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CONGRUENCES MODULO p BETWEEN ρ-TWISTED

HASSE-WEIL L-VALUES

DANIEL DELBOURGO AND ANTONIO LEI

Abstract. Suppose E1 and E2 are semistable elliptic curves over Q with
good reduction at p, whose associated weight two newforms f1 and f2 have
congruent Fourier coefficients modulo p. Let RS(E� , ρ) denote the algebraic p-
adic L-value attached to each elliptic curve E�, twisted by an irreducible Artin

representation, ρ, factoring through the Kummer extension Q
(
μp∞ ,Δ1/p∞

)
.

If E1 and E2 have good ordinary reduction at p, we prove that

RS(E1, ρ) ≡ RS(E2, ρ) mod p,

under an integrality hypothesis for the modular symbols defined over the field
cut out by Ker(ρ). Under this hypothesis, we establish that E1 and E2 have
the same analytic λ-invariant at ρ.

Alternatively, if E1 and E2 have good supersingular reduction at p, we
show that ∣

∣RS(E1, ρ)−RS(E2, ρ)
∣
∣
p

< pordp(cond(ρ))/2.

These congruences generalise some earlier work of Vatsal [Duke Math. J. 98
(1999), pp. 399–419], Shekhar–Sujatha [Trans. Amer. Math. Soc. 367 (2015),
pp. 3579–3598], and Choi-Kim [Ramanujan J. 43 (2017), p. 163–195], to the
false Tate curve setting.
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1. Introduction

Let p be a prime. Suppose F =
∑

tm(F)qm and G =
∑

tm(G)qm are two
modular cusp forms, such that their Fourier coefficients satisfy tm(F) ≡ tm(G)
(mod pr) at every integer m ≥ 1. Vatsal showed in his seminal article [Vat99]
that, under an appropriate choice of complex period, the algebraic parts of the L-
functions for F and G twisted by a Dirichlet character χ will be congruent modulo
pr. Moreover, if p is a good ordinary prime for F and G, his result directly implies
that their p-adic L-functions must also be congruent mod pr.
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Vatsal’s theorem has many applications. For example, using this congruence one
may relate the Iwasawa invariants of eigenforms inside a Hida deformation, thereby
facilitating the study of the Iwasawa main conjectures over ordinary families (see
[GV00] and [EPW06]). It is natural to ask: Can Vatsal’s result be generalised to
twists by more exotic representations?

In [SS14,SS15], Shekhar and Sujatha studied precisely this question for dihedral
twists in the weight two case, under the assumption that the cusp forms F and
G are ordinary at p. Using the same p-ordinarity assumption, Kriz and Li [KL16]
established congruences between Heegner points associated to congruent elliptic
curves, which resulted in a mod p relation for the anticyclotomic p-adic L-function
constructed by Bertolini-Darmon-Prasanna in [BDP13]. This enabled them to ob-
tain information on both the Birch-Swinnerton-Dyer Conjecture, and the Goldfeld
Conjecture.

For the supersingular case, Kim [Kim14] has proven that there exists a p-adic
L-function which interpolates the complex L-values of F and G, twisted by Hecke
characters over an imaginary quadratic field in which p splits. Whilst these elements
are not p-integral, their denominators are controlled in an explicit manner. In
[CK16], Choi and Kim showed under certain technical conditions similar to those
in [Vat99], that these non-integral p-adic L-functions satisfy congruence relations
(in the sense that, when evaluated at the appropriate characters, the p-adic norm
of their difference is smaller than that of their original norms).

Goal. The principal aim of the present article is to establish a modulo p congru-
ence relation for the Hasse-Weil L-functions of congruent elliptic curves, twisted
by an Artin representation “ρ” factoring through a Kummer extension of Q.

We shall treat both the p-ordinary and the p-supersingular cases here.
Let E1 and E2 denote elliptic curves defined over Q, with conductors N1 and N2,

respectively. In particular, both E1 and E2 are modular by the work of Wiles et
al., which means there are associated primitive forms f� ∈ Snew

2

(
Γ0(N�)

)
satisfying

L(f� , s) = L(E� , s) for � = 1, 2. Henceforth we fix a prime number p �= 2, and
impose the following conditions:

(i) both curves E1 and E2 have good reduction at the prime p;
(ii) their conductors N1 and N2 are square-free integers;
(iii) the Fourier coefficients tm(E1) ≡ tm(E2) (mod p) whenever gcd(m,N1N2)

= 1.

The condition (ii) is necessary as our expressions for the Rankin convolution are
only valid provided the two curves E1 and E2 are semistable over the ground field.
Also (iii) is the same condition as in [SS15], and weaker than insisting tm(E1) ≡
tm(E2) (mod p) for every m ≥ 1.

In order to obtain algebraic L-values, we first need to divide our L-functions by
the correct motivic periods, and then hope that the special values display some
kind of integral structure. For the semistable case these integrality issues were
first raised in Bouganis’s thesis [Bou06], while in the case of elliptic curves with
complex multiplication, there is a detailed analysis of period ratios in [DW10]. We
shall adopt the same period choices made by Vatsal in [Vat99].
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If M = lcm(N1, N2), then both f1 and f2 are eigenforms on the congruence
subgroup

Γ1(M) :=

{(
a b
c d

)
∈ SL2(Z) : a ≡ d ≡ 1 ( mod M), c ≡ 0 ( mod M)

}
.

Let T be the Hecke algebra acting on the set of cusp forms of weight two on
the subgroup Γ1(M). The congruence class of f1 and f2 determines a maximal
ideal m of T, and for � ∈ {1, 2} each eigenform f� will then induce a Qp-algebra
homomorphism

π� : Tm ⊗Qp → Qp.

We write Rf� for the unique local factor of the Hecke algebra through which π�

factors.

Hypothesis (Vat). The local factors satisfy Rf1 = Rf2 = Qp, and there exist
T-isomorphisms

H1
(
Γ1(M),Zp

)±
m

= H1
P

(
Γ1(M),Zp

)±
m

∼= HomZp
(T,Zp)m = S2

(
Γ1(M);Zp

)
m
,

where H1
P

(
Γ1(M),Zp

)
is the parabolic subgroup of H1

(
Γ1(M),Zp

)
, and ± denotes

the eigenspaces for the complex conjugation.

For example, the equality Rf1 = Rf2 = Qp is certainly true if both elliptic curves
E1 and E2 share the same conductor, since both f1 and f2 are then newforms of
level M = N1 = N2. The second freeness hypothesis is discussed at length in
[Vat99, §2]. As explained in [Vat99], this hypothesis produces canonical periods,
Ω±

f�
, which are well defined up to p-adic units. Furthermore, in the case of elliptic

curves, these periods in fact coincide with the standard Néron periods.
For a positive integer n we set Kn = Q(μpn), and write Fn = Q(μpn)+ for its

maximal totally real subfield. Let p be the unique place of Fn lying above p, and S
will denote a finite set of places for Fn containing p. We label by α�(p) and β�(p)
the two roots of the Hecke polynomial

Pp(E� , X) = X2 − tp(E�)X + p.

Throughout we normalise the p-adic valuation
∣∣− ∣∣

p
on the Tate field Cp = Q̂p by∣∣p∣∣

p
= p−1. Let us also fix embeddings ι∞ : Q ↪→ C and ιp : Q ↪→ Cp. These em-

beddings will allow us to consider the field of algebraic numbers, Q, simultaneously
as both complex and p-adic numbers.

For the rest of the Introduction, we assume S is a finite set of places of the
number field Fn containing always those places dividing p ·Δ ·N1 ·N2.

Definition 1.1. For an Artin representation ρ : Gal(Q/Fn) → GL(V ) and � ∈
{1, 2}, we define

RS(E� , ρ)

:= ι−1
∞

⎛⎝ εFn
(ρ∗)

α�(p)f(ρ,p)
×

Pp

(
ρ, α�(p)

−1
)

Pp

(
ρ∗, β�(p)−1

) × LS(E� , ρ
∗, 1)(

2πiΩ+
f�

)dim(ρ+)(
2πiΩ−

f�

)dim(ρ−)

⎞⎠ ,

where ρ∗ means the contragredient representation to ρ, the notation εFn
(ρ∗) indi-

cates the local epsilon factor for ρ∗ at p, the power f(ρ, p) represents the p-exponent
of the conductor of ρ, while Pp(ρ,X) and Pp(ρ

∗, X) denote the characteristic poly-
nomials (associated with ρ and ρ∗, respectively) at p.
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We call RS(E� , ρ) the algebraic part of the L-value of E�, twisted by the repre-
sentation ρ∗.

Let Δ > 1 be a p-power free integer, and assume χ : Gal
(
Kn(Δ

1/pn

)/Kn

)
� μpn

is the surjective character sending σ 	→ σ(Δ1/pn )
Δ1/pn . We now consider the irreducible

representation
ρ = ψ ⊗ IndFn

Kn
(χ),

where ψ is a character on Gal(Fn+m/Fn) for some integer m ≥ 0. In Section 5
we shall introduce a technical condition, Hypothesis (MS)p, which is unfortunately
too long to give here. Essentially, the Hypothesis (MS)p ensures that all ψ-twists
as above satisfy

ιp

(
RS

(
E� , ψ ⊗ IndFn

Kn
(χ)
))

∈ α�(p)
−f(ψ⊗IndFn

Kn
(χ),p) · OCp

.

In the p-ordinary case, these values are interpolated by a power series Lp

(
E�, Ind(χ)

)
∈ Qp[[X]] (see [Bou06,DW08]); thus (MS)p is equivalent to demanding that

Lp

(
E� , Ind(χ)

)
∈ Zp[[X]].

In this situation, the χ-twisted Iwasawa Main Conjecture implies that Hypothesis
(MS)p must automatically be true as well, since Lp

(
E� , Ind(χ)

)
would then be

a characteristic power series for the χ-twisted Selmer group, which is always p-
integral.

Theorem 1.2. If E1 and E2 have good ordinary reduction at p, and Hypothesis
(MS)p holds:

(i) RS(E1, ρ) and RS(E2, ρ) are both p-integral;
(ii) RS(E1, ρ) ≡ RS(E2, ρ) mod p.

Moreover, if Hypothesis (Vat) holds true as well, then (ii) gives a non-trivial

congruence for the representation ρ = ψ ⊗ IndFn

Kn
(χ) at infinitely many ψ.

We should point out that Shekhar and Sujatha have proved an algebraic analogue
of this result, which concerns Euler characteristics of the fine Selmer groups in
[SS14]. They also obtained in [SS15] a similar result to our modulo p congruence,
but for dihedral representations instead; the two results coincide precisely when
p = 3.

Note that in the supersingular case, the L-value RS(E�, ρ) is no longer p-integral
due to the presence of the term α�(p) in the denominator, the obstruction being
that

∣∣α�(p)
∣∣
p
= p−1/2. Nevertheless, one can always consider the p-adic norm of

RS(E1, ρ) − RS(E2, ρ) as a substitute, which is the approach taken by Choi and
Kim in [CK16].

Theorem 1.3. If E1 and E2 have supersingular reduction at p, and Hypothesis
(MS)p holds:

(i)
∣∣RS(E1, ρ)

∣∣
p

≤ pf(ρ,p)/2 and
∣∣RS(E2, ρ)

∣∣
p

≤ pf(ρ,p)/2;

(ii) moreover, if
∣∣α1(p)− α2(p)

∣∣
p
< p−1/2, then∣∣∣RS(E1, ρ)−RS(E2, ρ)

∣∣∣
p

< pf(ρ,p)/2 .

One observes that Weil’s bound tells us that tp(Ei) = 0 if p ≥ 5, and tp(Ei) ∈
{0,±3} if p = 3. If tp(E1) = tp(E2) = 0, then we may always choose α1(p) =
α2(p) = ±√−p. Alternatively, if both tp(E1) and tp(E2) are non-zero, then
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α�(p) = ±3±
√
−3

2 , in which case there always exists a pair α1(p), α2(p) satisfy-
ing the condition (ii). However, if exactly one of tp(E1) and tp(E2) vanishes (which
can only happens when p = 3), then clearly such a pair cannot exist.

We note that the context of [CK16] is actually quite different from ours. In
[CK16] the authors studied congruences between two modular forms of different
weights, and χ was taken to be a Hecke character over an imaginary quadratic field
where p splits. Furthermore, in their setting the values RS(E�, ρ) in fact deform
continuously into a two-variable p-adic L-function. In our specific situation, it is
not really clear to us whether such an object could feasibly exist. However, it is still
striking to us that a similar congruence relation holds, even without the existence of
such a p-adic L-function. While we have concentrated on congruent elliptic curves,
the majority of the calculations can be generalised to modular forms of arbitrary
weight k ≥ 2; see [War12] for some results in this direction.

The strategy behind our proof of Theorems 1.2 and 1.3 is very similar to that
in [SS15]. The first step is to show that for � ∈ {1, 2}, there is a p-adic congru-

ence between RS(E�, ρ) and RS

(
E�, ψ ⊗ IndFn

Kn
1
)
. This is achieved by rewriting

RS(E�,−) in terms of the Petersson inner product of two Hilbert modular forms.
By the Atkin-Lehner theory, these algebraic L-values decompose into a finite sum
involving the coefficients in the q-expansion, which then allows us to read off the
aforementioned congruence from the respective Fourier expansions. (We note that
such calculations were partially carried out in [DW08], albeit only in the ordinary
case.)

The second step is to compare RS

(
E1, ψ ⊗ IndFn

Kn
1
)
with RS

(
E2, ψ ⊗ IndFn

Kn
1
)

p-adically. Because the representation IndQKn
(1) splits completely into a direct sum

of Dirichlet characters, the Artin formalism implies that both

RS

(
E1, ψ ⊗ IndFn

Kn
1
)

and RS

(
E2, ψ ⊗ IndFn

Kn
1
)

have a product decomposition, over the same set of Dirichlet twists. The various
fragments can then be shown to be congruent modulo p individually, upon applying
the main results in [Vat99]. Combining the congruences from Steps 1 and 2 yields
the two theorems above.

2. Background on Hilbert modular forms

Our main references for this preliminary material on HMFs (Hilbert modular
forms) are the articles [Shi78] and [Pan91]. Let F be a totally real field of degree
d = [F : Q], and write d = dF for its different ideal. One may then interpret GL2(F )
as a group GQ of rational points for an associated Q-subgroup inside GL2d(Q). Its
adèlisation GA corresponds to the product

GL2(AF ) = GL2(R)
d ×GL2(F̂ ) where F̂ := F ⊗

(
lim←−
m

Z/mZ
)
.

The proper subgroup GL+
2 (R)

d comprising vectors v =
(
v1, . . . , vd

)
with

vj =

(
αj βj

γj δj

)
and αjδj > βjγj for all j ≤ d, acts naturally on d-copies of the upper half-plane H.

If i = (i, . . . , i), there is an isomorphism
{
v ∈ GL+

2 (R)
d
∣∣ v · i = i

}/
Rd

+
∼= SO(2)d

and this quotient is maximally compact within GL2(R)
d
/
Rd

+.
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Remarks.

(a) For any element v ∈ GL+
2 (R)

d and function f : Hd → C,(
f
∣∣
k
v
)
(z) := N

(
γjzj + δj

)−k × f (v · z) · N
(
det(v)

)k/2
at integers k > 0,

where the norm of a d-tuple z = (z1, . . . , zd) is given by N (z) = z1×· · ·×zd.
(b) Let c be an ideal of OF ; one has localisations cq = c ·OF,q and dq = d ·OF,q.

We define open subgroups Wc ⊂ GA by the product Wc := GL+
2 (R)

d ×∏
q
W (q), with each local factor consisting of matrices

W (q) =

{(
a b
c d

)
∈GL2(Fq)

∣∣∣∣ b∈d
−1
q , c∈dqcq, a, d ∈ OF,q, ad− bc ∈ O×

F,q

}
.

(c) If ĥF = #Clnw(OF ) denotes the narrow class number of F , one can always

choose ideles t1, . . . , tĥF
∈ A×

F so that their associated OF -ideals t̃1, . . . , t̃ĥF

form a complete set of representatives for Clnw(OF ). By the approximation
theorem

GA =
⋃
λ

GQ · xλ ·Wc =
⋃
λ

GQ ·
(
x−1
λ

)ι ·Wc,

where the elements

xλ =

(
1 0
0 tλ

)
,

and the involution

ι :

(
a b
c d

)
	→
(

d −b
−c a

)
.

Definition 2.1.
(a) Fix a weight k > 0, an ideal c, and a Hecke character ψ mod c. Then a Hilbert

automorphic form f : GA → C of parallel weight (k, . . . , k), level c and character ψ
satisfies:

(i) f(sgx) = ψ(s) · f(x) for all x ∈ GA, s ∈ A×
F and g ∈ GQ;

(ii) f(xw) = ψ(wι) · f(x) for every w ∈ Wc with w∞ = 1;
(iii) f

(
xr(θ)

)
= f(x) · exp

(
ik{θ}

)
where

r(θ) =

(
. . . ,

(
cos θj sin θj

− sin θj cos θj

)
, . . .

)
.

(b) An automorphic form f : GA → C is cuspidal provided that∫
AF /F

f

((
1 t
0 1

)
· g
)
· dt = 0 at each element g ∈ GA.

If f satisfies the condition that for any x ∈ GA with archimedean component
x∞ = 1 there exists hx : Hd → C such that f(xy) =

(
hx

∣∣
k
v
)
(i) for all vectors

v ∈ GL+
2 (R)

n with each hx holomorphic at the cusps, then f : GA → C is a Hilbert
modular form of holomorphic type.

From Remark (c) above, these HMFs correspond to ĥF -tuples (f1, ...fĥF
) of

functions on Hd. If c is an ideal of F , then we write Mk(c, ψ) for the space of
Hilbert automorphic forms of parallel weight k, level c, with finite order character
ψ. Specifically, if f ∈ Mk(c, ψ), then

fλ
∣∣
k
γ = ψ(γ) fλ
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for all λ = 1, . . . , ĥF and γ ∈ Γλ(c), where Γλ(c) is the congruence modular group
given by{(

a b
c d

)
: b ∈ t̃−1

λ d
−1
F , c ∈ t̃λc dF , a, d ∈ OF , ad− bc ∈ O×

F

}
.

One then defines

eF (ξz) = exp

⎛⎝2πi
∑

1≤a≤d

ξτaza

⎞⎠
for z = (z1, . . . , zd) ∈ Hd, ξ ∈ F , and where τ1, . . . , τd : F ↪→ R are distinct
embeddings.

Properties.

(i) Each individual component fλ has a Fourier expansion

fλ(z) =
∑
ξ

aλ(ξ) eF (ξz),

and the summation is taken over totally positive elements ξ ∈ t̃λ and ξ = 0.
(ii) For a subring R ⊂ C, we use Mk(c, ψ;R) to denote the R-submodule of

forms f in Mk(c, ψ), whose Fourier coefficients aλ(ξ) belong to R for every
ξ � 0 in t̃λ, and for ξ = 0.

(iii) If f is itself a cusp form, then the constant terms aλ(0) = 0 for all λ; the
vector subspace of cusp forms of parallel weight k, level c, and character ψ
is written as Sk(c, ψ).

(iv) A cusp form f ∈ Sk(c, ψ) possesses Fourier coefficients C(m, f), given by

C(m, f) =

{
aλ(ξ)NF/Q(t̃λ)

−k/2 if the ideal m = ξt̃−1
λ is integral,

0 if m is not integral.

We will employ some standard linear operators on the spaces Mk(c, ψ) and
Sk(c, ψ).

Let q be an integral ideal of the ring OF and let q be an idèle such that q̃ = q.
One defines the operators q and U(q) on f ∈ Mk(c, ψ) by

(f |q)(x) = NF/Q(q)
−k/2 f

(
x

(
q 0
0 1

))
and

(
f |U(q)

)
(x) = NF/Q(q)

k/2−1
∑

v∈OF /q

f

(
x

(
1 v
0 q

))
.

These operators can be described by their effects on the Fourier coefficients, namely

C(m, f
∣∣q) = C(mq−1, f) and C

(
m, f |U(q)

)
= C(mq, f).

We also require the operator Jc (which is an involution at even weight k), and is
defined by

(f |Jc)(x) = ψ(det(x)−1) f

(
x

(
0 1
c0 0

))
,

where c0 is an idèle such that c̃0 = cd2F ; in particular, f |Jc ∈ Mk(c, ψ
−1). This

mapping has the additional property

f |Jmc = NF/Q(m)k/2(f
∣∣Jc)∣∣m.
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Furthermore, if f is a primitive form in Mk(c, ψ), we have

f |Jc = u(f) f ι,

where u(f) ∈ μ∞ is a root of unity, and f ι is the form defined by C(m, f ι) = C(m, f).

Notations.

(i) For F,G ∈ Mk(c, ψ) one of which is a cusp form, we introduce the (scaled)
Petersson inner product via the complex integral

〈F,G〉
c
:=

h∑
λ=1

∫
Γλ(c)\Hd

Fλ(z)Gλ(z)N(y)kdν(z)

with the choice of hyperbolic metric dν(z) =
∏

1≤j≤d y
−2
j dxjdyj .

(ii) LetK be a number field. For a finite character θ : Gal(K/K) −→ C×, write
θ† : IK −→ C× for the ideal character associated to θ via composition with
the reciprocity map – specifically θ† is normalised by

θ†(q) = θ(Frobq)

at all primes q of K, where Frobq is an arithmetic Frobenius element at q.
(iii) Given a Hilbert automorphic form f , we shall write c(f) to denote its min-

imal level.

The situation relevant to the present paper occurs when one considers a CM
extensionK/F . In this setting, we have the following key result due to Serre [Ser87].

Theorem 2.2. Let K/F be a CM extension. If χ is a finite order Hecke character

over K and ρ = ρχ := IndFK(χ), then there exists a Hilbert automorphic form
gρ ∈ S1(c

(
gρ), (det ρ)

†) over the totally real F , such that

L(gρ, s) = L(ρ, s) = L(χ/K , s).

Furthermore, gρ is primitive if and only if χ is a primitive character.

Finally if f and ρ are as in Theorem 2.2, we define the Rankin-Selberg L-function
attached to the tensor product f ⊗ gρ by

Ψ(f ,gρ, s) =

(
Γ(s)

(2π)s

)2[F :Q]

× Lc

(
(det ρ)†, 2s− 1

)
· L
(
f ,gρ, s

)
,

where the OF -ideal c is given by c(f)c(gρ), and

L(f ,gρ, s) =
∑
a

C(a, f)C(a,gρ)NF/Q(a)
−s.

The analytic continuation and functional equation for the complex L-function
Ψ(f ,gρ, s) were established in the work of Klingen and Shimura.

3. The congruence between RS(E� , ρFn
) and RS(E� , σFn

)

Let n ≥ 1 be a fixed integer. Recall from the introduction that Kn denotes the
number field obtained by adjoining the pnth roots of unity μpn to Q. For � = 1, 2 we
write f� for the base change of f� to the totally real field Fn = K+

n = Kn∩R. Since
Fn/Q is an abelian extension, this is the Hilbert modular form whose L-function
satisfies

L(s, f�) =
∏

ψ:G+
n→C×

L(s, f�, ψ), where G+
n = Gal(Fn/Q).
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Let χ : Gal
(
Kn(Δ

1/pn

)/Kn

)
� μpn be the surjective character determined by

σ 	→ σ(Δ1/pn )
Δ1/pn . One defines ρFn

:= IndFn

Kn

(
χ
)
. We shall also consider σFn

=

IndFn

Kn

(
1
)
= 1Fn

⊕ εKn/Fn
, where εKn/Fn

is the quadratic character attached to
the CM extension Kn/Fn.

Our goal is to establish a mod p congruence between the algebraic p-adic L-
values attached to the twists f�⊗ρFn

⊗ψ and f�⊗σFn
⊗ψ, for every finite character

ψ : Gal(F∞/Fn) → C×.

3.1. Inner products associated to Ψ(f ,gρ, 1). Throughout this section, we fix
a choice of � ∈ {1, 2} and an integer n ≥ 1. Recalling that p is the unique prime
ideal of OFn

lying above p, let α�(p) and β�(p) denote the two roots of

X2 − tp(E�) + p = X2 − C(p, f�)X +NFn/Q(p).

If E� has ordinary reduction at p, we adopt the convention that α�(p) is the p-adic
unit root. If E� has supersingular reduction at p, then the p-adic valuation of both
roots is equal to 1/2; one may assume that |α1(p)− α2(p)|p < p−1/2. For example,
if tp(E�) = 0 for both � = 1, 2, then we may either take α1(p) = α2(p) =

√−p, or
instead α1(p) = α2(p) = −√−p.

Analogously for a finite place v �= p of Fn, we label by α�(v), β�(v) the roots of
the polynomial

X2 − C(v, f�)X +NFn/Q(v) =
(
X − α�(v)

)(
X − β�(v)

)
.

One can extend α�(m), β�(m) multiplicatively to all ideals m of OFn
.

Now consider a finite set of primes S of Fn, containing as a subset

S0 =
{
v : v is a prime of Fn, v

∣∣Δ} ∪ {p}.
We denote by GFn,S the topological group Gal(F ab

n,S/Fn), where F
ab
n,S is the maximal

abelian extension of Fn unramified outside the set S and the infinite places.
Let χ be the character on Gal

(
Kn(Δ

1/pn

)/Kn

)
described above. We can view it

both as a character on GFn,S , and as an ideal character modulo fχ ·
∏

q∈S−S0
q. For

the rest of this section, ψ : GFn,S −→ C× will denote a fixed finite order character
of conductor fψ.

Definition 3.1. Set l0 :=
∏

q∈S−{p} q. For j = 1 or 2, the S-stabilisation of f� is

defined to be

fα� :=
∑
a|pl0

M(a)β�(a).f�
∣∣a,

where M is the Möbius function on ideals.

Suppose either ρ = ρFn
⊗ ψ or ρ = σFn,S ⊗ ψ, where σFn,S is the representation

induced from the trivial character 1Kn
modulo l0 · OKn

. By Theorem 2.2, there
exists gρ ∈ M1

(
c(gρ), (det ρ)

†) with the same complex L-function as ρ.
Following [Pan91, (3.14)], one may then define the depleted form

gρ,l0 :=
∑
n|l0

M(n).gρ

∣∣U(n) ◦ n

so in particular, gρ,l0 ∈ M1

(
c(gρ)l

2
0, (det ρ)

†).
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We shall choose ideals m′ and l′ of OFn
such that m′ is a power of p, supp(l′) =

supp(l0), and c(gρ) · l20
∣∣m′l′ for both ρ = ρFn

⊗ ψ and ρ = σFn,S ⊗ ψ. Setting
c0 := pl0c(f�), it follows that

fα� ∈ S2(c0) ⊂ S2

(
c(f�)m

′l′
)

and

gρ,l0 ∈ M1

(
c(gρ)l

2
0, (det ρ)

†) ⊂ M1

(
c(f�)m

′
l
′, (det ρ)†

)
.

Definition 3.2. We associate a complex linear functional, Lα
�,Fn

, through the as-
signment rule

Lα
�,Fn

: Θ 	−→
〈(
fα�
)ι
,Θ
∣∣Jc0〉c0

〈f�, f�〉c(f�)
.

Using the identity Φ
∣∣∣U(m′l′p

−1
l
−1
0

)∣∣∣Jc0 = Φ
∣∣∣Jc(f�)m′l′

∣∣∣Trc(f�)m′
l
′

c0

∣∣∣Jc0 for every

Φ ∈ M2

(
c(f�)m

′l′
)
, clearly Lα

�,Fn
is well defined on the vector space M2

(
c(f�)m

′l′
)∣∣∣U(m′l′p

−1
l
−1
0

)
.

The reason for introducing this functional is that the special value Ψ(f�,gρ, 1),
which is basically L(E� , ρ

∗, 1) multiplied by Euler factors, can be expressed in

terms of Lα
�,Fn

(
Φ

(n)
ρ

∣∣U(m′l′p−1
l
−1
0 )
)
where Φ

(n)
ρ is a product of gρ,l0 with a Klingen-

Eisenstein series.
To be rather more explicit, let θ denote an ideal character modulo c for some

OFn
-ideal c. We consider the series E1(0, c, θ) ∈ M1

(
c, θ
)
whose λ-components are

E1(0, c, θ)λ(z) =
NF/Q(t̃λ)

−1/2D
1/2
F

(−4πi)[F :Q]
×
∑
c,d

sign
(
NF/Q(c)

)
θ(cOF )NF/Q(cz+ d)−1,

where the summation ranges over pairs (c, d) ∈ OF×t̃−1
λ d

−1
F

∼ . The Fourier expansion
of each λ-component is described in [Pan91, §4, Proposition 4.2], i.e.

E1(0, c, θ)λ(z) = NF/Q(t̃λ)
−1/2 ×

∑
0�ξ∈t̃λ

∑
ξ̃=b̃c̃,
c∈OF ,

b∈t̃λ

θ(c̃)× eF (ξz).

Definition 3.3. The parallel weight two modular form Φ
(n)
ρ is given by the product

Φ(n)
ρ := gρ,l0 ·E1

(
0, c(f�)m

′l′, (det ρ)−1
)
,

where we again ensure m′ and l′ are chosen so that c(gρ) · l20 divides m′l′.

Because we already assumed E� is semistable over Q, the Fourier coefficient

C
(
c(f�), f�

)
= (−1)#T ns

�,Fn ,

where T ns
�,Fn

denotes the finite places of Fn at which E� has non-split multiplicative

reduction; in particular C
(
c(f�), f�

)
�= 0, which is crucial to our method.

Notations.

(a) If ρ is an Artin representation defined over Fn, we denote by f(ρ, p) the
exponent at p occurring in its conductor fρ.
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(b) If v is a finite place of Fn not dividing l, we write Pv(ρ,X) for the charac-
teristic polynomial

det
(
1−X · Frob−1

v

∣∣∣(Vl(ρ)
)IFn,v

)
,

where Vl(ρ) is the l-adic representation space for ρ, the element Frob−1
v

denotes a geometric Frobenius for v, and IFn,v is the inertia subgroup of

Gal
(
Q/Fn

)
at the place v.

(c) Lastly we define a Hecke character χ̃ over Kn by

χ̃ =

{
χ⊗ ResKn

(ψ) if ρ = ρFn
⊗ ψ,

1Kn,l0 ⊗ ResKn
(ψ) if ρ = σFn,S ⊗ ψ.

Theorem 3.4. If one puts Aχ̃ = NKn/Q(fχ̃), then

ihFn (−4i)φ(p
n)/2

α�(m′l′)C
(
c(f�), f�

) · Lα
�,Fn

(
Φ(n)

ρ

∣∣∣U(m′l′p
−1

l
−1
0

))
=

εFn
(ρ∗)

α�(p)f(ρ,p)
∏

q|Δ α�(q)ordq(Aχ̃)

×
∏
v|pΔ

Pv

(
ρ, α�(qv)

−[Fn,v:Fqv ]
)

Pv

(
ρ∗, β�(qv)−[Fn,v:Fqv ]

) × LS(E� , ρ
∗, 1)

(2π)φ(pn) · 〈f�, f�〉c(f�)
,

where ρ∗ denotes the contragredient representation to ρ.

Proof. The details are almost identical to the demonstration of [DW08, Theo-
rem 3.2]. �

Note that the right-hand side of the above identity does not depend on the
OFn

-ideals m′ or l′, therefore neither does the left-hand side.

3.2. A specialisation to the cyclotomic line. Henceforth we restrict ourselves
to considering only Hecke characters ψ factoring through Γcy

n , the Galois group of
the cyclotomic Zp-extension of Fn (this simplifies most of our formulae).

Lemma 3.5. If ψ denotes a Hecke character on Γcy
n of conductor pm, then

(a) for m > 0, both polynomials Pp(ρ,X) and Pp(ρ
∗, X) equal one;

(b) for m ≥ 0 and all places v
∣∣Δ, both Pv(ρ,X) and Pv(ρ

∗, X) equal one;

(c) for all rational primes q dividing Δ, we have ordq(Aχ̃) = pn − pn−1.

Proof. At each finite place v of Fn, the Hecke polynomial of gρ at v admits a
factorisation

X2 − C(v,gρ)X + (det ρ)†(v) =
(
X − λ(v)

)(
X − μ(v)

)
,

and likewise the dual Hecke polynomial factorises into

X2 − C(v,gρ)X + (det ρ)†
−1

(v) =
(
X − λ̂(v)

)(
X − μ̂(v)

)
.

Let us further define τ = ρFn
or τ = σFn,S , depending on whether ρ = ρFn

⊗ ψ or
ρ = σFn,S ⊗ ψ. By its very definition

Pp(τ ⊗ ψ±1, X) =
(
1− (ψ±1)†(p)λ(p)X

)
×
(
1− (ψ±1)†(p)μ(p)X

)
;

however, ψ is non-trivial if m > 0, therefore (ψ±1)†(p) = 0 which proves (a).
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Secondly if ψ is the trivial character and v
∣∣Δ, then Pv(τ,X) = 1 because each

prime vn of OKn
above v ramifies in the extension Kn

(
Δ1/pn)

/Kn, which means
vn divides the moduli of both Hecke characters χ and 1Kn,l0 . On the other hand,

if ψ is a non-trivial character of p-power conductor, then
(
Vl(τ ) ⊗ ψ±1

)IFn,v ∼=
Vl(τ )

IFn,v ⊗ ψ±1, whence

Pv

(
τ ⊗ ψ±1, X

)
= Pv

(
τ, ψ(v)±1X

)
= 1.

Finally part (c) was already proven in [DW08, Lemma 3.1]. �

Corollary 3.6. If either ρ = ρFn
⊗ ψ or ρ = σFn,S ⊗ ψ with ψ factoring through

Γcy
n , then

RS

(
E� , ρ

)
= K�,Fn

× 1

α�(m′l′)
· Lα

�,Fn

(
Φ(n)

ρ

∣∣∣U(m′
l
′
p
−1

l
−1
0

))
,

where the constant

K�,Fn
:=

ihFn (−4i)φ(p
n)/2

∏
q|Δ α�(q)

pn−pn−1

C
(
c(f�), f�

) × ι−1
∞

⎛⎝ 〈
f�, f�

〉
c(f�)(

− Ω+
f�
Ω−

f�

)[Fn:Q]

⎞⎠ ∈ Q.

Proof. Merging Theorem 3.4 and Lemma 3.5, and observing that the ratio of Vat-

sal’s period to its automorphic cousin is exactly
(
− Ω+

f�
Ω−

f�

)[Fn:Q]
to
〈
f�, f�

〉
c(f�)

,

the result follows. �

Applying Atkin-Lehner theory, we know the linear functional Lα
�,Fn

decomposes
into a finite linear combination of the Fourier coefficients. Therefore there exist
finitely many ideals ni and fixed algebraic numbers �α�,Fn

(ni), such that

(1) Lα
�,Fn

(Θ) =
∑
i

C(ni,Θ)× �α�,Fn
(ni)

for all elements Θ ∈ M2(c0).
Let us put θKn,ρ = χ or θKn,ρ = 1Kn,l0 , according to whether ρ = ρFn

⊗ ψ or

ρ = σFn,S⊗ψ. The λ-component of each Fourier coefficient C
(
ξ,Φ

(n)
ρ

)
is then equal

to the finite summation∑
ξ=ξ1+ξ2

∑
a�OK,

aā=ξ1 t̃
−1
λ

θ†Kn,ρ
(a) · ψ†(ξ1t̃

−1
λ )

∑
ξ̃2=b̃c̃,
c∈OFn

,

b∈t̃λ

(
det
(
IndFn

Kn
(θKn,ρ)

)†)−1

(c̃) · ψ†(c̃)−2.

It follows immediately that for all n � OFn
,

(2) C
(
n,Φ

(n)
ρFn⊗ψ

)
≡ C

(
n,Φ

(n)
σFn,S⊗ψ

)
mod MCp

as the individual values of θKn,ρ = χ and θKn,ρ = 1Kn,l0 differ by at most an
element of the maximal ideal of Cp; in other words, one has

∣∣χ(a)−1Kn,l0(a)
∣∣
p
< 1

for all ideals a of OKn
. Combining equations (1) and (2) with Corollary 3.6 above,

we deduce that∣∣∣RS

(
E� , ρFn

⊗ ψ
)
−RS

(
E� , σFn,S ⊗ ψ

)∣∣∣
p

< pordp

(
α�(m

′)
)
×max

{
T (m′

l
′)

�,Fn

(
ρFn

)
, T (m′

l
′)

�,Fn

(
σFn,S

)}
,
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where for either � = ρFn
or � = σFn,S , the respective p-integrality bound is given

by

(3) T (m′
l
′)

�,Fn
(�) :=

∣∣∣K�,Fn

∣∣∣
p
× sup

{∣∣∣Lα
�,Fn

(
Φ

(n)

⊗ψ

∣∣∣U(m′l′p
−1

l
−1
0

)) ∣∣∣
p

for each ψ : Γcy
n → C×} .

Finally, let us now make the minimal choices of exponent

m′ = pf(ρFn⊗ψ,p) and l′ = c(gρFn⊗ψ) · p−f(ρFn⊗ψ,p) · l20.

Setting T�,Fn
:= max

{
T (m′

l
′)

�,Fn

(
ρFn

)
, T (m′

l
′)

�,Fn

(
σFn,S

)}
, we have shown the following.

Theorem 3.7. For each character ψ on Γcy
n and �∈{1, 2}, if the constant T�,Fn

≤1,
then ∣∣∣RS

(
E� , ρFn

⊗ ψ
)
−RS

(
E� , σFn,S ⊗ ψ

)∣∣∣
p

< pordp(α�(p))×f(ρFn⊗ψ,p).

In Section 5.1 we will discuss how, under a certain Hypothesis (MS)p, it follows
that T�,Fn

≤ 1. In particular, if E� has good ordinary reduction at p, then α�(p) ∈
Z×
p ; hence

(4)
∣∣RS

(
E� , ρFn

⊗ ψ
)
−RS

(
E� , σFn,S ⊗ ψ

)∣∣
p

< 1.

If E� has good supersingular reduction at p, then

pordp(α�(p))×f(ρFn⊗ψ,p) = pf
(
IndQ

Fn
(ρFn⊗ψ), p

)/
2

since
∣∣α�(p)

∣∣
p
= p−1/2, and the exponent grows rapidly with the conductor of the

character ψ. Moreover, under Hypothesis (Vat) stated in Section 4.1, we show in
Theorem 4.5(ii), (iii) that for ψ = 1,∣∣∣RS

(
E� , σFn,S

)∣∣∣
p

≤ pf(σFn ,p)/2+1 .

In fact, pf(σFn ,p) =
∣∣DiscQ(μpn )

∣∣ = pnp
n−(n+1)pn−1

hence in the supersingular case,
one deduces:
(3.2.1) if

∣∣RS

(
E� , ρFn

)∣∣
p
=
∣∣RS

(
E� , σFn,S

)∣∣
p
, then∣∣RS

(
E� , ρFn

)
−RS

(
E� , σFn,S

)∣∣
p

< p(np
n−(n+1)pn−1+2)/2 ;

(3.2.2) if
∣∣RS

(
E� , ρFn

)∣∣
p
<
∣∣RS

(
E� , σFn,S

)∣∣
p
, then∣∣RS

(
E� , ρFn

)
−RS

(
E� , σFn,S

)∣∣
p

≤ p(np
n−(n+1)pn−1+2)/2 ;

(3.2.3) if
∣∣RS

(
E� , ρFn

)∣∣
p
>
∣∣RS

(
E� , σFn,S

)∣∣
p
, then∣∣RS

(
E� , ρFn

)
−RS

(
E� , σFn,S

)∣∣
p

< pf(ρFn ,p)/2 .

Note that the power of p on the right-hand side of (3.2.3) is given by pf(ρFn ,p)/2 =∣∣DiscQ(Δ1/pn )

∣∣−1/2

p
.
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3.3. Computing L-values in the supersingular case. Let E be an elliptic
curve over Q. Recall p was an odd prime, and Δ > 1 a p-power free integer. For
any self-dual Artin representation � which factors through Q(μp,

p
√
Δ)/Q, we will

consider

LE(�) :=
εp(�)

α
f(
,p)
p

×
Pp(�, α

−1
p )

Pp(�, β
′−1
p )

·
L(pΔ)(E, �, 1)(

Ω+(E)Ω−(E)
)dim(
)/2

.

Here εp(�) is the local epsilon factor of � at p. We again define αp, βp to be the roots
of the local polynomial Pp(E,X) = X2 − tp(E)X + p ; when E has good ordinary
reduction at p, we always choose αp to be the root which is a p-adic unit.

Throughout this section, we will focus our attention on the two self-dual Artin
representations

σ1 = IndQ
Q(μp)

(1) and ρ1 = IndQ
Q(μp)

(χ),

where χ is a non-trivial character of Gal
(
Q(μp,

p
√
Δ)/Q(μp)

)
. In the paper [DD07],

at ordinary primes p �= 2 the Dokchitsers compiled extensive numerical evidence
supporting the congruence

(5) LE(σ1) ≡ LE(ρ1) mod p.

These experiments were motivated by recent developments in non-commutative
Iwasawa theory, since LE(ρ1) is the special value of a p-adic L-function associated
to the motive h1(E)⊗ ρ1. We will establish that this congruence (5) is true in the
final section (and a lot more besides), under an assumption on the p-integrality of
certain modular symbols; see Theorem 5.6.

Now suppose that E has good supersingular reduction at p. Then
Theorem 3.7 implies a congruence holds modulo p−f(ρ1,p)/2 · MCp

, as the Néron
periods coincide with Vatsal’s. Given the special values may not be p-adically
integral, one instead predicts that∣∣∣LE(σ1)− LE(ρ1)

∣∣∣
p

≤ p
f(ρ1, p)−1

2 , with
∣∣LE(σ1)

∣∣
p
,
∣∣LE(ρ1)

∣∣
p

≤ pf(ρ1, p)/2.

These inequalities mirror what occurs in the p-ordinary situation, and can be further
refined.

Lemma 3.8.
(i) f(σ1, p) = p− 2;
(ii) if Δ > 1 is a (p− 1)st-power free integer, then

f(ρ1, p) =

{
p if Δp−1 �≡ 1 ( mod p2),

p− 2 if Δp−1 ≡ 1 ( mod p2).

Proof. Part (i) follows from the equality pf(σ1,p) =
∣∣DiscQ(μp)

∣∣, together with the

fact that DiscQ(μp) = (−1)(p−1)/2×pp−2 (e.g., see [Was97, Prop 2.7]). To show part

(ii), one simply observes that cond(ρ1) =
∣∣DiscQ(Δ1/p)

∣∣; then by the main result of

[Wes10],

DiscQ(Δ1/p) =

{
(−1)(p−1)/2 × pp ×Δp−1 if Δp−1 �≡ 1 ( mod p2),

(−1)(p−1)/2 × pp−2 ×Δp−1 if Δp−1 ≡ 1 ( mod p2).

�
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Bearing in mind the upper bounds (3.2.1)-(3.2.3) at n = 1, we therefore conjec-
ture

(6)
∣∣∣LE(σ1)− LE(ρ1)

∣∣∣
p

≤ p(p−1)/2 and
∣∣LE(σ1)

∣∣
p
,
∣∣LE(ρ1)

∣∣
p

≤ pp/2.

In fact, if LE(ρ1) = 0, then we make a stronger prediction than (3.2.2), namely
that

(7)
∣∣LE(σ1)− LE(ρ1)

∣∣
p
=
∣∣LE(σ1) − 0

∣∣
p

≤ p(p−3)/2.

We asked Thomas Ward to check whether the inequalities (6) and (7) hold nu-
merically, and the following results are entirely due to his efforts. The calcula-
tion is largely the same as in the ordinary case (which was already carried out in
[DW08, §6.1]), and he was able to adapt the methods from [DD07]. In the su-
persingular case he only considered primes where tp(E) = 0, so αp =

√−p and
βp = −√−p are the two roots of the polynomial X2+ p – they are both non p-adic
units, and no longer lie in Qp.

In MAGMA one creates the field Qp(π) where π is a fixed root of X2 + p; this
field is a totally ramified quadratic extension of Qp, with uniformising element π.
One then computes L-values by setting αp = π. He deliberately chose cases in
which p,NE ,Δ are pairwise coprime, and such that L(E, σ1, 1) �= 0.

Notation. To calculate the algebraic part of the Artin-twisted L-values, let us write

L∗(E, σ1) :=
√∣∣DiscQ(μp)

∣∣ · L(E, σ1, 1)(
2Ω+(E)Ω−(E)

)(p−1)/2

and

L∗(E, ρ1) :=
√∣∣DiscQ(Δ1/p)

∣∣ · L(E, ρ1, 1)(
2Ω+(E)Ω−(E)

)(p−1)/2

which are rational numbers; one can then compute LE(σ1) and LE(ρ1) as elements
of Qp(π).

When both LE(σ1) and LE(ρ1) are p-integral, the numerical evidence supports
that they are congruent modulo π. Likewise if they are non-p-integral, we found
that (6) and (7) are satisfied, for each elliptic curve E and supersingular prime p
considered here.

Unfortunately there are serious computational difficulties involved in calculating
L(E, ρ1, 1). The conductor of this Artin twist is given by N(E, ρ1) = Np−1

E · N2
ρ1

(since NE and Nρ1
were chosen to be coprime) which grows very quickly with

the prime p, and this dramatically slows down the computation. For this reason
the tables are restricted mostly to the case p = 3, although there is one example
exhibited for p = 5.

Table 1 lists the value of L∗(E, σ1) for each case of E and p (which does not
depend on Δ).

Tables 2, 3, 4, 5, 6, 7, 8, and 9 give the results for p = 3. Table 10 gives the
example for p = 5.



8062 DANIEL DELBOURGO AND ANTONIO LEI

Table 1. Values of L∗(E, σ1)

p E L∗(E, σ1)

3 17A(1) 2−2

3 32A(1) 2−2

3 56A(1) 2−2

3 62A(1) 2−2

3 80A(1) 2−1

3 161A(1) 2−1

3 182A(1) 5

3 200C(1) 2

5 14A(1) 2−1

Table 2. p = 3, E = 17A(1) : y2 + xy + y = x3 − x2 − x− 14

Δ L∗(E, ρ1) LE(σ1) LE(ρ1)

2 22 2.π−3 + 2.π−2 +O(π3) 2.π−3 + 2.π−1 +O(π3)

5 22 2.π−3 + 2.π−2 +O(π1) 2.π−3 +O(π1)

7 22 1.π−3 + 1.π−2 + 2.π−1 +O(π0) 1.π−3 + 2.π−1 +O(π1)

10 22 1.π−3 + 1.π−2 + 2.π−1 +O(π0) 1.π−3 + 1.π−2 + 1.π−1 +O(π0)

11 0 1.π + 1.π2 + 2.π3 +O(π4) 0

13 26 1.π−3 + 1.π−2 + 1.π−1 +O(π0) 1.π−3 + 2.π−1 +O(π1)

14 22 2.π−3 + 2.π−2 + 1.π−1 +O(π0) 2.π−3 +O(π1)

19 0 1.π + 1.π2 +O(π7) 0

22 2234 2.π + 2.π2 +O(π3) 1.π5 +O(π7)

23 24 2.π−3 + 2.π−2 + 1.π−1 +O(π0) 2.π−3 + 1.π−1 +O(π1)

26 22 2.π−3 + 2.π−2 + 2.π−1 +O(π0) 2.π−3 + 2.π−2 +O(π1)

29 0 1.π3 + 1.π4 +O(π7) 0

31 22 1.π−3 + 1.π−2 + 2.π−1 +O(π0) π−3 + 1.π−1 +O(π3)

35 22 2.π−3 + 2.π−2 + 1.π−1 +O(π0) 2.π−3 + 2.π−2 +O(π3)

37 22 1.π−3 + 1.π−2 + 1.π−1 +O(π0) π−3 + 1.π−2 + 1.π−1 +O(π0)

38 22.32 2.π + 2.π2 +O(π7) 2.π + 2.π3 +O(π5)

41 24.32 2.π3 + 2.π4 +O(π5) 2.π + 1.π3 +O(π5)
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Table 3. p = 3, E = 32A(1) : y2 = x3 + 4x

Δ L∗(E, ρ1) LE(σ1) LE(ρ1)

5 24 2.π−3 + 2.π−2 + 1.π1 +O(π4) 2.π−3 + 1.π−1 + 2.π3 +O(π4)

7 22 1.π−3 + 1.π−2 + 1.π−1 +O(π4) 1.π−3 + 2.π−1 + 2.π3 +O(π4)

11 0 1.π1 + 1.π2 + 2.π3 +O(π8) 0

13 24 1.π−3 + 1.π−2 + 2.π−1 +O(π4) 1.π−3 + 1.π1 +O(π4)

17 22 2.π−3 + 2.π−2 + 2.π−1 +O(π4) 2.π−3 + 2.π−2 + 2.π1 +O(π4)

19 22 1.π−3 + 1.π−2 + 2.π−1 +O(π4) 1.π−3 + 1.π−2 + 1.π−1 +O(π4)

23 0 1.π1 + 1.π2 + 2.π3 +O(π8) 0

29 22 2.π−3 + 2.π−2 + 1.π1 +O(π4) 2.π−3 + 2.π−1 + 1.π3 +O(π4)

31 24 1.π−3 + 1.π−2 + 1.π1 +O(π4) 1.π−3 + 2.π1 + 2.π3 +O(π4)

35 22 2.π−3 + 2.π−2 + 2.π−1 +O(π4) 2.π−3 + 2.π−2 + 1.π3 +O(π4)

37 22 1.π−3 + 1.π−2 + 1.π−1 +O(π4) 1.π−3 + 1.π−2 + 1.π−1 +O(π4)

41 22 2.π−3 + 2.π−2 + 2.π−1 +O(π4) 2.π−3 + 1.π1 + 1.π3 +O(π4)

43 24 1.π−3 + 1.π−2 + 1.π−1 +O(π4) 1.π−3 + 1.π−1 + 1.π3 +O(π4)

47 0 1.π1 + 1.π2 + 2.π5 +O(π8) 0

Table 4. p = 3, E = 56A(1) : y2 = x3 + x+ 2

Δ L∗(E, ρ1) LE(σ1) LE(ρ1)

5 22 2.π−3 + 2.π−2 + 1.π1 +O(π4) 2.π−3 + 2.π1 + 2.π3 +O(π4)

11 22 2.π−3 + 2.π−2 + 2.π−1 +O(π4) 2.π−3 + 2.π−1 + 2.π1 +O(π4)

13 0 1.π1 + 1.π2 + 1.π5 +O(π8) 0

17 0 2.π1 + 2.π2 + 2.π3 +O(π8) 0

19 0 1.π1 + 1.π2 + 1.π3 +O(π8) 0

23 0 1.π1 + 1.π2 + 2.π3 +O(π8) 0

29 22.32 1.π3 + 1.π4 + 2.π7 +O(π10) 2.π1 + 2.π3 + 1.π7 +O(π8)

31 22.32 1.π1 + 1.π2 + 2.π3 +O(π8) 1.π1 + 1.π3 + 1.π7 +O(π8)

37 22 1.π−3 + 1.π−2 + 1.π−1 +O(π4) 1.π−3 + 1.π−2 + 1.π−1 +O(π4)

41 24 2.π−3 + 2.π−2 + 2.π1 +O(π4) 2.π−3 + 1.π−1 + 2.π1 +O(π4)

43 0 1.π1 + 1.π2 + 2.π7 +O(π8) 0

47 24 2.π−3 + 2.π−2 + 1.π1 +O(π4) 2.π−3 + 2.π1 +O(π4)
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Table 5. p = 3, E = 62A(1) : y2 + xy + y = x3 − x2 − x+ 1

Δ L∗(E, ρ1) LE(σ1) LE(ρ1)

5 22 2.π−3 + 2.π−2 + 1.π1 +O(π4) 2.π−3 + 2.π1 + 2.π3 +O(π4)

7 24 1.π−3 + 1.π−2 + 1.π−1 +O(π4) 1.π−3 + 1.π−1 + 1.π1 +O(π4)

11 22.32 1.π1 + 1.π2 + 2.π3 +O(π8) 2.π1 + 2.π3 + 2.π5 +O(π8)

13 0 1.π1 + 1.π2 + 1.π5 +O(π8) 0

17 0 2.π1 + 2.π2 + 2.π3 +O(π8) 0

19 22 1.π−3 + 1.π−2 + 2.π−1 +O(π4) 1.π−3 + 1.π−2 + 1.π−1 +O(π4)

23 24 2.π−3 + 2.π−2 + 2.π−1 +O(π4) 2.π−3 + 1.π−1 + 1.π1 +O(π4)

29 22 2.π−3 + 2.π−2 + 1.π−1 +O(π4) 2.π−3 + 2.π−1 + 1.π3 +O(π4)

35 22 2.π−3 + 2.π−2 + 2.π−1 +O(π4) 2.π−3 + 2.π−2 + 1.π3 +O(π4)

37 24 1.π−3 + 1.π−2 + 1.π1 +O(π4) 1.π−3 + 1.π−2 + 2.π3 +O(π4)

41 0 2.π3 + 2.π4 + 2.π5 +O(π10) 0

43 22.32 1.π5 + 1.π6 + 2.π7 +O(π12) 1.π1 + 2.π3 + 2.π5 +O(π8)

47 22 2.π−3 + 2.π−2 + 1.π1 +O(π4) 2.π−3 + 2.π−1 + 1.π1 +O(π4)

Table 6. p = 3, E = 80A(1) : y2 = x3 − 7x+ 6

Δ L∗(E, ρ1) LE(σ1) LE(ρ1)

7 23 2.π−3 + 2.π−2 + 1.π−1 +O(π4) 2.π−3 + 1.π−1 + 2.π1 +O(π4)

11 23 1.π−3 + 1.π−2 + 1.π3 +O(π4) 1.π−3 + 2.π3 +O(π4)

13 23 2.π−3 + 2.π−2 + 2.π−1 +O(π4) 2.π−3 + 2.π−1 + 1.π1 +O(π4)

17 23 1.π−3 + 1.π−2 + 2.π3 +O(π4) 1.π−3 + 1.π−2 + 2.π−1 +O(π4)

19 0 2.π1 + 2.π2 + 1.π7 +O(π8) 0

23 23 1.π−3 + 1.π−2 + 1.π−1 +O(π4) 1.π−3 + 2.π−1 + 1.π1 +O(π4)

29 29 1.π−3 + 1.π−2 + 1.π−1 +O(π4) 1.π−3 +O(π4)

31 0 2.π1 + 2.π2 + 1.π3 +O(π8) 0

37 23 2.π−3 + 2.π−2 + 2.π−1 +O(π4) 2.π−3 + 2.π−2 + 2.π−1 +O(π4)

41 23.34 1.π3 + 1.π4 + 1.π9 +O(π10) 1.π5 + 2.π7 + 1.π11 +O(π12)

43 23.32 2.π5 + 2.π6 + 1.π7 +O(π12) 2.π1 + 1.π3 + 2.π7 +O(π8)
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Table 7. p = 3, E = 161A(1) : y2 + xy + y = x3 − x2 − 9x+ 8

Δ L∗(E, ρ1) LE(σ1) LE(ρ1)

2 2 1.π−3 + 1.π−2 + 2.π−1 +O(π0) 1.π−3 + 1.π−1 +O(π2)

5 23 1.π−3 + 1.π−2 + 2.π−1 +O(π0) 1.π−3 + 2.π−1 +O(π1)

10 2 2.π−3 + 2.π−2 + 1.π−1 +O(π0) 2.π−3 + 2.π−2 + 1.π−1 +O(π0)

11 23 1.π−3 + 1.π−2 +O(π0) 1.π−3 + 1.π−2 +O(π0)

13 23 2.π−3 + 2.π−2 + 1.π−1 +O(π0) 2.π−3 + 2.π−1 +O(π1)

17 2 1.π−3 + 1.π−2 +O(π3) 1.π−3 + 1.π−2 +O(π1)

19 2 2.π−3 + 2.π−2 + 1.π−1 +O(π0) 2.π−3 + 2.π−2 + 1.π−1 +O(π0)

22 25 2.π−3 + 2.π−2 +O(π3) 2.π−3 +O(π3)

26 2 1.π−3 + 1.π−2 + 1.π−1 +O(π0) 1.π−3 + 1.π−2 +O(π1)

29 25 1.π−3 + 1.π−2 + 1.π−1 +O(π0) 1.π−3 + 2.π−1 +O(π4)

31 2.32 2.π5 + 2.π6 +O(π11) 2.π + 2.π3 +O(π7)

34 25 2.π−3 + 2.π−2 +O(π3) 2.π−3 + 2.π−1 +O(π1)

37 2 2.π−3 + 2.π−2 + 2.π−1 +O(π0) 2.π−3 + 2.π−2 + 1.π−1 +O(π0)

38 27 1.π−3 + 1.π−2 + 1.π−1 +O(π0) 1.π−3 + 1.π−1 +O(π1)

Table 8. p = 3, E = 182A(1) : y2 + xy + y = x3 − x2 + 866x+ 6445

Δ L∗(E, ρ1) LE(σ1) LE(ρ1)

5 24.5 1.π−3 + 1.π−2 + 2.π−1 +O(π0) 1.π−3 + 2.π−1 +O(π3)

11 22.5.72 1.π−3 + 1.π−2 +O(π1) 1.π−3 +O(π3)

17 22.325 1.π−3 + 1.π−2 +O(π3) 1.π−3 + 1.π−2 +O(π1)

19 24.5 2.π−3 + 2.π−2 + 1.π−1 +O(π0) 2.π−3 + 2.π−2 + 2.π−1 +O(π0)

23 22.53 1.π−3 + 1.π−2 +O(π1) 1.π−3 + 1.π−1 +O(π1)

29 22.5 1.π−3 + 1.π−2 + 2.π−1 +O(π0) 1.π−3 + 1.π−1 +O(π1)

31 28.5 2.π−3 + 2.π−2 +O(π3) 2.π−3 + 1.π−1 +O(π1)

37 24.5 2.π−3 + 2.π−2 + 2.π−1 +O(π0) 2.π−3 + 2.π−2 + 2.π−1 +O(π0)

41 26.32.5 1.π3 + 1.π4 +O(π6) 1.π + 1.π3 +O(π5)

43 26.5 2.π−3 + 2.π−2 + 1.π−1 +O(π0) 2.π−3 + 2.π−1 +O(π1)
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Table 9. p = 3, E = 200C(1) : y2 = x3 − 50x+ 125

Δ L∗(E, ρ1) LE(σ1) LE(ρ1)

7 23 2.π−3 + 2.π−2 + 2.π−1 +O(π4) 2.π−3 + 1.π−1 + 2.π1 +O(π4)

11 23 1.π−3 + 1.π−2 + 2.π−1 +O(π4) 1.π−3 + 2.π3 +O(π4)

13 0 2.π1 + 2.π2 + 1.π3 +O(π8) 0

17 23 1.π−3 + 1.π−2 + 2.π−1 +O(π4) 1.π−3 + 1.π−2 + 2.π−1 +O(π4)

19 23 2.π−3 + 2.π−2 + 2.π−1 +O(π4) 2.π−3 + 2.π−2 + 2.π−1 +O(π4)

23 23 1.π−3 + 1.π−2 + 1.π1 +O(π4) 1.π−3 + 2.π−1 + 1.π1 +O(π4)

29 25 1.π−3 + 1.π−2 + 1.π1 +O(π4) 1.π−3 + 2 .π−1 +O(π4)

31 27 2.π−3 + 2.π−2 + 1.π−1 +O(π4) 2.π−3 + 1.π−1 + 2.π1 +O(π4)

37 25 2.π−3 + 2.π−2 + 1.π−1 +O(π4) 2.π−3 + 2.π−2 + 1.π3 +O(π4)

Table 10. p = 5, E = 14A(1) : y2 + xy + y = x3 + 4x− 6

Δ L∗(E, ρ1) LE(σ1) LE(ρ1)

3 23.32 2.π−5 + 1.π−4 + 1.π−3 +O(π−2) 2.π−5 + 4.π−3 +O(π−1)

4. The congruence between RS(E1, σFn
) and RS(E2, σFn

)

The main obstacle that prevents us from relating RS(E1, ρFn
) and RS(E2, ρFn

)

p-adically is that the representation ρn = IndQFn

(
ρFn

)
is irreducible, so the ρn-

twisted L-functions do not split. However, because RS(E� , ρFn
) and RS(E� , σFn

)
are already connected via a mod p congruence and as the induced representation
σn = IndQFn

(
σFn

)
splits completely into a sum of characters, the corresponding

p-adic L-values RS(E� , σFn
) decompose into a φ(pn)-fold product “

∏
η . . . ”.

One can therefore obtain the desired mod p congruence indirectly, by instead
showing that each η-component of RS(E1, σFn

) and RS(E2, σFn
) in the product

decomposition is congruent. We begin by recalling the method of Vatsal [Vat99],
which works for classical cusp forms over Q. We next use his theorem repeatedly,
to obtain a mod p congruence for each of the η-twists.

4.1. A review of Vatsal’s results. Fix an integer M = Nps ≥ 4, with N coprime
to p. Let F =

∑
tm(F)qm and G =

∑
tm(G)qm be normalised Hecke eigenforms

of weight k ≥ 2 on the congruence subgroup Γ1(M) ⊂ SL2(Z). We choose a finite
extension K/Qp, whose ring of integers OK contains

{
tm(F)

}
m
∪
{
tm(G)

}
m
. If π

is a uniformiser of OK , we suppose that

tm(F) ≡ tm(G) (mod πr) for every m ≥ 1,

and for a fixed r ≥ 1; thus it makes sense to write F ≡ G (mod πr).
Let hk = hk

(
Γ1(M),OK

)
denote the OK-algebra generated by the Hecke oper-

ators Tn, acting on the cusp forms Sk

(
Γ1(M),OK

)
. The congruence class of F and
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G determines a maximal ideal m of hk

(
Γ1(M),OK

)
, and a residual representation

ρm : Gal(Q/Q) → GL2

(
hk

(
Γ1(M),OK

)/
m
)

such that Tr
(
ρm(Frobl)

)
= Tl at all primes l � Np.

Remark. Assume now that ρm is irreducible. The localised ring hk,m⊗Q is Artinian,
and there exist surjectiveK-algebra mappings πF , πG : hk,m⊗Q � K corresponding
to both F and G. As hk,m ⊗ Q decomposes into a direct product of local factors,
we shall denote by RF and RG the respective components through which πF and
πG factor.

We write Symn(OK) for the homogeneous polynomials of degree n, with coeffi-
cients in OK . The Hecke algebra hk

(
Γ1(M),OK

)
acts naturally on

H1
(
Γ1(M), Symk−2(OK)

)
, and also on the parabolic cohomology

H1
P

(
Γ1(M), Symk−2(OK)

)
; we can decompose both these cohomology groups into

±-eigenspaces under the action of complex conjugation.
Henceforth we shall assume the following conditions from [Vat99] hold for F

and G.

Hypothesis (Vat).
(i) The residual representation ρm is irreducible;
(ii) the local factors satisfy RF = RG = K;
(iii) there are isomorphisms of hk

(
Γ1(M),OK

)
-modules,

H1
(
Γ1(M), Symk−2(OK)

)±
m
= H1

P

(
Γ1(M), Symk−2(OK)

)±
m

∼= h∗
k,m

= HomOK

(
hk,m,OK

)
m
;

(iv) in particular, H1
(
Γ1(M), Symk−2(OK)

)
is torsion-free.

As explained in §1.3 of [Vat99] there exist canonical periods Ω±
F and Ω±

G , obtained
from cutting out the F- and G- isotypic pieces from the parabolic cohomology of
the modular curve X1(M). At weight k = 2 and trivial nebentypus, they agree (up
to a unit) with the usual Néron periods Ω±(EF) and Ω±(EG), associated to the
modular elliptic curves EF , EG ⊂ Jac

(
X1(M)

)
.

The following result is Proposition 1.7 and §1.9 in [Vat99].

Proposition 4.1. If η is a Dirichlet character, then for all integers m such that
0 ≤ m ≤ k − 2:

τ (η−1) ·
(
k − 2

m

)
·m! · L(h, η,m+ 1)

(−2πi)m+1Ω
sign(η)
h

∈ OK ,

where h = F or G, and τ (η−1) denotes the Gauss sum associated to η−1. Further-
more,

τ (η−1) ·
(
k − 2

m

)
·m! · L(F , η,m+ 1)

(−2πi)m+1Ω
sign(η)
F

≡ τ (η−1) ·
(
k − 2

m

)
·m! · L(G, η,m+ 1)

(−2πi)m+1Ω
sign(η)
G

mod πr.

Corollary 4.2. If F and G are ordinary at p, then(
1− αF (p)

−1
)2 · L(F , 1)

−2πiΩ+
F

≡
(
1− αG(p)

−1
)2 · L(G, 1)

−2πiΩ+
G

mod πr,
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where αF (p) and αG(p) denote the p-adic unit roots for the respective Hecke poly-
nomials at p.

Proof. Let Lp(F) and Lp(G) be the p-adic L-functions over the Zp-cyclotomic ex-
tension of Q, associated to F and G, respectively. Using [Vat99, Theorem 1.10],
then Proposition 4.1 implies

Lp(F) ≡ Lp(G) mod πrOK [[X]].

The result follows upon evaluating both Lp(F) and Lp(G) at the trivial character
η = 1. �

The situation is quite different in the non-ordinary case, because the p-adic L-

functions are not defined over OK [[X]], and the quantity
(
1 − αh(p)

−1
)2 · L(h,1)

−2πiΩ+
h

may now not lie inside OK . Nevertheless, if w is the p-adic valuation of αh(p) where
h is either F or G, then∣∣∣∣∣(1− αh(p)

−1
)2 · L(h, 1)

−2πiΩ+
h

∣∣∣∣∣
p

≤ p2w

since Proposition 4.1 tells us that L(h,1)

−2πiΩ+
h

∈ OK .

Lemma 4.3. If there exist roots αF (p) and αG(p) of the Hecke polynomials for F
and G at p, such that∣∣αF (p)

∣∣
p

=
∣∣αG(p)

∣∣
p

= p−w and
∣∣∣αF (p)

−1 − αG(p)
−1
∣∣∣
p

≤ p−c

for some real numbers w, c > 0, then∣∣∣∣(1− αF (p)
−1
)2 · L(F , 1)

−2πiΩ+
F

−
(
1− αG(p)

−1
)2 · L(G, 1)

−2πiΩ+
G

∣∣∣∣∣
p

≤ max
{
p2w−r·ordp(π), pw−c

}
.

Proof. Let us write αF (p)
−1 = αG(p)

−1 + pcx where x ∈ OCp
. Expanding the

squared factor:(
1−αF (p)

−1
)2 · L(F , 1)

−2πiΩ+
F

=
(
p2cx2−2pcx

(
1−αG(p)

−1
)
+
(
1−αG(p)

−1
)2)· L(F , 1)

−2πiΩ+
F

.

As a direct consequence,∣∣∣∣∣(1− αF (p)
−1
)2 · L(F , 1)

−2πiΩ+
F

−
(
1− αG(p)

−1
)2 · L(G, 1)

−2πiΩ+
G

∣∣∣∣∣
p

≤max

{∣∣∣∣p2cx2 · L(F , 1)

−2πiΩ+
F

∣∣∣∣
p

,

∣∣∣∣− 2pcx
(
1− αG(p)

−1
)
· L(F , 1)

−2πiΩ+
F

∣∣∣∣
p

,

∣∣∣∣(1− αG(p)
−1
)2 ·( L(F , 1)

−2πiΩ+
F

− L(G, 1)
−2πiΩ+

G

) ∣∣∣∣
p

}
which is bounded above by max

{
p−2c, pw−c, p2w−ordp(π

r)
}
upon applying Propo-

sition 4.1. �
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4.2. Behaviour under twisting by σFn
. Let E1 and E2 be the two elliptic curves

as before. In this section, we shall exclusively consider

ρ = σFn
⊗ ψ =

(
IndFn

Kn
(1)
)
⊗ ψ = ψ ⊕ ψ · εKn/Fn

,

where ψ is a character on Γcy
n . Remember our goal is to study RS(E�, ρ), which is

defined to be

εFn
(ρ∗)

α�(p)f(ρ,p)
×

Pp

(
ρ, α�(p)

−[Fn,p:Fp]
)

Pp

(
ρ∗, β�(p)−[Fn,p:Fp]

) × LS(E�, ρ
∗, 1)(

(2πi)2Ω+
f�
Ω−

f�

)[Fn:Q]
.

If ψ is a non-trivial character, then Pp(ρ,X) = 1. On the other hand, if ψ is the
trivial character, then both Pp(ρ,X) and Pp(ρ

∗, X) are given by the polynomial
(1 − X)

(
1 − εKn/Fn

(p)X
)
= (1 − X). Since p is totally ramified in Fn we have

Fn,p = Fp, in which case

Pp(ρ, α�(p)
−[Fn,p:Fp])

Pp(ρ∗, β�(p)−[Fn,p:Fp])
=

1− α�(p)
−1

1− β�(p)−1
.

Corollary 4.4. If S′ = S \ {p}, then

RS(E� , ρ) =

⎧⎪⎨⎪⎩
(
1− α�(p)

−1
)2 × εFn (ρ∗)

α�(p)f(ρ,p) × LS′ (E�,ρ
∗,1)

((2πi)2Ω+
f�

Ω−
f�
)[Fn:Q] if ψ = 1,

εFn (ρ∗)
α�(p)f(ρ,p) × LS′ (E�,ρ

∗,1)

((2πi)2Ω+
f�

Ω−
f�
)[Fn:Q] if ψ �= 1.

Recall that f1 and f2 are the weight two forms corresponding to the elliptic
curves E1 and E2. We now assume the Fourier coefficients satisfy tm(E1) ≡ tm(E2)
(mod pr) if gcd(m,N1N2) = 1. If one puts M =

∏
l
∣∣N1N2

l1+max{ordl(N1),ordl(N2)},

then the depleted modular forms

F =
∑

gcd(m,N1N2)=1

tm(E1) · qm and G =
∑

gcd(m,N1N2)=1

tm(E2) · qm

are both Hecke eigenforms of weight two on Γ0(M), with their Euler factors at
N1 · N2 removed. By their construction F ≡ G (mod pr), so one can certainly
apply Vatsal’s congruences to them. We shall also require the sets S1 and S2,
defined by

S� =
{
v : v is a place of Fn satisfying v

∣∣N�

}
.

Remarks.

(a) Let σn = IndQFn
(ρ∗); we have a natural decomposition

σn =
⊕

η:Gn→C×

η ⊗ ψ0,

where Gn = Gal(Kn/Q), and ψ0 denotes any character on Gal(Q/Q) such
that ψ0

∣∣
GFn,S

= ψ−1.

(b) It follows immediately that

LS1∪S2
(E1, ρ

∗, s) =
∏
η

L(F , ψ0⊗η, s) and LS1∪S2
(E2, ρ

∗, s) =
∏
η

L(G, ψ0⊗η, s)

where the product ranges over characters η : Gn → C×.
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(c) By [SS15, Lemma 4.3], the periods Ω±
f1

and Ω±
F differ by a p-adic unit, and

likewise Ω±
f2

and Ω±
G differ by the same unit; without loss of generality, they

may be interchanged as we please.
(d) Lastly by the Artin formalism, the Gauss sum εFn

(ρ) equals∏
η:Gn→C×

τ
(
(η ⊗ ψ0)

−1
)
.

Combining (a)-(d) with Corollary 4.4, we deduce that

RS1∪S2∪{p}(E1, ρ) =
1

α1(p)f(ρ,p)
×R(F , ψ0)×

∏
η 
=1

τ
(
(η ⊗ ψ0)

−1
)
· L(F , η ⊗ ψ0, 1)(

−2πiΩ
sign(ηψ0)
F

)
and

RS1∪S2∪{p}(E2, ρ) =
1

α2(p)f(ρ,p)
×R(G, ψ0)×

∏
η 
=1

τ
(
(η ⊗ ψ0)

−1
)
· L(G, η ⊗ ψ0, 1)(

−2πiΩ
sign(ηψ0)
G

) ,

where

R(h, ψ0) :=

⎧⎪⎨⎪⎩
(
1− αh(p)

−1
)2 · L(h,1)

(−2πiΩ+
h )

if ψ = 1,

τ(ψ−1
0 )·L(h,ψ0,1)(

−2πiΩ
sign(ψ0)

h

) if ψ �= 1.

Applying Proposition 4.1, for each η : Gn → C× the quantities

τ
(
(η ⊗ ψ0)

−1
)
· L(F , η ⊗ ψ0, 1)

−2πiΩ
sign(ηψ0)
F

and τ
(
(η ⊗ ψ0)

−1
)
· L(G, η ⊗ ψ0, 1)

−2πiΩ
sign(ηψ0)
G

are p-integral; moreover for ψ non-trivial or η �= 1,

(8) τ
(
(η⊗ψ0

)−1
)·L(F , η ⊗ ψ0, 1)

−2πiΩ
sign(ηψ0)
F

≡ τ
(
(η⊗ψ0)

−1
)
·L(G, η ⊗ ψ0, 1)

−2πiΩ
sign(ηψ0)
G

(mod pr).

Note that if ψ = η = 1, by Lemma 4.3 the most we can say is

(9)
∣∣∣R(F ,1) − R(G,1)

∣∣∣
p

≤ max
{
p2w−r, pw−c

}
,

where
∣∣α1(p)

∣∣
p
=
∣∣α2(p)

∣∣
p
= p−w and

∣∣α1(p)
−1 − α2(p)

−1
∣∣
p
≤ p−c. Equations (8)

and (9) imply∣∣∣α1(p)
f(ρ,p) ·RS1∪S2∪{p}(E1, ρ)− α2(p)

f(ρ,p) ·RS1∪S2∪{p}(E2, ρ)
∣∣∣
p

≤
{
max

{
p2w−r, pw−c

}
if ψ = 1,

p−r if ψ �= 1.
(10)

Case I. p � tp(E�). Since tp(E1) ≡ tp(E2) (mod pr) and we can write tp(E�) =
α�(p) +

p
α�(p)

for � ∈ {1, 2}, it follows that

pr divides tp(E1)− tp(E2) =
(
α1(p)− α2(p)

)
×
(
1− p

α1(p) · α2(p)

)
.

As the right-hand bracket is a p-adic unit, thus∣∣∣α1(p)− α2(p)
∣∣∣
p
=
∣∣∣α1(p)

−1 − α2(p)
−1
∣∣∣
p
≤ p−r.
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One therefore has w = 0, c = r and α1(p)
f(ρ,p) ≡ α2(p)

f(ρ,p)(mod pr), in which
case (10) becomes∣∣∣RS1∪S2∪{p}(E1, ρ) − RS1∪S2∪{p}(E2, ρ)

∣∣∣
p

≤ p−r.

Case II. p | tp(E�) and ψ �= 1. If tp(E1) = tp(E2) = 0, we can choose α1(p) =

α2(p) = ±√−p in which case w = 1/2, c = ∞, and α1(p)
f(ρ,p) = α2(p)

f(ρ,p), so
that (10) becomes∣∣∣RS1∪S2∪{p}(E1, ρ)−RS1∪S2∪{p}(E2, ρ)

∣∣∣
p
≤ pf(ρ,p)·ordp(α�(p)) × p−r = pf(ρ,p)/2−r.

If p = 3 and t3(E�) �= 0, the upper bound must be weakened to pf(ρ,p)/2.

Case III. p | tp(E�) and ψ = 1. If tp(E1) = tp(E2) = 0, then the same choices as
in the previous case imply the inequality (10) reduces to∣∣∣RS1∪S2∪{p}(E1, ρ)−RS1∪S2∪{p}(E2, ρ)

∣∣∣
p
≤ pf(ρ,p)/2 × pmax{2w−r,w−∞}

= pf(ρ,p)/2+1−r.

Unfortunately if p = 3 and t3(E�) �= 0, then the best we can do is∣∣∣RS1∪S2∪{p}(E1, ρ) − RS1∪S2∪{p}(E2, ρ)
∣∣∣
p

< pf(ρ,p)/2+1

and in this situation,
∣∣RS1∪S2∪{p}(E� , ρ)

∣∣
p
≤ pf(ρ,p)/2+1 for each � ∈ {1, 2}.

Throughout we have been working with the set S1 ∪ S2 ∪ {p}. However if l is a
rational prime not lying below this set, by assumption tl(E1) ≡ tl(E2) (mod pr),
so the local L-factors satisfy

Lv(E1, ρ, 1) ≡ Lv(E2, ρ, 1) (mod pr) at all places v
∣∣l.

It follows that we may replace S1 ∪ S2 ∪ {p} above with a larger set S containing
it as a subset, yet still ensure that our congruences involving RS(E� , ρ) hold true.

Recall that the GFn
-representation

σFn
⊗ ψ =

(
IndFn

Kn
(1)
)
⊗ ψ = ψ ⊕ ψ · εKn/Fn

is reducible, and we have been assuming tm(E1) ≡ tm(E2) (mod pr) for all integers
m coprime to N1N2. To summarise our arguments so far, we have established the
following.

Theorem 4.5. Assume Hypothesis (Vat) holds for both f1 and f2, and that S1 ∪
S2 ∪ {p} ⊂ S.

(i) If E1 and E2 have good ordinary reduction at p, then

RS(E1, σFn
⊗ ψ) ≡ RS(E1, σFn

⊗ ψ) (mod pr)

and both sides of the congruence are p-integral.
(ii) If E1 and E2 have good supersingular reduction at p with tp(E1) = tp(E2) =

0, then∣∣∣RS(E1, σFn
⊗ ψ) − RS(E2, σFn

⊗ ψ)
∣∣∣
p

≤
{
pf(ρ,p)/2+1−r if ψ = 1,

pf(ρ,p)/2−r if ψ �= 1,
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where α1(p) = α2(p) = ±√−p, and

∣∣∣RS(E� , σFn
⊗ ψ)

∣∣∣
p
≤
{
pf(ρ,p)/2+1 if ψ = 1,

pf(ρ,p)/2 if ψ �= 1.

(iii) If E1 and E2 have good supersingular reduction at p with either tp(E1) �= 0
or tp(E2) �= 0,∣∣∣RS(E1, σFn

⊗ ψ) − RS(E2, σFn
⊗ ψ)

∣∣∣
p

< pf(ρ,p)/2+1

provided that
∣∣α1(p)−α2(p)

∣∣
p
<p−1/2; here

∣∣RS(E� , σFn
⊗ψ)

∣∣
p
≤pf(ρ,p)/2+1

for � ∈ {1, 2}.

Note that (i) and (ii) essentially yield congruences mod pr, whereas (iii) is a mod
p congruence. It is unlikely that the latter can be improved much, unless the two
roots α1(p) and α2(p) are sufficiently close to each other in OCp

.
Indeed the congruence in (ii) suggests that any (hypothetical!) pair of p-adic

L-functions attached to E1 and E2 over Kn should satisfy a congruence mod pr

whenever f1 and f2 do, even though such p-bounded measures do not at present
exist.

5. Combining three separate congruences

To complete the proof of Theorems 1.2 and 1.3, it is enough to establish mod p
congruences linking the following three pairs:

(i) RS(E1, ρFn
) and RS(E1, σFn

);
(ii) RS(E1, σFn

) and RS(E2, σFn
);

(iii) RS(E2, σFn
) and RS(E2, ρFn

).
We first need to check under what conditions both RS(E1, ρFn

) and RS(E2, ρFn
)

are p-integral in the case of ordinary reduction, and have controlled growth in the
supersingular case. Given the period issues for the σFn

-twists are resolved through
Vatsal’s choices of period in the previous section, morally the same periods should
work nicely for the ρFn

-twists.

5.1. Modular symbols over CM fields. Let E be a semistable elliptic curve
over Q. We begin by rewriting the Hasse-Weil L-values for E in terms of modular
symbols over the CM-extension Kn = Q(μpn) of Fn (see [Har87,Bou06]). Consider
the algebraic group G = ResKn/QGL(2) given by restricting scalars from Kn to Q.

Let πE,n denote the cuspidal automorphic representation of GL2(AKn
), corre-

sponding to the base-change of the associated newform fE ∈ S2

(
Γ0(NE)

)
up to

Kn. Then there exists an adelic L2-function F = F/Kn
: G(A) → VC, which is the

projection of the canonical primitive form associated to πE,n =
⊗

ν π
(ν)
E,n; here the

complex vector space VC is 3[Kn:Q]-dimensional.

If F0 = F
∣∣
∞ corresponds to the archimedean part

⊗
ν|∞ π

(ν)
E,n, by choosing sub-

coordinates (x, y) appropriately, we can view this as an L2-function F0 : A×
Kn

×(
Kn ⊗ Ẑ

)
→ C.



CONGRUENCES MODULO p BETWEEN ρ-TWISTED HASSE-WEIL L-VALUES 8073

Definition 5.1. For each r ∈ A×
Kn

and ϑ ∈ Kn ⊗
(
lim←−n

Z/nZ
)
, one associates the

symbol

MSE(r, ϑ) =
1[

O×
Kn

: En
] × ∫

x∈Xn,E

F0

(
rdKn

x,−ϑ
)
· d×x,

where Xn,E := K×
n,∞ +×

∏
ν OKn,ν

/
En, and En = En(r, ϑ) is any subgroup of totally

positive units u of finite index inside the ring OFn
, such that (1−u)ϑ ∈ r·

∏
ν OKn,ν

.

The above integrals are certainly well defined, and independent of the choice of
subgroup En. Also the Haar measure d×x = ⊗νd

×xν has itself been normalised so

that
∫
OKn,ν

d×xν = 1 at the finite places, whilst d×xν = d sgn(xν)∧ d|x|ν
2πi·xν

at every

archimedean place.

Proposition 5.2 (Birch’s Lemma). If χ̃ is a Hecke character over Kn of conductor
cχ̃, then

L(πE , χ̃, 1) = (2π)[Kn:Q]τKn
(χ̃) ·NKn/Q(cχ̃)

−1

×
#Cl(OKn )∑

j=1

∑
ϑ∈(OKn/cχ̃)×

χ̃(ϑrj)MSE(rjcχ̃, ϑ),

where the rj’s run over a set of representatives for Cl(OKn
).

Proof. This is demonstrated in [Har87, Section 4] over an arbitrary CM field. �

In particular, if ψ : Γcy
n → C× has finite order and if

χ̃ =

{
χ⊗ ResKn

(ψ) if � = ρFn
,

1Kn,l0 ⊗ ResKn
(ψ) if � = σFn,S ,

then L(πE, χ̃, s) = LS0
(E, �⊗ψ−1, s). Now one can identify

NKn/Q(cχ̃)

τKn (χ̃) with sgn(χ̃) ·
τKn

(
χ̃−1

)
and then by inductivity, the Gauss sum τKn

(
χ̃−1

)
coincides with the

epsilon factor εFn

(
� ⊗ ψ−1

)
. Dividing through by the period, Birch’s Lemma can

therefore be rewritten as
#Cl(OKn )∑

j=1

∑
ϑ∈(OKn/cχ̃)×

χ̃(ϑrj) ·
(2π)[Kn:Q]MSE(rjcχ̃, ϑ)

(−4π2Ω+
fE

Ω−
fE

)[Fn:Q]
(11)

= sgn(χ̃) · εFn

(
�⊗ ψ−1

)
× LS0

(E, �⊗ ψ−1, 1)

(−4π2Ω+
fE

Ω−
fE

)[Fn:Q]
.

Remarks.

(i) A result of Haran [Har87, p. 37] states that the submodule L0 of C generated
by [O×

Kn
: En] · MSE(r, ϑ) with |ϑ|v < |rj |v, is of finite-type over Z; if{

(r1, ϑ1), . . . , (rt, ϑt)
}
yields a full set of generators for L0, one can then

define the p-power number

IEn,p(Kn) := sup

{∣∣∣[O×
Kn

: En(ri, ϑi)
]∣∣∣−1

p
with i = 1, . . . , t

}
.

(ii) In Bouganis’ thesis [Bou06, p. 84] it is shown that if ξF generates the free

Z(p)-module Im
(
H

[Kn:Q]
cusp

(
Y0(NE),Z(p)

)
→ H

[Kn:Q]
cusp

(
Y0(NE),Q

))[
F
]
, there
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exists an automorphic period Ωaut
E,p(F) such that ξF = Ωaut

E,p(F) · dωF, where
dωF is the differential corresponding to F.

(iii) For a fixed commutative ring R, the inverse of τMD
R,p = τMD

R,p (Kn) ∈ R(p)

refers to the denominator occurring in the section

1− Eis : Hd
cusp

(
Y0(NE), R(p)

)
−→ Hd

c

(
Y0(NE), R(p)

)
with d = [Kn : Q];

here “Eis” above denotes the Hecke idempotent which cuts out the Eisen-
stein portion of the Manin-Drinfeld splitting in degree 2d.

(iv) Lastly, it is then explained in [Bou06, §4.4] that there is a natural contain-
ment

ιp
(
Ωaut

E,p(F)
−1 · L0

)
⊗Z Zp ⊂ τMD

Z,p · OCp
.

Definition 5.3. For every r ∈ A×
Kn

and ϑ ∈ Kn ⊗
(
lim←−n

Z/nZ
)
as before, let us

introduce the modified symbol

MSvat
E (r, ϑ) :=

(2π)[Kn:Q]

(−4π2Ω+
fE

Ω−
fE

)[Fn:Q]
×MSE(r, ϑ).

The advantage of making this modification is that MSvat
E (−,−) will take alge-

braic values, rather than purely transcendental ones as per MSE(−,−).

Corollary 5.4. At each ψ of p-power conductor with

χ̃ =

{
χ⊗ ResKn

(ψ) if � = ρFn
,

1Kn,l0 ⊗ ResKn
(ψ) if � = σFn,S ,

there is a containment

#Cl(OKn )∑
j=1

∑
ϑ∈(OKn/cχ̃)×

χ̃(ϑrj)×MSvat
E (rjcχ̃, ϑ)

∈ ι−1
∞

⎛⎝ τMD
Z,p (Kn)

IEn,p(Kn)
×

Ωaut
E,p(F)(

Ω+
fE

Ω−
fE

)[Fn:Q]

⎞⎠ · OCp
.

Proof. One simply combines Remarks (i)-(iv) above. �

We now return to the main situation in the paper, so again E1 and E2 are
two semistable elliptic curves whose Fourier coefficients satisfy tm(E1) ≡ tm(E2)
(mod p) if gcd(m,N1N2) = 1.

Hypothesis ((MS)p). For both choices � ∈ {1, 2}, the Zp-lattice generated by the
values

#Cl(OKn )∑
j=1

∑
ϑ∈(OKn/cχ̃)×

χ̃(ϑrj)×MSvat
E�

(rjcχ̃, ϑ),

where χ̃ ranges over all Hecke characters as above, is properly contained inside OCp
.

We remark that this hypothesis ensures that the algebraic L-values we study are
p-integral. Should these values turn out to be non-integral (which is clearly not
suggested by the numerical data compiled in [DD07] and in Section 3.3), then it
is possible to modify our arguments to show that analogous congruence relations
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hold, after rescaling the p-adic L-values appropriately; see Section 5.5 below for a
further discussion.

Corollary 5.4 supplies us with, of course, a larger lattice that these values are
contained in. Moreover, if one assumes that Hypothesis (Vat) is true, using Propo-
sition 4.1 one can show

#Cl(OKn )∑
j=1

∑
ϑ∈(OKn/cχ̃)×

χ̃(ϑrj)×MSvat
E�

(rjcχ̃, ϑ) ∈ OCp

for all characters χ̃ of the form 1Kn,l0 ⊗ResKn
(ψ) – we leave this as an exercise for

the reader. Henceforth we assume our finite set S of places is chosen large enough,
so that

S0 ∪ S1 ∪ S2 ⊂ S.

Recall in our calculations with the functional Lα
�,Fn

(−), we made a minimal choice
of exponents

m′ = pf(ρFn⊗ψ,p) and l′ = c(gρFn⊗ψ) · p−f(ρFn⊗ψ,p) · l20 ,

and set T�,Fn
:= max

{
T (m′

l
′)

�,Fn

(
ρFn

)
, T (m′

l
′)

�,Fn

(
σFn,S

)}
where T (m′

l
′)

�,Fn
(�) is defined in

equation (3). The following result was used to obtain both equation (4) and (3.2.1)-
(3.2.3) in Section 3.2.

Proposition 5.5. If Hypothesis (MS)p holds true, then T�,Fn
≤ 1 for both � ∈

{1, 2}.

Proof. If ρ = ρFn
⊗ ψ or ρ = σFn,S ⊗ ψ with ψ factoring through Γcy

n , then

K�,Fn
× Lα

�,Fn

(
Φ(n)

ρ

∣∣∣U(m′
l
′
p
−1

l
−1
0

)) by 3.6
= α�(m

′
l
′)×RS

(
E� , ρ

)
by 1.1
=

α�(m
′l′)

α�(p)f(ρ,p)
·

⎛⎝ Pp

(
ρ, α�(p)

−1
)

Pp

(
ρ∗, β�(p)−1

) · ∏
v∈S\S0

Lv(E� , ρ
∗, 1)

⎞⎠
× εFn

(ρ∗) LS0
(E� , �

∗, 1)

(−4π2Ω+
fE

Ω−
fE

)[Fn:Q]
.

Clearly ordp

(
α�(m

′
l
′)

α�(p)f(ρ,p)

)
≥ 0 by our choice of m′, while the bracketted term is

also p-integral. Finally, using the variant of Birch’s Lemma in equation (11), the
right-most term becomes

εFn
(ρ∗) LS0

(E� , �
∗, 1)

(−4π2Ω+
fE

Ω−
fE

)[Fn:Q]
= sgn(χ̃) ·

#Cl(OKn )∑
j=1

∑
ϑ∈(OKn/cχ̃)×

χ̃(ϑrj)×MSvat
E�

(rjcχ̃, ϑ)

which is p-integral under Hypothesis (MS)p. It follows immediately that∣∣∣∣K�,Fn
× Lα

�,Fn

(
Φ(n)

ρ

∣∣∣U(m′l′p
−1

l
−1
0

)) ∣∣∣∣
p

≤
∣∣∣∣ α�(m

′l′)

α�(p)f(ρ,p)

∣∣∣∣
p

≤ 1

for both ρ = ρFn
⊗ ψ or ρ = σFn,S ⊗ ψ; in other words T�,Fn

≤ 1, as required. �
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5.2. An improvement in the p-ordinary case. The following mod p congruence
relies on the crucial observation that in the ordinary case, there exist p-bounded
measures interpolating the special values of h1(E�) ⊗ ρFn

and h1(E�) ⊗ σFn
over

the character-space for the cyclotomic Zp-extension of Kn.
Unfortunately in the case of supersingular reduction, no one has yet constructed

bounded p-adic L-functions interpolating these L-values, so we cannot make any
improvements here. David Loeffler and Mahesh Kakde pointed out that whilst

the p-adic distributions in [Har87] are 1/2-admissible on
(
OFn

⊗ Zp

)×
, once one

projects to the cyclotomic component Gal(F∞/Fn) the corresponding measure is
only

(
[Fn : Q]/2

)
-admissible on Γcy

n , hence not uniquely defined.

Theorem 5.6.

(i) If E� has good ordinary reduction at p and Hypothesis (MS)p holds, then

RS

(
E� , ρFn

⊗ ψ
)

≡ RS

(
E� , σFn

⊗ ψ
)

mod p

at all finite characters ψ : Gal(K∞/Fn) → Q
×
p , and both sides of the con-

gruence are p-integral.
(ii) Furthermore, if Hypothesis (Vat) holds too then at infinitely many such

characters ψ above, this mod p congruence is non-trivial.

Proof. There exist p-adic L-functions Lp

(
E� , ρFn

)
and Lp

(
E� , σFn

)
in

Zp[[Gal(K∞/Kn)]]⊗Zp
Qp

satisfying at all such ψ above,

ψ
(
Lp

(
E� , ρFn

))
= ιp

(
RS

(
E� , ρFn

⊗ ψ
))

and ψ
(
Lp

(
E� , σFn

))
= ιp

(
RS

(
E� , σFn

⊗ ψ
))

.

This was proven in [Bou06,DW08], albeit with a different choice of periods from
Vatsal’s ones, and for the (possibly) smaller choice of set S0 ⊂ S.

Each value RS

(
E� , σFn

⊗ψ
)
is then p-integral because we are assuming Hypoth-

esis (MS)p, and these can vanish for only finitely many ψ since Lp

(
E� , σFn

)
�= 0.

The latter statement follows from a well-known result of Rohrlich [Roh88], implying
the non-vanishing of L(E� , ψ, 1) at all but finitely many Dirichlet twists ψ factoring
through the extension K∞/Q.

By equation (4), for all such characters ψ we deduce that RS

(
E� , ρFn

⊗ ψ
)
is

also p-integral. In fact under Hypothesis (Vat), the values RS

(
E� , σFn

⊗ψ
)
are not

divisible by p for infinitely many characters ψ, so the same must hold true for the
collection of L-values RS

(
E� , ρFn

⊗ ψ
)
. It follows that Lp

(
E� , ρFn

)
is non-zero,

and moreover

Lp

(
E� , ρFn

)
− Lp

(
E� , σFn

)
∈ Zp[[Gal(K∞/Kn)]] ∩MCp

[[Gal(K∞/Kn)]]

= p · Zp[[Gal(K∞/Kn)]].

As a direct consequence, ψ
(
Lp

(
E� , ρFn

))
− ψ

(
Lp

(
E� , σFn

))
∈ p · OCp

at all char-
acters ψ. �
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5.3. Proof of Theorems 1.2 and 1.3. The preparatory work is over, and we
can now prove the two main results in the introduction. Recall that the elliptic
curves E1 and E2 have good reduction at the prime p, their Fourier coefficients
satisfy tm(E1) ≡ tm(E2) (mod p) if gcd(m,N1N2) = 1, and also S0 ∪ S1 ∪ S2 ⊂ S.
Throughout we suppose that Hypotheses (Vat) and (MS)p are true.

First, the integrality statements in Theorems 1.2(i) and 1.3(i) follow from Propo-
sition 5.5. If we abbreviate ρFn

⊗ ψ by ρn,ψ, and σFn
⊗ ψ by σn,ψ, then∣∣RS(E1, ρn,ψ)−RS(E2, ρn,ψ)

∣∣
p
will be equal to∣∣∣RS(E1, ρn,ψ)−RS(E1, σn,ψ) +RS(E1, σn,ψ)−RS(E2, σn,ψ)

+RS(E2, σn,ψ)−RS(E2, ρn,ψ)
∣∣∣
p
≤ max

{∣∣RS(E1, σn,ψ)−RS(E2, σn,ψ)
∣∣
p
,∣∣RS(E� , ρn,ψ)−RS(E� , σn,ψ)

∣∣
p

for each � ∈ {1, 2}
}

upon applying the strong triangle inequality. Therefore, we just need to find upper
bounds for∣∣RS(E1, σn,ψ)−RS(E2, σn,ψ)

∣∣
p

and
∣∣RS(E� , ρn,ψ)−RS(E� , σn,ψ)

∣∣
p
,

which we shall do on a case-by-case basis.

Case 1. p � tp(E�). Since E1 and E2 have ordinary reduction at p, by Theorem
4.5(i) one has ∣∣RS(E1, σn,ψ)−RS(E2, σn,ψ)

∣∣
p

≤ p−1,

while Theorem 5.6(i) implies∣∣RS(E� , ρn,ψ)−RS(E� , σn,ψ)
∣∣
p

≤ p−1

hence Theorem 1.2(ii) now follows. The non-triviality assertion for infinitely many
ψ-twists is itself an immediate consequence of Theorem 5.6(ii).

Case 2a. p | tp(E�), tp(E1) = tp(E2) = 0 and ψ �= 1. Using Theorem 4.5(ii), we
deduce that ∣∣RS(E1, σn,ψ)−RS(E2, σn,ψ)

∣∣
p

≤ pf(σn,ψ,p)/2−1.

Case 2b. p | tp(E�), tp(E1) = tp(E2) = 0 and ψ = 1. Again by Theorem 4.5(ii),
one finds ∣∣RS(E1, σn,ψ)−RS(E2, σn,ψ)

∣∣
p

≤ pf(σn,ψ,p)/2.

Case 3. p | tp(E�), tp(E1) �= 0 or tp(E2) �= 0. From Theorem 4.5(iii), we conclude
that ∣∣RS(E1, σn,ψ)−RS(E2, σn,ψ)

∣∣
p

< pf(σn,ψ,p)/2+1.

Note in each of Cases 2a, 2b, and 3, one additionally knows from Theorem 3.7 that∣∣RS(E� , ρn,ψ)−RS(E� , σn,ψ)
∣∣
p

< pf(ρn,ψ,p)/2.

To complete the proof of Theorem 1.3(ii), one simply observes that f(σn,ψ, p) +
1 < f(ρn,ψ, p), unless one has n = 1, ψ = 1, Δp−1 ≡ 1 (mod p2) in which case
f(σn,1, p) = f(ρn,1, p) = p− 2 (see Lemma 3.8 for the details).
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Putting everything together in the supersingular case, if p | tp(E�), then∣∣RS(E1, ρn,ψ)−RS(E2, ρn,ψ)
∣∣
p

< max
{
pf(σn,ψ,p)/2+1, pf(ρn,ψ,p)/2

}
= pf(ρn,ψ,p)/2.

The demonstration of the two theorems from the introduction is now finished.

5.4. An application to the μ- and λ-invariants. As already mentioned in the
proof of Theorem 5.6, when p is an ordinary prime for E1 and E2, the values
RS(E�, ρFn

⊗ψ) are interpolated by the p-adic L-function Lp(E�, ρFn
) as ψ varies.

Using our modulo p congruence relation, one may deduce the following equalities
between the Iwasawa invariants of Lp(E1, ρFn

) and Lp(E2, ρFn
).

Theorem 5.7. If E1 and E2 have ordinary reduction at p, and Hypotheses (MS)p
and (Vat) hold true, then

(a) the μ-invariants of Lp

(
E1, ρFn

)
and Lp

(
E2, ρFn

)
are both zero;

(b) the λ-invariants of Lp

(
E1, ρFn

)
and Lp

(
E2, ρFn

)
will be equal.

Proof. We recall from the proof of Theorem 5.6 that Hypothesis (Vat) implies
the algebraic integers RS(E�, ρFn

⊗ ψ) are not divisible by p for infinitely many
characters ψ, which establishes assertion (a). Statement (b) itself is an immediate
consequence of [DL15, Lemma 2.1]. �

We point out that this theorem is a direct analogue of Emerton, Pollack, and
Weston’s results, concerning the Iwasawa invariants of p-adic L-functions for mod-
ular forms belonging to the same Hida family (cf. [EPW06, Theorems 1 and 2]).

5.5. Remarks on our hypotheses. Note that the Iwasawa Main Conjecture pre-
dicts the ρFn

-twisted Selmer group for E� over the cyclotomic Zp-extension should
be a Zp

[[
Γcy
n

]]
-cotorsion module; furthermore, the characteristic power series of

its Pontrjagin dual (conjecturally) equals Lp

(
E�, ρFn

)
, up to a unit of Zp

[[
Γcy
n

]]
.

Therefore, if the ρFn
-twisted Iwasawa Main Conjecture holds true, then Hypothe-

sis (MS)p must automatically be true as well, since a characteristic power series is
always p-integral.

One should, of course, ask what occurs if either of Hypotheses (Vat) or (MS)p
do not hold – here one needs to modify Theorems 1.2 and 1.3, replacing RS(E� , �)
with the rescaled version

R†
S(E� , �) := T�,Fn

×RS(E� , �).

The arguments outlined in this paper still work fine, and our results now become
hypothesis-free.

Finally, there is no need to insist that f1 and f2 only satisfy a mod p congruence;
instead one can assume their coefficients are such that tm(E1) ≡ tm(E2) (mod pr)
if gcd(m,N1N2) = 1, which is a stronger condition when r > 1 than before.

Conjecture 5.8. If E1 and E2 have good reduction at p > 2, and if S0∪S1∪S2 ⊂ S,
then∣∣∣RS(E1, ρFn

⊗ ψ)−RS(E2, ρFn
⊗ ψ)

∣∣∣
p

≤
{
p−r if p � tp(E�),

p−r+f(ρFn⊗ψ,p)/2 if p | tp(E�).

To establish this prediction for each r ≥ 2 would require a radically different ap-
proach from that outlined in this article. Nevertheless, it is certainly a problem
ripe for numerical investigation.
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