
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 370, Number 10, October 2018, Pages 7335–7359
http://dx.doi.org/10.1090/tran/7452

Article electronically published on June 7, 2018

RENORMALIZATION OF THE TWO-DIMENSIONAL

STOCHASTIC NONLINEAR WAVE EQUATIONS

MASSIMILIANO GUBINELLI, HERBERT KOCH, AND TADAHIRO OH

Abstract. We study the two-dimensional stochastic nonlinear wave equations
(SNLW) with an additive space-time white noise forcing. In particular, we
introduce a time-dependent renormalization and prove that SNLW is pathwise
locally well-posed. As an application of the local well-posedness argument, we
also establish a weak universality result for the renormalized SNLW.

1. Introduction

1.1. Stochastic nonlinear wave equations. We consider the following stochas-
tic nonlinear wave equations (SNLW) on T2 = (R/Z)2 with an additive space-time
white noise forcing:

{
∂2
t u−Δu± uk = ξ,

(u, ∂tu)|t=0 = (φ0, φ1) ∈ Hs(T2) := Hs(T2)×Hs−1(T2),
(x, t) ∈ T

2 × R+,

(1.1)

where k ≥ 2 is an integer and ξ(x, t) denotes a (Gaussian) space-time white noise
on T2 × R+. In view of the time reversibility of the deterministic nonlinear wave
equations, one can also consider (1.1) on T

2×R by extending the white noise ξ onto
T2 × R.1 For simplicity, however, we only consider positive times in the following.
Moreover, we restrict our discussion to the real-valued setting.

The stochastic wave equations with space-time white noise and with general
nonlinearity have already been considered by Albeverio, Haba, Oberguggenberger,
and Russo in a series of works [1, 22, 23, 28] for spatial dimensions going from one
to three. In particular, they showed that, in two and three dimensions, solutions
have to be distributions. Moreover, they highlighted a phenomenon of triviality ;
let uε be a smooth solution of SNLW obtained by replacing the space-time white
noise ξ in (1.1) by a suitable regularized noise ξε. Then, it was shown that as the
regularization is removed, uε converges to a limiting process u satisfying a linear
wave equation. The nonlinear behavior does not appear any more in the limiting
equation due to the extreme oscillations of prelimit solutions uε. This phenomenon
has already been noticed in parabolic equations, for example, in the stochastic
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quantization problem of Euclidean scalar fields in two and three dimensions, where
a renormalization is needed in order to obtain a nontrivial limiting behavior. In
this paper, we will present the first analysis of the renormalization problem for the
stochastic nonlinear wave equation (1.1) in two dimensions. In order to implement
this renormalization at the algebraic level, we restrict the form of the nonlinearity
to a polynomial one. For the sake of simplicity, we consider a single monomial,
although more general polynomial interactions could be considered. Other possible
models for nonlinearity which should be amenable to renormalization are those
given by trigonometric or exponential functions. In this case, however, we expect
the renormalization problem to be more subtle and thus we leave it aside for the
moment.

By letting v = ∂tu, we can write (1.1) in the following Ito formulation:⎧⎪⎪⎨⎪⎪⎩
d

(
u

v

)
+

{(
0 −1

−Δ 0

)(
u

v

)
+

(
0

±uk

)}
dt = d

(
0

W

)

(u, v)|t=0 = (φ0, φ1).

(1.2)

Here, W denotes a cylindrical Wiener process on L2(T2). More precisely, by letting

en(x) = e2πin·x, I = (Z+ × {0}) ∪ (Z× Z+), and J = I ∪ {(0, 0)},
we have2

W (t) = β0(t)e0 +
1√
2

∑
n∈Z2\{0}

βn(t)en

= β0(t)e0 +
∑
n∈I

[
Re(βn(t)) ·

√
2 cos(2πn · x)− Im(βn(t)) ·

√
2 sin(2πn · x)

]
,(1.3)

where {βn}n∈J is a family of mutually independent complex-valued Brownian mo-
tions3 on a fixed probability space (Ω,F , P ) and β−n := βn for n ∈ J . Note that
Var(βn(t)) = 2t for n ∈ Z2 \ {0}, while Var(β0(t)) = t. It is easy to see that W
almost surely lies in Cα(R+;H

−1−ε(T2)) for any α < 1
2 and ε > 0.

Let S(t) be the propagator for the linear wave equation defined by

S(t)(φ0, φ1) := cos(t|∇|)φ0 +
sin(t|∇|)

|∇| φ1

as a Fourier multiplier operator. Then, the mild formulation of the Cauchy problem
(1.1) (and (1.2)) is given by

u(t) = S(t)(φ0, φ1)∓
ˆ t

0

sin((t− τ )|∇|)
|∇| uk(τ )dτ +

ˆ t

0

sin((t− τ )|∇|)
|∇| dW (τ ).

In fact, as it is written, this problem is ill-posed since solutions are expected to
be merely distributions in the space variable, raising the problem of controlling
the nonlinear term. The problem is already apparent at the level of the stochastic
convolution:

(1.4) Ψ(t)
def
= (∂2

t −Δ)−1ξ =

ˆ t

0

sin((t− τ )|∇|)
|∇| dW (τ ).

2Note that {1,
√
2 cos(2πn · x),

√
2 sin(2πn · x) : n ∈ I} forms an orthonormal basis of L2(T2)

in the real-valued setting.
3Here, we take β0 to be real-valued.
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It can be shown that for each t > 0, Ψ(t) /∈ L2(T2) almost surely. In particular,
there is an issue in making sense of powers Ψk and a fortiori of the full nonlinearity
uk. As we discussed above, we need to modify the equation in order to take into
account a proper renormalization and a different nonlinearity has to be considered.

1.2. Renormalized SNLW. In order to explain the renormalization process, we
first regularize the equation (1.1) by a Fourier truncation of the noise term and of
initial data:4 {

∂2
t uN −ΔuN ± (uN )k = PNξ,

(uN , ∂tuN )|t=0 = (PNφ0,PNφ1),
(1.5)

where PN is the Dirichlet projection onto the spatial frequencies Z2
N

def
= {|n| ≤ N}.

In the following, we discuss the renormalization for (1.5).
We define the truncated stochastic convolution ΨN (t) by

ΨN (t)
def
= PNΨ(x, t) =

∑
n∈Z2

N

en

ˆ t

0

sin((t− τ )|n|)
|n| dβ̃n(τ )(1.6)

with the understanding that

sin((t− τ )|0|)
|0|

def
= t− τ and β̃n =

{
1√
2
βn if n 	= 0,

β0 if n = 0.
(1.7)

Then, for each fixed x ∈ T2 and t ≥ 0, it follows from Ito isometry that the random
variable ΨN (x, t) is a mean-zero real-valued Gaussian random variable with variance

σN (t)
def
= E

[
Ψ2

N (x, t)
]
=

ˆ t

0

(t− τ )2 dτ + 2
∑

n∈I∩Z2
N

ˆ t

0

[
sin((t− τ )|n|)

|n|

]2
dτ

=
t3

3
+

∑
0<|n|≤N

{
t

2|n|2 − sin(2t|n|)
4|n|3

}
∼ t logN.(1.8)

Note that σN (t) is independent of x ∈ T2. The structure of the equation makes it
clear that any solution can be decomposed as

(1.9) uN = ΨN + vN ,

where the residual term vN solves a nonlinear wave equation (NLW) with the fol-
lowing polynomial nonlinearity with random coefficients depending on ΨN :

(1.10) uk
N =

k∑
�=0

(
k

�

)
Ψ�

Nvk−�
N .

Note, however, that the monomial Ψ�
N does not have nice limiting behavior as N →

∞. Despite this difficulty, the decomposition (1.9) is motivated by the heuristics
that, in two dimensions, the only singularities which have to be dealt with in the
renormalization process are related to the powers of the random field Ψ. We are
going to prove that this is indeed the case and that the residual term vN can
be controlled in a nice space. The decomposition (1.9) usually takes the name
of Da Prato-Debussche trick [9] in the field of stochastic parabolic PDEs. Note

4Strictly speaking, the regularization of initial data is not necessary here but it allows us to
consider smooth solutions to the regularized equation (1.5).



7338 MASSIMILIANO GUBINELLI, HERBERT KOCH, AND TADAHIRO OH

that such an idea also appears in McKean [18] and Bourgain [4] in the context of
(deterministic) dispersive PDEs with random initial data, predating [9]. See also
Burq-Tzvetkov [6].

In order to renormalize the nonlinearity uk
N in (1.10), we need to introduce

suitable counter-terms. We will show that in order to renormalize each random
monomial Ψ�

N , it is enough to replace it with its Wick ordered counterpart:

:Ψ�
N (x, t) :

def
= H�(ΨN (x, t);σN(t)).(1.11)

Here, H�(x;σ) is given by

H�(x;σ) = σ
�
2H�(σ

− 1
2 x),

where H�(·) is the �th Hermite polynomial for the standard Gaussian measure.
Combining this with the following standard identity:

Hk(x+ y) =
k∑

�=0

(
k
�

)
xk−�H�(y),

we have

Hk(x+ y;σ) = σ
k
2

k∑
�=0

(
k
�

)
σ− k−�

2 xk−�H�(σ
− 1

2 y)

=
k∑

�=0

(
k
�

)
xk−�H�(y;σ).(1.12)

In our situation, this gives

Hk(uN (x, t);σN(t)) =

k∑
�=0

(
k

�

)
H�(ΨN (x, t);σN (t))

(
vN (x, t)

)k−�
.

From this, we see that Wick ordering all the monomials Ψ�
N in (1.10) is equiv-

alent to replacing the original nonlinearity uk
N by the kth Hermite polynomial

Hk(uN (x, t);σN(t)). Note that there is no reason for uN to be a Gaussian ran-
dom variable. By common abuse of language, however, we refer to the function
Hk(uN (x, t);σN(t)) as a Wick ordered nonlinearity5 of uk

N . Compare this with the
usual Wick ordered (deterministic) NLW on T2 considered in Oh-Thomann [27].

As in the case of the usual (time-independent) Wick ordered monomial, this
time-dependent renormalization allows us to define

:Ψk :
def
= lim

N→∞
:Ψk

N :(1.13)

in Lp(Ω;C([0, T ];W−ε,∞(T2))) for any p < ∞ and ε > 0 (and for any k ∈ N).6

See Proposition 2.1 below. This convergence result allows us to describe the lim-
iting problem we are going to solve. Consider a function u = Ψ + v, where

5We expect the variance of the solution uN (t) grows in time. See Oh-Quastel-Sosoe [25] in the
context of the stochastic KdV equation. Hence, the renormalization must depend on time. This
is different from the situation where one expects an invariant measure for a given dynamic so that

a renormalization is time-independent.
6Here, W s,r(T2) denotes the usual Lr-based Sobolev space (Bessel potential space) defined by

the norm:

‖u‖Ws,r = ‖〈∇〉su‖Lr =
∥∥F−1(〈n〉sû(n))

∥∥
Lr .

When r = 2, we have Hs(T2) = W s,2(T2).
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v ∈ Lq([0, T ];W s,r(T2)) for some appropriate q, r ≥ 1 and s > 0. Then, as N → ∞,
we have

Hk(PNu(x, t);σN (t))

−→ :uk(x, t) : = FΨ(v)(x, t)
def
=

k∑
�=0

(
k

�

)
:Ψ�(x, t) :

(
v(x, t)

)k−�
.(1.14)

We insist that the nonlinear (random) function u → : uk : = FΨ(v) is only defined
for u of the form Ψ + v with suitable v. With this in mind, we set our main goal
to prove local well-posedness of the following Wick ordered SNLW:{

∂2
t u−Δu± :uk : = ξ,

(u, ∂tu)|t=0 = (φ0, φ1).
(1.15)

In the following, we concentrate on the following mild formulation of the Wick
ordered SNLW (1.15):

u(t) =S(t)(φ0, φ1)∓
ˆ t

0

sin((t− τ )|∇|)
|∇| :uk(τ ) :dτ +

ˆ t

0

sin((t− τ )|∇|)
|∇| dW (τ ),

(1.16)

where the Wick ordered nonlinearity :uk : is defined by (1.14).
We point out that such a solution u to (1.15) and (1.16) can also be given as the

limit of solutions to the following truncated Wick ordered SNLW:{
∂2
t uN −ΔuN ±Hk(uN ;σN ) = PNξ,

(uN , ∂tuN )|t=0 = (PNφ0,PNφ1),
(1.17)

as N ∈ N. More precisely, one can study the following mild formulation of the
truncated Wick ordered SNLW (1.17):

uN (t) =S(t)(PNφ0,PNφ1)∓
ˆ t

0

sin((t− τ )|∇|)
|∇| Hk(uN ;σN )(τ )dτ +ΨN (t)

(1.18)

and prove (i) (1.18) is locally well-posed “uniformly inN ∈ N” and (ii) uN converges
to a stochastic process u such that the Wick ordered nonlinearity :uk(x, t) : in (1.15)
is well defined and the following limit holds:

:uk(x, t) :
def
= lim

N→∞
Hk(uN (x, t);σN (t)).

One can then define this limit u to be a solution to (1.15). This solution u con-
structed as a limit of uN as above agrees with the solution to the mild formulation
(1.16) in a suitable sense. See Remark 1.2 below.

1.3. Main result. Before we state our main result, we first need to discuss critical
regularities associated to the deterministic NLW:

∂2
t u−Δu± uk = 0.

On the one hand, NLW on R
d enjoys the scaling symmetry, which induces the so-

called scaling critical Sobolev index: sscaling = d
2 − 2

k−1 . On the other hand, NLW

also enjoys the Lorentzian invariance (conformal symmetry), which yields its own
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critical regularity sconf = d+1
4 − 1

k−1 (at least in the focusing case); see [17]. In
particular, when d = 2, we define scrit for a given integer k ≥ 2 by

scrit := max(sscaling, sconf, 0) = max

(
1− 2

k − 1
,
3

4
− 1

k − 1
, 0

)
.(1.19)

Note that the third regularity restriction 0 appears in making sense of powers of u.
See also (1.24) and Figure 1 below.

We now state our main result.

Theorem 1.1. Given an integer k ≥ 2, let scrit be as in (1.19). Then, the Wick
ordered SNLW (1.15) is pathwise locally well-posed in Hs(T2) for

(i) k ≥ 4 : s ≥ scrit or (ii) k = 2, 3 : s > scrit.

More precisely, given any (φ0, φ1) ∈ Hs(T2), there exists a stopping time T =
Tω(φ0, φ1) (which is positive almost surely) such that there exists a unique solution
u to the mild formulation (1.16) on [0, T ] with

u ∈ Ψ+ C([0, T ];Hσ(T2)) ⊂ C([0, T ];H−ε(T2))

for any ε > 0, where σ = min(s, 1− ε).

In Theorem 1.1, the uniqueness holds only in Ψ+Xσ(T ), where Xσ(T ) is given
by

Xσ(T ) = C([0, T ];Hσ(T2)) ∩ C1([0, T ];Hσ(T2)) ∩ Lq([0, T ];Lr(T2))

for some suitable σ-admissible pair (q, r). See Section 3 for more on this point.
In [24], the third author proved pathwise local well-posedness of the following

stochastic KdV with an additive space-time white noise forcing:

du+ (∂3
xu+ u∂xu)dt = dW, (x, t) ∈ T× R+,

where W denotes a cylindrical Wiener process on L2(T). Theorem 1.1 is the second
example on pathwise local well-posedness of rough stochastic dispersive PDEs with
an additive space-time white noise forcing.

As we already mentioned in the previous subsection, the Wick ordered SNLW is
defined only for functions

u = Ψ+ v(1.20)

with v of suitable positive regularity. The main strategy for proving Theorem 1.1
is then to consider the following fixed point problem for v = u−Ψ:

v(t) = S(t)(φ0, φ1)∓
ˆ t

0

sin((t− τ )|∇|)
|∇| FΨ(v(τ ))dτ,(1.21)

where FΨ is as in (1.14).
The proof is based on a fixed point argument via the Strichartz estimates for

the wave equations and the general structure of the proof is similar to that for
stochastic parabolic equations. The key point is to use function spaces where the
wave equation allows for a gain in regularity. This gain is sufficient to prove that v
has better regularity than Ψ and gives a well-defined nonlinearity for which suitable
local-in-time estimates can be established. In Section 2, we prove the necessary sto-
chastic estimates for the random terms and then we give the deterministic nonlinear
estimates and the proof of Theorem 1.1 in Section 3.

As an application of the local well-posedness argument, we show a weak uni-
versality result for the Wick ordered SNLW in Section 4. Given small ε > 0, we
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consider the following SNLW equation on a dilated torus (ε−1T)2 with a smooth
noise ηε:{

∂2
twε −Δwε = f(wε) + a(ε, t)wε + δ(ε)ηε,

(wε, ∂twε)|t=0 = (0, 0),
(x, t) ∈ (ε−1

T)2 × R+,

where f : R → R is a given smooth odd, bounded function with a sufficient num-
ber of bounded derivatives, ηε is a noise which is white in time but smooth and
stationary in space, and a(ε, t) and δ(ε) are parameters to be chosen. Consider the
following space-time scaling:

uε(x, t) = ε−γwε(ε
−1x, ε−1t)

for some γ > 0. Namely, uε describes the behavior of wε at large scales, both in
space and time. Then, by appropriately choosing parameters γ = 1, δ(ε) = ε

3
2 , and

a(ε, ε−1t), we show that uε converges in a suitable sense to the solution u to the
Wick ordered cubic SNLW:{

∂2
t u−Δu = λ :u3 : + ξ,

(u, ∂tu)|t=0 = (0, 0),

for some λ = λ(f). Here, we can choose a(ε, t) such that it depends only on f , the
noise, and ε > 0. See Theorem 4.1 below. We also refer readers to [12–14] for more
discussion on weak universality (for stochastic parabolic equations, in particular
the KPZ equation).

We conclude this introduction by stating several remarks.

Remark 1.2. The same local well-posedness result also applies to the truncated
Wick ordered SNLW (1.17), uniformly in N ∈ N. More precisely, given (φ0, φ1) ∈
Hs(T2) and N ∈ N, there exist a stopping time T = Tω(φ0, φ1) (> 0 almost surely)
and a unique solution uN to (1.18) on [0, T ] such that

uN ∈ ΨN + C([0, T ];Hσ(T2)).

Moreover, one can prove that the solutions uN to (1.18) converges to the solution
u to (1.16) constructed in Theorem 1.1 as N → ∞.

In the discussion above, we used the Dirichlet projection PN onto the spatial
frequencies {|n| ≤ N} for regularization. The interpretation of the Wick ordered
nonlinearity (1.14) seems to depend on this regularization procedure at this point.

One may instead use a different regularization procedure. Given a compactly
supported smooth function ρ ∈ L1(T2) with

´
ρdx = 1, let Pρ

N be the mollification
given by Pρ

Nf = ρN ∗ f , where ρN (x) = N2ρ(Nx). Then, one can consider the
regularized stochastic convolution Ψρ,N = Pρ

NΨ associated to this mollification and
define the Wick ordered monomials:

:Ψk(x, t) :
def
= lim

N→∞
Hk(Ψρ,N (x, t);σρ,N(t)),

where σρ,N (t)
def
= E[Ψ2

ρ,N (x, t)]. By proceeding as in (1.8), we have

σρ,N (t) =
t3

3
+

∑
|n|>0

|ρ̂N (n)|2
{

t

2|n|2 − sin(2t|n|)
4|n|3

}

=
t3

3
+

∑
|n|>0

∣∣∣FR2(ρ)
( n

N

)∣∣∣2{ t

2|n|2 − sin(2t|n|)
4|n|3

}
,
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1/k

s

1/4

1/2

1

1/21/31/5 1/4

Figure 1. The critical regularity scrit in (1.24) as a function of 1
k .

The deterministic NLW (1.23) is locally well-posed on and above
the solid line and above the dashed line.

where FR2(ρ) is the Fourier transform of ρ when viewed as a function on R2. By
slightly modifying the proof of Proposition 2.1, one can prove that the Wick ordered
monomials :Ψk : do not depend on the choice of mollifiers (including the convolution
kernel of the Dirichlet projection PN ). This directly implies that the renormalized
nonlinearity FΨ is also independent of the choice of a mollifier. Of course, the
precise value of the renormalization constant will depend on ρ.

Remark 1.3. With a small modification of the proof, Theorem 1.1 also holds for the
following stochastic nonlinear Klein-Gordon equation with an additive space-time
white noise:

∂2
t u+ (1−Δ)u± uk = ξ.(1.22)

On the one hand, we restrict our attention to the real-valued setting in this
paper. On the other hand, it is often useful to consider complex-valued solutions
to the nonlinear Klein-Gordon equation. We point out that Theorem 1.1 also holds
in the complex-valued setting, provided that we adjust the white noise forcing and
the renormalization procedure to the complex-valued setting. In particular, one
needs to use (generalized) Laguerre polynomials instead of Hermite polynomials.
See Oh-Thomann [26] for details.

Remark 1.4. In the following, we state local well-posedness of the following deter-
ministic NLW on T

2:

∂2
t u−Δu± |u|k−1u = 0,(1.23)

where we allow k ≥ 2 to take noninteger values. We extend the critical regularity
scrit in (1.19) to a real number k ≥ 2 by setting

scrit := max
(
sscaling, sconf,

3
4 − 3

2k

)
= max

(
1− 2

k−1 ,
3
4 − 1

k−1 ,
3
4 − 3

2k

)
.(1.24)

This extends scrit defined (1.19) to noninteger values of k ≥ 2. As far as we know,
the third regularity 3

4 − 3
2k does not correspond to any symmetry of the equation

and thus it is not a critical regularity in the usual sense. It, however, imposes a
regularity restriction when 2 ≤ k ≤ 3.
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By the standard Strichartz estimates (see Lemma 3.2) and a fixed point argu-
ment, one can easily prove local well-posedness of (1.23) in Hs(T2) for (i) s ≥ scrit
if k > 3 and (ii) s > scrit if 2 ≤ k ≤ 3. See Subsection 3.1. Figure 1 shows the
range of local well-posedness of (1.23) as a function of 1

k .

2. On the stochastic convolution

In this section, we establish relevant estimates on the stochastic convolution
Ψ. In particular, we prove the following regularity result on the Wick ordered
monomials :Ψ�

N (x, t) : = H�(ΨN (x, t), σN (t)) defined in (1.11).

Proposition 2.1. Let � ∈ N, T > 0 and p ≥ 1. Then, {: Ψ�
N :}N∈N is a Cauchy

sequence in Lp(Ω;C([0, T ];W−ε,∞(T2))). In particular, denoting the limit by :Ψ� :,
we have :Ψ� :∈ C([0, T ];W−ε,∞(T2)) almost surely.

Before proceeding to the proof of Proposition 2.1, we recall some basic tools
from probability theory and Euclidean quantum field theory. See [16,21,29]. First,
recall the Hermite polynomials Hk(x;σ) defined through the generating function:

(2.1) F (t, x;σ)
def
= etx−

1
2σt

2

=
∞∑
k=0

tk

k!
Hk(x;σ).

For simplicity, we set F (t, x) := F (t, x; 1) and Hk(x) := Hk(x; 1) in the following.
For the reader’s convenience, we write out the first few Hermite polynomials:

H0(x;σ) = 1, H1(x;σ) = x, H2(x;σ) = x2 − σ,

H3(x;σ) = x3 − 3σx, H4(x;σ) = x4 − 6σx2 + 3σ2.
(2.2)

Then, the monomial xk can be expressed in term of the Hermite polynomials:

xk =

[ k2 ]∑
m=0

(
k
2m

)
(2m)!

2mm!
σmHk−2m(x;σ).(2.3)

Fix d ∈ N.7 Consider the Hilbert space H = L2(Rd, μd) endowed with the

Gaussian measure dμd = (2π)−
d
2 exp(−|x|2/2)dx, x = (x1, . . . , xd) ∈ R

d. Hermite
polynomials satisfy

(2.4)

ˆ
R

Hk(x)Hm(x)dμ1(x) = δkmk!

for all k,m ∈ N. Next, we define a homogeneous Wiener chaos of order k to be an

element of the form
∏d

j=1Hkj
(xj), where k = k1 + · · ·+ kd and Hkj

is the Hermite

polynomial of degree kj defined in (2.1). Denote the closure of homogeneous Wiener
chaoses of order k under L2(Rd, μd) by Hk. Let L := Δ − x · ∇ be the Ornstein–
Uhlenbeck operator. Then, it is known that any element in Hk is an eigenfunction
of L with eigenvalue −k and that we have the Ito-Wiener decomposition:

L2(Rd, μd) =

∞⊕
k=0

Hk.

Moreover, we have the following hypercontractivity of the Ornstein–Uhlenbeck
semigroup U(t) := etL due to Nelson [20].

7Indeed, the discussion presented here also holds for d = ∞ in the context of abstract Wiener
spaces. For simplicity, however, we consider only finite values for d.
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Lemma 2.2. Let q > 1 and p ≥ q. Then, for every u ∈ Lq(Rd, μd) and t ≥
1
2 log

(
p−1
q−1

)
, we have

(2.5) ‖U(t)u‖Lp(Rd,μd) ≤ ‖u‖Lq(Rd,μd).

We stress that (2.5) holds, independent of the dimension d. As a consequence,
we obtain the following corollary to Lemma 2.2.

Lemma 2.3. Let F ∈ Hk. Then, for p ≥ 2, we have

(2.6) ‖F‖Lp(Rd,μd) ≤ (p− 1)
k
2 ‖F‖L2(Rd,μd).

The estimate (2.6) follows immediately from noting that F is an eigenfunction of
U(t) = etL with eigenvalue e−kt and setting q = 2 and t = 1

2 log(p− 1) in (2.5). As
a further consequence to Lemma 2.3, we obtain the following lemma [29, Theorem
I.22].

Lemma 2.4. Fix k ∈ N and c(n1, . . . , nk) ∈ C. Given d ∈ N, let {gn}dn=1 be a
sequence of independent standard complex-valued Gaussian random variables and
set g−n = gn. Define Sk(ω) by

Sk(ω) =
∑

Γ(k,d)

c(n1, . . . , nk)gn1
(ω) · · · gnk

(ω),

where Γ(k, d) is defined by

Γ(k, d) =
{
(n1, . . . , nk) ∈ {±1, . . . ,±d}k

}
.

Then, for p ≥ 2, we have

(2.7) ‖Sk‖Lp(Ω) ≤ (p− 1)
k
2 ‖Sk‖L2(Ω).

This follows from (2.3) and Lemma 2.3. Once again, note that (2.7) is inde-
pendent of d ∈ N. Lemmas 2.3 and 2.4 have been very effective in the recent
probabilistic study of dispersive PDEs and related areas; see, e.g., [3, 5, 8, 31, 32].

Lastly, we recall the following property of Wick products [29, Theorem I.3],
extending (2.4) to a more general setting. See also [21, Lemma 1.1.1].

Lemma 2.5. Let f and g be Gaussian random variables with variances σf and σg.
Then, we have

E
[
Hk(f ;σf )Hm(g;σg)

]
= δkmk!

{
E[fg]

}k
.

Proof of Proposition 2.1. First note that it suffices to prove the proposition for
large p ≥ 1, since Lp1(Ω) ⊂ Lp2(Ω) for p1 ≥ p2. From (1.6), we have

E[ΨN (t1, x)ΨN (t2, y)] =
∑
n∈Z2

N

en(x− y)

ˆ t

0

sin((t1 − τ )|n|)
|n|

sin((t2 − τ )|n|)
|n| dτ,

(2.8)

where t = min(t1, t2). Define γ(n, t) by

γ(n, t)
def
=

ˆ t

0

[
sin((t− τ )|n|)

|n|

]2
dτ.
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By applying the Bessel potentials 〈∇x〉−ε and 〈∇y〉−ε of order ε and then setting
x = y (and t1 = t2), we obtain

E
[
|〈∇〉−εΨN (x, t)|2

]
=

∑
n∈Z2

N

〈n〉−2εγ(n, t) ≤ t3 + t
∑
n∈Z2

N

1

〈n〉2+2ε
� t3 + t

for any ε > 0, x ∈ T
2, and t > 0, uniformly in N ∈ N. In particular, by the

hypercontractivity (Lemma 2.4), we have

E
[
|〈∇〉−εΨN (t, x)|p

]
�p,t 1

and thus

E
[
‖ΨN (·, t)‖pW−ε,p

]
= E

[
‖〈∇〉−εΨN (·, t)‖pLp(T2)

]
< ∞

for any ε > 0, t > 0, and p ≥ 1, uniformly in N ∈ N.
By Lemma 2.5 and (2.8), we have

E
[
:Ψ�

N (x, t) : :Ψ�
N (y, t) :

]
= �!

{
E[ΨN (x, t)ΨN(y, t)]

}�

= �!
∑

n1,...,n�∈Z2
N

γ(n1, t) · · · γ(n�, t)en1
(x− y) · · · en�

(x− y)

= �!
∑

n1,...,n�∈Z2
N

γ(n1, t) · · · γ(n�, t)en1+···+n�
(x− y).

Proceeding as before, we obtain

E
[
|(〈∇〉−ε :Ψ�

N (·, t) :)(x)|2
]
= �!

∑
n1,...,n�∈Z2

N

〈n1 + · · ·+ n�〉−2εγ(n1, t) · · · γ(n�, t)

�t

∑
n1,...,n�∈Z2

1

〈n1〉2 · · · 〈n�〉2〈n1 + · · ·+ n�〉2ε
< ∞

for any ε > 0, x ∈ T2, and t > 0, uniformly in N . Hence, by the hypercontractivity
(Lemma 2.4), we have

E
[
‖ :Ψ�

N (·, t) : ‖pW−ε,p

]
< ∞

for any ε > 0, t > 0, and p ≥ 1, uniformly in N ∈ N.
In order to analyze the time regularity, we have to estimate moments of the

random field

δh :Ψ
�
N (x, t) :

def
= :Ψ�

N (x, t+ h) : − :Ψ�
N (x, t) :

for h ∈ [−1, 1]. In the following, we proceed as above and estimate

E
[
|δh(〈∇〉−ε :Ψ�

N (·, t) :)(x)|2
]
.
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By applying Lemma 2.5 once again, we have

1

�!
E
[
δh :Ψ

�
N (x, t) : δh :Ψ

�
N (y, t) :

]
=
{
E[ΨN (x, t+ h)ΨN (y, t+ h)]

}� −
{
E[ΨN (x, t)ΨN (y, t+ h)]

}�

−
{
E[ΨN (x, t+ h)ΨN (y, t)]

}�
+
{
E[ΨN (x, t)ΨN (y, t)]

}�

= E[δhΨN (x, t)ΨN (y, t+ h)]

×
�−1∑
j=0

{
E[ΨN (x, t+ h)ΨN (y, t+ h)]

}�−j−1{
E[ΨN (x, t)ΨN (y, t+ h)]

}j

− E[δhΨN (x, t)ΨN (y, t)]

×
�−1∑
j=0

{
E[ΨN (x, t+ h)ΨN (y, t)]

}�−j−1{
E[ΨN (x, t)ΨN (y, t)]

}j
.

By reasoning as before, in order to estimate E
[
|δh(〈∇〉−ε :Ψ�(·, t) :)(x)|2

]
, we are

led to bound sums of the form

Sh,ε =
∑

n1,...,n�∈Z2
N

〈n1 + · · ·+ n�〉−2εG1(n1, t, h) · · ·G�(n�, t, h),(2.9)

where Gi(n, t) is given by

G1(n, t) = E[δhΨ̂N (n, t)Ψ̂N (n, t1)],

Gi(n, t) = E[Ψ̂N (n, t1)Ψ̂N (n, t2)], i = 2, . . . , �,

with t1, t2 ∈ {t, t + h}. Here, Ψ̂N (n, t) denotes the spatial Fourier transform of
ΨN (t). A direct computation with (1.6) gives

∣∣E[Ψ̂N (n, t1)Ψ̂N (n, t2)]
∣∣ �t

1

〈n〉2 and
∣∣E[δhΨ̂N (n, t)Ψ̂N (n, t1)]

∣∣ �t
|h|ρ

〈n〉2−ρ

(2.10)

for any ρ ∈ [0, 1], where the implicit constants are independent of h ∈ [−1, 1]. Note
that the second estimate follows from interpolating∣∣E[δhΨ̂N (n, t)Ψ̂N(n, t1)]

∣∣ �t
1

〈n〉2 and
∣∣E[δhΨ̂N (n, t)Ψ̂N (n, t1)]

∣∣ �t
|h|
〈n〉 ,

where the second bound follows from the mean value theorem. As a consequence,
it follows from (2.9) and (2.10) that

|Sh,ε| � |h|ρ

for any h ∈ [−1, 1], ε > 0, and ρ ∈ [0, 1] such that 2ε− ρ > 0. This in turn implies
that

E
[
|δh(〈∇〉−ε :Ψ�

N (·, t) :)(x)|2
]
� |h|ρ.

Then, by the hypercontractivity (Lemma 2.4), this results in

E

[∥∥δh(:Ψ�
N (·, t) :)

∥∥p
W−ε,p

]
�p,t |h|

p
2 ρ
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for any h ∈ [−1, 1], ρ ∈ [0, 1], and ε > 0 such that 2ε > ρ. Hence, it follows from
Sobolev’s embedding theorem that, given ε > 0, we have

E

[∥∥δh(:Ψ�
N (·, t) :)

∥∥p
W−ε,∞

]
� E

[∥∥δh(:Ψ�
N (·, t) :)

∥∥p
W− ε

2
,p

]
�p,t |h|

p
2 ρ

for p sufficiently large such that εp > 4. Moreover, for fixed ρ ∈ (0, 2ε), we can
choose p � 1 such that p

2ρ > 1, allowing us to apply Kolmogorov’s continuity

criterion (see [2, Theorem 8.2]) and conclude that : Ψ�
N :∈ C([0, T ];W−ε,∞(T2))

almost surely, for any T > 0 and ε > 0.
A similar argument also leads to the following estimate:

E
[
|δh(〈∇〉−ε(:Ψ�

N (·, t) : − :Ψ�
M (·, t) :))(x)|2

]
�t

|h|ρ
N2κ

for all M ≥ N ≥ 1, κ > 0, ε > 0, and ρ ∈ [0, 1] such that 2ε− 2κ− ρ > 0. By the
hypercontractivity (Lemma 2.4), this results in

E

[∥∥δh(:Ψ�
N (·, t) : − :Ψ�

M (·, t) :)
∥∥p
W−ε,p

]
�p,t

|h| p2 ρ
Nκp

for any ρ ∈ [0, 1] and ε, κ > 0 such that

2ε > ρ+ 2κ.(2.11)

As before, by Sobolev’s embedding theorem and Kolmogorov’s continuity criterion,
we deduce that for any T > 0 and ε > 0, there exists large p � 1 such that
{: Ψ�

N :}N∈N is a Cauchy sequence in Lp(Ω;C([0, T ];W−ε,∞(T2))). Denot-
ing the corresponding limit by : Ψ� : as in (1.13), we conclude that : Ψ� :∈
C([0, T ];W−ε,∞(T2)) almost surely. �

Remark 2.6. From the application of Kolmogorov’s continuity criterion (see [2,
Exercise 8.2]), we see that :Ψ�:∈ Cα([0, T ];W−ε,∞(T2)), α < ρ

2 −
1
p , almost surely,

provided that (2.11) is satisfied. In particular, by taking p → ∞ and κ → 0, we see
that α + (−ε) < 0, namely, the sum of the temporal and spatial regularities must
be negative.

3. Proof of Theorem 1.1

In this section, we present the proof of Theorem 1.1. In particular, we study
the fixed point problem (1.21) by constructing a pathwise contraction in a suitable
function space.

3.1. Strichartz estimates. We first recall the Strichartz estimates for the linear
wave equation. Given 0 < s < 1, we say that a pair (q, r) is s-admissible (a pair
(q̃, r̃) is dual s-admissible,8 respectively) if 1 ≤ q̃ < 2 < q ≤ ∞, 1 < r̃ ≤ 2 ≤ r < ∞,

1

q
+

2

r
= 1− s =

1

q̃
+

2

r̃
− 2,

2

q
+

1

r
≤ 1

2
, and

2

q̃
+

1

r̃
≥ 5

2
.(3.1)

We refer to the first two equalities as the scaling conditions and the last two in-
equalities as the admissibility conditions.

Let us now state a lemma, providing a more direct description of the admissible
exponents.

8Here, we define the notion of dual s-admissibility for the convenience of the presentation.
Note that (q̃, r̃) is dual s-admissible if and only if (q̃′, r̃′) is (1− s)-admissible.
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Lemma 3.1. Let 0 < s < 1. A pair (q, r) is s-admissible if

1

q
+

2

r
= 1− s and 2 ≤ r ≤

{
6

3−4s if s < 3
4 ,

∞ otherwise.
(3.2)

A pair (q̃, r̃) is dual s-admissible if

1

q̃
+

2

r̃
= 3− s and max

{
1+,

6

7− 4s

}
≤ r̃ ≤ 2

2− s
.(3.3)

We say that u is a solution to the following nonhomogeneous linear wave equa-
tion: {

∂2
t u−Δu = f,

(u, ∂tu)|t=0 = (φ0, φ1),
(3.4)

on a time interval containing t = 0, if u satisfies the following Duhamel formulation:

u = cos(t|∇|)φ0 +
sin(t|∇|)

|∇| φ1 +

ˆ t

0

sin((t− τ )|∇|)
|∇| f(τ )dτ.

We now recall the Strichartz estimates for solutions to the nonhomogeneous linear
wave equation (3.4).

Lemma 3.2. Given 0 < s < 1, let (q, r) and (q̃, r̃) be s-admissible and dual s-
admissible pairs, respectively. Then, a solution u to the nonhomogeneous linear
wave equation (3.4) satisfies

‖(u, ∂tu)‖L∞
T Hs + ‖u‖Lq

TLr
x
� ‖(φ0, φ)‖Hs + ‖f‖

Lq̃
TLr̃

x
(3.5)

for all 0 < T ≤ 1. The following estimate also holds:

‖(u, ∂tu)‖L∞
T Hs + ‖u‖Lq

TLr
x
� ‖(φ0, φ)‖Hs + ‖f‖L1

THs−1
x

(3.6)

for all 0 < T ≤ 1. Here, we used a shorthand notation Lq
TL

r
x = Lq([0, T ];Lr(T2)),

etc.

The Strichartz estimates on Rd have been studied by many mathematicians. See
Ginibre-Velo [11], Lindblad-Sogge [17], and Keel-Tao [15]. The first estimate (3.5)
on T2 in Lemma 3.2 follows from Theorem 2.6 in [30] for R2 and the finite speed
of propagation for the wave equation. The first term on the left-hand side of the
second estimate (3.6) is estimated by the energy estimate (2.29) in [30] and the
finite speed of propagation for the wave equation, while the second term on the
left-hand side of the second estimate (3.6) is estimated by Minkowski’s integral
inequality and the homogeneous Strichartz estimate in (3.5):∥∥∥∥ˆ t

0

sin((t− τ )|∇|)
|∇| f(τ )dτ

∥∥∥∥
Lq

TLr
x

≤
ˆ T

0

∥∥∥∥1[0,t](τ )
sin((t− τ )|∇|)

|∇| f(τ )

∥∥∥∥
Lq

t ([0,T ];Lr
x)

dτ

�
ˆ T

0

‖f(τ )‖Hs−1dτ.

In the remaining part of this subsection, we consider the following deterministic
wave equation with k ≥ 2:

∂2
t u−Δu± |u|k−1u = 0.(3.7)
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Here, we allow k ≥ 2 to take noninteger values. In particular, we prove local well-
posedness of (3.7) in Hs(T2) = Hs(T2)×Hs−1(T2) with (i) s ≥ scrit if k > 3 and
(ii) s > scrit if 2 ≤ k ≤ 3, where scrit is the regularity defined in (1.24).

Suppose that we can find an s-admissible pair (q, r) and a dual s-admissible pair
(q̃, r̃) so that

q ≥ kq̃ and r ≥ kr̃.(3.8)

Then, Hölder’s inequality with the fact that |T2| = 1 yields∥∥|u|k−1u
∥∥
Lq̃

TLr̃
x
≤ T

1
q̃−

k
q ‖u‖kLq

TLr
x
.(3.9)

Then, local well-posedness of (3.7) on a time interval [0, T ] for some T =
T (φ0, φ1) > 0 follows from the Strichartz estimates (Lemma 3.2), (3.9), and a
standard contraction argument. Note that we have a positive power of T in (3.9)
when q > kq̃. In this case, we can take T = T (‖(φ0, φ1)‖Hs) > 0. Indeed, this is
the case when s is greater than the scaling critical regularity sscaling.

Fix 0 < s < 1. Then, in view of (3.8), we would like to maximize

min
{q

q̃
,
r

r̃

}
under the constraints of Lemma 3.1. While this is noninspiring and can be easily
done, the result gives important insights. In view of (3.1), this is essentially9

equivalent to the following maximization problem on Js(r, r̃) defined by

Js(r, r̃) =
r

r̃
min

{
1,

(3− s)r̃ − 2

(1− s)r − 2

}
(3.10)

over the set

K(s) =

[
2,

6

(3− 4s)+

]
×
[
max

{
1,

6

7− 4s

}
,

2

2− s

]
,(3.11)

where x+ := max(x, 0) with the understanding that 6
0 = ∞.

Lemma 3.3. Given 0 < s < 1, let Js(r, r̃) and K(s) be as in (3.10) and (3.11).
Then, the maximum of Js(r, r̃) on K(s) is given by

sup
(r,r̃)∈K(s)

Js(r, r̃) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
3−s
1−s if 1

2 ≤ s < 1,

7−4s
3−4s if 1

4 ≤ s ≤ 1
2 ,

6
3−4s if 0 < s ≤ 1

4 .

Moreover, the supremum is indeed attained in each case: (i) when 0 < s ≤ 1
4 , it

is attained at (r, r̃) =
(

6
3−4s , 1

)
, (ii) when 1

4 ≤ s ≤ 1
2 , it is attained at (r, r̃) =(

6
3−4s ,

6
7−4s

)
, and (iii) when 1

2 ≤ s < 1, it is attained in the set:

6

7− 4s
· 3− s

1− s
≤ r ≤

{
6

3−4s if 1
2 ≤ s ≤ 3−

√
6 ∼ 0.55,

2
2−s · 3−s

1−s if 3−
√
6 ≤ s < 1,

and r̃ =
1− s

3− s
r.

(3.12)

9Here, we allow r̃ = 1 that is not admissible for the Strichartz estimates.
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Proof. From (3.10), we see that the maximum of Js(r, r̃) on K(s) is given by
max{J1(s), J2(s)}, where

J1(s) = max

{
r

r̃
:
r

r̃
≤ 3− s

1− s
, (r, r̃) ∈ K(s)

}
and

J2(s) = max

{
3− s− 2

r̃

1− s− 2
r

:
r

r̃
≥ 3− s

1− s
, (r, r̃) ∈ K(s)

}
.

From (3.2) and (3.3), we have

sup

{
r

r̃
: (r, r̃) ∈ K(s)

}
=

⎧⎪⎪⎨⎪⎪⎩
6

3−4s if 0 < s ≤ 1
4 ,

7−4s
3−4s if 1

4 ≤ s ≤ 3
4 ,

∞ if s ≥ 3
4 ,

and

min

{
r

r̃
: (r, r̃) ∈ K(s)

}
= 2− s.

Note that we have 6
3−4s ≤ 3−s

1−s for s ≤ 1
4 and 7−4s

3−4s ≤ 3−s
1−s for s ≤ 1

2 . Hence, for

0 < s ≤ 1
2 , we have

sup
(r,r̃)∈K(s)

Js(r, r̃) = max{J1(s), J2(s)} = sup

{
r

r̃
: (r, r̃) ∈ K(s)

}
.

Next, we consider the case 1
2 < s < 1. On the one hand, we have J1(s) ≤ 3−s

1−s .

On the other hand, by minimizing r and maximizing r̃ under r
r̃ ≥ 3−s

1−s , we obtain

J2(s) = max

{
3− s− 2

r̃

1− s− 2
r

:
r

r̃
=

3− s

1− s
, (r, r̃) ∈ K(s)

}
=

3− s

1− s
.

It is easy to check that this maximum is attained in the set described in (3.12). �

As a result, we can prove local well-posedness of the deterministic NLW (1.23)
at the regularities stated in Remark 1.4. Indeed, it suffices to note that Lemma
3.3 guarantees the existence of an s-admissible pair (q, r) and a dual s-admissible
pair (q̃, r̃) satisfying (3.8), provided that (i) s ≥ scrit if k > 3 and (ii) and s > scrit
if 2 ≤ k ≤ 3, where scrit is as in (1.24). Note that when 2 ≤ k ≤ 3, the endpoint
s = scrit is excluded since the maximum in Lemma 3.3 is attained at r̃ = 1, which is
not allowed for the dual s-admissibility. Then, the rest of the proof of the local well-
posedness follows from the Strichartz estimates (Lemma 3.2), (3.9), and a standard
fixed point argument. See also the discussion in Subsection 3.3.

3.2. Estimating a product. In this subsection, we state several product estimates
for periodic functions on T

d. First, recall the following fractional Leibniz rule for
functions on Rd; let 1 < pj , qj , r < ∞, 1

pj
+ 1

qj
= 1

r , j = 1, 2. Then, we have

(3.13)
∥∥|∇|s(fg)

∥∥
Lr(Rd)

�
∥∥f∥∥

Lp1 (Rd)

∥∥|∇|sg
∥∥
Lq1 (Rd)

+
∥∥|∇|sf

∥∥
Lp2 (Rd)

∥∥g∥∥
Lq2(Rd)

.

This estimate is an immediate consequence of the Coifman-Meyer theorem; see
[7] and the inequality (1.1) in [19]. We use (3.13) to prove the following product
estimates for functions on Td.
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Lemma 3.4. Let 0 ≤ s ≤ 1.

(i) Suppose that 1 < pj , qj , r < ∞, 1
pj

+ 1
qj

= 1
r , j = 1, 2. Then, we have

(3.14)

‖〈∇〉s(fg)‖Lr(Td) �
(
‖f‖Lp1 (Td)‖〈∇〉sg‖Lq1 (Td) + ‖〈∇〉sf‖Lp2 (Td)‖g‖Lq2 (Td)

)
.

(ii) Suppose that 1 < p, q, r < ∞ satisfy the scaling condition: 1
p +

1
q = 1

r +
s
d . Then,

we have ∥∥〈∇〉−s(fg)
∥∥
Lr(Td)

�
∥∥〈∇〉−sf

∥∥
Lp(Td)

∥∥〈∇〉sg
∥∥
Lq(Td)

.(3.15)

Proof. In view of the transference principle [10, Theorem 3], the first estimate
(3.14) follows from the Coifman-Meyer theorem for functions on Rd and (3.13). The
second estimate (3.15) follows from duality, the first estimate (3.14), and Sobolev’s
inequality∥∥〈∇〉−s(fg)

∥∥
Lr ≤ sup

‖〈∇〉sh‖
Lr′=1

∣∣∣∣ ˆ fgh dx

∣∣∣∣
≤
∥∥〈∇〉−sf

∥∥
Lp sup

‖〈∇〉sh‖
Lr′=1

∥∥〈∇〉s(gh)
∥∥
Lp′

�
∥∥〈∇〉−sf

∥∥
Lp sup

‖〈∇〉sh‖
Lr′=1

(
‖g‖Lq̃

∥∥〈∇〉sh
∥∥
Lr′ +

∥∥〈∇〉sg
∥∥
Lq‖h‖Lr̃′

)
�
∥∥〈∇〉−sf

∥∥
Lp

∥∥〈∇〉sg
∥∥
Lq ,

where the exponents satisfy the Hölder relations

1

q
+

1

r̃′
=

1

q̃
+

1

r′
=

1

p′
,(3.16)

and the exponents satisfy the Sobolev relations

1

q̃
=

1

q
− s

d
and

1

r̃′
=

1

r′
− s

d
.(3.17)

Altogether, (3.16) and (3.17) yield the scaling condition. �

3.3. Local well-posedness of SNLW. In this subsection, we present the proof
of Theorem 1.1. Given an integer k ≥ 2 and (φ0, φ1) ∈ Hs(T2), define a map Γ by

v → Γ(v)(t)
def
= S(t)(φ0, φ1)∓

ˆ t

0

sin((t− τ )|∇|)
|∇| FΨ(v(τ ))dτ

= S(t)(φ0, φ1)∓
k∑

�=0

(
k

�

) ˆ t

0

sin((t− τ )|∇|)
|∇| :Ψ�(τ ) : vk−�(τ )dτ.(3.18)

Let s be as in Theorem 1.1. More precisely we assume that (i) s ≥ scrit if k ≥ 4,
(ii) s > 1

4 if k = 3, and (iii) s > 0 if k = 2. In the following, we only consider the
case s < 1.

In view of Lemma 3.3 and (1.19), we can choose an s-admissible pair (q, r) and
a dual s-admissible pair (q̃, r̃) such that

min
{q

q̃
,
r

r̃

}
≥ k

with a strict inequality if k = 2 or 3.
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We define Xs(T ) as the intersection of the energy space at level s and the
Strichartz space

Xs(T ) = C([0, T ];Hs(T2)) ∩ C1([0, T ];Hs−1(T2)) ∩ Lq([0, T ];Lr(T2)).

Proposition 3.5. Given an integer k ≥ 1, let s, (q, r), and (q̃, r̃) be as above.
Then, there exist sufficiently small ε > 0 and θ > 0 such that

‖Γ(v)‖Xs(T ) � ‖(φ0, φ1)‖Hs + ‖ :Ψk : ‖L1
THs−1

x

+ T θ
k−1∑
�=1

‖〈∇〉−ε :Ψ� : ‖L∞
T,x

‖v‖k−�
Xs(T ) + T

1
q̃−

k
q ‖v‖kXs(T )(3.19)

and

‖Γ(v1)− Γ(v2)‖Xs(T ) � T θ
k∑

�=1

‖〈∇〉−ε :Ψ� : ‖L∞
T,x

×
(
‖v1‖Xs(T ) + ‖v2‖Xs(T )

)k−�−1

‖v1 − v2‖Xs(T )

+ T
1
q̃−

k
q

(
‖v1‖Xs(T ) + ‖v2‖Xs(T )

)k−1

‖v1 − v2‖Xs(T )(3.20)

for any T > 0.

Proof. We only prove the first estimate (3.19) since the second estimate follows in
a similar manner. As in Subsection 3.1, we can estimate the term with � = 0 in
(3.18) by Lemma 3.2 and (3.9). On the other hand, we can use (3.6) in Lemma 3.2
to estimate the first term on the right-hand side of (3.19) and the term with � = k
in (3.18). Hence, it remains to prove
(3.21)∥∥∥∥ ˆ t

0

sin((t− τ )|∇|)
|∇| :Ψ� :

k−�∏
j=1

vjdτ

∥∥∥∥
Xs(T )

� T θ‖〈∇〉−ε :Ψ� : ‖L∞
T,x

k−�∏
j=1

‖vj‖Xs(T )

for 1 ≤ � ≤ k − 1. To simplify the notation, we only consider the case vj = v in
the following. The full estimate can be recovered by polarization or, what may be
easier, by checking that the proof applies to a general product.

By interpolation between the Strichartz part of the norm and the energy part of
the Xs(T )-norm, we have

‖〈∇〉εv‖Lq1
T L

r1
x

≤ ‖v‖1−
ε
s

Lq
TLr

x
‖v‖

ε
s

L∞
T Hs

x
≤ ‖v‖Xs(T )(3.22)

for 0 < ε < s, where

1

q1
=

1− ε/s

q
+

ε/s

∞ and
1

r1
=

1− ε/s

r
+

ε/s

2
.
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Similarly, by duality with (L1
TH

s−1
x +Lq̃

TL
r̃
x)

∗ = L∞
T H1−s

x ∩Lq̃′

T L
r̃′

x and interpo-
lation, we have

‖f‖
L1

THs−1
x +Lq̃

TLr̃
x
= inf

f=f1+f2

(
‖f1‖L1

THs−1
x

+ ‖f2‖Lq̃
TLr̃

x

)
= sup

‖g‖
L∞
T

H
1−s
x ∩L

q̃′
T

Lr̃′
x

≤1

∣∣∣∣ ˆ T

0

ˆ
T2

fgdxdt

∣∣∣∣
≤ sup

‖g‖
L∞
T

H
1−s
x ∩L

q̃′
T

Lr̃′
x

≤1

‖〈∇〉εg‖
L

q̃′2
T L

r̃′2
x

‖〈∇〉−εf‖
L

q̃2
T L

r̃2
x

� ‖〈∇〉−εf‖
L

q̃2
T L

r̃2
x

(3.23)

for 0 < ε < 1− s, where

1

q̃2
=

ε/(1− s)

1
+

1− ε/(1− s)

q̃
and

1

r̃2
=

ε/(1− s)

2
+

1− ε/(1− s)

r̃
.

We also claim that the following estimate holds:

(3.24)
∥∥〈∇〉−ε :Ψ� : vk−�

∥∥
L

q̃2
T L

r̃2
x

� T θ‖〈∇〉−ε :Ψ� : ‖L∞
T,x

‖〈∇〉εv‖k−�
L

q1
T Lr1

for sufficiently small ε > 0 and θ > 0. Fix t ∈ [0, T ]. By applying Lemma 3.4 (ii),
we have∥∥〈∇〉−ε :Ψ�(t) : vk−�(t)

∥∥
L

r̃2
x

� ‖〈∇〉−ε :Ψ�(t) : ‖
L

2
ε
x

‖〈∇〉εvk−�(t)‖
L

r̃2
x

≤ ‖〈∇〉−ε :Ψ�(t) : ‖L∞
x
‖〈∇〉εvk−�(t)‖

L
r̃2
x
.(3.25)

Then, by applying Lemma 3.4 (i), we have

‖〈∇〉εvk−�(t)‖
L

r̃2
x

� ‖v(t)‖k−�−1

L
(k−�)r̃2
x

‖〈∇〉εv(t)‖
L

(k−�)r̃2
x

� ‖〈∇〉εv(t)‖k−�

L
(k−�)r̃2
x

.(3.26)

Note that we can choose ε > 0 sufficiently small such that

(k − 1)q̃2 < q1 and (k − 1)r̃2 ≤ r1.(3.27)

This can be achieved in view of (3.8) and

q1 → q, r1 → r, q̃2 → q̃, and r̃2 → r̃

as ε → 0. Hence, (3.24) follows from (3.25), (3.26), and (3.27). Note that the strict
inequality in (3.27) is used to gain a factor T θ.

Putting Lemma 3.2, (3.22), (3.23), and (3.24) together, we obtain the desired
estimate (3.21). �

Proposition 3.5 with a standard fixed point argument immediately yields Theo-
rem 1.1 in the subcritical case, i.e., s > scrit. In this case, we have q > kq̃, which
provides a positive power of T on the last terms of (3.19) and (3.20). In partic-
ular, this implies that almost sure local well-posedness holds on [−T, T ], where
T = Tω(‖φ0, φ1)‖Hs) > 0. Note that the mild formulation (3.18) with the continu-
ity of the linear propagator S(t), (the proof of) Proposition 3.5, and Proposition
2.1 shows that the solution v lies in C([0, T ];Hs(T2)).

On the other hand, in the critical case: s = scrit (with k ≥ 4), we have q = kq̃.
Thus, the last terms of (3.19) and (3.20) do not provide any power of T . In this
case, a direct application of Proposition 3.5 would yield only small data local well-
posedness and thus we need to slightly modify the argument .
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Let ε > 0 be as in Proposition 3.5. Then, in view of (3.9) and (3.22), we set
Y s(T ) by

‖v‖Y s(T ) = max
(
‖v‖1−

ε
s

Lq
TLr

x
‖v‖

ε
s

L∞
T Hs

x
, ‖v‖Lq

TLr
x

)
.

Then, it follows from the proof of Proposition 3.5 that

‖Γ(v)‖Y s(T ) � ‖S(t)(φ0, φ1)‖Y s(T ) + ‖ :Ψk : ‖L1
THs−1

x

+ T θ
k−1∑
�=1

‖〈∇〉−ε :Ψ� : ‖L∞
T,x

‖v‖k−�
Y s(T ) + T

1
q̃−

k
q ‖v‖kY s(T ).(3.28)

The difference estimate (3.20) with Xs(T ) replaced by Y s(T ) also holds.
By the monotone convergence theorem, we have ‖v‖Y s(T ) → 0 as T → 0. Hence,

together with Proposition 2.1, we can choose T = Tω(φ0, φ1) > 0 sufficiently small
such that ‖S(t)(φ0, φ1)‖Lq

TW
ε,r1
x

+ ‖ :Ψk :‖L1
THσ−1

x
≤ η � 1 almost surely, allowing

us to show that Γ is a contraction on the ball of radius η in Y s(T ). Lastly, noting
that (3.28) holds even if we replace the Y s(T )-norm on the left-hand side by the
Xs(T )-norm, we conclude that v ∈ Xs(T ).

4. Weak universality for semilinear wave equations

with random perturbation

In this section, we present an application of the local well-posedness argument
presented in Section 3. In particular, we establish weak universality of the Wick
ordered SNLW in the following sense. Given small ε > 0, we consider the following
SNLW on (ε−1T)2 with a smooth noise ηε:{

∂2
twε −Δwε = f(wε) + a(ε, t)wε + δ(ε)ηε,

(wε, ∂twε)|t=0 = (0, 0),
(x, t) ∈ (ε−1

T)2 × R+,(4.1)

where f : R → R is a smooth odd function which we take bounded with a sufficient
number of bounded derivatives10 and a(ε, t) and δ(ε) are parameters we will fix
below. In the following, we take the noise ηε to be white in time but smooth and
stationary in space.11 We point out that we could also work with a Gaussian noise
ηε which is regular both in space and time but, in order to fit more easily in the
general framework of this paper, we prefer to stick to a noise which is white in
time. Similarly, we could work with a function f with polynomial growth. For
simplicity of the presentation, however, we work under the boudedness assumption
on f . Indeed, we will see that the precise form of f does not matter in the limit.
See also Remark 4.2 below.

Our aim is to describe the long time and large space behavior of the solu-

tion wε to (4.1). In order to do so, we perform a change of variables uε(x, t)
def
=

10For example, in proving Theorem 4.1, it suffices to assume that f(0) = f ′′(0) = 0 and that
there is a control up to the fourth derivative of f . See also Remark 4.2.

11Think of ηε = ψ ∗x ξ for some smooth function ψ on (ε−1T)2. Then, with β̃n as in (1.7), ηε

can be formally written as

ηε(x, t) = ε
∑

n∈(εZ)2

ψ̂(n)dβ̃n(t)e
2πin·x.(4.2)
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ε−γwε(ε
−1x, ε−1t) and observe that uε satisfies{

∂2
t uε −Δuε = ε−γ−2

{
f(εγuε) + εγa(ε, ε−1t)uε

}
+ ε−γ− 1

2 δ(ε)ηε,

(uε, ∂tuε)|t=0 = (0, 0),
(4.3)

where ηε(x, t) = ε−
3
2 ηε(ε−1x, ε−1t). The normalization for ηε has been chosen in

such a way that it converges as ε → 0 to a space-time white noise ξ in law. With

this normalization, we choose δ(ε) = εγ+
1
2 in order for the coefficient in front of

ηε to be Oε(1) as ε → 0. For the sake of a simpler statement below, we apply
Skorokhod’s theorem12 and introduce a new noise with the same law, still denoted
by ηε, such that it converges to the white noise ξ almost surely. We also use uε to
denote the solution to (4.3). Then, letting Ψε denote the stochastic convolution Ψε

given by Ψε = (∂2
t − Δ)−1ηε, it follows from an argument analogous to the proof

of Proposition 2.1 that Ψε converges almost surely to the stochastic convolution Ψ
defined in (1.4) in C(R+;W

σ,∞(T2)) for any σ < 0, where we endow the space with
the compact-open topology in time.

We now state the main result of this section.

Theorem 4.1. Let δ(ε) = εγ+
1
2 and γ = 1. Then, there exists a choice of a(ε, t)

such that, as ε → 0, the family of the solutions {uε}ε>0 to (4.3) converges almost
surely to the solution u to the following Wick ordered cubic SNLW:

(4.4) ∂2
t u−Δu = λ :u3 : + ξ

with zero initial data, where the convergence takes place in C([0, Tω];H
σ(T2)), σ <

0, for some T = Tω(Ψ) > 0. Here the constant λ = λ(f) depends only on the
function f .

Proof. In order to motivate the choice of γ, a, and the constant λ, let us decompose
uε = Ψε + vε as in (1.20). Then, with our choice of δ(ε) = εγ+

1
2 , we see that vε

satisfies

∂2
t vε −Δvε = Fε(vε),(4.5)

where Fε(vε) is given by

Fε(vε)
def
= ε−γ−2

{
f(εγ(Ψε + vε)) + εγa(ε, ε−1t)(Ψε + vε)

}
.

Since f is chosen to be odd, we have f(0) = f ′′(0) = 0. Then, Taylor’s remainder
theorem gives

Fε(vε) = ε−2
{
f ′(0) + a(ε, ε−1t)

}
(Ψε + vε) + ε2γ−2 f

(3)(0)

6
(Ψε + vε)

3 + Rε(4.6)

with

Rε = ε2γ−2

ˆ 1

0

(1− τ )2

2

{
f (3)(τεγ(Ψε + vε))− f (3)(0)

}
dτ · (Ψε + vε)

3.(4.7)

From the explicit expression (2.2) for the Hermite polynomials, we have

(Ψε + vε)
3 = H3(Ψε + vε;σε) + 3σε(Ψε + vε),

12If we do not apply Skorokhod’s theorem here, then the conclusion of Theorem 4.1 holds only
along some sequence {εj}j∈N tending to 0.
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where σε = σε(t) = E[Ψε(x, t)
2] ∼ | log ε|.13 Hence, from (4.6) and (4.7), we deduce

that

Fε(vε) = ε−2

{
f ′(0) + a(ε, ε−1t) + 3ε2γσε

f (3)(0)

6

}
(Ψε + vε)

+ ε2γ−2 f
(3)(0)

6
H3(Ψε + vε;σε) +Rε.

Therefore, in order for Fε(vε) to have a (nontrivial) finite limit (as a space-time
distribution), we must take

γ = 1 and a(ε, ε−1t) = −f ′(0)− ε2σε(t)
f (3)(0)

2
.

With these choices and letting λ = f(3)(0)
6 , we have

Fε(vε) = λH3(Ψε + vε;σε) +Rε = λ :u3
ε : +Rε.

It remains to show that Rε → 0 as ε → 0. Let us analyze the behavior of Rε.
Letting

Λε =

ˆ 1

0

(1− τ )2

2

{
f (3)(τεγ(Ψε + vε))− f (3)(0)

}
dτ,

we have

Rε = Λε(Ψ
3
ε + 3Ψ2

εvε + 3Ψεv
2
ε + v3ε).(4.9)

Moreover, by the fundamental theorem of calculus, we have

Λε = εγ
ˆ 1

0

(1− τ )2

2

ˆ τ

0

f (4)(αεγ(Ψε + vε))dαdτ · (Ψε + vε).

Thus, using the boundedness of the derivatives of f , we have

|Λε(x, t)| � εγ
{
|Ψε(x, t)|+ |vε(x, t)|

}
.(4.10)

By Proposition 2.1 and (4.8) in the footnote 13, it is not difficult to see that

εγ‖Ψε‖L∞
t ([0,1];L∞

x ) = oε(1)(4.11)

almost surely. Hence, from (4.9), (4.10), and (4.11), we conclude that

|Rε(x, t)| ≤ oε(1)
(
1 + |vε(x, t)|

)4
.

In particular, we can write (4.5) as

∂2
t vε −Δvε = λ :u3

ε : +oε
(
〈vε〉4

)
= λ

3∑
�=0

(
3

�

)
:Ψ�

ε : v
3−�
ε + oε

(
〈vε〉4

)
.

Then, by proceeding as in Section 3 with a variant of Proposition 3.5 (with k = 4 in
view of the fourth order error term), we obtain an a priori bound on vε, uniformly

13 For simplicity, let ψ̂(n) = 1|n|≤1 in (4.2). Then, we have

(4.8)

ηε(x, t) = ε−
3
2 ηε(ε−1x, ε−1t)

=
∑
n∈Z2

1|n|≤ε−1

(
ε−

1
2 dβ̃n(ε

−1t)
)
e2πin·x d

=
∑
n∈Z2

1|n|≤ε−1dβ̃n(t)e
2πin·x,

where we use the white noise scaling in the last equality. In view of (1.8) with (4.8), it is easy to
see the logarithmic divergence of σε in this case.
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in ε > 0. Moreover, the local existence time T = Tω depends only on Ψ and is
independent of ε > 0.

Let u be the solution to (4.4). In an analogous manner, we can estimate the
difference v − vε, where v = u − Ψ as in (1.20). Together with the almost sure
convergence of Ψε to Ψ, we see that uε converges to u in C([0, Tω];H

σ(T2)) for
σ < 0. �

Remark 4.2. If f is an odd polynomial of degree M , then we obtain the following
bound on Λε:

|Λε(x, t)| � max
(
εγ
{
|Ψε(x, t)|+ |vε(x, t)|

}
, (εγ

{
|Ψε(x, t)|+ |vε(x, t)|

}
)(M−3)+

)
.

Together with (4.9) and (4.11), we obtain

|Rε(x, t)| ≤ oε(1)
(
1 + |vε(x, t)|

)max(4,M)
.

Then, by applying a variant of Proposition 3.5 (with k = max(4,M) in view of the
error term), we obtain a uniform (in ε) a priori bound on vε and the convergence
of uε to the solution u to (4.4) as above.

Remark 4.3. We can also consider the following SNLW on (ε−1
T)2:

∂2
twε −Δwε = f(wε) + a(ε, t)wε + b(ε, t)w3

ε + δ(ε)ηε

with two parameters a, b which can be “tuned” so that, via a similar procedure, we
can cancel the cubic term in the asymptotics of the nonlinear term and obtain the
quintic SNLW:

(4.12) ∂2
t u−Δu = λ :u5 : + ξ

for some λ = λ(f). In this case, by choosing γ = 1
2 , the remainder takes the form

R̃ε = Λ̃ε(Ψ
5
ε + 5Ψ4

εvε + 10Ψ3
εv

2
ε + 10Ψ2

εv
3
ε + 5Ψεv

4
ε + v5ε)

with

Λ̃ε =

ˆ 1

0

(1− τ )4

4!

{
f (5)(τεγ(Ψε + vε))− f (5)(0)

}
dτ

which yields the analogous estimate

|Λ̃ε(x, t)| � εγ
{
|Ψε(x, t)|+ |vε(x, t)|

}
.

This implies

|R̃ε(x, t)| ≤ oε(1)
(
1 + |vε(x, t)|

)6
.

Then, by applying a variant of Proposition 3.5 (with k = 6 in view of the sixth order
error term), we obtain a uniform (in ε) a priori bound on vε and the convergence
of uε to the solution u to (4.12). One can similarly consider SNLW with more
parameters to be tuned to obtained the septic Wick ordered SNLW, etc.
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