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ON THE CHERN NUMBERS OF A SMOOTH THREEFOLD

PAOLO CASCINI AND LUCA TASIN

Abstract. We study the behaviour of Chern numbers of three-dimensional
terminal varieties under divisorial contractions.
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1. Introduction

The main goal of this paper is to study the Chern numbers of a smooth projective
threefold, especially in relation with divisorial contractions. To this aim we will
investigate the interplay between topological properties and birational properties
of threefolds.

The starting point of our research is the following question of Hirzebruch [Hir54]:
Which linear combinations of Chern numbers on a smooth complex projective va-
riety are topologically invariant?

Hirzebruch’s question has been answered by Kotschick [Kot08, Kot12], who
showed that a rational linear combination of Chern numbers is a homeomorphism
invariant of smooth complex projective varieties if and only if it is a multiple of the
Euler characteristic. In particular, Kotschick shows the existence of a sequence of
infinitely many pairs of smooth projective threefolds Xi, Yi, with i ∈ N, such that
Xi and Yi are diffeomorphic and

c1c2(Xi) �= c1c2(Yi) and c31(Xi) �= c31(Yi)

for each i ∈ N.
In view of this, it is natural to ask if the Chern numbers of an n-dimensional

smooth projective variety can only assume finitely many values after we fix the
underlying manifold. In general, cn is a topological invariant, as it coincides with
the Euler characteristic, and therefore if n = 1, then the problem is easily settled.
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On the other hand, if X and Y are homeomorphic complex surfaces, then either
c21(X) = c21(Y ) or c21(X) = 4c2(Y )− c21(Y ), depending on whether the homeomor-
phism between X and Y is orientation preserving or not (cf. [Kot08]). Nevertheless,
if X and Y are diffeomorphic surfaces, then c1(X)2 = c1(Y )2.

In dimension 3, the relevant Chern numbers are c1c2 and c31. If X is Kähler,
then by the Hirzebruch–Riemann–Roch theorem we have

| 1
24

c1c2(X)| = |χ(OX)| = |1− h1,0 + h2,0 − h3,0| ≤ 1 + b1 + b2 + b3,

where hi,0 = hi(X,OX) and b1, b2, and b3 denote the topological Betti numbers of
X. Thus, c1c2(X) is bounded by a linear combination of the Betti numbers of X.
On the other hand, LeBrun [LeB99] shows that the same result does not hold if we
drop the assumption of being Kähler, answering a question raised by Okonek and
Van de Ven [OVdV95]. In particular, he shows that if M denotes the 4-manifold
underlying a K3 surface and S2 is the two-dimensional sphere, then there exist
infinitely many complex structures Jm on M × S2 such that c1c2 = 48m, with
m ∈ N.

More generally, in dimension n, Libgober and Wood [LW90] showed that c1cn−1

can be expressed in terms of Hodge numbers and, in particular, it is bounded by
a constant that depends only on the Betti numbers of the underlying topological
space. Recently, Schreieder and Tasin [ST16] studied the problem in dimension at
least 4, proving that in complex dimension n ≥ 4, the Chern numbers cn, c1cn−1,
and c22 (n = 4) are the only Chern numbers that take on only finitely many values
on the complex projective structures with the same underlying smooth 2n-manifold.

Thus, the motivating question of this paper is the following.

Question 1.1 ([Kot08, Problem 1]). Does c31 = −K3
X take only finitely many values

on the projective algebraic structures X with the same underlying 6-manifold?

Our aim is to study this problem from a birational point of view.
Let X be a smooth threefold. We first consider Question 1.1 in three extreme

cases which arise as building blocks in birational geometry: Fano manifolds, Calabi–
Yau and canonically polarized varieties. In the first case, it is known that X belongs
to a bounded family and, in particular, K3

X is bounded [Kol93a]. If X is Calabi–
Yau, then by definition KX = 0 and therefore K3

X = 0. Finally, if X is canonically
polarized (i.e., KX is ample), then the Bogomolov–Miyaoka–Yau inequality implies
that 0 < K3

X ≤ 8/3c1c2(X). Thus, the arguments above imply that K3
X is bounded

by the Betti numbers of X.
We now consider the general case of a smooth projective threefold X. Thanks

to Mori’s program [KM98], we can run a Minimal Model Program (MMP, in short)
on X and obtain a birational map ϕ : X ��� Y into a threefold Y such that either
X is not uniruled and Y is minimal (i.e., the canonical divisor KY is nef) or X is
uniruled and Y admits a Mori fibre space structure (i.e., a morphism Y → Z with
connected fibres with relative Picard number equal to one and whose general fibre
is a nontrivial Fano variety). Thus, our strategy consists in two steps: we first want
to bound K3

Y and then bound K3
X −K3

Y .
One of the difficulties of the first step is due to the fact that in general Y is

not smooth, but it admits some mild singularities, called terminal. On the other
hand, by [CZ14], we can bound the singularities of Y , and in particular the index
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of each singularity, by a bound which depends only on the topology of X (see
Proposition 2.3).

Recall that a variety of dimension n is said to be uniruled if there exists a variety
Y of dimension n− 1 and a dominant rational map Y × P1 ��� X. In particular if
X is uniruled, then it is covered by rational curves, i.e., for each x ∈ X there exists
a nontrivial morphism f : P1 → X such that x ∈ f(P1).

Note that if X is not uniruled then Y is minimal and K3
Y coincides with the

volume of X (cf. Definition 2.1), which is a birational invariant of the variety X.
Our first result, based on the Bogomolov–Miyaoka–Yau inequality for terminal

threefolds, is the following.

Theorem 1.2. Let X be a smooth complex projective threefold which is not unir-
uled. Then

vol(X,KX) ≤ 6b2(X) + 36b3(X).

An interesting consequence is that the volume only takes finitely many values
on the family of smooth projective varieties of general type with fixed underlying
6-manifold (see Corollary 4.1). A second consequence (which follows immediately
applying [HM06]) is that the family of all smooth complex projective threefolds of
general type with bounded Betti numbers is birationally bounded (see Corollary
4.2). Such questions remain open in higher dimensions. In a forthcoming paper, we
plan to study the Chern numbers of a variety Y which admits a Mori fibre space
structure.

We now describe the second part of our program: we want to determine how the
Chern number c31 varies under the MMP. Recall that if X is a smooth projective
threefold and we run an MMP on X, then we obtain a birational map X ��� Y as
a composition of elementary transformations, given by divisorial contractions and
flips:

X = X0 ��� X1 ��� · · · ��� Xm = Y.

We plan to bound K3
Xk

− K3
Xk−1

at each step, in terms of the topology of the

manifold underlying X.
In this paper we consider the case of divisorial contractions. Recall that a di-

visorial contraction Xk−1 → Xk is a birational morphism which contracts a prime
divisor E into either a point or a curve. The first case can be easily handled thanks
to Kawakita’s classification [Kaw05]. In particular, we can show that

0 < K3
Xk−1

−K3
Xk

≤ 210b22,

where b2 = b2(X) is the second Betti number of X (see Proposition 4.4).
The case of divisorial contractions to curves is much harder. In general, in

this case, the difference between the Chern numbers may not be bounded by a
combination of Betti numbers (e.g., consider a blowup of a rational curve of degree
d in P3). To deal with this situation, we study the integral cubic form FXi

associated
to the cup product on H2(Xi,Z). The cubic form FX is one of the most important
topological invariants of a smooth threefold X and much topological information of
X is encoded in the cubic form FX (e.g., see [OVdV95]). In the case of a blowdown
to a smooth curve f : W → Z, the cubic form FW assumes a special form

FW (x0, . . . , xn) = ax3
0 + 3x2

0(

n∑
i=1

bixi) + FZ(x1, . . . , xn),
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which we call reduced form. The goal of section 3 is to prove a finiteness result
on the number of possible reduced forms in the case of cubic forms with nonzero
discriminant (see Theorem 3.1).

In particular, we can associate to any projective threefold X a topological in-
variant SX which is an integer number depending only on the cubic form FX of X
(see Definition 2.12).

Our main result is Theorem 1.3. It is obtained by combining methods in bira-
tional geometry, topology, and arithmetic geometry.

Theorem 1.3. Let Y be a terminal Q-factorial threefold with associate cubic form
FY , and let f : Y → X be a divisorial contraction to a point or to a smooth curve
contained in the smooth locus of X (in this last case assume also that ΔFY

�= 0).

(1) If f contracts a divisor to a point, then |K3
Y − K3

X | ≤ 210b2(Y )2. If f
contracts a divisor to a curve, then

|K3
Y −K3

X | ≤ 2SW + 6(b3(Y ) + 1),

where SY is as in Definition 2.12. Moreover, the same inequality is true
after replacing b3(Y ) by Ib3(Y ) = dim IH3(Y,Q).

(2) The cubic form FX is determined up to finite ambiguity by the cubic form
FY .

We believe that the methods used to prove Theorem 1.3 will have interesting
applications to questions concerning the topology and the geography of threefolds
(see, for example, [BCT16] and [ST17]).

Let X be a smooth threefold, and let f : X ��� Y be a minimal model of X. It is
very natural to ask which topological invariants of Y are determined by those of X.
It is known that the Betti numbers of Y are determined up to finite ambiguity by
the Betti numbers of X (the case of b3 has been treated very recently in [Che16]).

The same question for the ring structure of the cohomology is very delicate. The
following immediate consequence of Theorem 1.3 goes in the positive direction.

Corollary 1.4. Let X be a smooth complex projective threefold. Let f : X ��� Y
be a minimal model program for X.

If f is composed only by divisorial contractions to points, then FY is determined
up to finite ambiguity by FX .

If ΔFX
�= 0 and f is a composition of divisorial contractions to points and

blowdowns to smooth curves in smooth loci, then FY is determined up to finite
ambiguity by FX .

Finally, we can combine the above results to obtain the following corollary.

Corollary 1.5. Let X be a smooth complex projective threefold which is not unir-
uled, and let FX be its associated cubic form. Assume that ΔFX

�= 0 and that
there exists a birational morphism f : X → Y onto a minimal projective threefold
Y , which is obtained as a composition of divisorial contractions to points and blow-
downs to smooth curves in smooth loci. Then there exists a constant D depending
only on the topology of the 6-manifold underlying X such that

|K3
X | ≤ D.

It remains to study divisorial contractions to singular curves and flips. On the
other hand, the MMP of any smooth projective threefold may be also factored into
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a sequence of flops, blowups along smooth curves, and divisorial contractions to
points (see [CH11,Che15]). Recall that if W ��� Z is a flop, then K3

W = K3
Z ; thus,

it is crucial to study how the cubic form F varies under flops. We will study this
problem in a forthcoming paper.

2. Preliminary results

2.1. Notations. We work over the field of complex numbers. We refer to [KM98]
for the classical notions in birational geometry. In particular, if X is a normal
projective variety, we denote by KX the canonical divisor of X. We also denote
by ρ(X) the Picard number of X, by N1(X) the group of Cartier divisors modulo
numerical equivalence, and by H̄i(X,Z) the ith singular cohomology group of X
modulo its torsion subgroup. In particular, bi(X) = rk H̄i(X,Z) = dimHi(X,Q)
is the ith Betti number of X. We say that X is Q-factorial if every Weil divisor D
on X is Q-Cartier, i.e., there exists a positive integer m such that mD is Cartier.
If f : Y → X is a birational morphism between normal projective varieties and KX

is Q-Cartier, then we may write

KY = f∗KX +
k∑

i=1

aiEi,

where the sum is over all the exceptional divisors E1, . . . , Ek of f . The number ai is
the discrepancy of f along Ei and it is denoted by a(Ei, X). In particular, X is said
to be terminal if for any birational morphism f : Y → X and for any exceptional
divisor E, we have a(E,X) > 0. Recall that terminal singularities are rational ; i.e.,
if f : Y → X is a resolution, then Rif∗OY = 0 for all i > 0. A terminal variety X
is said to be minimal if it is Q-factorial and KX is nef.

A contraction f : Y → X is a proper birational morphism between normal projec-
tive varieties. The contraction f : Y → X is said to be divisorial if the exceptional
locus of f is an irreducible divisor. It is said to be elementary, if ρ(Y ) = ρ(X) + 1.
Finally, an elementary contraction f : Y → X is said to be KY -negative, if −KY is
f -ample, i.e., the exceptional locus of f is covered by curves ξ such that KY · ξ < 0.
Note that if Y is Q-factorial and f : Y → X is an elementary divisorial contraction,
then X is also Q-factorial. Moreover, if Y is terminal and f is KY -negative, then
X is also terminal.

Definition 2.1. Let X be a projective variety with terminal singularities. Then
the volume of X is given by

vol(X) = lim sup
m→∞

n! h0(X,mKX)

mn
,

where n is the dimension of X.

In particular, the volume is a birational invariant, and if X is a minimal variety
of dimension n, then

vol(X) = Kn
X

(see [Laz04, Section 2.2.C] for more details).
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2.2. Terminal singularities on threefolds. We now recall a few known facts
about terminal singularities in dimension 3. Let (X, p) be the germ of a three-
dimensional terminal singularity. The index of p is the smallest positive integer r
such that rKX is Cartier. In addition, it follows from the classification of terminal
singularities [Mor85], that there exists a deformation of (X, p) into a variety with
h ≥ 1 terminal singularities p1, . . . , ph which are isolated cyclic quotient singularities
of index r(pi). The set {p1, . . . , ph} is called the basket B(X, p) of singularities of
X at p [Rei87]. As in [CH11], we define

Ξ(X, p) =

h∑
i=i

r(pi).

Thus, if X is a projective variety of dimension 3 with terminal singularities and
SingX denotes the finite set of singular points of X, we may define

Ξ(X) =
∑

p∈SingX

Ξ(X, p).

Lemma 2.2. Let (X, p) be the germ of a three-dimensional terminal singularity,
and let B(X, p) be the basket at p. Then, for each q ∈ B(X, p), the index r(q) of q
divides 4 · Ξ(X, p).

Proof. It follows from the classification of terminal singularities, that the points of
the basket B(X, p) either have all the same index r or their index divides 4 when
r(p) = 4 and p ∈ X is of type cAx/4 (e.g., see [CH11, Remark 2.1]). Thus the
claim follows. �

By [CZ14, Proposition 3.3], we have the following.

Proposition 2.3. Let X be a smooth projective threefold, and assume that

X = X0 ��� · · · ��� Xk = Y

is a sequence of steps for the KX MMP of X.
Then

Ξ(Y ) ≤ 2b2(X).

In particular, the inequality holds if Y is the minimal model of X.

In the proof of our main results, we will use the Bogomolov–Miyaoka–Yau in-
equality and the Riemann–Roch formula for terminal threefolds. Recall that, on
any terminal threefold X, we may define c1(X) as the anticanonical divisor −KX

and, for any Q-Cartier divisor D onX, we define the number D.c2(X) as f∗D.c2(Y )
where f : Y → X is any resolution of X. It is easy to check that the definition does
not depend on the resolution.

Theorem 2.4. Let Y be a minimal three-dimensional projective variety with ter-
minal singularities. Then

(3c2 − c21).c1 ≤ 0.

Proof. It follows from [Miy87, Theorem 1.1]. �

Theorem 2.5. Let Y be a three-dimensional projective variety with terminal sin-
gularities. Then the holomorphic Euler characteristic of Y is given by

χ(Y,OY ) =
1

24
(−KY · c2(Y ) + e),



ON THE CHERN NUMBERS OF A SMOOTH THREEFOLD 7929

where

e =
∑
pα

(
r(pα)−

1

r(pα)

)
,

and the sum runs over all the points of all the baskets of Y .

Proof. See [Kaw86,Rei87]. �

2.3. Cubic forms. For any polynomial P ∈ C[x0, . . . , xn], we denote by ∂iP (x)
the partial derivative of P with respect to xi at the point x ∈ Cn+1. For any
ring R ⊆ C and for any positive integer d, we denote by R[x0, . . . , xn]d the set of
homogeneous polynomials of degree d with coefficients in R.

Given a cubic form F ∈ C[x0, . . . , xn] (i.e., an homogeneous polynomial of de-
gree 3), let

HF (x) = (∂i∂jF (x))i,j

be the Hessian of F at the point x ∈ Cn+1. Note that, for any x ∈ Cn+1 and for any
λ �= 0, the rank of HF at the point λx is constant with respect to λ and therefore
we will denote, by abuse of notation, rkHF (p) to be the rank of HF at any point
in the class of p ∈ Pn. We say that F is nondegenerate if rkHF is maximal at the
general point of Pn, i.e., if detHF is not identically zero.

Let F (x0, . . . , xn) =
∑

I cIx
I ∈ C[x0, . . . , xn]d. Then the discriminant ΔF of

F is the unique (up to sign) polynomial with integral coefficients in the variables
cI such that ΔF is irreducible over Z and ΔF = 0 if and only if the hypersurface
{F = 0} ⊆ Pn

C
is singular (see [GKZ94, p. 433] for more details). In particular, the

discriminant is an invariant under the natural SL(n+ 1,C)-action.
If F ∈ C[x, y, z] is a ternary cubic form, then we denote by SF and TF the two

SL(3,C)-invariants of F as defined in [Stu93, 4.4.7 and 4.5.3]. Then the discriminant
of F satisfies

ΔF = T 2
F − 64S3

F .

Lemma 2.6. Let F ∈ Z[x0, . . . , xn]3 be an integral cubic form, and assume that

F (x0, . . . , xn) = ax3
0 + x2

0(
n∑

i=1

bixi) +G(x1, . . . , xn)

for some G ∈ Z[x1, . . . , xn]3. Then ΔG divides ΔF .

Proof. If P is a polynomial with integral coefficients, we denote by ct(P ) the content
of P , that is the gcd of the coefficients of P . As in the case of one variable, it is
easy to see that the content is multiplicative.

Let A, {Bi}i=1,...,n, and {CJ} be variables, and consider the cubic form

f = Ax3
0 + x2

0(

n∑
i=1

Bixi) + g(x1, . . . , xn),

where g =
∑

J CJx
J . Then Δf and Δg are polynomial in Z[A,Bi, CJ ]. We want

to show that Δg divides Δf .
Let R = C[A,Bi, CJ ], and let Z(f), Z(g) ⊆ PN

C
= ProjR be the closed subsets

defined by Δf = 0 and Δg = 0, respectively. Note that Z(g) ⊆ Z(f) because if
{g = 0} has a singular point z = [z1, . . . , zn], then [0, z1, . . . , zn] is a singular point
of {f = 0}. Since Δg is irreducible over Q by definition, and hence Z(g) is reduced
over C, we deduce that Δf = Δg ·H where H ∈ R.
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We need to show that H ∈ Z[A,Bi, CJ ]. We proceed as in the proof of the Gauss
lemma. We start assuming by contradiction that H /∈ Q[A,Bi, CJ ]. Fix an order
on R, and consider the maximal monomial m in H such that its coefficient is not
rational. Consider now the product between m and the highest monomial in Δg to
get a contradiction. Hence H ∈ Q[A,Bi, CJ ].

The claim follows from the fact that the content of Δg is 1 and that the content
is multiplicative. �

We have the following.

Lemma 2.7. Let F ∈ C[x0, . . . , xn] be a cubic form such that there exists a point
p ∈ Pn for which rkHF (p) = 0, i.e., HF (p) is the trivial matrix. Then after
a suitable coordinate change, F depends on at most n variables. In particular,
detHF vanishes identically on Pn.

Proof. Euler’s formula for homogeneous polynomials implies that

F (p) = ∂iF (p) = 0 for all i = 0, . . . , n.

After a suitable coordinate change, we may assume that p = (1, 0, . . . , 0). Let
f(y1, . . . , yn) = F (1, y1, . . . , yn). By Taylor’s formula, f is a homogeneous polyno-
mial of degree 3. Thus, F (x0, . . . , xn) = f(x1, . . . , xn), and the claim follows. �

As mentioned in the introduction, arithmetic geometry will play an important
role for the proof of our main theorem. In particular, we need the following.

Theorem 2.8 (Siegel theorem). Let R be a ring finitely generated over Z. Let C
be an affine smooth curve defined over R and of genus g ≥ 1. Then there are only
finitely many R-integral points on C.

Proof. See [Lan83, Ch. 8, Theorem 2.4]. �

2.4. Reduced triples. Given a ring A, we denote by M(n,A) the set of all ma-
trixes with coefficients in A, by GL(n,A) the subgroup of invertible matrixes, and
by SL(n,A) the subgroup of matrixes with determinant 1.

Given a cubic form F ∈ C[x0, . . . , xn] and a matrix T ∈ GL(n + 1,C), we will
denote by T · F the cubic form given by

T · F (x) = F (T · x).
We define

WF = {p ∈ Pn | rkHF (p) ≤ 1}
and

VF = {p ∈ Pn | rkHF (p) ≤ 2}.

Definition 2.9. Let F ∈ R[x0, . . . , xn] be a nondegenerate cubic form where R
is a commutative ring. We say that (a,B,G) is a reduced triple associated to F if
there exists an element T ∈ SL(n+ 1, R) such that

(1) T · F = ax3
0 + x2

0 ·
n∑

i=1

bixi +G(x1, . . . , xn),

where a ∈ R, B = (b1, . . . , bn) ∈ Rn and G ∈ R[x1, . . . , xn] is a nondegenerate
cubic form. For simplicity, we will denote (1) as

T · F = (a,B,G).
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In this case we also say that T · F is in reduced form (a,B,G).
We say that two reduced triples (a,B,G) and (a′, B′, G′), are equivalent over

R if a = a′ and there is an element M ∈ SL(n,R) such that B′ = M · B and
G′ = M ·G.

The motivation for studying the loci WF and VF and reduced forms comes from
Propositions 4.7 and 4.8. More precisely, it is easy to see that if F ∈ C[x0, . . . , xn]
is a cubic form in reduced form and p = [1, 0, . . . , 0], then p ∈ VF (see for example
[BCT16, Lemma 2.1]).

In what follows we will use the following result.

Theorem 2.10 (Jordan’s theorem). Let F ∈ Z[x0, . . . , xn]3 be a cubic form with
nonzero discriminant ΔF , and consider the set

AF = {T · F | T ∈ SL(n+ 1,C)} ⊆ C[x0, . . . , xn]3.

Then the quotient
(AF ∩ Z[x0, . . . , xn]3)/ SL(n+ 1,Z)

is finite.

Proof. It follows from [OVdV95, Corollary 4 and 5]. �

2.5. Cubic forms on threefolds. Let X be a terminal Q-factorial projective
threefold. Let h = (h1, . . . , hn) be a basis of H̄2(X,Z). The intersection cup
product induces a symmetric trilinear form

φX : H̄2(X,Z)⊗ H̄2(X,Z)⊗ H̄2(X,Z) → H6(X,Z) ∼= Z.

Thus, we may define a cubic homogeneous polynomial FX ∈ Z[x1, . . . , xn] as

FX(x) =
∑

I=(i1,...,in):
i1+···+in=3

(
3

I

)
φX(hI)xI .

We call FX the cubic form associated to X.
As in the smooth case, we have the following.

Lemma 2.11. The cubic form FX is nondegenerate, that is detHFX
is not iden-

tically zero.

Proof. Let Σ ⊆ X be the singular locus of X. Since X is terminal, Σ is a finite set,
and there exists a resolution π : Y → X with divisorial exceptional locus E such
that Y \E is isomorphic to X \ Σ.

Let {γ0, . . . , γb} be a basis of H2(X,Q), and let B = {βi = f∗γi}. After com-
pleting B to a basis of H2(Y,Q), we may write

FY (x0, . . . , xn) = FX(x0, . . . , xb) + F (xb+1, . . . , xn),

where we are considering the cubic forms over Q.
The paper [OVdV95, Proposition 16] implies that detHFY

is not identically zero.
Since detHFY

= detHFX
· detHF , the claim follows. �

Definition 2.12. Let X be a terminal Q-factorial projective threefold, and let
FX ∈ Z[x1, . . . , xn]3 be the cubic form associated to X. We define

SX := sup{|a| ∈ Z | there exists T ∈ SL(n+ 1,Z) such that T · FX = (a,B,G)},
where we set SX = 0 if there are no reduced triples associated to FX .
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Note that SX is a topological invariant of X since FX is a topological invariant
(modulo the action of SL(n+ 1,Z)).

2.6. Topology of threefolds. We now study how the Betti numbers behave under
a birational morphism (see [Cai05] for some related results). Note that the singular-
ities of a Q-factorial terminal threefold X are in general not analytically Q-factorial.
In particular, X is in general not a Q-homology manifold (see [Kol89, Lemma 4.2]),
and the singular cohomology may differ from the intersection cohomology.

In dimension 3, all the Betti numbers behave well under birational transforma-
tions except for b3 (see Lemma 2.16). The behaviour of the third Betti number is
more subtle and depends on the singularities of X and Y as the following example
shows.

Example 2.13. Let X ⊆ P4 be a quartic threefold with just one node (rational
double point) p ∈ X. It is known that X is Q-factorial (e.g., see [Che06]). Locally,
the germ (X, p) may be written as

{xy − wz = 0} ⊆ C4,

which is not analytically Q-factorial. Let f : Y → X be the blowup of the singular-
ity, and let E ∼= P1 × P1 be the exceptional divisor. It follows that

b3(Y ) = b3(X)− 1.

In particular, the third Betti number may increase under some of the steps of the
MMP. For this reason, it will often be useful to look at the intersection cohomology
instead.

Given a projective variety X, we denote by IHi(X,Q) the middle-perversity
intersection cohomology group of dimension i, and by Ibi, its dimension. Note
that if X is smooth, then IHi(X,Q) coincides with Hi(X,Q) and in particular
Ibi(X) = bi(X) for all i.

We will use the following consequence of the decomposition theorem for inter-
section cohomology (see [BBD82]).

Theorem 2.14. Let f : Y → X be a proper birational morphism between algebraic
varieties. Assume that Y is smooth. Then the cohomology H∗(Y,Q) = IH∗(Y,Q)
of Y contains the intersection cohomology IH∗(X,Q) of X as a direct summand.

We now restrict our study to the case of threefolds.

Lemma 2.15. Let f : Y → X be a birational morphism between projective three-
folds with terminal singularities. Let E be an exceptional divisor of f , and let
W = f(E). Assume that f induces an isomorphism Y \ E → X \W . Then

0 → Hi(X,Q) → Hi(Y,Q)⊕Hi(W,Q) → Hi(E,Q) → 0

is exact for any i ≥ 4, and

0 → IHi(X,Q) → IHi(Y,Q)⊕ IHi(W,Q) → IHi(E,Q) → 0

is exact for any i ≥ 1.

Proof. From the exact sequence of the pairs we get a long exact sequence in coho-
mology

· · · → Hi(X,Q) → Hi(Y,Q)⊕Hi(W,Q) → Hi(E,Q) → Hi+1(X,Q) → · · · ,
which by [Del74, Prop. 8.3.9] is an exact sequence of mixed Hodge structure.
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Since X,Y have isolated singularities, for i ≥ 4 the Hodge structure on Hi(X,Q)
is pure of weight i (see [Ste83]). On the other hand, since E is projective, Hk(E,Q)
has weight at most k for any k ([Del74, Thm. 8.2.4]). Thus, the maps

Hi(E,Q) → Hi+1(X,Q)

are zero for i ≥ 3.
The same argument applies for intersection cohomology with the advantage that

the Hodge structure on IHi(X,Q) is pure of weight i for any i by [Sai88]. �

Lemma 2.16. Let f : Y → X be an elementary divisorial contraction between
Q-factorial projective threefolds with terminal singularities. Then

(1) b0(Y ) = b6(Y ) = b0(X) = b6(Y ) = 1,
(2) b1(Y ) = b1(X),
(3) b2(Y ) = b2(X) + 1,
(4) b4(Y ) = b4(X) + 1, and
(5) b5(Y ) = b5(X).

Proof. (1) is clear. Lemma 2.15 implies (4) and (5).
We now want to show that R1f∗Z = 0; it is enough to show it locally around

any point x ∈ X. We consider the exact sequence

0 → f∗Z →f∗OY
exp−→ f∗O∗

Y

→ R1f∗Z → R1f∗OY .

The exponential map is surjective locally around x ∈ X. Since X and Y have
rational singularities, it follows that R1f∗OY = 0. Thus, R1f∗Z = 0, as claimed.
The Leray spectral sequence implies that H1(X,Z) → H1(Y,Z) is an isomorphism,
and, in particular, (2) follows.

Let H2(Y/X,C) ⊆ H2(Y,C) be the subspace generated by all the images of
H2(F,C), where F runs through all the fibres of f . The paper [KM92, Theorem
12.1.3] implies that H2(Y/X,C) is generated by algebraic cycles and that there
exists an exact sequence,

0 → H2(Y/X,C) → H2(Y,C) → H2(X,C) → 0.

Since f is an elementary divisorial contraction, it follows that all the nontrivial
algebraic cycles contained in the fibre of f are numerically proportional to each
other, and, in particular,

dimH2(Y/X,C) = 1.

Thus, (3) follows. �

3. Cubic forms in reduced form

The aim of this section is to prove the following.

Theorem 3.1. Let F ∈ Z[x0, . . . , xn] be a nondegenerate cubic form cf. §2.3 with
nonzero discriminant ΔF . Then there are finitely many triples

(ai, Bi, Gi) ∈ Z× Zn × Z[x1, . . . , xn]3 i = 1, . . . , k

such that any reduced triple associated to F is equivalent to (ai, Bi, Gi) over Z for
some i ∈ {1, . . . , k} cf. Definition 2.9. In addition, we have that ΔGi

�= 0 for all
i = 1, . . . , k.
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Before we proceed with the proof of Theorem 3.1, we first sketch some of its main
ideas. Note that if F is in reduced form (a,B,G), then the point p = (1, 0, . . . , 0) is
contained in the set VF , defined in §2.4 . Thus, our first goal is to show that the set
of points p ∈ VF such that F (p) �= 0 is contained in a finite union of points, lines,
and plane cubics (cf. Theorem 3.6). Assuming furthermore that the discriminant
ΔF of F is not zero, we characterise the cubic forms F which contain a line (cf.
Corollary 3.9) or plane curves (cf. Corollary 3.10) inside VF .

The next step is to restrict the cubic form to one of the lines or plane curves
contained in VF . To deal with this situation, we study binary (cf. Proposition 3.13)
and ternary cubic forms (cf. Proposition 3.16) with nonzero discriminant. The main
tool used in the proof of these results is Siegel’s theorem on the finiteness of integral
points in a curve of positive genus. Finally, we conclude the proof of Theorem 3.1
in §3.3.

3.1. Points of low rank for a cubic form. In this subsection, we study the sets
WF and VF associated to a cubic form F ∈ C[x0, . . . , xn] (cf. §2.4). Many of the
results below depend on some simple calculations on cubics forms. To illustrate
some of the methods presented below, we begin with a basic result.

Lemma 3.2. Let

F = x3
0 + x0Q+R ∈ C[x0, . . . , xn]3

be a cubic form, where Q,R ∈ C[x1, . . . , xn] are homogeneous polynomials of degree
2 and 3, respectively. Let A be the n × n symmetric matrix associated to Q. Let
p = [1, 0, . . . , 0]. Then rkHF (p) = rkA+ 1.

Proof. The claim is a simple computation. �

We now proceed by studying the set WF (cf. §2.4) associated to a nondegenerate
cubic form F .

Proposition 3.3. Let F ∈ C[x0, . . . , xn] be a nondegenerate cubic form. Then WF

is a finite set.

Proof. Let W ′
F = WF ∩ {F = 0}. We first show that W ′

F is a finite set. Assume
by contradiction that there exists an irreducible curve C inside W ′

F and let p ∈ C.
We say that a hyperplane H ⊆ Pn is associated to p if:

(1) detHF vanishes along H;
(2) p ∈ H; and
(3) if G = F|H , then HG(p) is trivial.

Lemma 2.7 implies that rkHF (p) = 1. After taking a suitable coordinate change,
we may assume that p = [1, 0, . . . , 0]. In particular

F (x0, . . . , xn) = x2
0 · L1 + x0 ·Q1 +R1

for some homogeneous polynomials L1, Q1, R1 ∈ C[x1, . . . , xn] of degrees 1, 2, and 3,
respectively. Since p ∈ WF , it follows that L1 = 0. By assumption, Q1 is not zero.
Using again the fact that p ∈ WF , similarly to Lemma 3.2, it follows that, after
taking a suitable coordinate change in x1, . . . , xn, we may assume that Q1 = x2

1.
We may write

R1(x1, . . . , xn) = x2
1 · L+ x1 ·Q+R
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for some homogeneous polynomials L ∈ C[x1, . . . , xn] and Q,R ∈ C[x2, . . . , xn] of
degrees 1, 2, and 3, respectively. After replacing x0 by x0+L, we may assume that
L = 0. Thus, we have

F (x0, . . . , xn) = x0 · x2
1 + x1 ·Q+R.

Let Hp = {x1 = 0}. An easy computation shows that Hp is a hyperplane associated
to p. We now show that such a hyperplane is unique. Assume that H ′ ⊆ Pn is also
a hyperplane associated to p. Since p ∈ H ′, we have H ′ = {� = 0} for some linear
function � ∈ C[x1, . . . , xn]. If H ′ �= Hp, after a suitable change of coordinates in
x2, . . . , xn, we may assume that

� = xn − αx1

for some α ∈ C. Thus if G′ = F|H′ , we may write

G′(x0, . . . , xn−1) = x0x
2
1 + x1Q(x2, . . . , xn−1, αx1) +R(x2, . . . , xn−1, αx1),

and it follows that

∂1∂1G
′(p) �= 0,

which contradicts (3). Thus, H ′ = Hp, and the claim follows.
Now let q ∈ C be a point such that Hp = Hq. We want to show that q = p. If

R = 0, then it follows easily that W ′
F = {p}. Thus, by Lemma 2.7, after a suitable

change in coordinates in x2, . . . , xn, we may assume that R = R(xn−k, . . . , xn)
for some k ≥ 0 and that there is no point z ∈ Pk such that HR(z) is trivial. If
q = [y0, . . . , yn], it follows by (3) that

yn−k = · · · = yn = 0.

Since rkHF (q) = 1, it follows the that the minor spanned by the ith and
(n−i)th rows and columns ofHF (p) must have trivial determinant for any i = 0, . . . ,
n − 2 and in particular, since y1 = 0 and HR(y2, . . . , yn) is trivial, it follows that
∂iQ(y0, . . . , yn) = 0. It is easy to show that this implies that if q �= p, then detHR

vanishes identically, a contradiction.
Since by assumption detHF is a nontrivial function, there exist only finitely

many hyperplanes on which detHF vanishes and (1) implies that Hp = Hq for
infinitely many pairs of points p, q ∈ C, a contradiction. Thus, W ′

F is a finite set.
Now let p ∈ WF be a point such that F (p) �= 0. After a suitable change of

coordinates, we may assume that p = [1, 0, . . . , 0] and that

F (x0, . . . , xn) = x3
0 + x2

0 · L+ x0 ·Q+R

for some homogeneous polynomials L,Q,R ∈ C[x1, . . . , xn] of degrees 1, 2, and 3,
respectively. After replacing x0 by x0 + 1

3L, we may assume that L = 0. Since
p ∈ WF , Lemma 3.2 implies that Q = 0. Let q = [z0, . . . , zn] ∈ WF . Then either
q = p or z0 = 0 and [z1, . . . , zn] ∈ WR. Thus, the result follows by induction
on n. �

Remark 3.4. Note that the same result does not hold if we replace the assumption
that F is nondegenerate by the weaker assumption that rkHF (p) ≥ 1 for any p ∈ Pn

(see Lemma 2.7). For example, consider

F (x0, . . . , x4) = x4x
2
3 + x3x1x0 + x2x

2
1.

Then it is easy to check that WF is not finite.



7936 PAOLO CASCINI AND LUCA TASIN

We now proceed by studying the set VF (cf. §2.4) associated to a nondegenerate
cubic form F ∈ C[x0, . . . , xn]. More specifically, if VF contains a curve C on which
F is not identically zero, then we may write F in a normalised form as in Theorem
3.5. The result will be crucial in our proof of Theorem 3.6 below. In order to
obtain a normalisation as in Theorem 3.5, we proceed similarly as in the proof of
Proposition 3.3. Indeed, by Lemma 3.2, to any point p ∈ C such that F (p) �= 0, we
may associate a hyperplane in Pn which contains p. The normalisation of F will
then depend on whether the curve C is contained in this hyperplane or not.

Fix a positive integer n, and let � and k be nonnegative integers such that
n ≥ �+ 2k + 1. We will denote:

I�,k = {�+ 2i+ 1 | i = 0, . . . , k} ∪ {�+ 2k + 2, . . . , n}.
Given a finite subset I ⊆ N, we will also denote by C[xI ] the algebra of polynomials
in xi with i ∈ I.

Theorem 3.5. Let F ∈ C[x0, . . . , xn] be a nondegerate cubic form. Let C ⊆ VF be
a curve such that F (p) �= 0 at the general point of C. Then, there exist nonnegative
integers �, k such that, after a suitable change of coordinates, we may write

F =

�∑
i=0

Gi +

k∑
i=1

(x2
�+2i+1 +Mi) · x�+2i +R�+k+1,

where

(1) Gi ∈ C[xi, xi+1] is a cubic form for any i = 0, . . . , � with

G0 = x3
0 + x0x

2
1;

(2) Mi = δix
2
�+1 for any i = 1, . . . , k with δi ∈ C;

(3) R�+k+1 ∈ C[xI�,k ] is a cubic form;
(4) C ⊆

⋂
i∈I�,k+1

{xi = 0}.
Moreover, if C �⊆ {xl+2k+2 = 0}, we may write

R�+k+1 = Mk+1 · x�+2k+2 + Rl+k+2,

where

(5) R�+k+2 ∈ C[xI�,k+1
] is a cubic form and Mk+1 ∈ C[x�+1, x�+3, . . . , x�+2k+1]

is a quadric.

Proof. We divide the proof into four steps:
Step 1. By Proposition 3.3 there exists p ∈ C such that F (p) �= 0 and

rkHF (p) = 2. Since F (p) �= 0, after a suitable change of coordinates, we may
assume that p = [1, 0, . . . , 0] and

F = x3
0 + x2

0L+ x0Q+R

for some homogeneous polynomials L,Q,R ∈ C[x1, . . . , xn] of degrees 1, 2, and 3,
respectively. After replacing x0 by x0 − 1

3L, we may assume that L = 0. Since
rkHF (p) = 2, by Lemma 3.2, after a suitable change of coordinates in x1, . . . , xn,
we may assume that Q = x2

1. Thus, we have

F = G0 +R1,

where G0 = x3
0 + x0x

2
1 and R1 = R ∈ C[x1, . . . , xn]. We distinguish two cases. If

C is contained in the hyperplane {x1 = 0}, then we set k = � = 0 and continue to
Step 3; otherwise, we set � = 1 and proceed to Step 2.
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Step 2. We are assuming that

F =

�−1∑
i=0

Gi +R�,

where Gi ∈ C[xi, xi+1] and R� ∈ C[x�, . . . , xn] are cubic forms, and C is not con-
tained in the hyperplane {x� = 0}. We claim that after a suitable change of
coordinates in x�, . . . , xn, we may write

R� = G� +R�+1,

where G� ∈ C[x�, x�+1] and R�+1 ∈ C[x�+1, . . . , xn] are cubic forms. Assuming the
claim, if C is contained in the hyperplane {x�+1 = 0}, we set k = 0 and proceed to
Step 3; otherwise, we replace � by �+ 1 and repeat Step 2.

We now prove the claim. By assumption, there exists q ∈ C such that q /∈
{x� = 0}. After a suitable change of coordinates in x�, . . . , xn, we may assume that

q = [z0, . . . , z�−1, 1, 0, . . . , 0]

for some z0, . . . , z�−1 ∈ C. We may write

R� = α�x
3
� + L�x

2
� +Q�x� +R�+1,

for some homogeneous polynomials L�, Q�, R� ∈ C[x�+1, . . . , xn] of degrees 1, 2, and
3, respectively. Since rkHF (q) ≤ 2, after a suitable change of coordinates, we may
write L� = β�x�+1 and Q� = γ�x

2
�+1 for some β�, γ� ∈ C. We may define

G� = α�x
3
� + β�x

2
� · x�+1 + γ�x� · x2

�+1,

and the claim follows.
Step 3. We are assuming that

F =

�∑
i=0

Gi +

k∑
i=1

(x2
�+2i+1 +Mi) · x�+2i +R�+k+1,

where Gi, Mi, and R�+k+1 satisfy (1), (2), and (3) and

C ⊆ {x�+1 = x�+3 = · · · = x�+2k+1 = 0}.
If we also have that

C ⊆ {x�+2k+2 = · · · = xn = 0},
then we are done. In particular, if n < � + 2k + 2, then we are done. Otherwise,
after a suitable change of coordinates in x�+2k+2, . . . , xn, we may assume that there
exists

q = [z0, . . . , zn] ∈ C

such that z�+2k+2 �= 0 and z�+2k+3 = · · · = zn = 0. Since

det(∂i∂jF (p))i,j=0,1 �= 0,

we may assume that the same inequality holds for q. We may write

R�+k+1 = α�+k+1x
3
�+2k+2 + x2

�+2k+2 · L�+k+1 + x�+2k+2 ·Q�+k+1 +R�+k+2,

where α�+k+1 ∈ C, and L�+k+1, Q�+k+1, R�+k+2 ∈ C[xI�,k+1
] are homogeneous

polynomials of degrees 1, 2, and 3, respectively.
We first assume that α�+k+1 �= 0. After replacing x�+2k+2 by

x�+2k+2 −
1

3α�+k+1
L�+k+1,
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we may assume that L�+k+1 = 0. Since q ∈ VF , we get a contradiction by consid-
ering the minor

(∂i∂jF (q))i,j=0,1,�+2k+2.

We now assume that α�+k+1 = 0. Since z�+2k+2 �= 0 and q ∈ VF , it follows that
L�+k+1 = 0 and, after a suitable change of coordinates,

Q�+k+1 ∈ C[x�+1, x�+3, . . . , x�+2k+3].

We may write
Q�+k+1 = βkx

2
�+2k+3 + x�+2k+3 · �k +Mk,

where βk ∈ C and �k,Mk ∈ C[x�+1, x�+3, . . . , x�+2k+1] are homogeneous polyno-
mials of degrees 1 and 2, respectively. If βk �= 0, then after a suitable change of
coordinates we may assume βk = 1 and �k = 0. By considering the minor

(∂i∂jF (q))i,j=0,�+2k+2,�+2k+3,

it follows that C ⊆ {x�+2k+3 = 0}. Thus, we may proceed to Step 4.
If βk = 0, then since q ∈ VF it follows that �k = 0. In case C is contained in

{x�+2k+3 = · · · = xn = 0} we are done, so we may assume that there exists a point

q′ = [z′0, . . . , z
′
n] ∈ C ∩

⋂
i∈J

{xi = 0}

such that z′0 �= 0 and z′�+2k+3 �= 0, where, J = I�,k+1 \ {�+ 2k + 3}. Proceeding as
above, we may write

R�+k+2 = x�+2k+3 ·Q�+k+2 +R�+k+3,

where Q�+k+2 ∈ C[x�+1, x�+3, . . . , x�+2k+1, x�+2k+4] and R�+k+3 ∈ C[xJ ] are ho-
mogeneous polynomials of degrees 2 and 3, respectively. We may write

Q�+k+2 = βk+1x
2
�+2k+4 + x�+2k+4 · �k+1 +Mk+1,

where βk+1 ∈ C and �k+1,Mk+1 ∈ C[x�+1, x�+3, . . . , x�+2k+1] are homogeneous
polynomials of degrees 1 and 2, respectively.

If βk+1 = 0, then �k+1 = 0 because q′ ∈ VF . Denoting by Hi
F the ith column

of HF , it follows that the vectors H�+2
F ,H�+4

F , . . . ,H�+2k+2
F and H�+2k+3

F are lin-
early dependent. Thus, HF does not have maximal rank, which contradicts the
assumptions.

Hence, we have βk+1 �= 0. After a suitable change of coordinates, we may assume
that βk+1 = 1 and �k+1 = 0. By considering the minor

(∂i∂jF (q′))i,j=0,�+2k+3,�+2k+4,

it follows that C ⊆ {x�+2k+4 = 0}. Thus, we first exchange x�+2k+3 and x�+2k+4,
then we exchange x�+2k+2 and x�+2k+4. So we may write

R�+k+1 = x�+2k+2 · (x2
�+2k+3 +Mk+1) +R�+k+2,

where Mk+1 ∈ C[x�+1, x�+3, . . . , x�+2k+1] is a quadric, R�+k+2 ∈ C[xI�,k+1
] is a

cubic form and C ⊆ {x�+2k+3}. We also may write

R�+k+2 = x�+2k+4 ·Mk+2 +R�+k+3,

where Mk+2 ∈ C[x�+1, x�+3, . . . , x�+2k+1], R�+k+3 ∈ C[xI�,k+2
] are homogeneous

polynomials of degrees 2 and 3, respectively. Moreover, we have a point

q′ = [z′0, . . . , z
′
n] ∈ C ∩

⋂
i∈J

{xi = 0}
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such that z′0 �= 0 and z′�+2k+2 �= 0, where J = I�,k+1 \ {� + 2k + 4}. Replacing

x�+2k+4 by x�+2k+4 +
z′
�+2k+4

z′
�+2k+2

x�+2k+2, we get a point

q = [z0, . . . , zn] ∈ C ∩
⋂

i∈Il,k+1

{xi = 0}

such that z0 �= 0, z�+2k+2 �= 0, and we may proceed to Step 4.
Step 4. We are assuming that

F =

�∑
i=0

Gi +

k∑
i=1

(x2
�+2i+1 +Mi) · x�+2i +R�+k+1,

where Gi, Mi, and R�+k+1 satisfy (1), (2), and (3) and

C ⊆ {x�+1 = x�+3 = · · · = x�+2k+1 = 0}.
By Step 3 we also have that

R�+k+1 = x�+2k+2 · (x2
�+2k+3 +Mk+1) +R�+k+2,

where Mk+1 ∈ C[x�+1, x�+3, . . . , x�+2k+1] is homogeneous of degree 2 and C ⊆
{x�+2k+3 = 0}. Moreover, there is a point q = [z0, . . . , zn] such that z0 �= 0,
z�+2k+2 �= 0 and

q ∈ C ∩
⋂

i∈Il,k+1

{xi = 0}.

We show that we may assume

Mk+1 = δk+1x
2
�+1,

where δk ∈ C. Since q ∈ C and z�+2k+2 �= 0, we have det(∂i∂jF (q))i,j=0,1 = 0.
Considering the minors

(∂i∂jF (q))i=0,m,�+2k+3
i=0,h,�+2k+3

for h,m = 1, . . . , n, (h,m) �= (�+2k+3, �+2k+3), we deduce that ∂h∂mF (q) = 0,
and so, since by induction Mi = δix�+1 for i = 1, . . . k, we have

Mk+1 =
k∑

j=0

γj
kx

2
�+2j+1,

where γj
k ∈ C. Since Mj = δjx�+1 for j = 1, . . . k, to conclude it is enough to

replace x�+2j with x�+2j − γj
kx�+2k+2 for j = 1, . . . , k. In this way we get

Mk+1 = δk+1x
2
�+1,

where δk+1 = γ0
k −

∑k
i=1 γ

i
kδi.

After replacing k by k + 1, we may repeat Step 3. �
Theorem 3.6. Let F ∈ C[x0, . . . , xn] be a nondegenerate cubic form. Then the set
of points p ∈ VF such that F (p) �= 0 is a finite union of points, lines, plane conics,
and plane cubics.

Proof. We may assume that there is an irreducible component C ⊆ VF such that
dimC ≥ 1 and F (p) �= 0 at the general point p of C; otherwise, we are done. By
Theorem 3.5 we may write

F =

�∑
i=0

Gi +

k∑
i=1

(x2
�+2i+1 +Mi) · x�+2i +R�+k+1,
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where Gi, Mi, and R�+k+1 are as in Theorem 3.5 and

C ⊆ {x�+1 = x�+3 = · · · = x�+2k+1 = 0}.

By the proof of Theorem 3.5 we may also assume that for any i = 1, . . . , k, there is a
point qi∈C such that qi /∈ {x0 = 0}, qi /∈ {x�+2i = 0}, and qi ∈

⋂n
j=2i+1{x�+j = 0}.

We distinguish two cases: C ⊆ {x1 = 0} and C �⊆ {x1 = 0}.
If C ⊆ {x1 = 0}, then � = 0. Let z = [z0, . . . , zn] ∈ C be a general point in C.
If C ⊆ {x2k+2 = 0}, then considering

(∂i∂jF (z))j=0,1,2k+1
i=0,1,2k+1 ,

we immediately get a contradiction because det(∂i∂jF (z))i,j=0,1 �= 0 and z2k �= 0.
So let C �⊆ {x2k+2 = 0}. Then we may write

R�+k+1 = Mk+1 · x�+2k+2 +Rl+k+2

as in (5) of Theorem 3.5. Assume that k > 2. Then we have

det(∂i∂jF )j=0,3,2k+1
i=0,1,2k+1

= 6x0 · (2γ1,3x2kx2k+2 + γ1,3γ2k+1,2k+1x
2
2k+2 − γ1,2k+1γ3,2k+1x

2
2k+2 +Q),

where Q ∈ C[x1, . . . , xn] is a quadratic form such that C ⊆ {Q = 0} (because
C ⊆

⋂
i∈I�,k+1

{xi = 0}) and where γi,j is the coefficient of x2k+2 in ∂i∂jF . Note

that γ1,3 �= 0 (because ∂3∂3F (z) �= 0, being this last inequality true for q2). Since
z0 �= 0 and z�+2k �= 0, we conclude that

C ⊂ {2γ1,3x2k + (γ1,3γ2k+1,2k+1 − γ1,2k+1γ3,2k+1)x2k+2 = 0},

which contradicts the fact that qk ∈ C. Hence we conclude that k ≤ 2. Now it is
easy to see that C is a line or a plane conic.

Assume now that C �⊆ {x1 = 0}. Then � ≥ 1. Note that for j = 3, . . . , n, we
have ∂1∂jF = 0, hence for a general point z = [z0, . . . , zn] ∈ C, for h = 2, . . . , n,
and for m = 3, . . . , n, we may consider

(∂i∂jF (z))j=0,1,m
i=0,1,h

to conclude that ∂h∂mF (z) = 0 (because det(∂i∂jF (z))i,j=0,1 �= 0). This implies
easily that we may assume k = 0. By Step 2 of the proof of Theorem 3.5 for any
i = 1, . . . , �, there is a point pi ∈ C such that pi /∈ {x0 = 0}, pi /∈ {xi = 0}, and
pi ∈

⋂n
j=i+1{xj = 0}.

Assume first that C ⊆ {x�+2 = 0}. So we may write

F =
�∑

i=0

Gi +R�+1,

where Gi ∈ C[xi, xi+1] and R�+1 ∈ C[x�+1, . . . , xn] are cubic forms and C ⊆⋂n
i=�+1{xi = 0}.
Suppose that � > 2. Since ∂3∂3F (p2) = 0, ∂2∂3F (p2) = 0, and ∂3∂3F (p3) = 0,

we see that the monomials x2x
2
3, x

2
2x3, and x3

3 do not appear in F . The same holds
for x3x

2
4 and x2

3x4, which gives a contradiction. Hence � ≤ 2, and it is easy to
conclude.
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If C �⊆ {x�+2 = 0}, then we may write

F =

�∑
i=0

Gi + x2
�+1 · x�+2 +R�+1,

where Gi ∈ C[xi, xi+1] and R�+1 ∈ C[xI�,1 ].

Suppose � ≥ 2. Since ∂�+1∂�+1F (p�) = 0, we see that x2
�+1x� does not appear in

F , and this implies, considering ∂�+1∂�+1F (z), that also x2
�+1x�+2 does not appear

in F , which is a contradiction. Thus � < 2, and we are done. �

Remark 3.7. Note that in general VF might contain surfaces, e.g., if

F (x0, . . . , xn) = x3
0 + x0x

2
1 + x1 ·

n∑
i=2

x2
i ,

then dimVF = n− 2.

Our goal is now to improve Theorems 3.5 and 3.6 and characterise those cubic
forms F such that VF contains a curve C such that C � {F = 0}. To this end we
restrict to the case of cubic forms with nonzero discriminant.

Corollary 3.8. Let F ∈ C[x0, . . . , xn] be a nondegenerate cubic form such that

F = ax3
0 + bx2

0x1 +G(x1, . . . , xn).

Let C ⊆ VF be positive-dimensional irreducible variety such that p = [1, 0, . . . , 0] ∈
C, and assume that at least one of the following properties holds:

(1) C ⊆ {x1 = 0};
(2) C ⊆ {F = 0}.

Then ΔF = 0.

Proof. We first assume that C ⊆ {x1 = 0}. By the proof of Theorem 3.6, we may
write

F = x3
0 + x0x

2
1 + (x2

3 + δ1x
2
1)x2 +R(x1, x3, x4, . . . , xn)

for some δi ∈ C and R ∈ C[x1, x3, x4, . . . , xn]3. It follows that the hypersurface
{F = 0} ⊆ Pn is singular at the point [0, 0, 1, 0, . . . , 0] and in particular ΔF = 0, as
claimed.

We now suppose that C ⊆ {F = 0} and C �⊆ {x1 = 0}. Since [1, 0, . . . , 0] ∈ C,
we may write

F = bx2
0x1 + c1x

3
1 + Lx2

1 +Qx1 + R,

where b, c1 ∈ C and L,Q,R ∈ C[x2, . . . , xn] are homogeneous polynomials of degrees
1, 2, and 3, respectively. Since F is nondegenerate, we have that b �= 0.

After a change of coordinates in (x1, x2, . . . , xn), we may assume that there exists
a point q = [q0, q1, 0, . . . , 0] ∈ C such that q0, q1 �= 0 and that L = c2x2 for some
c2 ∈ C. Note that since C ⊆ {F = 0}, it follows that C is not a line. Furthermore,
since q ∈ VF , we may assume that Q = c3x

2
2 for some c3 ∈ C, and we may write

F = bx2
0x1 + c1x

3
1 + c2x

2
1x2 + c3x1x

2
2 + c4x

3
2 +R1,

where c4 ∈ C and R1 ∈ C[x2, . . . , xn]3 is such that the monomial x3
2 does not

appear in R1. It is easy to see that ∂i∂jF (z) = 0 for i = 2, . . . , n, j = 2, . . . , n,
with (i, j) �= (2, 2) and z ∈ C. If C ⊆ {x2 = 0}, then, after a change of coordinates
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in (x3, . . . , xn), we may assume that there is a point r = [r0, r1, 0, r3, 0, . . . , 0] ∈ C
such that r3 �= 0. It follows that

R1 = αx2
2x3 +R2(x2, x4, . . . , xn)

for some α ∈ C and R2 ∈ C[x4, . . . , xn]3. In particular, [0, 0, 0, 1, 0 . . . , 0] is a
singular point of {F = 0} ⊆ Pn. Thus, ΔF = 0, as claimed.

Thus, we may assume that C �⊆ {x2 = 0} and that there is a point s =
[s0, s1, s2, 0, . . . , 0] such that s2 �= 0. Since ∂i∂jF (s) = 0 for i = 2, . . . , n, j =
2, . . . , n, with (i, j) �= (2, 2), it follows that R1 does not depend on x2. Thus,
∂i∂jF (z) = 0 for any i, j ≥ 3 and z ∈ C. Lemma 2.7 implies that C is contained
in the plane Π = {x3 = · · · = xn = 0}. Let F1 be the restriction of F to Π. Since
C ⊆ {F = 0}, it follows that if [x0, x1, x2, 0, . . . , 0] ∈ C, then F1(x0, x1, x2) = 0 and
HF1

(x0, x1, x2) = 0. Thus C is a line, which gives a contradiction. �

Corollary 3.9. Let

F (x0, . . . , xn) = ax3
0 + x2

0(bx1 + cx2) +G(x1, . . . , xn)

be a nondegenerate cubic form with integral coefficients such that b �= 0. Assume
that the line C = {x2 = x3 = · · · = xn = 0} is contained inside VF . Then there
exists T = (tij)i,j=0,...,n ∈ SL(n+ 1,Q) such that

T · F = ax3
0 + bx2

0x1 + c1x
3
1 +R(x2, . . . , xn),

where c1 ∈ Z and R ∈ Q[x2, . . . , xn] is a cubic form. Moreover, we may choose T
such that t00 = t11 = 1, t0i = ti0 = 0 for i = 1, . . . , n, tij = 0 for i = 2, . . . , n, and
j = 1.

Proof. After replacing x1 by x1 − cx2/b, we may write

F = ax3
0 + bx2

0x1 + c1x
3
1 + Lx2

1 +Qx1 +R,

where c1 ∈ Z and L,Q,R ∈ Q[x2, . . . , xn] are homogeneous polynomials of degrees
1, 2, and 3, respectively. After a change of coordinates in (x2, . . . , xn), we may also
assume that L = c2x2 for some c2 ∈ Q. Let q = [0, 1, 0 . . . , 0] ∈ C. We distinguish
two cases: c1 �= 0 and c1 = 0.

If c1 �= 0 then, since b �= 0 and rkHF (q) ≤ 2, we see that Q = c3x
2
2 for some

c3 ∈ Q and

|(∂i∂jF (q))i=1,2| = 0.

It follows that |(∂i∂jF (z))i=1,2| = 0 for any z ∈ C. Since

|(∂i∂jF (z))i,j=0,1,2| = 0,

we have that c2 = c3 = 0. Thus, L = Q = 0, and the claim follows.
If c1 = 0, then since b �= 0 and rkHF (q) ≤ 2, it follows that c2 = 0. Since

rkHF (z) ≤ 2 for any z ∈ C, we have Q = 0 and, again, the claim follows. Note
that in this case, we have ΔF = 0. �

Corollary 3.10. Let

F (x0, . . . , xn) = ax3
0 + x2

0(bx1 + cx3) +G(x1, . . . , xn)

be a nondegenerate cubic form with integral coefficients with b, c ∈ Z and
G ∈ Z[x1, . . . , xn] such that b �= 0 and ΔF �= 0. Let C ⊆ VF be a positive-
dimensional irreducible variety such that C �⊆ {F = 0} and p = [1, 0, . . . , 0] ∈ C.
Assume that C contains infinitely many rational points. Assume moreover that



ON THE CHERN NUMBERS OF A SMOOTH THREEFOLD 7943

C ⊆ Π = {x3 = · · · = xn = 0} and C is not a line. Then there exists T =
(tij)i,j=0,...,n ∈ SL(n+ 1,Q), R ∈ Z[x1, x2]3, and S ∈ Q[x3, . . . , xn]3 such that:

(1) t00 = 1, ti0 = t0i = 0 for i = 1, . . . , n, tij = 0 for i = 3, . . . , n, and j = 1, 2,
(tij)i,j=0,1,2 ∈ SL(3,Z); and

(2) T · F = ax3
0 + bx2

0x1 +R(x1, x2) + S(x3, . . . , xn).

Proof. We may assume that there is a point q = [z0, 1, 0, . . . , 0] ∈ C such that
z0 �= 0. Indeed, since C is not a line, there existsm ∈ Z such that {mx1+x2 = 0}∩Π
intersect C in a point [z0, 1,−m, 0, . . . , 0] with z0 �= 0. After replacing x2 with
x2 +mx1, we may assume that m = 0.

In addition, after replacing x1 with x1−c/bx3, we may assume that c = 0. Thus,
we may write

F = ax3
0 + bx2

0x1 + c1x
3
1 + c2x

2
1x2 + c3x1x

2
2 + c4x

3
2 + x2

1L+ x1Q+ S,

where ci ∈ Z and L ∈ Q[x3, . . . , xn], and Q,S ∈ Q[x2, . . . , xn] are homogeneous
polynomials of degrees 1, 2, and 3, respectively, such that the coefficient of x2

2 in Q
and the coefficient of x3

2 in S are zero.
If c2 �= 0, then, after replacing x2 with x2 − L/c2, we may assume L = 0.

Since b �= 0 and q ∈ VF , it follows that Q = 0. Now considering a general point
z ∈ C ⊆ {x3 = · · · = xn = 0}, we see that ∂i∂jS(1, 0, . . . , 0) = 0 for all i, j ≥ 2.
As in the proof of Lemma 2.7, it follows that S does not depend on x2. Thus, (2)
holds.

Assume now that c2 = 0 and L = 0. Then the Hessian of the quadric c3x
2
2 +Q

has rank not greater than 1, which means that

c3x
2
2 +Q = c3(x2 + L1)

2

for some L1 ∈ Q[x3, . . . , xn] of degree 1. Hence, replacing x2 with x2 −L1, we may
assume that Q = 0. As in the previous case, it follows that S does depend on x2.
Thus, (2) holds.

Finally, assume that c2 = 0 and L �= 0. Acting on (x3, . . . , xn) with SL(n−2,Q),
we may write L = αx3, where α �= 0. In particular, ∂3∂1F (q) �= 0. It follows that
the first two columns H0

F (q) and H1
F (q) of HF (q) are linearly independent, which

implies that c3 = 0. Considering now a general point in C ⊆ {x3 = · · · = xn = 0},
we see that c4 = 0, and that the only monomial which appears in x1Q + S with
nonzero coefficient and which contains x2 is x2x

2
3. Since [0, 0, 1, 0, . . . , 0] is a singular

point of the hypersurface {F = 0} ⊆ Pn, it follows that ΔF = 0, a contradiction. �

3.2. Binary and ternary cubic forms. We now study the possible reduced forms
of a nondegenerate binary or ternary cubic form. We show that if F is a binary cubic
form, it admits only finitely many nonequivalent reduced forms (cf. Proposition
3.13). On the other hand, if F is a ternary cubic form, then the same result holds
with the extra assumption that the discriminant ΔF is nonzero (cf. Proposition
3.16). Example 3.17 shows that this assumption is necessary.

We first recall the following known result.

Proposition 3.11. Let Δ �= 0 be an integer. Then there exist

F1, . . . , Fk ∈ Z[x0, x1, x2]3 (resp. Z[x0, x1]3)

such that if F ∈ Z[x0, x1, x2]3 (resp. Z[x0, x1]3) is such that ΔF = Δ, then there
exists i = 1, . . . , k and T ∈ SL(3,Z) (resp. SL(2,Z)) such that F = T · Fi.
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Proof. See [OVdV95, Proposition 7]. �

Lemma 3.12. Let

F (x, y) = ax3 + bx2y + cy3 ∈ Z[x, y]

be a binary cubic form with integral coefficients and such that c �= 0. Then there
are finitely many pairs

(ai, bi) ∈ Z2, i = 1, . . . , k,

such that if (a′, b′, cy3) is a reduced triple associated to F (cf. Definition 2.9), then
a′ = ai and b′ = bi for some i ∈ {1, . . . , k}.

Proof. Assume that T = (ti,j)ij=0,1 ∈ SL(2,Z) is such that T ·F is in reduced form
(a′, b′, cy3) for some a′, b′ ∈ Z.

Note that F (t01, t11) = c, and, since c �= 0, the equation F (x, y) = c defines a
smooth affine plane curve of genus 1. Thus, by Siegel’s Theorem 2.8, it only admits
finitely many solutions. Thus, we may assume that t01 and t11 are fixed. Since
detT = 1 and since the coefficient of xy2 is zero, we get the linear system in t00
and t10: {

1 = t11t00 − t01t10,

0 = (3at201 + 2bt01t11)t00 + (bt201 + 3ct211)t10.

Note that the determinant of the system is equal to 3F (t01, t11) = 3c �= 0. Thus,
the system admits exactly one solution, and the claim follows. �

Proposition 3.13. Let

F (x, y) = ax3 + bx2y + cy3 ∈ Z[x, y]

be a binary integral cubic form with c �= 0. Then there are finitely many triples

(ai, bi, ci) ∈ Z3, i = 1, . . . , k,

such that ci �= 0, and if (a′, b′, c′y3) is a reduced triple associated to F (cf. Definition
2.9), then a′ = ai, b

′ = bi, and c′ = ci for some i ∈ {1, . . . , k}.

Proof. By Lemma 3.12, it is enough to show that there are only finitely many
c1, . . . , ck ∈ Z such that if T ∈ SL(3,Z) is such that T · F is in reduced form
(a′, b′, c′y3) with c′ �= 0, then c′ = ci for some i ∈ {1, . . . , k}.

If the discriminant ΔF = 4b3c + 27a2c2 of F is not zero, then c′|ΔF , and the
claim follows.

Thus, we may assume that ΔF = 0. We may also assume that a, b, and c do
not have a common factor; otherwise, we just consider the cubic form obtained by
dividing by the common factor. Suppose that T = (tij)i,j=0,1. Then,

a = a′t300 + b′t200t10 + c′t310,(2)

b = 3a′t200t01 + b′t200t11 + 2b′t00t01t10 + 3c′t210t11,(3)

0 = 3a′t00t
2
01 + b′t201t10 + 2b′t00t01t11 + 3c′t10t

2
11,(4)

c = a′t301 + b′t201t11 + c′t311,(5)

and GCD(a′, b′, c′) = 1.
Let p be a prime factor of c′ such that p �= 2, 3, and let α be a positive integer

such that pα|c′. Then, since ΔF = 0, it follows that p�α/3� divides b′. By (4) and
since gcd(t00, t01) = 1, we have that either p�α/3� divides t00 or p�α/6� divides t01.
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In the first case, (2) implies that pα divides a, and in the second case (5) implies that
p�α/2� divides c . Since a, c �= 0 are fixed, it follows that pα is bounded. A similar
argument holds for the powers of 2 and 3. Hence c′ is bounded, as claimed. �

We now consider ternary cubic forms.

Proposition 3.14. Let R be a ring which is finitely generated over Z, and let
F ∈ R[x, y, z] be a cubic form with nonzero discriminant ΔF . Let G(y, z) = dy3+z3

for some nonzero d ∈ R, and assume that F is in reduced form (a, (b, c), G) for some
pair (a, (b, c)) ∈ R×R2. Then there are finitely many pairs

(ai, (bi, ci)) ∈ R× R2, i = 1, . . . , k,

such that if (a′, (b′, c′), G) is a reduced triple associated to F (cf. Definition 2.9),
then a′ = ai, b

′ = bi, and c′ = ci for some i ∈ {1, . . . , k}.

Proof. Assume that T ∈ SL(3, R) is such that T ·F is in reduced form (a′, (b′, c′), G).
The invariants SF and TF (cf. subsection 2.3 and [Stu93, 4.4.7 and 4.5.3]) have
the form

SF = dbc and TF = 27a2d2 + 4b3d+ 4c3d2.

We first assume that SF �= 0, and we consider the curve C ⊆ P3 given by the
ideal

I = (SFx
2
3 − dx1x2, TFx

3
3 − 27d2x2

0x3 − 4dx3
1 − 4d2x3

2).

We claim that the points [a′, b′, c′, 1] ∈ C, with a′, b′, c′ ∈ R are in finite number,
and hence the claim follows.

Note that the first equation defines a cone over a conic with vertex the point
q = [1, 0, 0, 0] ∈ C. If we blow up the point q, then it is easy to check the strict

transform C̃ of the curve C is a connected smooth curve of genus 3. Thus, the
claim follows by Siegel’s Theorem 2.8.

We now assume that SF = 0. Then, b′ = 0 or c′ = 0. Assume that c′ = 0. Then
the pair (a′, b′) corresponds to an R-integral point in the affine plane curve, defined
by the equation

27x2
0d

2 + 4x3
1d− TF = 0.

Since, by assumption ΔF �= 0, we have that TF �= 0. Thus, Siegel’s Theorem 2.8
implies the claim. The case b′ = 0 is similar. �
Remark 3.15. Note that if F ∈ R[x, y, z] is a cubic form such that ΔF = 0 and
SF = 0, and C is the curve defined in the proof of Proposition 3.14, then C is a
rational curve.

As a consequence of the previous result we obtain the following.

Proposition 3.16. Let F ∈ Z[x, y, z] be a cubic form with nonzero discriminant
ΔF . Then there are finitely many triples

(ai, Bi, Gi) ∈ Z× Z2 × Z[y, z]3, i = 1, . . . , k,

such that any reduced triple associated to F is equivalent to (ai, Bi, Gi) over Z, for
some i ∈ {1, . . . , k} (cf. Definition 2.9).

Proof. Let T ∈ SL(3, Z) such that T ·F is in reduced form (a,B,G) for some a ∈ Z,
B ∈ Z2, and G ∈ Z[y, z] a cubic form. Lemma 2.6 implies that ΔG divides ΔF .
Thus, ΔG �= 0, we may assume that its value is fixed, and, by Proposition 3.11, we
may assume that G is also fixed, up to the action of SL(2,Z).
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Let d =
√

ΔF

27 . After possibly replacing the ring of integers Z by a finitely

generated ring R over Z, we may assume, up to a SL(2, R)-action, that

G(y, z) = dy3 + z3.

Thus, the claim follows from Proposition 3.14. �

Note that Proposition 3.14 does not hold if the discriminant of F is zero, as the
following example shows.

Example 3.17. Let

F = ax3 + bx2y + x2z − 3y2z,

where a, b ∈ Z. Note that ΔF = 0, since [0, 0, 1] is a singular point for {F = 0}.
Consider Pell’s equation

s2 − 3t2 = 1.(6)

For any solution (α, β) ∈ Z2 of (6), we define the matrix

M =

⎛
⎝ α 3β 0

β α 0
m31 m32 1

⎞
⎠ ,

where m31 = β(3bβ2+9aαβ+2bα2) and m32 = 3β2(3aβ+bα). Then M ∈ SL(3,Z)
and

M · F (X,Y,X) = AX3 +BX2Y +X2Z − 3Y 2Z,

where

A = 3bα2β + 3bβ3 + aα3 + 9aαβ2 and B = 9aβ3 + 9bαβ2 + 9aα2β + bα3.

Since (6) has infinitely many integral solutions, it follows that there are infinitely
many ways to write F in reduced form.

In the example above, {F = 0} defines an irreducible cubic with a node. Note
that such cubics can be realised as the cubic form associated to a smooth threefold
(the existence of such a threefold was queried in [OVdV95, Proposition 21]):

Example 3.18. Let W = P3, let h be the hyperplane class, and let C be a line.
Note that degNC/W = 2. Let π : X → W be the blowup of W along C, and define

H = π∗h. Let {L1, L2} be the basis of H2(X,Z) given by

L1 = H and L2 = H − E,

where E is the exceptional divisor of π. The intersection cubic form on H2(X,Z) is

G(y, z) = (yL1 + zL2)
3 = y3 + 3y2z.

Let C ′ ⊆ P3 be a line which meets C transversally in one point, and let D be
the strict transform of C ′ in X. Then D ≡ H2 −H ·E and blowing up X along D,
we get a threefold Y with associated cubic form

F (x, y, z) = x3 − 3(y + z)x2 + y3 + 3y2z.

Note that {F = 0} ⊆ P2 defines an irreducible cubic with a node and in particular
ΔF = 0.
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3.3. General cubic forms. We now combine the previous results to give a proof
of Theorem 3.1. We begin with the following.

Lemma 3.19. Let F ∈ Z[x0, . . . , xn] be a nondegenerate cubic form, and let p ∈ VF

such that F (p) �= 0. Then there are finitely many triples

(ai, Bi, Gi) ∈ Z× Zn × Z[x1, . . . , xn]3, i = 1, . . . , k,

such that, for all T ∈ SL(n+1,Z) such that T ·p = [1, 0, . . . , 0] and T ·F is in reduced
form, we have that T ·F is equivalent to (ai, Bi, Gi) over Z for some i ∈ {1, . . . , k}
(cf. Definition 2.9).

Proof. We may assume that p = [1, 0, . . . , 0] and that F = (a, b,G) is in reduced
form, for some a ∈ Z, B ∈ Zn and G ∈ Z[x1, . . . , xn]3. We consider all the matrices
T ∈ SL(n+ 1,Z), such that T · p = p, and T · F = (aT , bT , GT ) is in reduced form,
for some aT ∈ Z, BT ∈ Zn and GT ∈ Z[x1, . . . , xn].

If we write T = (tij)i,j=0,...,n with tij ∈ Z, then, since T · p = p, we have ti0 = 0
for 1 ≤ i ≤ n. Thus, t00 = ±1 and in particular aT = ±a.

By considering the action of SL(n,Z) over (x1, . . . , xn), we may assume that
B = (b1, 0, . . . , 0) and that, for each T , BT = (bT1 , 0, . . . , 0), with b1, b

T
1 ∈ Z. Note

that, by the assumption on F , we have that a and b1 cannot be both zero.
By looking at the coefficients of x2

0xi and x0x
2
i , we obtain the equations

(7)
3at0i + b1t1i = 0 for i = 2, . . . , n and

3at20i + 2b1t0it1i = 0 for i = 1, . . . , n.

We now consider three cases.
If b1 = 0, then a �= 0 and (7) implies that t0i = 0 for i = 1, . . . , n. In particular,

T · F is equivalent to F .
If a = 0, then b1 �= 0 and (7) implies that t1i = 0 for i = 2, . . . , n. In particular,

t11 = ±1. By looking at the coefficients of x0x1xi for i = 1, . . . , n, we get the
equations

b1t0it11 = 0.

Thus t0i = 0 for i = 1, . . . , n and, as in the previous case, we obtain that T · F is
equivalent to F .

Finally, if a, b �= 0, then (7) implies that t0i = t1i = 0 for i = 2, . . . , n. In
particular, t11 = ±1. By (7), it follows that t01 can only acquire finitely many
values. Thus, under these assumptions on T , it follows that there are only finitely
many nonequivalent reduced forms T · F over Z, as claimed. �

In the next lemma we show that under the action of the transformations given
by Corollaries 3.9 and 3.10, we may control the last part of a reduced form.

Lemma 3.20. Let s ∈ {1, 2}, and let F, F1 ∈ Q[x0, . . . , xn] be nondegenerate cubic
forms such that

F = ax3
0 + bx2

0x1 +R(x1, xs) +H(xs+1, . . . , xn)

and

F1 = a1x
3
0 + b1x

2
0x1 +R1(x1, xs) +H1(xs+1, . . . , xn),

where b, b1 �= 0 and R,R1, H,H1 are cubic forms.
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Assume that there exists T = (thk)h,k=0,...,n ∈ SL(n+1,Q) such that T ·F = F1,
thk = 0 for h = s+ 1, . . . , n and k = 0, . . . , s and det(thk)h,k=0,...,s = 1, i.e.,

T =

(
S ∗
0 ∗

)
with detS = 1. Then there exists P ∈ SL(n− s,Q) such that P ·H = H1.

Proof. We prove the case s = 2; the case s = 1 is similar and easier.
We will show that thk = 0 for h = 0, 1, 2 and k = 3, . . . , n, which implies the

claim.
Let S = (thk)h,k=0,1,2, and define T = (thk)h,k=0,...,n ∈ SL(n+ 1,Q) as

T =

(
S−1 0
0 In−2

)
,

where In−2 ∈ SL(n− 2,Q) is the identity matrix.
If M = (mij)i,j=0,...,n = T · T and F1 = M · F , then F1 is in reduced form with

associated triple (a, (b, 0), R+H1). In addition

(mhk)h,k=0,1,2 = I3 and

(mhk)
k=0,1,2
h=3,...,n = 0.

We want to show that mhk = 0 for h = 0, 1, 2 and k = 3, . . . , n. Since S is
invertible, it follows that thk = 0 for h = 0, 1, 2 and k = 3, . . . , n, as claimed.

We assume first that a �= 0. Recall that, by assumption, we have b �= 0. For any
k = 3, . . . , n, looking at the coefficients of the monomials x0x

2
k and x2

0xk in F1, we
obtain the equations

3am0k + bm1k = 0 and 3am2
0k + 2bm0km1k = 0,

which imply that m0k = m1k = 0 for any k = 3, . . . , n.
We may write

R(x1, x2) = c1x
3
1 + c2x

2
1x2 + c3x1x

2
2 + c4x

3
2

for some c1, . . . , c4 ∈ Q. Looking at the coefficients of the monomials x2
1xk, x1x

2
k,

and x2
2xk in F1 we see that

c2m2k = 0, c3m
2
2k = 0, and c4m2k = 0.

Since F is a nondegenerate cubic form, it follows that m2k = 0 for k = 3, . . . , n.
Thus, the claim follows.

Assume now that a = 0. Then, looking at the coefficients of x0x
2
k and x0x1xk,

we obtain m0k = m1k = 0 for k = 3, . . . , n. Thus, as in the previous case, the claim
follows. �

Proposition 3.21. Let F ∈ Z[x0, . . . , xn] be a nondegenerate cubic form in reduced
form,

F (x0, . . . , xn) = ax3
0 + bx2

0x1 +G(x1, . . . , xn),

where G ∈ Z[x1, . . . , xn]3. Assume that ΔF �= 0. Let C ⊆ VF be an irreducible
component of positive dimension such that

p = [1, 0, . . . , 0] ∈ C, C �⊆ {F = 0}, and C �⊆ {x1 = 0}.
Then there are finitely many triples

(ai, bi, Gi) ∈ Z× Z× Z[x1, . . . , xn]3, i = 1, . . . , k,
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such that for all T ∈ SL(n + 1,Z) such that [1, 0, . . . , 0] ∈ T (C) and T · F is in
reduced form, we have that T · F is equivalent to (ai, (bi, 0), Gi) over Z for some
i ∈ {1, . . . , k} (cf. Definition 2.9).

Proof. Suppose not. Then there exist an infinite sequence Ti ∈ SL(n + 1,Z) with
i = 1, 2, . . . such that [1, 0, . . . , 0] ∈ Ti(C), Ti ·F is in reduced form, and Ti ·F and
Tj · F are not equivalent over Z for any i �= j.

Lemma 3.19 implies that the set {T−1
i ([1, 0, . . . , 0])} is infinite. In particular, C

admits infinitely many rational points. By Proposition 3.3 we have that b �= 0, as
otherwise p ∈ WF .

We first assume that C is a line. After acting on (x1, . . . , xn) with SL(n,Z), we
may assume that C = {x2 = x3 = x4 = · · · = xn = 0}, and we may write

F = ax3
0 + (bx1 + cx2)x

2
0 +G(x1, . . . , xn),

where b, c ∈ Z, b �= 0, and G ∈ Z[x1, . . . , xn] is a cubic form. Since reduced forms
are considered modulo the action of SL(n,Z) on (x1, . . . , xn), we may assume that
for any i = 1, 2, . . . , the cubic form Fi = Ti · F satisfies the same property, that is

Fi = aix
3
0 + (bix1 + cix2)x

2
0 +Gi(x1, . . . , xn),

where bi, ci ∈ Z are such that bi �= 0, Gi ∈ Z[x1, . . . , xn]3, and Ti(C) = {x2 = x3 =
x4 = · · · = xn = 0}.

Fix i, and let Ti = (thk)h,k=0,...,n. Since {x2 = x3 = x4 = · · · = xn = 0} is fixed
by Ti, we have thk = 0 for h = 2, . . . , n and k = 0, 1. Since detTi = 1, we may
assume det(th,k)h,k=0,1 = 1.

We may find M,Mi ∈ SL(n,Q) as in Corollary 3.9, such that

F̂ = M · F = ax3
0 + bx2

0x1 + dx3
1 +H(x2, . . . , xn)

and

F̂i = Mi · Fi = aix
3
0 + bix

2
0x1 + dix

3
1 +Hi(x2, . . . , xn),

where d, di ∈ Z and H,Hi ∈ Q[x2, . . . , xn] are cubic forms.

In addition, if T̂i = (t̂hk)h,k=0,...,n = Mi ·Ti ·M−1, we have that T̂i · F̂ = F̂i. Let

Ui := (t̂hk)h,k=0,1.

Note that, by Corollary 3.9, it follows that t̂hk = 0 for h = 2, . . . , n and k = 0, 1
and Ui ∈ SL(2,Z). Let

F ′ = F̂|C = ax3
0 + bx2

0x1 + dx3
1 and F ′

i = F̂i|C = aix
3
0 + bix

2
0x1 + dix

3
1.

Then F ′, F ′
i ∈ Z[x0, x1] are binary cubic forms such that Ui ·F ′ = F ′

i . In particular

ΔF ′ = ΔF ′
i
�= 0, as otherwise the hypersurface {F̂ = 0} ⊆ Pn would be singular

and ΔF = ΔF̂ = 0, which contradicts the assumption on F . Thus, by Proposition
3.13 we may assume that

ai = a, bi = b, and di = d for i = 1, 2, . . . .

On the other hand, by Lemma 3.20, for each i = 1, 2, . . . there exists Pi ∈
SL(n − 1,Q) such that Hi = Pi · H. Since the hyperplane {x0 = 0} is invari-
ant with respect to Mi, there exist M,M ′

i ∈ SL(m,Q) such that if

H ′(x1, . . . , xn) = dx3
1 +H(x2, . . . , xn)

and
H ′

i(x1, . . . , xn) = dx3
1 +Hi(x2, . . . , xn),
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then M ′ ·G = H ′ and M ′
i ·G = H ′

i for i = 1, 2, . . . . Thus, there exist P ′
i ∈ SL(n,Q)

such that Gi = P ′
i ·G for all i = 1, 2, . . . . By Jordan’s Theorem 2.10, it follows that,

after possibly taking a subsequence, the reduced forms F1, F2, . . . are equivalent
over Z. Thus, we obtain a contradiction.

Assume now that C is not a line. Theorem 3.6 implies that C spans a plane Π.
After acting on (x1, . . . , xn) with SL(n,Z), we may assume Π = {x3 = x4 = · · · =
xn = 0}, and we may write

F = ax3
0 + x2

0(bx1 + cx3) +G(x1, . . . , xn),

where b, c ∈ Z, b �= 0, and G ∈ Z[x1, . . . , xn] is a cubic form.
Since reduced forms are considered modulo the action of SL(n,Z) on (x1, . . . , xn),

we may assume that this holds for any i = 1, 2, . . . , the cubic form Fi = Ti · F
satisfies the same property, that is

Fi = aix
3
0 + x2

0(bix1 + cix3) +Gi(x1, . . . , xn),

where bi, ci ∈ Z are such that bi �= 0, Gi ∈ Z[x1, . . . , xn]3, and Ti(C) ⊆ Π = {x3 =
x4 = · · · = xn = 0}.

Fix i = 1, 2, . . . , and let Ti = (thk)h,k=0,...,n. Since Π = {x3 = · · · = xn = 0} is
fixed by Ti, we have thk = 0 for h = 3, . . . , n and k = 0, 1, 2. Since detTi = 1, we
may assume det(th,k)h,k=0,1,2 = 1.

By Corollary 3.10, we may find M,Mi ∈ SL(n,Q) such that

F̂ = M · F = ax3
0 + bx2

0x1 + R(x1, x2) +H(x3, . . . , xn)

and
F̂i = Mi · Fi = aix

3
0 + bix

2
0x1 +Ri(x1, x2) +Hi(x3, . . . , xn),

where R,Ri ∈ Z[x1, x2] and H,Hi ∈ Q[x3, . . . , xn] are cubic forms. In addition, if

T̂i = (t̂hk)h,k=0,...,n = Mi · Ti ·M−1, we have that T̂i · F̂ = F̂i. Let

Ui := (t̂hk)h,k=0,1,2.

Note that, by Corollary 3.10, it follows that t̂hk = 0 for h = 3, . . . , n, and k = 0, 1, 2
and Ui ∈ SL(3,Z). Let

F ′ = F̂|Π = ax3
0 + bx2

0x1 +R(x1, x2) and Fi
′ = F̂i|Π = aix

3
0 + bix

2
0x1 +Ri(x1, x2).

Then F ′, Fi ∈ Z[x0, x1, x2] are ternary cubic forms such that Ui · F ′ = F ′
i . In

particular ΔF ′ = ΔF ′
i
�= 0, as otherwise the hypersurface {F̂ = 0} ⊆ Pn would

be singular and ΔF = ΔF̂ = 0, which contradicts the assumption on F . Thus, by
Proposition 3.16 we may assume that ai, bi, and Ri do not depend on i = 1, 2, . . . .

As in the previous case we obtain that, after possibly taking a subsequence,
F1, F2, . . . are equivalent over Z, a contradiction. �

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. We may assume that F is in reduced form,

F = ax3
0 + bx2

0x1 +G,

where a, b ∈ Z and G ∈ Z[x1, . . . , xn]3.
We assume that there exist Ti ∈ SL(n + 1,Z), with i = 1, 2, . . . such that

Fi = Ti · F is in reduced form (ai, Bi, Gi) for some ai ∈ Z, Bi ∈ Zn, and Gi ∈
Z[x1, . . . , xn]3 and Fi and Fj are not equivalent over Z for any i �= j. Acting on
(x1, . . . , xn) with SL(n,Z), we may assume that Bi = (bi, 0, . . . , 0), for some bi ∈ Z.
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Let p = [1, 0, . . . , 0], and let C1, . . . , Ck ⊆ VF be all the irreducible components.
Then, after possibly replacing p by Tj(p) for some j, we may assume that p, Ti(p) ∈
C = C1 for all i (possibly passing to an infinite subsequence). Lemma 3.19 implies
that C is of positive dimension.

Since by assumption ΔF �= 0, Corollary 3.8 implies that

C � {x1 = 0} and C � {F = 0}.

Thus, Proposition 3.21 implies a contradiction. �

We conclude the section proving a finiteness result on a special class of reduced
forms. The result will be used in §4.2.

Proposition 3.22. Let F ∈ Z[x0, . . . , xn] be a nondegenerate cubic form such that
ΔF �= 0. Fix an integer r �= 0. Then there are finitely many pairs

(ai, Gi) ∈ Z× Z[x1, . . . , xn]3, i = 1, . . . , k,

such that for all T ∈ GL(n+1,Z) such that detT = r and T ·F is in reduced form,
we have that T · F is equivalent to (ai, 0, Gi) over Z for some i ∈ {1, . . . , k} (cf.
Definition 2.9). Moreover, ΔGi

�= 0 for all i = 1, . . . , k.

Proof. Suppose not. Then there exist infinitely many T1, T2, . . . ∈ GL(n + 1,Z)
such that detTi = r, Ti · F = (ai, 0, Gi) is in reduced form for each i, and Ti

and Tj are not equivalent over Z for each i �= j. We denote Si,j = T−1
i Tj . Note

that Ti([1, 0, . . . , 0]) ∈ WF for all i. Thus, by Proposition 3.3 we may assume that
[1, 0, . . . , 0] is fixed by Si,j for each i, j. It follows easily that if Si,j = (shk), then
sh0 = s0k = 0 for any h, k = 1, . . . , n.

Since detTi = r, it follows that the denominators of the coefficients of Si,j are
bounded, and since detSi,j = 1, it follows that s0,0 is bounded and in particular
there exist i �= j such that Ti · F is equivalent to Tj · F over Z.

Finally, Lemma 2.6 implies that, for each i we have ΔGi
�= 0. �

4. Proof of the main results

4.1. Proof of Theorem 1.2. Let X be a smooth projective threefold of general
type. In this section we prove Theorem 1.2, i.e., we show that the volume of X
(cf. Definition 2.1) is bounded by a constant which depends only on the topological
Betti numbers of X.

Proof of Theorem 1.2. We may assume that X is of general type, as otherwise
vol(X) = 0. Let X ��� Y be a minimal model of X. Then Y has only terminal
singularities, and in particular it is smooth outside a finite number of points. In
addition,

vol(X,KX) = vol(Y,KY ) = K3
Y .

Theorem 2.5 implies that

χ(Y,OY ) =
1

24
(−KY · c2(Y ) + e),

where

e =
∑
pα

(
r(pα)−

1

r(pα)

)
,
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and the sum runs over all the baskets B(Y, p) of singularities of Y . Note that
e ≤ Ξ(Y ). Thus,

vol(X,KX) = K3
Y ≤ 3KY · c2(Y )

= 3(−24χ(Y,OY ) + e)

= 3(24(−h0,0(X) + h1,0(X)− h2,0(X) + h3,0(X)) + e)

≤ 3(12b3(X) + Ξ(Y )),

where the first inequality follows from Theorem 2.4 and the second inequality follows
from the fact that h1,0(X) ≤ h2,1(X) by Hard Lefschetz and h2,1(X) + h3,0(X) ≤
b3(X)/2 by Hodge decomposition.

Thus, Proposition 2.3 implies the claim. �

Two immediate applications of Theorem 1.2 are the following corollaries.

Corollary 4.1. The volume only takes finitely many values on the set of three-
dimensional projective varieties with a fixed underlying 6-manifold.

Proof. LetX be a smooth projective threefold. The volume vol(X,KX) is a rational
number whose denominator is bounded by the cube of the index of a minimal model
of X. By Lemma 2.2, the index of any minimal model of X is less than or equal to
4 · Ξ(X). The claim follows now from Proposition 2.3 and Theorem 1.2. �

Corollary 4.2. The family of all smooth projective threefolds of general type with
bounded Betti numbers is birationally bounded.

Proof. By [HM06, Cor. 1.2] we know that the family all smooth projective three-
folds of general type with bounded volume is birationally bounded. The result then
follows from Theorem 1.2. �

4.2. Divisorial contractions. Let Y be a Q-factorial projective threefold, and let
f : Y → X be an elementary KY -negative birational contraction. By Lemma 2.16,
we have that b2(Y ) − b2(X) = 1. Let {γ1, . . . , γb} be a basis of H̄2(X,Z), and let
βi = f∗γi.

If f is a divisorial contraction, then we have a natural choice for a class α ∈
H̄2(Y,Z) such that {α, β1, . . . , βb} is a basis of H̄2(Y,Q) . Indeed, we can choose
α = c1(rE), where E is the exceptional divisor and r is the smallest positive integer
such that rE is Cartier.

If f is a contraction to a point, by the projection formula we get

α · βi · βj = 0

and
α2 · βi = 0

for any i, j = 1, . . . , b. On the other hand, in general, we do not have an isomorphism

H̄2(X,Z) = Z〈α, β1, . . . , βb〉,
as the following example shows.

Example 4.3. Let Z = P2, and consider the P1-bundle

Y = P(OZ ⊕OZ(2))

over Z with induced morphism π : Y → Z. Then there exists a birational morphism
f : Y → X which contracts a section E of π into a point. In particular, X is the
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cone over P2 associated to OZ(2). Note that X is terminal and Q-factorial, and
KY = f∗KX +1/2E. Let � be a line in Z, and let F = π∗�. Then {E,F} is a basis
of H̄2(Y,Z). On the other hand, F ′ = f∗F is not Cartier, and therefore it is not
an element of H̄2(X,Z), while 2F ′ is a generator of H̄2(X,Z).

Given a divisorial contraction to a point f : Y → X between terminal threefolds,
our goal is to first bound the difference K3

Y −K3
X and then compute the cubic form

FX associated to X from the cubic form FY associated to Y . We begin with the
following.

Proposition 4.4. Let X0 be a smooth projective threefold, and let

X0 ��� X1 ��� · · · ��� Xk−1 ��� Xk

be a sequence of steps of the minimal model program for X0. Assume that

f : Y = Xk−1 → X = Xk

is a divisorial contraction to a point p ∈ X. Then

0 < K3
Y −K3

X ≤ 210b22,

where b2 = b2(X0) is the second Betti number of X0.

Proof. Let E be the exceptional divisor of f , and let a = a(E,X) be the discrepancy
of f along E. Since X is terminal, we have that a > 0. Since K3

Y −K3
X = a3E3, it

is enough to bound a3E3. The possible values of aE3 are listed in [Kaw05] Tables
1 and 2. In particular, we have

0 < aE3 ≤ 4.

Let B(X, p) = {p1, . . . , pk} be the basket of X at p with indices r1 = r(p1), . . . ,
rk = r(pk) (cf. §2.2), and let R be the least common multiple of r1, . . . , rk. Then,
[Kaw05, Lemma 2.3], implies that E3 ≥ 1/R. Thus,

0 < (aE)3 ≤ 64

(E3)2
≤ 64R2.

Let Ξ = Ξ(X, p) ≤ Ξ(X). Then Lemma 2.2 implies that

R ≤ 4 · Ξ,
and Proposition 2.3 implies

(aE)3 ≤ 210b22.

Thus, the claim follows. �

We now study the behaviour of the cubic form associated to a terminal threefold
under a divisorial contraction to a point. We begin with the following elementary
fact.

Lemma 4.5. Let A be a maximal rank submodule of Zm, and let r be a positive
integer. Assume that for any b ∈ Zm, we have that r · b ∈ A. Let T ∈ M(m,Z) be
a matrix whose columns form a basis of A. Then 0 < | detT | ≤ rm.

Proof. By assumption, there exists X ∈ M(m,Z) such that T · X = rIm, where
Im ∈ SL(m,Z) is the identity matrix. Thus, detT divides rm, and the claim
follows. �
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Lemma 4.6. Let X and Y be Q-factorial projective threefolds with terminal sin-
gularities, and let f : Y → X be a divisorial contraction onto a point x ∈ X with
exceptional divisor E. Then π1(E) = 1 and, in particular, H2(E,Z) is torsion free.

Proof. Let U be an analytic neighborhood of x such that U retracts to x, and
consider the morphism fU : V = f−1(U) → U . Then [Kol93b, Theorem 7.8] implies
that π1(V ) = π1(U) = 1. Since V retracts to E, it follows that π1(E) = 1.

The universal coefficient theorem implies that H2(E,Z) is torsion free. �

Thus, we have the following.

Proposition 4.7. Let X and Y be Q-factorial projective threefolds with terminal
singularities, and let f : Y → X be a divisorial contraction onto a point with excep-
tional divisor E. Let α ∈ H̄2(Y,Z) be a generator of the ray R>0[E] in N1(Y )⊗R.
Let n = b2(Y ), and let α, α2, . . . , αn be a basis of H̄2(Y,Z). Let r = |α3|. Then
there exists T ∈ M(n,Z) such that 0 < | detT | ≤ rn, and α, T (α2), . . . , T (αn) is a
basis of the submodule of H̄2(Y,Z) spanned by f∗H̄2(X,Z) and α. In particular, it
follows that

T · FY = ax3
0 + FX(x1, . . . , xn),

where a = α3.

Proof. Fix an isomorphism H̄2(Y,Z) � Zn, and consider the submodule A of Zn

spanned by f∗H̄2(X,Z) and α. Let β ∈ H̄2(Y,Z). Then there exist integers c, b
with |b| ≤ r such that

(cα+ bβ).α2 = 0.

Set γ = cα+ bβ. As in the proof of Lemma 2.16, it follows that R1f∗Z = 0 and,
in particular, H1(E,Z) = 0. Thus, as in Lemma 2.15, we get the exact sequence

0 → f∗H̄2(X,Z) → H̄2(Y,Z)
p−→ H2(E,Z).

Possibly passing to a desingularization, we can apply [KM92, Proposition 12.1.6]
to obtain that p(E) is a multiple of p(γ) in H2(E,Q). Since γ.α2 = 0, it follows
that p(γ) is a torsion element of H2(E,Z), which implies that p(γ) = 0 by Lemma
4.6, and so γ ∈ f∗H̄2(X,Z). Thus, bβ ∈ A and Lemma 4.5 implies the claim. �

We now consider divisorial contraction to a smooth curve. We begin with the
following well-known result (e.g., see [OVdV95, Prop. 14]).

Proposition 4.8. Let X be a Q-factorial projective threefold, and let C be a smooth
curve of genus g contained in the smooth locus of X. Let f : Y → X be the blowup
of X along C, and let α = c1(E). Then H2(Y,Z) ∼= Z[α]⊕H2(X,Z) and

K3
Y −K3

X = −2KX · C + 2− 2g = −2E3 + 6− 6g.

In particular, if β1, . . . , βn is a basis of H2(X,Z), then α, f∗β1, . . . , f
∗βn is a basis

of H2(Y,Z), and with respect to these bases we have

FY (x0, . . . , xn) = ax3
0 + 3x2

0(
n∑

i=1

bixi) + FX(x1, . . . , xn),

where a = α3 and bi = −βi · C.
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4.3. Proof of Theorem 1.3. We can finally prove our main result.

Proof of Theorem 1.3. If f is a divisorial contraction to a point, then (1) is the
content of Proposition 4.4. Assume hance that f contracts a divisor E to a smooth
curve C. Then E is a P1-bundle over C, and, in particular, if g is the genus of C,
then b3(E) = 2g. Thus, by Lemma 2.15 and Lemma 2.16 and since E and C are
smooth, we have that

b3(Y )− b3(X) = Ib3(Y )− Ib3(X) = 2g.

Moreover, considering the cubic form FY associated to Y and applying Proposition
4.8, we have that |E3| ≤ SY . Hence

|K3
Y −K3

X | = | − 2E3 + 6− 6g|
≤ 2SY + 6(b3(Y ) + 1).

This finishes the proof of (1).
We now prove (2).
Let us first assume that f is a divisorial contraction to a point with exceptional

divisor E. Let α ∈ H2(Y,Z) be a generator of the ray R>0[E]. By Propostion 4.7, α
is a point of rank 1 for the Hessian of the cubic form FY . Then, by Proposition 3.3,
α is determined up to finite ambiguity by FY and so it is r = α3. By Proposition
3.22, there are finitely many pairs

(ai, Gi) ∈ Z× Z[x1, . . . , xn]3, i = 1, . . . , k,

such that for all T ∈ M(n+1,Z) such that 0 < | detT | ≤ rn and T ·F is in reduced
form, we have that T · F is equivalent to (ai, 0, Gi) over Z for some i ∈ {1, . . . , k}.
By Proposition 4.7 there exists T ∈ M(n + 1,Z) such that 0 < | detT | ≤ rn and
T · F is in reduced form (a, 0, FY ), where a = α3. Thus, there exists M ∈ SL(n,Z)
such that FY = M ·Gi for some i ∈ {1, . . . , k}.

Let us assume now that f is a divisorial contraction to a smooth curve. By
Theorem 3.1, there exist finitely many triples

(ai, Bi, Gi) ∈ Z× Zn × Z[x0, . . . , xn]3, i = 1, . . . , k,

such that any reduced triple associated to F is equivalent to (ai, Bi, Gi) over Z for
some i ∈ {1, . . . , k}. By Proposition 4.8, there exist a ∈ Z and B ∈ Zn such that
(a,B, FY ) is a reduced triple associated to F . Thus, there exists M ∈ SL(n,Z)
such that FY = M ·Gi for some i ∈ {1, . . . , k} �

Proof of Corollary 1.4. This is a simple iteration of point (2) of Theorem 1.3, keep-
ing in mind that if g : W → Z is a step of an MMP as in the statement and ΔFW

�= 0,
then also ΔFZ

�= 0 (this follows by combining Proposition 4.8 and Proposition 4.7
with Lemma 2.6). �

Proof of Corollary 1.5. Let

X = X0 → X1 → · · · → Xk

be an MMP for X such that each fi : Xi → Xi+1 is a divisorial contraction to a
point or to a smooth curve contained in the smooth locus of Xi+1.

Denote by Fi the cubic form associated to Xi, and let Si = SXi
(cf. Definition

2.12). Theorem 3.1 implies that SX0
< +∞.
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We proceed by induction on i = 0, . . . , k. Proceeding as in the proof of Theorem
1.3, by combining Proposition 4.8, Proposition 4.7, Proposition 3.22, and Theorem
3.1, it follows that, for any i = 0, . . . , k,

ΔFi
�= 0 and Si < +∞.

Moreover, each Si depends only on FX and, therefore, only on the topology of the
manifold underlying X.

We define

Dk = 6b2(X) + 36b3(X),

and for any i < k, let

Di = Di+1 +max{210b2(X)2, 2Si + 6(Ib3(Xi) + 1)}.
We claim that

|K3
Xi

| ≤ Di

for any i = 0, . . . , k.
The proof is by descending induction on i = k, . . . , 0. If i = k, the result is

exactly Theorem 1.2. Assume now that i < k and |K3
Xi+1

| ≤ Di+1. Then the claim

follows by combining Proposition 4.4 and Theorem 1.3. In particular, we have that
|K3

X | ≤ D0.
Finally, we need to show that for any i = 1, . . . , k, we have that Ib3(Xi) ≤

Ib3(Xi−1). If fi−1 : Xi−1 → Xi is a divisorial contraction to a point, then the claim
follows immediately from Lemma 2.15. On the other hand, if fi−1 : Xi−1 → Xi is a
divisorial contraction to a smooth curve Ci ⊆ Xi with exceptional divisor Ei, then
Ei is a P1-bundle over Ci and if g(Ci) is the genus of Ci, then Lemma 2.15 implies

Ib3(Xi−1)− Ib3(Xi) = Ib3(Ei) = b3(Ei) = 2g(Ci) ≥ 0,

as claimed. Thus, Ib3(Xi) ≤ Ib3(X) = b3(X) for any i = 1, . . . , k, and the theorem
follows. �
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Boston, Inc., Boston, MA, 1994. MR1264417

[Hir54] F. Hirzebruch, Some problems on differentiable and complex manifolds, Ann. of Math.
(2) 60 (1954), 213–236, DOI 10.2307/1969629. MR0066013

[HM06] C. D. Hacon and J. McKernan, Boundedness of pluricanonical maps of varieties of
general type, Invent. Math. 166 (2006), no. 1, 1–25, DOI 10.1007/s00222-006-0504-1.
MR2242631

[Kaw05] M. Kawakita, Three-fold divisorial contractions to singularities of higher indices, Duke

Math. J. 130 (2005), no. 1, 57–126, DOI 10.1215/S0012-7094-05-13013-7. MR2176548
[Kaw86] Y. Kawamata, On the plurigenera of minimal algebraic 3-folds with K ≡ 0, Math.

Ann. 275 (1986), no. 4, 539–546, DOI 10.1007/BF01459135. MR859328
[KM92] J. Kollár and S. Mori, Classification of three-dimensional flips, J. Amer. Math. Soc. 5

(1992), no. 3, 533–703, DOI 10.2307/2152704. MR1149195
[KM98] J. Kollár and S. Mori, Birational geometry of algebraic varieties, Cambridge Tracts in

Mathematics, vol. 134, Cambridge University Press, Cambridge, 1998. With the col-
laboration of C. H. Clemens and A. Corti; Translated from the 1998 Japanese original.
MR1658959

[Kol89] J. Kollár, Flops, Nagoya Math. J. 113 (1989), 15–36. MR986434
[Kol93a] J. Kollár, Effective base point freeness, Math. Ann. 296 (1993), no. 4, 595–605, DOI

10.1007/BF01445123. MR1233485
[Kol93b] J. Kollár, Shafarevich maps and plurigenera of algebraic varieties, Invent. Math. 113

(1993), no. 1, 177–215, DOI 10.1007/BF01244307. MR1223229
[Kot08] D. Kotschick, Chern numbers and diffeomorphism types of projective varieties, J.

Topol. 1 (2008), no. 2, 518–526, DOI 10.1112/jtopol/jtn007. MR2399142
[Kot12] D. Kotschick, Topologically invariant Chern numbers of projective varieties, Adv.

Math. 229 (2012), no. 2, 1300–1312, DOI 10.1016/j.aim.2011.10.020. MR2855094
[Lan83] S. Lang, Fundamentals of Diophantine geometry, Springer-Verlag, New York, 1983.

MR715605
[Laz04] R. Lazarsfeld, Positivity in algebraic geometry. I, Ergebnisse der Mathematik und ihrer

Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Math-
ematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics],

vol. 48, Springer-Verlag, Berlin, 2004. Classical setting: line bundles and linear series.
MR2095471

[LeB99] C. LeBrun, Topology versus Chern numbers for complex 3-folds, Pacific J. Math. 191
(1999), no. 1, 123–131, DOI 10.2140/pjm.1999.191.123. MR1725466

[LW90] A. S. Libgober and J. W. Wood, Uniqueness of the complex structure on Kähler man-
ifolds of certain homotopy types, J. Differential Geom. 32 (1990), no. 1, 139–154.
MR1064869

[Miy87] Y. Miyaoka, The Chern classes and Kodaira dimension of a minimal variety, Algebraic
geometry, Sendai, 1985, Adv. Stud. Pure Math., vol. 10, North-Holland, Amsterdam,
1987, pp. 449–476. MR946247

[Mor85] S. Mori, On 3-dimensional terminal singularities, Nagoya Math. J. 98 (1985), 43–66.
MR792770

[OVdV95] Ch. Okonek and A. Van de Ven, Cubic forms and complex 3-folds, Enseign. Math. (2)
41 (1995), no. 3-4, 297–333. MR1365849

[Rei87] M. Reid, Young person’s guide to canonical singularities, Algebraic geometry, Bowdoin,
1985 (Brunswick, Maine, 1985), Proc. Sympos. Pure Math., vol. 46, Amer. Math. Soc.,
Providence, RI, 1987, pp. 345–414. MR927963

[Sai88] M. Saito, Modules de Hodge polarisables (French), Publ. Res. Inst. Math. Sci. 24
(1988), no. 6, 849–995 (1989), DOI 10.2977/prims/1195173930. MR1000123

http://www.ams.org/mathscinet-getitem?mr=3330543
http://www.ams.org/mathscinet-getitem?mr=0498552
http://www.ams.org/mathscinet-getitem?mr=1264417
http://www.ams.org/mathscinet-getitem?mr=0066013
http://www.ams.org/mathscinet-getitem?mr=2242631
http://www.ams.org/mathscinet-getitem?mr=2176548
http://www.ams.org/mathscinet-getitem?mr=859328
http://www.ams.org/mathscinet-getitem?mr=1149195
http://www.ams.org/mathscinet-getitem?mr=1658959
http://www.ams.org/mathscinet-getitem?mr=986434
http://www.ams.org/mathscinet-getitem?mr=1233485
http://www.ams.org/mathscinet-getitem?mr=1223229
http://www.ams.org/mathscinet-getitem?mr=2399142
http://www.ams.org/mathscinet-getitem?mr=2855094
http://www.ams.org/mathscinet-getitem?mr=715605
http://www.ams.org/mathscinet-getitem?mr=2095471
http://www.ams.org/mathscinet-getitem?mr=1725466
http://www.ams.org/mathscinet-getitem?mr=1064869
http://www.ams.org/mathscinet-getitem?mr=946247
http://www.ams.org/mathscinet-getitem?mr=792770
http://www.ams.org/mathscinet-getitem?mr=1365849
http://www.ams.org/mathscinet-getitem?mr=927963
http://www.ams.org/mathscinet-getitem?mr=1000123


7958 PAOLO CASCINI AND LUCA TASIN

[ST16] S. Schreieder and L. Tasin, Algebraic structures with unbounded Chern numbers, J.
Topol. 9 (2016), no. 3, 849–860, DOI 10.1112/jtopol/jtw011. MR3551840

[ST17] S. Schreider and L. Tasin, Kähler structures on spin 6-manifolds, Math. Ann., DOI
10.1007/s00208-017-1615-2.

[Ste83] J. H. M. Steenbrink, Mixed Hodge structures associated with isolated singularities,
Singularities, Part 2 (Arcata, Calif., 1981), Proc. Sympos. Pure Math., vol. 40, Amer.
Math. Soc., Providence, RI, 1983, pp. 513–536. MR713277

[Stu93] B. Sturmfels, Algorithms in invariant theory, Texts and Monographs in Symbolic Com-
putation, Springer-Verlag, Vienna, 1993. MR1255980

Department of Mathematics, Imperial College London, 180 Queen’s Gate, London

SW7 2AZ, UK

Email address: p.cascini@imperial.ac.uk
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