 + σ1 − f ′(q)σ1 = −γ2λ2σ1.

Therefore σ1 has to be an eigenfunction of L with eigenvalue −γ2λ2 � 0.
Reciprocally, if σ1 = φk and λ = λk/γ, then

e−γ2λβx1

(
φk

−γβ∂1φk + λγ2φk

)
(γx1, x

′)

is an eigenfunction of JH with eigenvalue λ.
Let us check (18):

λk′

γ
〈HY +

k , Y +
k′ 〉 = 〈HY +

k ,JHY +
k′ 〉 = −〈JHY +

k ,HY +
k′ 〉

= −λk

γ
〈Y +

k ,HY +
k′ 〉 = −λk

γ
〈HY +

k , Y +
k′ 〉.

Since λk, λk′ > 0, this implies 〈HY +
k , Y +

k′ 〉 = 0. All these computations are similar

for (Y −
k )k.

Also observe that if λk �= λk′ , then 〈HY +
k , Y −

k′ 〉 = 0 with the same argument.

Let us now prove that the (Y ±
k )±,k=1,...,k̄ are linearly independent. Assume that

we have the dependence relation:

k̄∑
k=1

(a+k Y
+
k + a−k Y

−
k ) = 0.

Fix k∗ ∈ {1, . . . , k̄}, and let Ik∗ be the set of indices k ∈ {1, . . . , k̄} such that
λk = λk∗ . As spectral spaces associated to different eigenvalues are in direct sum,
we infer that ∑

k∈Ik∗

a+k Y
+
k = 0 and

∑
k∈Ik∗

a−k Y
−
k = 0.

In the first equality, the first line writes

e−γλkβ·x
∑

k∈Ik∗

a+k φk(Λβx) = 0.

As Λβ is one-to-one, this means that
∑

k∈Ik∗
a+k φk = 0 and by linear independence

of the (φk)k=1,...,k̄, this relation is trivial: a+k = 0 for all k ∈ IK∗ , and in particular

a+k∗
= 0. A similar argument on the second equality gives that a−k∗

= 0. Therefore,

the dependence relation is trivial, and the (Y ±
k )±,k=1,...,k̄ are linearly independent.
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As they are eigenfunctions for JH with nonzero eigenvalue, we infer that the
family (JHY ±

k )±,k=1,...,k̄ is linearly independent. As J is one-to-one (it is an invo-

lution), the (HY ±
k )±,k=1,...,k̄ are linearly independent as well.

(iii) The exponential decay of any bound state q and its derivates is well known,
and follows from Agmon type estimates; we refer the reader to [21].

By standard elliptic arguments, we first note that there exist C > 0 such that
for all α ∈ Nd, |α| � 2,

(20) ∀x ∈ Rd, |∂αφk(x)| � Ce−(1+λ2
k)

1
2 |x|, |∂αφ0

� (x)| � Ce−|x|.

This and the definition of Y ±
k in (14) is enough to prove (19). �

2.2. Spectral analysis of H. The eigenfunctions Y ±
k of JH are related to equation

(10), as well as the eigenfunctions HY ±
k of the adjoint operator HJ. In particular,

it is straightforward to compute the main order time evolution of the projection of
the perturbation V on such directions (see Lemma 8). However, in order to study
stability properties of the flow using the energy method (see the next section), the
relevant operator turns out to be H.

The operator H is self-adjoint for the 〈·, ·〉 scalar product and we already know
from Lemma 1 that

(21) kerH = Span(Φ0
� , � = 1, . . . , �̄),

where the vector-valued functions Φ0
� are defined in (15). However, unlike for JH,

the eigenfunctions of H related to negative eigenvalues do not seem to be explicitly
related to that of L.

Nonetheless a key observation of this paper is that for any β ∈ Rd, |β| < 1, the
number of negative directions for the quadratic form 〈H·, ·〉 is equal to the number
k̄ of negative eigenvalues of the operator L.

Lemma 2. The self-adjoint operator H has a finite number m̄ � 1 of negative
eigenvalues (counted with multiplicity). Let (Υm)m=1,...,m̄ be an L2-orthogonal fam-
ily of eigenfunctions of H with negative eigenvalues, normalized so that

HΥm = −μ2
mΥm, μm > 0, m = 1, . . . , m̄,(22)

〈HΥm,Υm〉 = −1, 〈Υm,Υm′〉 = 0 for m �= m′.(23)

Then the following holds:
m̄ = k̄.

Moreover, there exists c > 0 such that for all V ∈ H1 × L2,

〈HV, V 〉 � c‖V ‖2 − 1

c

m̄∑
m=1

〈V,Υm〉2 − 1

c

�̄∑
�=1

〈V,Φ0
�〉2.(24)

Proof. As before we assume (without loss of generality) that the Lorentz boost is
of the form (β, 0, . . . , 0) for some β ∈ (−1, 1). Note that

〈HV, V 〉 = ((−Δ+ 1− f ′(qβ))v1, v1) + 2β(∂1v1, v2) + ‖v2‖2L2

= (L̃v1, v1) + ‖β∂1v1 + v2‖2L2 ,

where L̃ := −(1− β2)∂11 −Δ′ + 1− f ′(qβ).

Observe that L̃ is self-adjoint and that it is a compact perturbation of the operator
−(1 − β2)∂2

11 −Δ′ so it has essential spectrum [1 − β2,+∞). From there we infer
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that H has only finitely many negative eigenvalues, whose eigenfunctions span a
vector space of dimension m̄; as (Φ0

�)�=1,...,�̄ span kerH, and this yields (24).

Also notice that if we denote Ṽ (x) := V (Λβ(x)), then (L̃Ṽ )(x) = (LV )(Λβ(x)).

This means that a basis of the eigenfunctions of L̃ with negative eigenvalues is given
by the (φk ◦ Λβ)k=1...,k̄; in particular they span a subspace of dimension k̄.

Now, we prove that m̄ = k̄. On the one hand, for k = 1, . . . , k̄, define

Φk(x) =

(
φk

−γβ∂1φk

)
(Λβ(x)) so that HΦk =

(
−λ2

kφk

0

)
(Λβ(x)).

Then the (Φk)k are linearly independent as a consequence of the linear independence
of the (φk)k. Let W ∈ Span(Φk, k = 1, . . . , k̄) be nonzero, W =

∑
k αkΦk, and, by

L2-orthogonality of the φk,

〈HW,W 〉 = −
∑
k

λ2
kα

2
k < 0.

Hence 〈H·, ·〉|Span(Φk,k=1,...,k̄) is negative definite on Span(Φk, k = 1, . . . , k̄) which

is of dimension k̄. By the Sylvester inertia theorem, we deduce that k̄ � m̄.
On the other hand, denote by Υm = (υ1

m, υ2
m)� a family of L2-orthogonal eigen-

functions of H with negative eigenvalues −μ2
m (μk > 0), i.e., HΥm = −μ2

mΥm.
Then (υ1

m, υ2
m) satisfy{

(−Δ+ 1− f ′(qβ))υ
1
m − β∂1υ

2
m= −μ2

mυ1
m,

β∂1υ
1
m + υ2

m= −μ2
mυ2

m

so that υ2
m = − β

1+μ2
m
∂1υ

1
m and(

−Δ+ 1− f ′(qβ) +
β2

1 + μ2
m

∂11

)
υ1
m = −μ2

mυ1
m.

Then,

L̃υ1
m = −μ2

mυ1
m +

β2μ2
m

1 + μ2
m

∂11υ
1
m

and so

(L̃υ1
m, υ1

m) = −μ2
m

(
‖υ1

m‖2L2 +
β2

1 + μ2
m

‖∂1υ1
m‖2L2

)
.

For m �= m′, note first that the orthogonality 〈Υm,Υm′〉 = 0 gives

0 = 〈Υm,Υm′〉 =
∫

υ1
mυ1

m′ +

∫
υ2
mυ2

m′

=

∫
υ1
mυ1

m′ +
β2

(1 + μ2
m)(1 + μ2

m′)

∫
∂1υ

1
m∂1υ

1
m′ .

Thus, for m �= m′,

(L̃υ1
m, υ1

m′) = −μ2
m

(∫
υ1
mυ1

m′ +
β2

1 + μ2
m

∫
∂1υ

1
m∂1υ

1
m′

)

= − β2μ2
mμ2

m′

(1 + μ2
m)(1 + μ2

m′)

∫
∂1υ

1
m∂1υ

1
m′ .
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Let w = −β2
∑m̄

m=1 αmυ1
m be nonzero. Then, we obtain for w

(L̃w,w) = −β2
m̄∑

m,m′=1

αmαm′μ2
mμ2

m′

(1 + μ2
m)(1 + μ2

m′)

∫
∂1υ

1
m∂1υ

1
m′

−
m̄∑

m=1

α2
mμ2

m

(
‖υ1

m‖2L2 +
β2

(1 + μ2
m)2

‖∂1υ1
m‖2L2

)
.

For the first term of the right-hand side, we have the identity

m̄∑
m,m′=1

αmαm′μ2
mμ2

m′

(1 + μ2
m)(1 + μ2

m′)

∫
∂1υ

1
m∂1υ

1
m′ =

∥∥∥∥∥
m̄∑

m=1

αmμ2
m

1 + μ2
m

∂1υ
1
m

∥∥∥∥∥
2

L2

,

and we obtain

(L̃w,w) � −
m̄∑

m=1

α2
mμ2

m

(
‖υ1

m‖2L2 +
β2

(1 + μ2
m)2

‖∂1υ1
m‖2L2

)
,

which means that (L̃·, ·) is negative definite on Span(υ1
m,m = 1, . . . , m̄), a subspace

of dimension m̄. By the Sylvester inertia theorem, m̄ � k̄. In conclusion, we have
proved m̄ = k̄. �

Even if m̄ = k̄, we will still use k ∈ {1, . . . , k̄} and m ∈ {1, . . . , m̄} to denote
with clarity the ranges of indices of the negative eigenvalues and corresponding
eigenfunctions of the operators L and H.

2.3. A coercivity property. The main result of this section is the following
proposition, which states a coercivity property for H related to the eigenfunctions
Y ±
k and Ψ0

� of JH.

Proposition 3. There exists c > 0 such that, for all V ∈ H1 × L2,

〈HV, V 〉 � c‖V ‖2 − 1

c

k̄∑
±,k=1

〈HV, Y ±
k 〉2 − 1

c

�̄∑
�=1

〈V,Φ0
�〉2.

This result is a generalization of Proposition 2 in [10] to the case of bound states
(we also refer to Lemma 5.2 in [18] for a previous similar result for the energy critical
NLS equation). In contrast with previous works in the case of ground states, this
result is obtained with no a priori information on the spectrum of L.

Proof. As before, we assume that the Lorentz boost is of the form (β, 0, . . . , 0), with
β ∈ (−1, 1). By a standard argument, it suffices to prove that there exists c > 0
such that for any V ∈ H1 × L2 with 〈HV, Y ±

k 〉 = 〈V,Φ0
�〉 = 0 for all k = 1, . . . , k̄,

� = 1, . . . , �̄, and signum ±, there holds

〈HV, V 〉 � c‖V ‖2.(25)
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Let V be such a function. We introduce the L2-orthogonal decompositions of the
functions Y ±

k and of V :

Y ±
k = Ỹ ±

k +
m̄∑

m=1

y±k,mΥm +
�̄∑

�=1

y±,0
k,� Φ

0
� , 〈Ỹ ±

k ,Υm〉 = 〈Ỹ ±
k ,Φ0

�〉 = 0,(26)

V = Ṽ +
m̄∑

m=1

vmΥm, 〈Ṽ ,Υm〉 = 〈Ṽ ,Φ0
�〉 = 0.(27)

Then, expanding by linearity and using (22), (21), and (23), we get, for any k, k′,

0 = 〈HY ±
k , Y ±

k′ 〉 = 〈HỸ ±
k , Ỹ ±

k′ 〉 −
m̄∑

m=1

y±k,my±k′,m,(28)

0 = 〈HV, Y ±
k 〉 = 〈HṼ , Ỹ ±

k 〉 −
m̄∑

m=1

y±k,mvm,(29)

〈HV, V 〉 = 〈HṼ , Ṽ 〉 −
m̄∑

m=1

v2m.(30)

Claim. The family (Ỹ ±
k )±,k=1,...,k̄ is linearly independent.

Indeed, if there is a dependence relation
∑k̄

k=1(a
+
k Ỹ

+
k + a−k Ỹ

−
k ) = 0, then for

some αm, α0
� , m = 1, . . . , m̄, � = 1, . . . , �̄,

k̄∑
k=1

(a+k Y
+
k + α−

k Y
−
k ) =

m̄∑
m=1

αmΥm +

�̄∑
�=1

α0
�Φ

0
� .

Then we have by the orthogonalities in (26)〈
H

k̄∑
k=1

(a+k Ỹ
+
k + a−k Ỹ

−
k ),

k̄∑
k=1

(a+k Ỹ
+
k + a−k Ỹ

−
k )

〉

=

〈
H

⎛
⎝ m̄∑

m=1

αmΥm +
�̄∑

�=1

α0
�Φ

0
�

⎞
⎠ ,

k̄∑
k=1

(a+k Ỹ
+
k + a−k Ỹ

−
k )

〉
= 0.

But we also have, by the normalization (23),〈
H

k̄∑
k=1

(a+k Ỹ
+
k + a−k Ỹ

−
k ),

k̄∑
k=1

(a+k Ỹ
+
k + a−k Ỹ

−
k )

〉

=

〈
H

⎛
⎝ m̄∑

m=1

αmΥm +
�̄∑

�=1

α0
�Φ

0
�

⎞
⎠ ,

m̄∑
m=1

αmΥm +
�̄∑

�=1

α0
�Φ

0
�

〉
= −

m̄∑
m=1

α2
m.

Hence αm = 0 for m = 1, . . . , m̄, and

k̄∑
k=1

(a+k Y
+
k + α−

k Y
−
k ) =

�̄∑
�=1

α0
�Φ

0
� ∈ kerH.
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It follows that

0 = JH
k̄∑

k=1

(a+k Y
+
k + α−

k Y
−
k ) =

k̄∑
k=1

1

γ
(λka

+
k Y

+
k − λkα

−
k Y

−
k ).

As the (Y ±
k )±,k=1,...,k̄ are linearly independent, we infer that a+k = a−k = 0 for

k = 1, . . . , k̄. The dependence relation was in fact trivial, and this proves the claim.
Define the k̄ × k̄ Gram matrix

G+ =

⎛
⎜⎝
〈HỸ +

1 , Ỹ +
1 〉 · · · 〈HỸ +

1 , Ỹ +
k̄
〉

...
...

〈HỸ +
k̄
, Ỹ +

1 〉 · · · 〈HỸ +
k̄
, Ỹ +

k̄
〉

⎞
⎟⎠

and the matrix Y + (with k̄ lines and m̄ rows)

Y + = (y+k,m) k=1,...,k̄
m=1,...,m̄

.

Then the relations in (28) rewrite as the matrix property

G+ = Y +(Y +)�.

As the restriction of 〈H·, ·〉 to Span(Υm,Φ0
� ,m = 1, . . . , m̄, � = 1, . . . , �̄)⊥ (L2-

orthogonality) is coercive due to (24), the matrix G+ is positive definite, hence its
rank is k̄. This implies that the rank of Y + is at least k̄, and as m̄ = k̄, it is an
invertible matrix.

One can define similarly G− = (〈HỸ −
k , Ỹ −

k′ 〉) k=1,...,k̄
k′=1,...,k̄

, which is positive definite

and Y − = (y−k,m) k=1,...,k̄
m=1,...,m̄

and get that Y −(Y −)� = G−.

We also see that (29) rewrites as, denoting V = (vm)m=1,...,m̄ (m̄ lines),

∀k = 1, . . . , k̄, 〈HV, Ỹ +
k 〉 = (Y +V )k, 〈HV, Ỹ −

k 〉 = (Y −V )k,

and from (30) we get

(31) 〈HV, V 〉 = 〈HṼ , Ṽ 〉 −
m̄∑

m=1

v2m = 〈HṼ , Ṽ 〉 − V �V .

Define the H-orthogonal projection Π+ on Span(Ỹ +
k , k = 1, . . . , k̄) as

Π+V :=

k̄∑
k=1

w+
k Ỹ

+
k ,

where W + := (w+
k )k is defined as

W + := (G+)−1Y +V .

Indeed, we check that this definition implies that, for all k′ = 1, . . . , k̄,

〈HΠ+V, Ỹ +
k′ 〉 =

k̄∑
k=1

〈HỸ +
k , Ỹ +

k′ 〉w+
k = (G+W +)k′ = (Y +V )k′ = 〈HV, Ỹ +

k′ 〉.

As a consequence,

〈HΠ+V,Π+V 〉 = (W +)�G+W +.
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We also see from the definition of W + that Y +V = G+W + = Y +(Y +)�W + and
so, since Y + is invertible, we obtain V = (Y +)�W +. Thus,

V �V = (W +)�G+W + = 〈HΠ+V,Π+V 〉.
Similarly, defining Π− as the H-orthogonal projection on Span(Ỹ −

k , k = 1, . . . , k̄),
we have V �V = 〈HΠ−V,Π−V 〉.

Therefore, we rewrite (31) as

〈HV, V 〉 = 〈HṼ , Ṽ 〉 −
√
〈HΠ+V,Π+V 〉

√
〈HΠ−V,Π−V 〉.(32)

Let F be the 2k̄-dimensional vector space F = Span(Ỹ ±
k ,±, k = 1, . . . , k̄) and

consider

a := sup
W∈F\{0}

√
〈HΠ+W,Π+W 〉

√
〈HΠ−W,Π−W 〉

〈HW,W 〉 .

Recall from (24) that the quadratic form 〈H·, ·〉 is positive definite on the subspace
Span(Υm,Φ0

� ,m = 1, . . . , m̄, � = 1, . . . , �̄, )⊥ (L2-orthogonality), and so 〈H·, ·〉 is
positive definite on F (in particular, the quantity involved in the definition of a is
well defined and positive for allW ∈ F \{0}). Then on F , Π+ and Π− are orthogonal
projections with respect to the positive definite scalar product 〈H·, ·〉|F×F , and
therefore we have

∀W ∈ F, 〈HΠ+W,Π+W 〉 � 〈HW,W 〉, 〈HΠ−W,Π−W 〉 � 〈HW,W 〉.
Moreover, there is equality in the left [resp., right] inequality if and only if W ∈
Span(Ỹ +

k , k = 1, . . . , k̄) [resp., W ∈ Span(Ỹ −
k , k = 1, . . . , k̄)]. It follows that a � 1.

Now, assume for the sake of contradiction that a = 1. As F is finite dimensional
and hence locally compact, there exists W ∈ F \ {0} such that

〈HΠ+W,Π+W 〉〈HΠ−W,Π−W 〉 = 〈HW,W 〉2,
and so 〈HΠ+W,Π+W 〉 = 〈HW,W 〉 = 〈HΠ−W,Π−W 〉 and

W ∈ Span(Ỹ +
k , k = 1, . . . , k̄) ∩ Span(Ỹ −

k , k = 1, . . . , k̄).

By linear independence of the family (Ỹ ±
k )±,k=1,...,k̄, this implies that W = 0, a

contradiction. This proves that a < 1, and therefore (32) gives

〈HV, V 〉 � (1− a)〈HṼ , Ṽ 〉.(33)

We can now proceed to prove the coercivity announced in (25). Recall (24):

〈HṼ , Ṽ 〉 � c(1− a)‖Ṽ ‖2.(34)

We infer that 〈HV, V 〉 � 0 and then (30) implies that

〈HṼ , Ṽ 〉 �
m̄∑

m=1

v2m.(35)

Now the decomposition (27) and the triangle inequality also give that

‖V ‖ � ‖Ṽ ‖+
m̄∑

m=1

|vm|‖Υm‖ � C1

(
‖Ṽ ‖+

m̄∑
m=1

|vm|
)

� C1(m̄+ 1)

(
‖Ṽ ‖2 +

m̄∑
m=1

|vm|2
) 1

2

,(36)
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where C1 = 1 +max(‖Υm‖,m = 1, . . . , m̄). Hence, combining (33), (35), (34), and

(36), and denoting C =
4C2

1 (m̄+1)2

(1−a) max
(
(c(1− a))−1, 1

)
, we get

C〈HV, V 〉 � C(1− a)〈HṼ , Ṽ 〉 � C(1− a)

2

(
〈HṼ , Ṽ 〉+

m̄∑
m=1

v2m

)

� C(1− a)

2

(
c(1− a)‖Ṽ ‖2 +

m̄∑
m=1

v2m

)

� C2
1 (m̄+ 1)2

(
‖Ṽ ‖2 +

m̄∑
m=1

v2m

)
� ‖V ‖2. �

3. Proof of Proposition 2

3.1. Notation. Let N ∈ N \ {0} and β1, . . . , βN ∈ Rd such that

∀n, |βn| < 1 and ∀n′ �= n, βn′ �= βn; γn :=
1√

1− β2
n

,

and let q1, q2, . . . , qN be any bound states of equation (7). Denote by I and I0 the
following two sets of indices:

I = {(n, k) : n = 1, . . . , N, k = 1, . . . , k̄n}, |I| = Card I =

N∑
n=1

k̄n,

I0 = {(n, �) : n = 1, . . . , N, � = 1, . . . , �̄n}, |I0| = Card I0 =

N∑
n=1

�̄n.

Denote by B the closed unit ball of R|I| for the euclidean norm. For any n ∈
{1, . . . , N}, we consider the operators Ln and Hn for the bound state qn, along with
the eigenvalues and eigenfunctions defined in Lemma 1: (λn,k)(n,k)∈I , (φn,k)(n,k)∈I ,

(φ0
n,�)(n,�)∈I0 , (Φ0

n,�)(n,�)∈I0 , and (Y ±
n,k)(n,k)∈I,± (with obvious notation). Let

rn(t, x) = qn(Λβn
(x− βnt)), Rn =

(
rn

−βn · ∇rn

)
,(37)

ψ0
n,�(t, x) = φ0

n,�(Λβn
(x− βnt)), Ψ0

n,� =

(
ψ0
n,�

−βn · ∇ψ0
n,�

)
= Φn,�(x− βnt),(38)

and Z±
n,k(t, x) = (HnY

±
n,k)(x− βnt)(39)

be their travelling-in-time counterparts. We recall the equation for ψ0
n,�:

(40) (Δ− (βn · ∇)2)ψ0
n,� − ψ0

n,� + f ′(rn)ψ
0
n,� = 0.

Let T0 � 1 be fixed later large enough and let ω > 0 be fixed later small enough,
independently of T0. For brevity, we will omit mentioning the fact that ω is taken
small so that estimates hold. It will be convenient in the estimates to introduce the
following enveloping functions: for any n = 1, . . . , N , we set

ρn(t, x) = e−ω|x−βnt| and ρ =

N∑
n=1

ρn.
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In particular, ω will be so small and T0 so large that for any n �= n′,

∀t � T0, ∀x ∈ Rd, e−(p0−1)ω0|x−βnt|e−(p0−1)ω0|x−βn′ t| � e−10ωtρ(t, x)(41)

(the exponential decay rate ω0 > 0 was defined in (19)).
Fix any S0 � T0. To prove Proposition 2, we show that there exists a choice of

coefficients (θ±n,k)(n,k)∈I,±, |θ| � e−ωS0 , such that the backward solution U(t) of

(2) with data

(42) U(S0) =

N∑
n=1

Rn(S0) +
∑

±,(n,k)∈I0

θ±n,kZ
±
n,k(S0)

exists on [T0, S0] and satisfies the properties of Proposition 2.
We consider such a solution U defined on its maximal backwards interval of

existence [Smax, S0], and we first set

U =

(
u
∂tu

)
=

N∑
n=1

Rn + V, V =

(
v
∂tv

)
.(43)

We further decompose V according to the kernel of the linearized operator around
each bound state rn.

Lemma 3. For T0 > 1 large enough and t � T0, there exists b = (bn,�)(n,�)∈I0 such
that

(44) W =

(
w
z

)
:= V −

∑
(n,�)∈I0

bn,�Ψ
0
n,�

satisfies, for all (n, �) ∈ I0 and C > 0 independent of t,

(45) 〈W,Ψ0
n,�〉 = 0, |b| � C‖V ‖.

Proof. The orthogonality condition in (45) is equivalent to a matrix identity

(〈V,Ψ0
n,�〉)(n,�)∈I0 = H b,

where b = (bn,�)(n,�)∈I0 (written in one row) and

H = (〈Ψ0
n,�,Ψ

0
n′,�′〉)(n,�),(n′,�′)∈I0 = D0 +O(e−10ωt),

D0 = diag(H 0
1 , . . . ,H 0

n ), H 0
n = (〈Ψ0

n,�,Ψ
0
n,�′〉)�,�′∈(1,...,�̄n).

Note that for fixed n, the family (Ψ0
n,�)�∈(1,...,�̄n) being linearly independent (see

Lemma 1), the Gram matrix H 0
n is invertible. Thus, D0 is invertible: for T0 large

enough, so is H and b = H −1(〈V,Ψ0
n,�〉)(n,�)∈I0 (and H −1 has uniform norm in

t � T0). �

Note that (44) is equivalent to

w = v −
N∑

n=1

�̄n∑
�=1

bn,�ψ
0
n,�,(46)

z = vt +

N∑
n=1

�̄n∑
�=1

bn,�βn · ∇ψ0
n,� = wt +

N∑
n=1

�̄n∑
�=1

ḃn,�ψ
0
n,�.(47)
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For the sake of brevity, we denote

r =
N∑

n=1

rn, ψ0 =
N∑

n=1

�̄n∑
�=1

bn,�ψ
0
n,� so that u = r + v = r + ψ0 + w.

Finally, we set

(48) a±n,k = 〈V, Z±
n,k〉.

Observe that 〈Ψ0
n,�, Z

±
n′,k〉 = O(e−10ωt)) for all n, n′ = 1, . . . , N , � = 1, . . . , �̄n,

k = 1, . . . , k̄n′ , and signum ± (it is obvious by separation and decay (19) when
n �= n′, and when n = n′ it is equal to 〈Φ0

n,�,HnJY
±
n′,k〉 = 〈JHnΦ

0
n,�, Y

±
n′,k〉 = 0).

Therefore

〈W,Z±
n,k〉 = a±n,k +O(|b|e−10ωt).(49)

Let

p0 = min(2, p), 1 < p0 � 2.

3.2. Bootstrap setting. We consider the following bootstrap estimates:

(50)

{
‖W (t)‖ � e−ωt, |b(t)| � e−ωt,

|a−(t)| � e−
1
3 (p0+2)ωt, |a+(t)| � e−

1
3 (p0+2)ωt.

We claim that any given initial value of a+(S0) can be matched by a suitable
choice of initial θ in the definition of U(S0) in (42).

Lemma 4. There exists a C 1 map Θ : B → (e−
1
4 (p0+3)ωS0B)2 such that for any

a+ = (a+n,k)(n,k)∈I ∈ B, if we take θ = (θ±n,k)±,(n,k)∈I = Θ(a+) in the definition of

V (S0) from (42)–(43), there holds, for a±(S0) = (a±n,k(S0))(n,k)∈I (defined in (48)),
that

(51) a+(S0) = e−
1
3 (p0+2)ωS0a

+ and a−(S0) = 0.

Moreover,

(52) ‖W (S0)‖ � e−
1
4 (p0+3)ωS0 , |b(S0)| � Ce−10ωS0 .

Proof. The proof of this result is similar to that of Lemma 6 in [10] and Lemma 3
in [9]. In view of (42) and (43), it holds that

V (S0) =
∑

(n′,k′)∈I,±
θ±n′,k′Z

±
n′,k′(S0),

and so we are looking for a solution (θ±n,k)±,(n,k)∈I of the equalities:

e−
1
3 (p0+2)ωS0a

+
n,k = a+n,k(S0) =

∑
(n′,k′)∈I,±

θ±n′,k′〈Z±
n′,k′(S0), Z

+
n,k(S0)〉,

0 = a−n,k(S0) =
∑

(n′,k′)∈I,±
θ±n′,k′〈Z±

n′,k′(S0), Z
−
n,k(S0)〉,

which rewrites as a = Z θ, where

a = (a+1,1, a
−
1,1, a

+
1,2, a

−
1,2, . . .)

� = (a±)±,(n,k)∈I ,

θ = (θ+1,1, θ
−
1,1, θ

+
1,2, θ

−
1,2, . . .)

� = (θ±)±,(n,k)∈I ,
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and where Z is the 2|I| × 2|I| matrix

Z = (〈Z±
n,k(S0), Z

±′

n′,k′(S0)〉)±,±′,(n,k),(n′,k′)∈I .

In particular, by (19), for ω > 0 small enough, we note that

Z = D +O(e−10ωS0), where D = diag
(
Z1, . . . ,ZN

)
, with

Zn =

⎛
⎜⎜⎜⎜⎝
(Z+

n,1(S0), Z
+
n,1(S0)) (Z−

n,1(S0), Z
+
n,1(S0)) . . . (Z−

n,1(S0), Z
+
n,k̄

(S0))

(Z+
n,1(S0), Z

−
n,1(S0)) (Z−

n,1(S0), Z
−
n,1(S0)) . . . (Z−

n,1(S0), Z
−
n,k̄

(S0))
...

. . .

(Z+
n,k̄

(S0), Z
−
n,1(S0)) (Z−

n,1(S0), Z
−
n,1(S0)) . . . (Z−

n,k̄n
(S0), Z

−
n,k̄

(S0))

⎞
⎟⎟⎟⎟⎠ .

For any n = 1, . . . , N , Zn is the Gram matrix of the linearly independent family of
size 2k̄n (Z±

n,k(S0))±,k=1,...k̄n
. Thus, Zn is invertible and D is invertible. It follows

that Z is invertible for T0 large enough.
Moreover, from (51), for T0 large enough,

|θ| � C|a(S0)| � Ce−
1
3 (p0+2)ωS0 ,(53)

and so from the definition of V (S0) above and the fact that 〈Z±
n,k,Ψ

0
n,�〉 = 0 for

any n, k = 1, . . . k̄n, � = 1, . . . , �̄n, and signum ±, we infer that |〈V (S0),Ψ
0
n,�〉| �

Ce−10ωS0 .
Recalling the definition of b (at the end of the proof of Lemma 3), we deduce

that

|b(S0)| = |H −1(〈V,Ψ0
n,k〉)(n,�)∈I0 | � C|(〈V,Ψ0

n,k〉)(n,�)∈I0 | � Ce−10ωS0 .

From (53) and (45), we get

‖V (S0)‖, ‖W (S0)‖ � Ce−
1
3 (p0+2)ωS0 .

To conclude, simply observe that for large T0, Ce−
1
3 (p0+2)ωS0 � e−

1
4 (p0+3)ωS0 . �

We define the following backward exit time S� = S�(a
+) related to the bootstrap

estimates (50):

S� = inf{T ∈ [T0, S0] such that U is defined and satisfies (50) on [T, S0]}.

Note that in view of Lemma 4, U(S0) satisfies (50) so that T0 � S� � S0 is well
defined. Our goal is to find a specific choice of a+ ∈ B so that S� = T0.

The argument goes by contradiction of this condition.
In the next subsections, we fix a choice of a+ ∈ B, such that

(54) T0 < S�(a
+) � S0.

We now derive estimates on ‖W‖, |b|, and |a±| on [S�, S0], so as to prove—in Lemma
10—that the flow issued from a+ is transverse at the exit time S� = S�(a

+).

3.3. Equation of W and preliminary estimates.

Lemma 5. The function W satisfies

(55) ∂tW =

(
z

Δw − w + f
(
r + ψ0 + w

)
− f

(
r + ψ0

))+
∑

(n,�)∈I0

ḃn,�Ψ
0
n,� +G,



7478 RAPHAËL CÔTE AND YVAN MARTEL

where

(56) G =

(
0
g

)
, g := f

(
r + ψ0

)
−

N∑
n=1

f(rn)−
∑

(n,�)∈I0

bn,�f
′(rn)ψ

0
n,�.

Proof. First, since U and Rn solve (2), it is direct to check the following equation
for v:

∂2
t v = Δv − v + f (r + v)−

N∑
n=1

f(rn).(57)

Next, the first line of (55) follows from the definition of z. For the second line, we
observe from the equation of V ,

∂tz = ∂2
t v +

∑
(n,�)∈I0

ḃn,�βn · ∇ψ0
n,� −

∑
(n,�)∈I0

bn,�(βn · ∇)2ψ0
n,�

= Δv − v + f(r + v)−
N∑

n=1

f(rn) +
∑

(n,�)∈I0

ḃn,�βn · ∇ψ0
n,�

−
∑

(n,�)∈I0

bn,�(βn · ∇)2ψ0
n,�.

Inserting v = w +
∑

(n,�)∈I0 bn,�ψ
0
n,� = w + ψ0 and using (40), we find the second

line of (55). �

Now, we derive some preliminary estimates related to the equation of W . Recall
that p0 = min(2, p), 1 < p0 � 2.

First, note that for K > 0 and any real numbers (sj)j=1,...,j̄ such that |sj | � K,
the following hold:

∣∣∣f( j̄∑
j=1

sj

)
−

j̄∑
j=1

f(sj)
∣∣∣ � C(K)

∑
j �=j′

|sj |p0−1|sj′ |p0−1,(58)

|f(s1 + s2)− f(s1)− s2f
′(s1)| � C(K)|s2|p0 ,(59)

|f ′(s1 + s2)− f ′(s1)| � C(K)|s2|p0−1.(60)

Second, applying these estimates to various situations, using (19) and (41), we
obtain

(61)
∣∣∣f(r)−∑

n

f(rn)
∣∣∣ � C

∑
n�=n′

|rn|p0−1|rn′ |p0−1 � Ce−10ωtρ,

(62)
∣∣∣f(r + ψ0)− f(r)− f ′(r)ψ0

∣∣∣ � C|ψ0|p0 � C|b|p0ρ,

(63)∣∣∣f ′(r)ψ0 −
∑

(n,�)∈I0

bn,�f
′(rn)ψ

0
n,�

∣∣∣ � ∑
(n,�)∈I0

∣∣∣ψ0
n,�bn,�(f

′(r)− f ′(rn))
∣∣∣ � C|b|e−10ωtρ

(the implicit constant does essentially depend on max(‖qn‖L∞ , n = 1, . . . , N)). In
particular, we obtain

(64) |g(t)| � C
(
e−10ωt + |b(t)|p0

)
ρ(t).
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Moreover, we also have

(65) |f(r + ψ0 + w)− f(r + ψ0)| � C
(
ρp0−1|w|p0−1 + |w|p

)
,

(66) |f(r + ψ0 + w)− f(r + ψ0)− wf ′(r + ψ0)| � C (|w|p0 + |w|p) .
Since p > 1, a similar estimate for F holds:

(67)
∣∣F (

r + ψ0 + w
)
− F

(
r + ψ0

)
− wf

(
r + ψ0

)∣∣ � C
(
|w|2 + |w|p+1

)
.

3.4. Degenerate directions. Estimates for (bn,�).

Lemma 6. For all t ∈ [S�, S0],

(68) |ḃ(t)| � C
(
‖W (t)‖+ e−10ωt + |b(t)|p0

)
� Ce−ωt.

Proof. We differentiate the orthogonality 〈W,Ψ0
n,�〉 = 0 from (45), using (55),

0 =
d

dt
〈W,Ψ0

n,�〉 = 〈∂tW,Ψ0
n,k〉 − βn〈W,∇Ψ0

n,k〉

=

〈(
βn · ∇w + z

Δw − w + f(r + ψ0 + w)− f(r + ψ0) + βn · ∇z

)
,Ψ0

n,k

〉

+
∑

(n′,�′)∈I0

ḃn′,�′〈Ψ0
n′,�′ ,Ψ

0
n,�〉+ 〈G,Ψ0

n,k〉.

We see that the first term of the equality is bounded by C‖W‖, by performing
integration by parts so that derivatives fall on the components of Ψ0

n,k and using

(58). Using (64) and the notation of the proof of Lemma 3, we obtain

|H b| � C
(
‖W‖+ e−10ωt + |b|p0

)
,

and the first estimate in (68) follows from the the matrix H −1 being uniformly
bounded, and the second, from the bootstrap estimate (50). �
3.5. Energy properties. We let

EW =
1

2

∫
|z|2 + |∇w|2 + |w|2 − 2

[
F
(
r + ψ0 + w

)
− F

(
r + ψ0

)
− wf

(
r + ψ0

)]
.

We consider a C∞ radial function χ : Rd → R such that

χ(x) = 0 for |x| � 2, χ(x) = 1 for |x| < 1, 0 � χ � 1 on Rd.(69)

We set

Pn =
1

2

∫
χnz∇w, χn(t, x) = χ

(
x− βnt

δt

)
,(70)

where

δ =
1

10
min{|βn − βn′ | : 1 � n, n′ � N, n �= n′}

and

F (t) = EW (t) + 2

N∑
n=1

βn · Pn(t).(71)

Lemma 7. For all t ∈ [S�, S0],

(72)

∣∣∣∣ ddtF (t)

∣∣∣∣ � C

t
e−2ωt,

(73) ‖W (t)‖2 � C
(
F (t) + |a(t)|2 + e−10ωt

)
.
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Proof of (72). First, we see that

dEW

dt
=

∫
z∂tz +

∫
∂tw

[
−Δw + w − f

(
r + ψ0 + w

)
+ f

(
r + ψ0

)]
−
∫

∂t(r + ψ0)
[
f
(
r + ψ0 + w

)
− f

(
r + ψ0

)
− wf ′ (r + ψ0

)]
.

Using (55),

∫
z∂tz =

∫
(∂tw +

∑
n,�

ḃn,�ψ
0
n,�)[Δw − w + f(r + ψ0 + w)− f(r + ψ0)]

+

∫
z(
∑
n,�

ḃn,�βn · ∇ψ0
n,� + g).

Now, we claim∫
ψ0
n,�[Δw − w + f(r + ψ0 + w)− f(r + ψ0)]

=

∫
w(βn · ∇)2ψ0

n,� +O(‖w‖p0

L2 + ‖w‖L2

(
e−10ωt + |b|

)
).(74)

Indeed, using (40),

∫
ψ0
n,�[Δw − w + f(r + ψ0 + w)− f(r + ψ0)]

=

∫
ψ0
n,�[Δw − w + wf ′(rn)]

+

∫
ψ0
n,�

[
f(r + ψ0 + w)− f(r + ψ0)− wf ′(rn)

]
=

∫
w(βn · ∇)2ψ0

n,� +

∫
ψ0
n,�

[
f(r + ψ0 + w)− f(r + ψ0)− wf ′(rn)

]
.

Moreover, by (66) and (58),

∣∣∣∣
∫

ψ0
n,�

[
f(r + ψ0 + w)− f(r + ψ0)− wf ′(rn)

]∣∣∣∣
� C

∫
ρn

∣∣f(r + ψ0 + w)− f(r + ψ0)− wf ′(r + ψ0)
∣∣

+ C

∫
ρn|w|

∣∣f ′(r + ψ0)− f ′(r)
∣∣+ C

∫
ρn|w| |f ′(r)− f ′(rn)|

� C‖w‖p0

L2 + C‖w‖L2

(
e−10ωt + |b|

)
,

which proves (74).
Next, using (64), we have

(75)

∣∣∣∣
∫

zg

∣∣∣∣ � C(e−10ωt + |b|p0)‖z‖L2 .
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Thus,

∫
z∂tz +

∫
∂tw

[
−Δw + w − f

(
r + ψ0 + w

)
+ f

(
r + ψ0

)]

=

∫
w

⎛
⎝ ∑

(n,�)∈I0

ḃn,�(βn · ∇)2ψ0
n,�

⎞
⎠+

∫
z

⎛
⎝ ∑

(n,�)∈I0

ḃn,�(βn · ∇ψ0
n′,�)

⎞
⎠

+O
(
|ḃ|

[
‖w‖p0

L2 + ‖w‖L2

(
e−10ωt + |b|

)])
+O

(
‖z‖L2(e−10ωt + |b|p0)

)
.

Finally, we have

−
∫

∂tr
[
f
(
r + ψ0 + w

)
− f

(
r + ψ0

)
− wf ′ (r + ψ0

)]

=
N∑

n=1

∫
(βn · ∇rn)

[
f
(
r + ψ0 + w

)
− f

(
r + ψ0

)
− wf ′ (r + ψ0

)]
,

and, since ∂t(bn,�ψ
0
n,�) = ḃn,�ψ

0
n,� − bn,�(βn · ∇ψ0

n,�), by (66),

−
∫

∂tψ
0
[
f
(
r + ψ0 + w

)
− f

(
r + ψ0

)
− wf ′ (r + ψ0

)]
= O

(
(|b|+ |ḃ|)‖W‖2

)
.

Thus, in conclusion, using also (68) to control |ḃ| � C
(
‖W‖+ e−10ωt + |b|p0

)
,

dEW

dt
=

∫
w

⎛
⎝ ∑

(n,�)∈I0

ḃn,�(βn · ∇)2ψ0
n,�

⎞
⎠+

∫
z

⎛
⎝ ∑

(n,�)∈I0

ḃn,�(βn · ∇ψ0
n,�)

⎞
⎠

+
∑
n

∫
(βn · ∇rn)

[
f
(
r + ψ0 + w

)
− f

(
r + ψ0

)
− wf ′ (r + ψ0

)]
+O

(
‖W‖p0+1 + |b|‖W‖p0 + (e−10ωt + |b|p0)‖W‖

)
.

(76)

Now, we compute

dPn

dt
=

1

2

∫
(∂tχn)z∇w +

1

2

∫
χnz∇∂tw +

1

2

∫
χn∇w ∂tz

= −1

2

∫ (x
t
· ∇χn

)
z∇w +

1

2

∫
χnz∇z − 1

2

∫
χnz

⎛
⎝∑

n′,�

ḃn′,�∇ψ0
n′,�

⎞
⎠

+
1

2

∫
χnΔw∇w − 1

2

∫
χnw∇w

+
1

2

∫
χn∇w

(
f
(
r + ψ0 + w

)
− f

(
r + ψ0

))

+
1

2

∫
χn∇w

⎛
⎝∑

n′,�

ḃn′,�(βn′ · ∇ψ0
n′,�)

⎞
⎠+

1

2

∫
χng∇w.
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Integrating by parts, this writes

dPn

dt
= −1

2

∫ (x
t
· ∇χn

)
z∇w − 1

4

∫
∇χnz

2 − 1

4

∫
∇χn|∇w|2

+
1

2

∫
(∇χn · ∇w)∇w +

1

4

∫
w2∇χn

− 1

2

∫
∇χn

[
F
(
r + ψ0 + w

)
− F

(
r + ψ0

)
− wf

(
r + ψ0

)]
− 1

2

∫
χn∇(r + ψ0)

[
f
(
r + ψ0 + w

)
− f

(
r + ψ0

)
− wf ′ (r + ψ0

)]

− 1

2

∫
χnz

⎛
⎝∑

n′,�

ḃn′,�∇ψ0
n′,�

⎞
⎠+

1

2

∫
χn∇w

⎛
⎝∑

n′,�

ḃn′,�(βn′ · ∇ψ0
n′,�)

⎞
⎠

+
1

2

∫
χng∇w.

For the terms on the first three lines, we use (67) to bound∣∣∣∣
∫ (x

t
· ∇χn

)
z∇w

∣∣∣∣+
∣∣∣∣
∫

∇χnz
2

∣∣∣∣+
∣∣∣∣
∫

∇χn|∇w|2
∣∣∣∣+

∣∣∣∣
∫
(∇χn · ∇w)∇w

∣∣∣∣
+

∣∣∣∣
∫

∇χnw
2

∣∣∣∣+
∣∣∣∣
∫

∇χn

[
F
(
r + ψ0 + w

)
− F

(
r + ψ0

)
− wf

(
r + ψ0

)]∣∣∣∣
� C‖∇χn‖L∞

∫ (
z2 + |∇w|2 + w2 + |w|p+1

)
� C

t
‖W‖2.

For the fourth line, using (66), we have∣∣∣∣
∫
(1− χn)∇rn

[
f
(
r + ψ0 + w

)
− f

(
r + ψ0

)
− wf ′ (r + ψ0

)]∣∣∣∣
� C‖∇qn,βn

‖L∞(|x|>δt)‖W‖p0 � Ce−10ωt‖W‖p0 ,

and for n′ �= n, using (19),∣∣∣∣
∫

χnz∇ψ0
n′,�

∣∣∣∣+
∣∣∣∣
∫

χn∇w(βn′ · ∇ψ0
n′,�)

∣∣∣∣ � Ce−10ωt‖W‖.

Moreover, by (64) ∣∣∣∣
∫

χng∇w

∣∣∣∣ � C(e−10ωt + |b|p0)‖W‖.

Thus, in conclusion for this term

dPn

dt
= −1

2

∫
z

⎛
⎝ �̄n∑

�=1

ḃn,�∇ψ0
n,�

⎞
⎠+

1

2

∫
∇w

⎛
⎝ �̄n∑

�=1

ḃn,�(βn · ∇ψ0
n,�)

⎞
⎠

+
1

2

∫
∇rn

[
f
(
r + ψ0 + w

)
− f

(
r + ψ0

)
− wf ′ (r + ψ0

)]
+O

(
1

t
‖W‖2 + (e−10ωt + |b|p0)‖W‖

)
.

(77)
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Combining (76) and (77), we find∣∣∣∣dFdt
∣∣∣∣ � C

(
‖W‖p0+1 +

(
|b|+ t−1

)
‖W‖2 + (e−10ωt + |b|p0)‖W‖

)
.(78)

Using (50), we find (72). �

Proof of (73). Expanding F (t) we get that

F (t) =
N∑

n=1

〈H̃n(t)W,W 〉+O(‖W‖p0+1 + e−10ωt),

where H̃n(t) is the analog of Hn, localized on the ball B(0, δt) and translated by
βnt. Using standard localization arguments and Proposition 3, we infer the following
property:
(79)

‖W (t)‖2 � C

⎛
⎝F (t) +

∑
(n,k)∈I,±

|〈W,Z±
n,k〉|2 +

∑
(n,�)∈I0

|〈W,Ψ0
n,�〉|2 + e−10ωt

⎞
⎠ .

We refer e.g. to [36] for further details.
Recall that by construction (45), 〈W,Ψ0

n,�〉 = 0. Finally by (49) (and the boot-

strap (50)), we have

|〈W,Z±
n,k〉| � |a±n,k(t)|+ C|b(t)|e−10ωt � C(|a|+ e−10ωt). �

3.6. Negative directions. Transversality at S�. Recall that we have set a±n,k =

〈V, Z±
n,k〉.

Lemma 8 (Negative directions). For all t ∈ [S�, S0],

(80)

∣∣∣∣ȧ±n,k(t)± λn,k

γn
a±n,k(t)

∣∣∣∣ � Ce−
1
2 (p0+1)ωt.

Proof. From (57), we rewrite the equation of V as

∂tV =

(
∂tv

Δv − v + f (r + v)− f (r)

)
=

(
0 1

Δ− 1 + f ′ (rn) 0

)
V +Gn,

where

Gn =

(
0
gn

)
, gn = f (r + v)− f (r)− f ′(rn)v.

Then, by (16)

d

dt
a±n,k = 〈∂tV, Z±

n,k〉 − βn〈V,∇Z±
n,k〉

=

〈(
βn · ∇ 1

Δ− 1 + f ′ (rn) βn · ∇

)
V, Z±

n,k

〉
+ 〈Gn, Z

±
n,k〉

=
〈
JHnV (·+ βnt),HnY

±
n,k

〉
+ 〈Gn, Z

±
n,k〉

= −
〈
V (·+ βnt),Hn(JHnY

±
n,k)

〉
+ 〈Gn, Z

±
n,k〉 = ∓λn,k

γn
a±n,k + 〈Gn, Z

±
n,k〉.



7484 RAPHAËL CÔTE AND YVAN MARTEL

Now, we estimate 〈Gn, Z
±
n,k〉. By (58) and (59), one has

|gn| = |f(r + v)− f(rn)− f ′(rn)v|
� |f(r + v)− f(rn + v)|+ |f(rn + v)− f(rn)− f ′(rn)v|

�
∑

n′,n′ �=n

|f(r′n)|+ Ce−10ωtρ+
∑

n′,n′ �=n

|v|p0−1|rn′ |p0−1 + C|v|p0 .

Thus,

|〈Gn, Z
±
n,k〉| � C‖V ‖p0 + Ce−10ωt � C‖W‖p0 + C|b|p0 + Ce−10ωt.

Therefore, we have obtained, using the bootstrap estimates (50) for the final bound,∣∣∣∣ȧ±n,k ± λn,k

γn
a±n,k

∣∣∣∣ � C
(
‖W‖p0 + |b|p0 + Ce−10ωt

)
� Ce−

1
2 (p0+1)ωt. �

We close the estimates for ‖W‖, |b|, and |a−| in the following result.

Lemma 9. For all t ∈ [S�, S0],

(81) ‖W (t)‖ � 1

2
e−ωt, |b(t)| � 1

2
e−ωt, |a−(t)| � 1

2
e−

1
3 (p0+2)ωt.

Moreover,

(82) |a+(S�)| = e−
1
3 (p0+2)ωS� .

Proof. Let t ∈ [S�, S0]. First, F (0) � C‖W (S0)‖2 so that with (52), integrating
(72) on [t, S0] yields

F (t) � C

t
e−ωt.

It follows from (73) and the bootstrap assumption (50) that

‖W (t)‖2 � CF (t) + C|a(t)|2 + Ce−10ωt

� C

t
e−2ωt + Ce−

2
3 (p0+2)ωS0 + Ce−10ωt � C

t
e−2ωt.

For T0 � 4C large enough, we get ‖W (t)‖ � 1
2e

−ωt.
Then we integrate (68) on [t, S0], using (52) and our improved bound ‖W (t)‖ �

C√
t
e−ωt, and we find

|b(t)| � C

(
1√
t
e−ωt + e−10ωS0

)
� 1

2
e−ωt.

In view of (51) and (80), we have∣∣∣∣ ddt
[
e−

λn,k
γn

ta−n,k(t)

]∣∣∣∣ � Ce−
λn,k
γn

t− 1
2 (p0+1)ωt, a−n,k(S0) = 0.

Thus, by integration on [t, S0], |a−n,k(t)| � Ce−
1
2 (p0+1)ωt. Taking the �2(R|I|) norm,

we get

|a−(t)| � 1

2
e−

1
3 (p0+1)ωt.

From the contradiction assumption (54) and a continuity argument, it follows that
there must be at least one equality in the bootstrap assumptions (50) at time S�:

in view of the above, the only possibility is |a+(S�)| = e−
1
3 (p0+2)ωS� . �

Now, we are in a position to state the transversality condition on a+ at S�.
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Lemma 10. Let A (a+, t) = e
2
3 (p0+2)ωt|a+(t)|2. Then

(83)
∂

∂t
A (a+, t)|t=S�(a+) < 0.

Proof. Let c0 = min
(

λn,k

γn
, (n, k) ∈ I

)
and consider ω > 0 so small that 8

3ω < c0.

We compute from (80) and (50), for any t ∈ [S�, S0], that

d

dt
A (a+, t) =

2

3
(p0 + 2)ωA (a+, t) + 2e

2
3 (p0+2)ωt

∑
(n,k)∈I

ȧ+n,k(t)a
+
n,k(t)

=
2

3
(p0 + 2)ωA (a+, t)− 2e

2
3 (p0+2)ωt

∑
(n,k)∈I

λn,k

γn
|a±n,k(t)|2

+ O
(
e

2
3 (p0+2)ωte−

1
2 (p0+1)ωte−

1
3 (p0+2)t

)
� −c0A (a+, t) +O

(
e−

1
6 (p0−1)ωt

)
(because for all (n, k) ∈ I, 2

λn,k

γn
� 2c0 and 2

3 (p0 + 2)ω � 8
3ω � c0). Now, at time

t = S�, by (82), we have A (a+, S�) = 1 and so

d

dt
A (a+, t)|t=S�(a) � −c0 +O

(
e−

1
6 (p0−1)ωt

)
� −c0

2
< 0

for T0 large enough. �

3.7. Conclusion: Topological argument. To conclude the proof of Proposi-
tion 2, we argue by contradiction, and assume that for any a+ ∈ B, (54) holds,
that is, S�(a

+) > T0.
Then Lemma 10 applies to any a+ ∈ B: as a standard consequence of this

transversality result, the map

M : B → S, a
+ �→ M (a+) := e

1
3 (p0+2)ωS�a+(S�)

is well defined on the unit ball B with values in the unit sphere S of R|I|, continuous,
and its restriction to S is the identity. A contradiction is reached from Brouwer’s
theorem. Hence there exists at least one a+ ∈ B such that S�(a

+) = T0, and it
provides the sought for solution U of (2).

We refer to [9] and [10] for more details.
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