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CONVEX HULLS OF MULTIDIMENSIONAL RANDOM WALKS

VLADISLAV VYSOTSKY AND DMITRY ZAPOROZHETS

Abstract. Let Sk be a random walk in Rd such that its distribution of in-
crements does not assign mass to hyperplanes. We study the probability pn
that the convex hull conv(S1, . . . , Sn) of the first n steps of the walk does not
include the origin. By providing an explicit formula, we show that for planar
symmetrically distributed random walks, pn does not depend on the distribu-
tion of increments. This extends the well-known result by Sparre Andersen
(1949) that a one-dimensional random walk satisfying the above continuity
and symmetry assumptions stays positive with a distribution-free probability.
We also find the asymptotics of pn as n → ∞ for any planar random walk
with zero mean square-integrable increments.

We further developed our approach from the planar case to study a wide
class of geometric characteristics of convex hulls of random walks in any di-
mension d ≥ 2. In particular, we give formulas for the expected value of the
number of faces, the volume, the surface area, and other intrinsic volumes,
including the following multidimensional generalization of the Spitzer–Widom
formula (1961) on the perimeter of planar walks:

EV1(conv(0, S1, . . . , Sn)) =
n∑

k=1

E‖Sk‖
k

,

where V1 denotes the first intrinsic volume, which is proportional to the mean
width.

These results have applications to geometry and, in particular, imply the
formula by Gao and Vitale (2001) for the intrinsic volumes of special path-
simplexes, called canonical orthoschemes, which are finite-dimensional approx-
imations of the closed convex hull of a Wiener spiral. Moreover, there is a
direct connection between spherical intrinsic volumes of these simplexes and
the probabilities pn.

We also prove similar results for convex hulls of random walk bridges and,
more generally, for partial sums of exchangeable random vectors.

1. Introduction and results for planar random walks

1.1. Motivation. Let Sn = X1+· · ·+Xn be a random walk in R
d. This paper was

motivated by the following question: What is the probability that conv(S1, . . . , Sn),
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the convex hull of the first n steps of the walk, does not include the origin? This
is a natural high-dimensional generalization of the classical problem to find the
probability that a one-dimensional random walk stays positive (or negative) by time
n. In this paper we develop a combinatorial approach that answers the question
in some particular cases and, importantly, allows one to obtain further results on
expected geometric characteristics of the convex hull, including its expected number
of faces, volume, surface area, and other intrinsic volumes. Most of our main results
are presented in the form of exact non-asymptotic formulas.

Our interest in the probabilities P(0 /∈ conv(S1, . . . , Sn)) emerged from two dif-
ferent topics. First, we were interested in a multidimensional version of the one-
dimensional persistence problem of finding the probability that a stochastic process
(the random walk, in our case) stays above a certain level. Over the past ten years,
such problems have drawn a lot of attention from both mathematical and theoreti-
cal physics communities; see the survey papers by Aurzada and Simon [2] and Bray
et al. [5].

Second, we were aware of the direct connection to geometry: for random walks
with Gaussian increments, 1

2P(0 /∈ conv(S1, . . . , Sn)) equals the d-th spherical in-
trinsic volume of a certain path-simplex in R

n called the canonical orthoscheme.
This simplex is defined as the convex hull of n vectors whose Gram matrix coin-
cides with the covariance matrix of a standard Brownian motion sampled at times
1, . . . , n. Spherical intrinsic volumes are spherical analogues of classical Euclidean
intrinsic volumes. The details on this connection of our problem to geometry are
explained below in Section 4, where we also discuss the other geometric properties
of canonical orthoschemes.

We were also inspired by two famous results. By Sparre Andersen [27, Theo-
rem 2], for any one-dimensional random walk with continuous symmetric distribu-
tion of increments,

(1) P(S1 > 0, . . . , Sn > 0) =
(2n− 1)!!

(2n)!!
.

That is, the probability to stay positive does not depend on the distribution. The
other distribution-free result, which is due to Wendel [36], also concerns symmet-
ric distributions and describes convex hulls of independent identically distributed
random vectors. Let X1, . . . , Xn be such random vectors in R

d that satisfy two
additional assumptions:

(H0) P(X1 ∈ h) = 0 for any hyperplane h ⊂ R
d passing through the origin,

and the distribution of X1 is centrally symmetric, i.e.,

(S) X1
d
= −X1.

Then

(2) P(0 /∈ conv(X1, . . . , Xn)) =
1

2n−1

d−1∑
k=0

(
n− 1

k

)
.

Wendel assumed (H0) to ensure that with probability one, X1, . . . , Xn are in
general position; that is, any d of these vectors are a.s. linearly independent. We
will need the stronger assumption

(H) P(X1 ∈ h) = 0 for any affine hyperplane h ⊂ R
d,
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which in particular guarantees that any one-dimensional projection of X1 has a
continuous distribution. We will use this assumption throughout the paper.

1.2. First results. There is a similarity between the results of Sparre Andersen
and Wendel that stems from the use of combinatorial arguments in their proofs.
This motivated our first result, a distribution-free two-dimensional version of (1):

Theorem 1. Let d = 2, and assume that (H) and (S) hold. Then

(3) P(0 /∈ conv(S1, . . . , Sn)) =

n∑
k=1

(2n− 2k − 1)!!

k · (2n− 2k)!!
.

Let us discuss some corollaries. Here and below we consider the asymptotics as
n → ∞. For two positive sequences an and bn, the notation an ∼ bn means that
limn→∞ an/bn = 1.

It is not hard to obtain from (3) (see Section 6 below) that

(4) P(0 /∈ conv(S1, . . . , Sn)) ∼
log n√
πn

, d = 2.

Note that this probability is of a higher order of asymptotics than its one-dimensional
counterpart (1), where

(5)
(2n− 1)!!

(2n)!!
=

Γ(n+ 1/2)

Γ(1/2)Γ(n+ 1)
∼ 1√

πn
.

Further, since for symmetric random walks one has

P(0 /∈ conv(S1, . . . , Sn)) = P(−Sn /∈ conv(S1 − Sn, . . . , 0))

= P(Sn /∈ conv(0, S1, . . . , Sn−1)),

the expected number of updates of the convex hull is distribution-free and satisfies
n∑

k=1

P(Sk /∈ conv(0, S1, . . . , Sk−1)) ∼
√
n log n

2
√
π

, d = 2.

The other quantity, which is closely related to the probabilities

P(0 /∈ conv(S1, . . . , Sn)),

is the opening solid angle, denoted by Ωn, of the convex hull observed from the
origin. In the planar case we understand Ωn as the arc angle, and so here Ωn = 2π
if 0 belongs to the interior of the convex hull and Ωn ≤ π if otherwise.

It is easy to see1 that

(6) E

(1
2
− Ωn

|Sd−1|
)+

=
1

2
P
(
0 /∈ conv(S1, . . . , Sn)|U⊥),

where: x+ := max(0, x) for any real x; for any direction u ∈ S
d−1, the notation

·|u⊥ stands for the orthogonal projection onto the hyperplane u⊥ passing through
the origin that is orthogonal to u; and U is a random vector that is uniformly

1Indeed, consider any set A ⊂ Rd. If 0 /∈ Int(conv(A)), then by the definition of solid angle,

Ω(conv(A)) :=
∣∣∣
{ x

|x|
, x ∈ conv(A)

}∣∣∣ = 1

2

∫
Sd−1

�(
0 ∈ conv(A)|u⊥)

σ(du),

hence 1
2
− Ω(conv(A))

|Sd−1| = 1
2
P(0 /∈ conv(A|U⊥)). If 0 ∈ Int(conv(A)), the l.h.s. in the last equality

is negative (it equals −1/2) and the r.h.s. equals zero, and thus we have ( 1
2
− Ω(conv(A))

|Sd−1| )+ =

1
2
P(0 /∈ conv(A|U⊥)).
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distributed over the unit sphere S
d−1 and independent of the random walk Sn.

Since for any direction u, S̃n := Sn|u⊥, n ≥ 1, is a (d−1)-dimensional random walk
which satisfies assumptions (H) and (S) if the d-dimensional walk Sn does so, (6)
combined with (1) and (3) implies the distribution-free relations

(7) E (π − Ωn)
+ = 2π

(2n− 1)!!

(2n)!!
, d = 2,

and

(8) E (2π − Ωn)
+ = 2π

n∑
k=1

(2n− 2k − 1)!!

k · (2n− 2k)!!
, d = 3.

Hence, under the assumptions of Theorem 1, the conditional expected discrep-
ancy between the opening angles of the conic hull of conv(S1, . . . , Sn) and of a full
half-plane containing the hull is also distribution-free and satisfies

E
(
π − Ωn

∣∣ 0 /∈ conv(S1, . . . , Sn)
)
∼ 2π

log n
, d = 2.

The approach of the present paper does not allow one to generalize (3) to higher
dimensions where it gives non-sharp upper bounds; see (18) and (16) in the next
section. Based on numerical simulations for dimensions d = 3 and 4, which were
further supported by (8) in dimension three, we suggest the following hypothesis.

Conjecture. Let d ≥ 3, and assume that (H) and (S) hold. Then the probabilities
P(0 /∈ conv(S1, . . . , Sn)) are distribution-free for any n ≥ 1.

Since the publication on arXiv of the first version of this paper, this conjecture
has been fully resolved in our subsequent paper [12, Theorem 2.3], coauthored with
Z. Kabluchko. This new work uses an entirely different method, which, however,
applies only for perfectly symmetric distributions of increments.

1.3. Asymptotic results for general planar random walks. On the contrary,
the approach of the present paper allows us, with an additional effort, to obtain an
asymptotic version of Theorem 1 for asymmetric planar random walks. It also gives
asymptotic upper estimates of the probabilities P(0 /∈ conv(S1, . . . , Sn)) in higher
dimensions. Surprisingly, for symmetric walks these bounds overestimate the true
values merely by a constant factor; cf. (18) and (21) below with [12, Theorems 2.3
and 5.1].

We now present an asymptotic result for general random walks assuming that
the increments have zero mean and a finite covariance matrix Σ. This matrix must
be non-degenerate by assumption (H). For such walks, we introduce the following
definitions. For any non-zero u ∈ R

d, denote by T (u) := inf{k ≥ 1 : Sk /∈ H(u)}
the exit time from the half-space H(u) := {z ∈ R

d : 〈z, u〉 ≥ 0}, and let

(9) R(u) := −
E〈ST (u), u〉√

〈Σu, u〉
be the expected normalized distance from H(u) to the exit point ST (u). It is easy
to see that this function is positive and angular, that is, independent of |u|. We
will also show that R(u) is bounded. For random walks with centrally symmetric

distribution of increments satisfying (H), we have R(u) ≡
√
2/2. This becomes clear
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in the next paragraph if one uses that T (u) is the exit time of the symmetrically
distributed random walk 〈Sn, u〉 from the non-negative half-line.

In dimension one, R(1) and R(−1) are the expected values of ascending and
descending, respectively, ladder heights of the random walk normalized by standard
deviation of its increments. In this case it is well known (see the proof of Lemma 5
in the Appendix) that R(±1) are finite and

(10) P(S1 ≥ 0, . . . , Sn ≥ 0) ∼
√
2R(1)√
πn

, d = 1.

This is actually true even without (H), while under (H), all the inequalities above
can be taken to be strict. The asymptotic order here is the same in the symmetric
case (where R(±1) =

√
2/2; cf. (1) and (5)), but of course the probabilities are

now distribution-dependent.

Theorem 2. Let d = 2, and assume that (H) holds and that increments of the
random walk Sn have zero mean and a finite covariance matrix Σ. Then

P(0 /∈ conv(S1, . . . , Sn)) ∼
√
2ER

(
Σ−1/2U

) log n√
πn

,

where U is a random vector distributed uniformly over the unit circle S
1 and the

expectation above is finite and positive.

1.4. Further results and references. We give a further development to the ap-
proach used for our initial problem discussed above. This allows us to obtain new
results on a very wide class of geometric characteristics of convex hulls of gen-
eral (not necessarily symmetric) multidimensional random walks. In particular, we
provide explicit exact formulas for expected intrinsic volumes of the convex hull.
For details we refer the reader directly to Section 3, with its main result given in
Theorem 4, and the applications presented in Section 3.2.

Mean geometric characteristics of convex hulls of planar random walks, for ex-
ample, the expected number of faces and the expected perimeter, were studied in
many papers starting with Spitzer and Widom [28] and followed by a few other
works that include Baxter [4], Snyder and Steele [24], and one of the most re-
cent by Wade and Xu [35]. It seems that higher-dimensional versions were first
considered by Barndorff-Nielsen and Baxter [3], whose work was overlooked by
most of the followers, including us. To the best of our knowledge, the probabil-
ities P(0 /∈ conv(S1, . . . , Sn)) were not considered until the very recent works by
Eldan [6] and Tikhomirov and Youssef [31], who obtain asymptotic estimates as
dimension d increases to infinity for a few special types of random walks.

The paper by Abramson et al. [1] gives an overview and the latest account on
the very fine description of the structure of the largest convex minorants of one-
dimensional random walks. There are many related papers that consider random
walks as the initial step in their studies of convex hulls of continuous time Lévy
processes, and of course there is a huge number of works on convex hulls of Brownian
motions. These topics are beyond the scope of our paper. A lot of references can
be found in Pitman and Uribe Bravo [21]. There is a survey of results on random
convex hulls by Majumdar et al. [17].

1.5. Structure of the paper. This paper is organized as follows. In the next
section we present the main tool of our approach, a somewhat technical Proposi-
tion 1, which immediately implies Theorem 1 and its analogue for random walk
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bridges, Theorem 3. The proposition also serves as the base for the further studies
of geometric properties of convex hulls. We also present an asymptotic version of
Proposition 1 for general random walks whose increments have zero mean and finite
variance. This result is stated in Proposition 2 of Section 2, and it readily implies
Theorem 2.

Section 3 contains Theorem 4, our general result on expected geometric charac-
teristics of convex hulls of multidimensional random walks. This theorem also holds
true for random walk bridges and more generally, for partial sums of exchangeable
random vectors. As the main application of Theorem 4, we obtain explicit formulas
for expected intrinsic volumes of convex hulls of random walks. In Section 4 we
consider the special case of random walks with Gaussian increments and present a
number of results that explain connections with geometry.

All the proofs are contained in the last two sections. In Section 5 we present
our combinatorial results, which are used in Section 6 to prove Proposition 1 and
Theorem 4. This last section also contains the proof of Proposition 2, which is
based on several rather technical statements concerning uniform convergence. The
proofs of these statements are moved to the Appendix since they are very different
from the purely combinatorial or semi-combinatorial arguments used throughout
the paper. However, we think that a uniform version of the Tauberian theorem
(Theorem 5 of the Appendix) deserves some attention. To our surprise, we did not
find a reference to any similar statement.

2. The main tool for multidimensional random walks

Denote by

Cn := conv(S0, S1, . . . , Sn)

the convex hull of the first n steps including the origin S0 := 0. In the following
consideration we will always refer to Cn as the convex hull of the random walk. To
avoid trivialities, we assume that n ≥ d; we also recall our convention that (H) is
always satisfied.

With probability one Cn is a convex polytope with boundary of the form

(11) ∂Cn =
⋃

f∈Fn

f,

where Fn is the set of all (d− 1)-dimensional faces of Cn. Almost surely, each face
f is a (d− 1)-dimensional simplex of the form

(12) f = conv(Si1(f), . . . , Sid(f))

for some indices 0 ≤ i1(f) < · · · < id(f) ≤ n. It is instructive to think that f is
obtained by shifting the simplex with vertices 0, Si2(f) − Si1(f), . . . , Sid(f) − Si1(f)

by Si1(f). We say that the ordered (d− 1)-tuple (i2(f)− i1(f), . . . , id(f)− i1(f)) is
the temporal structure of the face and the ordered d-tuple (i1(f), . . . , id(f)) is the
full temporal structure.

We shall express the probability that Fn contains a face of a given temporal or
full temporal structure. In order to stress the combinatorial nature of our result, we
prove it in a more general setting for the partial sums Sk = X1+· · ·+Xk, 1 ≤ k ≤ n,
of n-exchangeable increments X1, . . . , Xn. Recalling the definition, this means that
for any permutation σ of length n, (Xσ(1), . . . , Xσ(n)) has the same distribution as
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(X1, . . . , Xn). We will assume that

(G) P(S1, . . . , Sn are in general position) = 1

to ensure that the faces of Cn still are simplexes with probability one. In other
words, any d vectors of S1, . . . , Sn are linearly independent. This is true, for ex-
ample, when the exchangeable increments X1, . . . , Xn have a joint density or when
they are independent (so Sk is a random walk) and satisfy (H).

Our main example of partial sums with dependent n-exchangeable increments is
a random bridge of length n, where we assume by definition that the n-th partial
sum is a.s. zero. We will be interested in random walk bridges of two types. For
a random walk Sk, the difference bridge is the sequence Sk − (k/n)Sn, 1 ≤ k ≤ n,
and the distribution of the conditional bridge is given by conditioning on Sn = 0.
We understand the latter as the well-defined limit of the corresponding conditional
distributions P

(
·
∣∣|Sn| ≤ r

)
as r → 0+. For example, this limit exists if the distri-

bution of increments of the walk has continuous or bounded density and the density
of the distribution of Sn is positive at 0. It is easy to see that the first n values of
a random walk bridge of length n + 1 of either type satisfy (G) if the underlying
random walk satisfies (H).

It turns out that the probability that the convex hull Cn contains a face of a given
full temporal structure is distribution-free for random walk bridges and for random
walks with symmetrically distributed increments. Although this probability is not
distribution-free for general walks, the probability that Cn contains a face of a given
temporal structure is. More precisely, we have the following result.

Proposition 1. For any d ≥ 1, let 0 ≤ i1 < · · · < id ≤ n be any indices.

(1) If the partial sums Sk of n-exchangeable random vectors in R
d satisfy (G),

then

n−id+i1∑
i=0

P(conv(Si, Si+i2−i1 , . . . , Si+id−i1) ∈ Fn)(13)

=
2

(i2 − i1) · . . . · (id − id−1)
.

Moreover, if S1, . . . , Sn, 0 is a random bridge of length n+ 1, then

(14) P(conv(Si1 , . . . , Sid) ∈ Fn) =
2

(i2 − i1) · . . . · (id − id−1)(n− id + i1 + 1)
.

(2) If Sk is a random walk2 in R
d and (H) and (S) hold, then

(15) P(conv(Si1 , . . . , Sid) ∈ Fn) = 2
(2i1 − 1)!!

(2i1)!!

(2n− 2id − 1)!!

(2n− 2id)!!

d−1∏
k=1

1

ik+1 − ik
,

where by convention (−1)!! = 1.

2 As explained in Section 6, (15) is true for the partial sums of n-exchangeable random vectors
X1, . . . ,Xn if (G) holds and all the 2n n-tuples (±X1, . . . ,±Xn) have the same distribution; note
that Wendel’s result (2) also holds true under these relaxed assumptions. Here is an example of
such distributions: if d = 1 so do the coordinates of any random vector X in Rn with a rotationally
invariant distribution. In this case X1, . . . , Xn are not i.i.d. unless X is a multiple of a standard
Gaussian vector.
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The first application of this result concerns the expected number of faces of Cn

that contain the origin as a vertex. Denote the set of such faces by F ′
n and note

that (under (G)!)

�(F ′
n 
= ∅)

a.s.
= �(0 ∈ ∂Cn)

a.s.
= �(0 /∈ conv(S1, . . . , Sn)).

Then (15) immediately implies that for symmetric random walks,

(16) E|F ′
n| = 2

∑
1≤i2<···<id≤n

(2n− 2id − 1)!!

i2 · (2n− 2id)!!

d−1∏
k=2

1

ik+1 − ik
.

This proves Theorem 1 since for d = 2, we have

(17) |F ′
n| =

{
2, 0 /∈ conv(S1, . . . , Sn),
0, 0 ∈ conv(S1, . . . , Sn).

In higher dimensions, (16) gives only an upper bound, as follows by

(18) P(0 /∈ conv(S1, . . . , Sn) ≤ E|F ′
n|/d.

By the same reasoning, from (14) we obtain the following version of Theorem 1
for random walk bridges.

Theorem 3. Let S1, . . . , Sn+1 be either the difference bridge or a well-defined con-
ditional bridge (both of length n + 1) of a random walk in R

2 that satisfies (H).
Then

P(0 /∈ conv(S1, . . . , Sn)) =

n∑
k=1

1

k(n− k + 1)
.

We stress that no additional assumption other than (H) is required.
For the asymptotics, it follows that (see Section 6) for a random walk under (S)

and (H),

(19) ERW |F ′
n| ∼

2(log n)d−1

√
πn

,

while for a random walk bridge of length n+ 1 (under (H)),

(20) EBr|F ′
n| ∼

2d(log n)d−1

n
.

We conclude this section with an asymptotic version of part (2) of Proposition 1
with i1 = 0 for general (not necessarily symmetric) random walks. Recall that the
function R(u) was defined in (9).

Proposition 2. Let Sk be a random walk in R
d, d ≥ 2, with increments that have

zero mean, a finite covariance matrix Σ, and satisfy (H). Let U be a random vector
distributed uniformly over the unit sphere S

d−1. Then for any sequence hn tending
to infinity such that hn = o(n), we have

P(conv(0, Si2 , . . . , Sid) ∈ Fn) =
(
2

√
2

π
+ o(1)

)
ER(Σ−1/2U)

i2
√
n− id + 1

d−1∏
k=2

1

ik+1 − ik

uniformly in 1 ≤ i2 < · · · < id ≤ n such that min(i2, i3 − i2, . . . , id − id−1, n− id) ≥
hn, and the o(1) term is uniformly bounded.
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Similarly to (19), this gives (see Section 6) the asymptotics

(21) ERW |F ′
n| ∼ 2

√
2ER(Σ−1/2U)

(logn)d−1

√
πn

.

Then Theorem 2 readily follows by (17).

3. Geometric properties of convex hulls in R
d

3.1. Expected additive functionals of faces. For a further application of Prop-
osition 1, we sum in (13) over all possible indices to obtain that the expected number
of faces in the convex hull satisfies

(22) E|Fn| = 2
∑

j1+···+jd−1≤n
j1,...,jd−1≥1

1

j1 · . . . · jd−1
.

Comparing (22) and (14), we see that

E
(d)|Fn| =

∑
k≤n

E
(d−1)
Br |F ′

k−1|,

where the upper indices show the dimension; hence by (20),

(23) E|Fn| ∼ 2(logn)d−1.

We stress that these formulas are valid under (G) only, and (S) is not required.
For d = 2, (22) was proved by Baxter [4]. We first generalized his argument

to higher dimensions but then found a more direct and intuitive proof for part
(1) of Proposition 1 presented below in Section 6. Later we discovered that such a
generalization was already done by Barndorff-Nielsen and Baxter [3], who extended
the proof of [4].

We followed the steps of Baxter [4] and Snyder and Steele [24] (both papers
considered only the planar case) to obtain the following generalization of (22). Let
g : Rd×(d−1) → R be any non-negative Borel function. As we noted above, with
probability one Cn is a convex polytope with faces of the form (12). Hence we can
represent nearly any geometric property of a face f of Cn in terms of

g
(
Si2(f) − Si1(f), . . . , Sid(f) − Sid−1(f)

)
for some symmetric function g. This quantity has the same expectation for all
faces with the same temporal structure, and a conditional version of (13) (see (43)
below) readily yields the following result.

Theorem 4. Let Sk be partial sums of n-exchangeable random vectors in R
d, d ≥ 1.

If (G) holds, then for

Gn :=
∑
f∈Fn

g
(
Si2(f) − Si1(f), . . . , Sid(f) − Sid−1(f)

)
,

we have that

EGn = 2
∑

1≤i1<···<id−1≤n

Eg(Si1 , Si2 − Si1 , . . . , Sid−1
− Sid−2

)

i1(i2 − i1) · . . . · (id−1 − id−2)
.
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Notice that if Sn is a random walk that satisfies (H), then the d− 1 arguments
of g in the definition of Gn are independent. In this case EGn can be written as

(24) EGn = 2
∑

j1+···+jd−1≤n
j1,...,jd−1≥1

Eg
(
S
(1)
j1

, S
(2)
j2

, . . . , S
(d−1)
jd−1

)
j1 · . . . · jd−1

,

where S
(1)
n , . . . , S

(d−1)
n are independent copies of the random walk Sn.

We proved Theorem 4 being unaware of the work of Barndorff-Nielsen and Bax-
ter [3], who gave no general statement of this type but did a similar consideration
and obtained many of the results discussed in the next section as applications of
Theorem 4. Our proof uses both combinatorial and probabilistic reasoning and, in
our opinion, is more transparent than that of [3].

The latter proof rests on the smart combinatorial argument proposed by Bax-
ter [4]. It is based on the simple fact that none of the n! permutations of the
increments X1, . . . , Xn change the distribution of the partial sums. Similarly, Wen-
del’s proof of (2) uses that all the 2n possible n-tuples (±X1, . . . ,±Xn) have the
same distribution. If this holds true, his argument works for any random vectors
X1, . . . , Xn in general position (so our assumption that Xi are i.i.d. is actually su-
perfluous). Both proofs of Baxter and Wendel rely on the corresponding properties
of deterministic sequences. Sparre Andersen’s original proof of (1) does not allow
such a nice description, as it combines a simple combinatorial argument with some
clever counting which rests on additivity of probability. The widely known proof
of this result given by Feller [8, Section XII.6] offers a much clearer combinatorial
approach but heavily uses the independence of increments.

3.2. Applications to intrinsic volumes of convex hulls. Let us give some
corollaries of Theorem 4. In this subsection we always assume that Sn is a random

walk that satisfies (H) and impose no other conditions. As in (24), let S
(1)
n , . . . , S

(d)
n

be independent copies of the walk Sn.
First of all, by considering g(x1, . . . , xd−1) ≡ 1 in (24), we obtain the formula (22)

for the expected number of faces of the convex hull of Sn. Less trivial applications
are as follows.

Corollary 1 (Expected surface area). We have that

EVold−1(∂Cn) =
2

(d− 1)!

∑
j1+···+jd−1≤n
j1,...,jd−1≥1

E det1/2
(〈

S
(m)
jm

, S
(�)
j�

〉)d−1

m,�=1

j1 · . . . · jd−1
.

For d = 2 this gives a formula by Spitzer and Widom [28] on the average
perimeter:

(25) EVol1(∂Cn) = 2

n∑
j=1

E‖Sj‖
j

.

The three-dimensional version of this result was first obtained by Barndorff-Nielsen
and Baxter [3].
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Proof. Applying (24) with the Gram determinant formula
(26)

g(x1, . . . , xd−1) = Vold−1(conv(0, x1, . . . , xd−1)) =
1

(d− 1)!

√
det (〈xm, xl〉)d−1

m,l=1

with x1, . . . , xd−1 ∈ R
d, we get

EVold−1(∂Cn) = 2
∑

j1+···+jd−1≤n
j1,...,jd−1≥1

EVold−1

(
conv

(
0, S

(1)
j1

, . . . , S
(d−1)
jd−1

))
j1 · . . . · jd−1

=
2

(d− 1)!

∑
j1+···+jd−1≤n
j1,...,jd−1≥1

E det1/2
(〈

S
(m)
jm

, S
(�)
j�

〉)d−1

m,�=1

j1 · . . . · jd−1
.

�

Corollary 2 (Expected volume). We have that

(27) EVold(Cn) =
1

d!

∑
j1+···+jd≤n
j1,...,jd≥1

E

∣∣∣det [S(1)
j1

, . . . , S
(d)
jd

]∣∣∣
j1 · . . . · jd

.

A version of this result was first obtained by Barndorff-Nielsen and Baxter [3].

Proof. Denote by ′ : Rd+1 → R
d the projection onto the first d coordinates. Let S̃n

be any (d+1)-dimensional random walk such that S̃′
n = Sn and its last coordinate

is distributed continuously and independently of Sn. The convex hull C̃n of S̃n

satisfies (∂C̃n)
′ = Cn, and the pre-image under ′ of any point from Int(Cn) consists

of exactly two points. Together with (11) this gives

(28) 2Vold(Cn) =
∑
f∈F̃n

Vold(f
′),

where F̃n denotes the set of faces of C̃n.
Each face f ∈ F̃n a.s. is a d-dimensional simplex in R

d+1 with vertices S̃i1(f), . . . ,

S̃id+1(f), and so f ′ a.s. is a d-dimensional simplex in R
d. Its volume is given by

Vold(f
′) = g(S̃i2(f) − S̃i1(f), . . . , S̃id+1(f) − S̃i1(f)),

where

g(x1, . . . , xd) = Vold(conv(0, x
′
1, . . . , x

′
d)) =

1

d!

∣∣det[x′
1, . . . , x

′
d]
∣∣

is defined for x1, . . . , xd ∈ R
d+1. The claim then follows by combining (28) with

(24) applied for S̃n and the above given g. �

The following approach unifies the examples considered above. The volume and
the surface area of a convex set are the special cases of so-called intrinsic volumes
V0, . . . , Vd, which naturally arise as the coefficients in the Steiner formula: for any
convex set K ⊂ R

d,

Vold(K + rBd) =
d∑

k=0

κd−kVk(K)rd−k, r ≥ 0,
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where Bd denotes a d-dimensional unit ball and κk := πk/2/Γ(k2 +1) is the volume
of Bk. In particular, V0(K) = 1, Vd(K) = Vold(K), 2Vd−1(K) = Vold−1(∂K), and

V1(K) equals the mean width of K divided by the constant 2κd−1

dκd
, which is the

mean width of a unit segment in R
d. The last statement readily follows from the

other definition of intrinsic volumes, which sometimes is called the Crofton formula:

(29) Vk(K) :=

(
d

k

)
κd

κkκd−k

∫
Ld

k

Volk(K|L) dμk(L),

where Ld
k is the Grassmannian of all k-dimensional linear subspaces of Rd equipped

with the Haar probability measure μk, and K|L is the orthogonal projection of K
onto L.

Intuitively, the k-th intrinsic volume of K equals, up to the constant factor,
the mean k-dimensional volume of the projection of K onto a uniformly chosen
random k-dimensional linear subspace of Rd. The normalization constant

(
d
k

)
κd

κkκd−k

is chosen so that the intrinsic volumes of K do not depend on whether we consider
K as a subset of Rd or embed it in any higher-dimensional Euclidian space. For
an extensive account on integral geometry we refer the reader to the books of
Santaló [22] and of Schneider and Weil [23].

Corollary 3 (Expected intrinsic volumes). We have

EVk(Cn) =
1

k!

∑
j1+···+jk≤n
j1,...,jk≥1

E det1/2
(〈

S
(m)
jm

, S
(�)
j�

〉)d−1

m,�=1

j1 · . . . · jk
, k = 1, . . . , d.

In particular, the Spitzer–Widom formula (25) naturally extends to any dimension:

EV1(Cn) =
n∑

j=1

E‖Sj‖
j

.

These results were already used by Molchanov and Wespi [19, Theorem 2.3]
to compute intrinsic volumes of the closed convex hull of a symmetric α-stable
Lévy process in R

d with α ∈ (1, 2]. For a standard Brownian motion, the intrinsic
volumes V1 and V2 were found in the earlier paper by Kampf et al. [15].

Proof. For any L ∈ Ld
k, the sequence S̃n := Sn|L, n ≥ 0, is a k-dimensional random

walk satisfying (H), and its convex hull is C̃n = Cn|L. Hence by Corollary 2, one
has

EVolk(Cn|L) =
1

k!

∑
j1+···+jk≤n
j1,...,jk≥1

E

∣∣∣det [S̃(1)
j1

, . . . , S̃
(d)
jk

]∣∣∣
j1 · . . . · jd

=
∑

j1+···+jk≤n
j1,...,jk≥1

EVolk

(
conv

(
0, S

(1)
j1

, . . . , S
(k)
jk

)∣∣L)
j1 · . . . · jk

.

Integrate this equation over Ld
k with respect to μk, normalize according to the

definition of the intrinsic volume, and apply the Fubini theorem to both sides to
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get

EVk(Cn) =
∑

j1+···+jk≤n
j1,...,jk≥1

EVk

(
conv

(
0, S

(1)
j1

, . . . , S
(k)
jk

))
j1 · . . . · jk

.

The linear dimension of K = conv
(
0, S

(1)
j1

, . . . , S
(k)
jk

)
, which is a convex hull of k+1

points, is k a.s.; hence Vk(K) = Volk(K), and the claim follows if we use the Gram
determinant formula (26). �

4. Applications of Gaussian convex hulls to geometry

In this section we always assume that X1, . . . , Xn are independent standard
Gaussian vectors in R

d.

4.1. Intrinsic volumes of canonical orthoschemes. Consider the Gaussian
random d × n matrix A with the columns X1, . . . , Xn. Its rows Y1, . . . , Yd are
standard Gaussian vectors in R

n. It is known that the linear span of Y1, . . . , Yd

(which are in general position with probability one) is a random d-dimensional lin-
ear subspace of Rn uniformly distributed on the Grassmannian Ln

d with respect to
the Haar probability measure. Using this fact and the Crofton formula (29), it can
be shown that for any convex body K ⊂ R

n,

Vd(K) =
(2π)d/2

d!κd
EVold(conv({Ax : x ∈ K})).

This equation is a finite-dimensional version of a general result of Sudakov [30]
(for d = 1) and Tsirelson [32–34] (for general d) on Gaussian measures in infinite-
dimensional spaces.

Consider the simplex Tn ⊂ R
n with vertices

(0, 0, . . . , 0), (1, 0, . . . , 0), (1, 1, 0, . . . , 0), . . . , (1, . . . , 1),

which we call the Schläfli canonical orthoscheme. Such simplexes are also called
path-simplexes.

Now
conv({Ax : x ∈ Tn}) = Cn,

which implies that

(30) Vd(Tn) =
(2π)d/2

d!κd
EVold(Cn).

Combining this equality with (27), we obtain

Vd(Tn) =
(2π)d/2

(d!)2κd

∑
j1+···+jd≤n
j1,...,jd≥1

E

∣∣∣det [S(1)
j1

, . . . , S
(d)
jd

]∣∣∣
j1 · . . . · jd

,

where S
(1)
1 , . . . , S

(d)
d are independent standard Gaussian random walks in R

d. Let
M be a d× d matrix with independent standard normal entries. Then E| detM | =
E
√
det(MM	), where MM	 is a Wishart matrix whose determinant has a well-

known distribution and moments. Hence (see for example Kabluchko and Za-
porozhets [13])

E

∣∣∣det [S(1)
j1

, . . . , S
(d)
jd

]∣∣∣ = d!κd

(2π)d/2

√
j1 · . . . · jd,
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which implies that

(31) Vd(Tn) =
1

d!

∑
j1+···+jd≤n
j1,...,jd≥1

1√
j1 · . . . · jd

.

This result was first obtained by Gao and Vitale [10], who considered a direct
geometric approach using a formula for intrinsic volumes of convex polytopes. The
simplex Tn/

√
n ∈ R

n is a finite-dimensional approximation of the closed convex
hull T of a Wiener spiral 3 in a Hilbert space, which was introduced by Kolmogorov
in 1940; [10] calls T the Brownian motion body. Note that T is isometric to the
subset of non-increasing functions of L2[0, 1] that take values in [0, 1]. Gao and
Vitale [10] used (31) to prove that

Vd(T ) =
κd

d!
.

Due to Tsirelson [32–34], the normalized d-th intrinsic volume of T is equal to
the expected volume of the convex hull of a d-dimensional Brownian motion; see
Kabluchko and Zaporozhets [14] for details. The latter quantity was calculated by
Eldan [7] using direct methods.

4.2. Spherical intrinsic volumes of canonical orthoschemes. Let us consider
the unit sphere Sn in R

n+1. By saying thatK ⊂ S
n is convex we mean that the conic

hull of K in R
n+1 is convex and line-free. Following Santaló (see [22, Section IV.4]),

for a convex body K in S
n we can use a spherical counterpart of the Crofton

formula (29) to define

Uk(K) :=
1

2

∫
Sn
n−k

�{K∩s �=∅} dνn−k(s),

where Sn
k denotes the space of k-dimensional great subspheres of Sn equipped with

the rotationally invariant probability measure νk. The functionals Uk can be consid-
ered as spherical counterparts of Euclidean intrinsic volumes Vk. However, there are
other possible definitions of spherical intrinsic volumes. For basic facts from spher-
ical integral geometry we refer the reader to Gao et al. [9], McCoy and Tropp [18],
and Schneider and Weil [23, Section 6.5].

Similarly to (30), it can be shown (see Götze et al. [11] for details) that

Ud(T̃n) =
1

2
P(0 ∈ Cn),

where T̃n denotes the intersection of the conic hull of Tn with S
n−1. To eliminate any

misunderstanding, by the spherical intrinsic volumes of the canonical orthoscheme
Tn mentioned in the abstract and in Section 1 we mean exactly Ud(T̃n). It follows
from (1) and Theorem 1 that

U1(T̃n) =
1

2
− (2n− 1)!!

(2n)!!
, U2(T̃n) =

1

2
−

n∑
k=1

(2n− 2k − 1)!!

2k · (2n− 2k)!!
.

As we explained in the introduction, the exact values of the other spherical intrinsic
volumes of T̃n are not accessible by the method of this paper. They are available

3This is the deterministic curve {W (t), t ∈ [0, 1]}, where W is a standard Wiener process, in
the Hilbert space of square-integrable zero mean random variables.
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in our most recent work [12], coauthored with Z. Kabluchko, where Uk are referred
to as half-tail functionals.

5. Combinatorial arguments

For any x1, . . . , xn ∈ R
d, denote by

s0 := 0, sk := x1 + · · ·+ xk, k = 1, . . . , n,

the sequence of partial sums. For any permutation σ = (σ(1), . . . , σ(n)), denote

s0(σ) := 0, sk(σ) := xσ(1) + · · ·+ xσ(k), k = 1, . . . , n.

We first proved a simple combinatorial statement which generalizes two-dimen-
sional Lemma 1 from Baxter [4] to higher dimensions. Later we found this result
in the paper by Barndorff-Nielsen and Baxter [3]. The one-dimensional version is
known as the “cycle lemma”; for example, see Steele [29, Section 4] and references
therein for further combinatorial applications. For the reader’s convenience we
present the proof here.

Lemma 1. Let x0, x1, . . . , xn ∈ R
d, and let H be a closed half-space such that

x0, x0 + sn ∈ ∂H and x0 + sj − si /∈ ∂H, 0 ≤ i < j ≤ n− 1.

There exists exactly one cyclic permutation σ = (k + 1, . . . , n, 1, . . . , k) such that

x0, x0 + s1(σ), . . . , x0 + sn(σ) ∈ H.

Proof. By the assumption, there exists exactly one point x0 + sk among

{x0 + si}n−1
i=0 ∩ (Int(H))c

that is at the maximum distance (possibly zero) from ∂H. Then σ := (k +
1, . . . , n, 1, . . . , k) is a required permutation, and it is unique by the uniqueness
of k. �

Our next goal is to obtain stochastic versions of this result. For any points
x1, . . . , xd ∈ R

d, define

H±(x1, . . . , xd) := {z ∈ R
d : ± det[x2 − x1, . . . , xd − x1, z − x1] ≥ 0}.

If there is a unique hyperplane through these points, then this definition gives a
rule to distinguish between the two half-spaces H+ and H− lying on different sides
of the hyperplane. If such a hyperplane is not unique, then H± = R

d.

Lemma 2. Assume that the partial sums Sk of n-exchangeable random vectors
X1, . . . , Xn in R

d, d ≥ 2, satisfy (G). For any indices 1 ≤ i1 < · · · < id−2 ≤ n− 1,
we have

P
(
S1, . . . , Sn ∈ H±(0, Si1 , . . . , Sid−2

, Sn)
)
=

1

i1(i2 − i1) · . . . · (n− id−2)

and, moreover,

P
(
S1, . . . , Sn ∈ H±(0, Si1 , . . . , Sid−2

, Sn)
∣∣Si1 , . . . , Sid−2

, Sn

)
=

1

i1(i2 − i1) · . . . · (n− id−2)
a.s.
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This is a little generalization of the well-known fact that the trajectory of any
continuously distributed one-dimensional random walk Sn lies above the line joining
(0, 0) and (n, Sn) with probability 1/n; see Feller [8, Section XII.9]. The fact

follows from Lemma 2 if we consider the two-dimensional walk S̃n := (n, Sn) with
deterministic first component.

Proof. With probability one, there exists a unique half-plane through 0, Si1 , . . . ,
Sid−2

, Sn (otherwise we could add any other point Sk and arrive at a contradiction
with (G).) Hence almost surely,

H±(S) := H±(0, Si1 , . . . , Sid−2
, Sn)

are half-spaces.
For any permutation σ = (σ(1), . . . , σ(n)), introduce the partial sums

S0(σ) := 0, Sk(σ) := Xσ(1) + · · ·+Xσ(k), k = 1, . . . , n.

Put i0 := 0, id−1 := n, and denote by S the set of (i1− i0) · . . . · (id−1− id−2) permu-
tations of length n that are products over j from 1 to d− 1 of cyclic permutations
of the form

(32) (kj + 1, . . . , ij , ij−1 + 1, . . . , kj),

where ij−1 + 1 ≤ kj ≤ ij . Note that any σ ∈ S does not change H±, i.e.,
H±(S) = H±(S(σ)), since for every k ∈ {i1, . . . , id−2, n} one has Sk = Sk(σ),
and the sequences of partial sums S and S(σ) have the same distribution by the
exchangeability of the increments.

For any 0 ≤ j ≤ d − 2, the random vectors Sij , Xij+1, . . . , Xij+1
and the half-

space H±(0, Si1 , . . . , Sid−2
, Sn) satisfy the assumption of Lemma 1 with probability

one. Indeed, if for some ij ≤ m < � < ij+1, one has Sij + S� − Sm ∈ ∂H±(S) with
positive probability, then among the partial sums Sk(σ) with

σ = (1, . . . , ij ,m+ 1, . . . , �, ij + 1, ij +m, �+ 1, . . . , n)

there are d points Si1(σ), . . . , Sid−1
(σ), Sij+�−m(σ) that belong to the hyperplane

∂H± passing through 0, which contradicts (G) by the exchangeability of increments.
By Lemma 1, there exists an a.s. unique random permutation σ± = σ±(S) ∈ S

such that S1(σ±), . . . , Sn(σ±) ∈ H±(S(σ±)) = H±(S). Hence the sum in the r.h.s.
of the equality
(33)

P
(
S1, . . . , Sn∈H±(Si0 , Si1 , . . . , Sid−1

)
)
=

1

|S|E
[∑
σ∈S

�(S1(σ), . . . , Sn(σ)∈H±(S)
)]

equals one a.s. This proves the first assertion of the lemma. Similarly, for any
non-negative Borel function g : Rd×(d−1) → R, we have

E

[
g(Si1 , . . . , Sid−2

, Sn)�(S1, . . . , Sn ∈ H±(Si0 , Si1 , . . . , Sid−1
)
)]

=
1

|S|E
[
g(Si1 , . . . , Sid−2

, Sn)
∑
σ∈S

�(S1(σ), . . . , Sn(σ) ∈ H±(S)
)]

=
1

|S|Eg(Si1 , . . . , Sid−2
, Sn),

and the second claim of the lemma follows by the definition of conditional expec-
tation. �
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We conclude this section with a result on random bridges.

Lemma 3. Let Sk be a random bridge of length n + 1 in R
d, d ≥ 2, such that

S1, . . . , Sn satisfy (G). For any indices 0 ≤ i1 < · · · < id−1 ≤ n, we have

P
(
S1, . . . , Sn ∈ H±(0, Si1 , . . . , Sid−1

)
)
=

1

i1(i2 − i1) · . . . · (n− id−1 + 1)
.

The above also holds true if Sk is either the difference bridge or a well-defined
conditional bridge of a random walk in R

d that satisfies (H).

This is a multidimensional counterpart of the fact that in dimension one, a
bridge of length n of a continuously distributed random walk stays positive with
probability 1/n.

Proof. As we already mentioned in Section 2, by our understanding of the condition-
ing it is clear that a conditional random walk bridge satisfies (G) if the increments
of the underlying random walk satisfy (H). It is also easy to see that the difference
bridge of such a random walk satisfies (G). Thus the latter assumptions hold true
in all cases.

By repeating the argument used in the proof of Lemma 2, we see that (33)
holds for i0 = 0 and S defined to be the set of permutations of length n + 1 that
are products of d cyclic permutations of the form (32), where 0 ≤ j ≤ d − 1 and
id = n+ 1. �

6. Proofs

Proof of Proposition 1. Recall that 0 ≤ i1 < · · · < id ≤ n. By (11) and (12),

(34) P(conv(Si1 , . . . , Sid) ∈ Fn) = P(0, S1, . . . , Sn ∈ H+(Si1 , . . . , Sid))

+ P(0, S1, . . . , Sn ∈ H−(Si1 , . . . , Sid)).

Denote

H± := H±(0, Si2 − Si1 , . . . , Sid − Si1).

Then by Sid − Si1 ∈ ∂H±, we have

(35) H+(Si1 , . . . , Sid) = H± + Si1 = H± + Sid .

Proof of (14). Here Sk, 1 ≤ k ≤ n + 1, with Sn+1 := 0, is a random bridge
of length n + 1. Let us consider the transformation that translates the whole
trajectory of the bridge by moving the origin to Si1 . The transformed trajectory
corresponds to the random bridge of partial sums Sk(σ), 1 ≤ k ≤ n + 1, with
σ = (i1 + 1, . . . , n+ 1, 1, . . . , i1). By the first equality in (35), we have{

0, S1, . . . , Sn ∈ H±(Si1 , . . . , Sid)
}

=
{
Sn+1 − Si1 , Sn+1 − Si1 + S1, . . . , 0, Si1+1 − Si1 , . . . , Sn − Si1 ∈ H±

}
=

{
Sn+1−i1(σ), Sn+2−i1(σ), . . . , 0, S1(σ), . . . , Sn−i1(σ)

∈ H±(0, Si2−i1(σ), . . . , Sid−i1(σ))
}
;

hence

P(0, S1, . . . , Sn ∈ H±(Si1 , . . . , Sid)) = P(S1, . . . , Sn ∈ H±(0, Si2−i1 , . . . , Sid−i1)),

and then (14) follows by (34) and Lemma 3.
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Proof of (15). Let us split the trajectory of Sn into three parts: by (35), we have{
0, S1, . . . , Sn ∈ H±(Si1 , . . . , Sid)

}
=

{
0, S1, . . . , Si1 ∈ H± + Si1 ;(36)

Si1+1, . . . , Sid ∈ H± + Si1 ; Sid+1, . . . , Sn ∈ H± + Sid

}
.

Since Sn is a random walk, by conditioning on Xi1+1, . . . , Xid , which define H±,
and using the independence of increments, we obtain that

P
(
0, S1, . . . , Sn ∈ H±(Si1 , . . . , Sid)

)
(37)

=P
(
−S′

i1 ,−S′
i1−1, . . . , 0 ∈ H±

)
P
(
Si1+1 − Si1 , . . . , Sid − Si1 ∈ H±

)
× P

(
S′
1, . . . , S

′
n−id

∈ H±
)

=P
(
S′
1, . . . , S

′
i1 ∈ H∓

)
P
(
S′
1, . . . , S

′
n−id

∈ H±
)

× P
(
S1, . . . , Sid−i1 ∈ H±(0, Si2−i1 , . . . , Sid−i1)

)
,

where S′
n is an independent copy of the random walk Sn. Let us stress that we

obtained (37) assuming that Sn is a random walk satisfying (H) but not (S). Then
(15) holds by (34), Lemma 2, and the following simple result.

Lemma 4. Let Sn be a random walk in R
d, and let H be a half-space such that

0 ∈ ∂H. Assume that (H) and (S) hold. Then

P(S1, . . . , Sn ∈ H) =
(2n− 1)!!

(2n)!!
.

Proof. Denote by u = uH the unit vector that is orthogonal to ∂H and belongs

to H. The distribution of increments of the one-dimensional random walk S
(u)
k :=

〈Sk, u〉, k ≥ 1, is continuous and symmetric; hence the result follows by (1) and

P(S1, . . . , Sn ∈ H) = P(S
(u)
1 > 0, . . . , S(u)

n > 0). �

Proof of (13). If i1 
= 0, we transform the trajectory by interchanging its part from
1 to i1 with the part from i1 + 1 to id; this does not change the part from id + 1
to n. See Figure 1, where the parts are denoted by T1, T2, and T3, respectively.
The key observation is that for the transformed trajectory, Sid becomes the most
distant point from H± = H±(0, Si2 −Si1 , . . . , Sid −Si1). Let us prove this formally.

If i1 
= 0, we rewrite the event {0, S1, . . . , Sn ∈ H±(Si1 , . . . , Sid)} in terms of the
partial sums Sk(σ), 1 ≤ k ≤ n, with

σ = (i1 + 1, . . . , id, 1, . . . , i1, id + 1, . . . , n).

For parts T1 and T3 of the trajectory, we use (35) to obtain{
0, S1, . . . , Si1 , Sid+1, . . . , Sn ∈ H±(Si1 , . . . , Sid)

}
=
{
0, S1, . . . , Si1 ∈ H± + Si1 ; 0, Sid+1, . . . , Sn ∈ H± + Sid

}
=
{
Sid − Si1 , Sid − Si1 + S1, . . . , Sid , 0, Sid+1, . . . , Sn ∈ H± + Sid

}
=
{
0, Sid−i1+1(σ), . . . , Sn(σ) ∈ H±(0, Si2−i1(σ), . . . , Sid−i1(σ)) + Sid(σ)

}
.

Note that the event in the second line differs from the corresponding part of (36)
since we added 0 to the second group of variables. For part T2,{

Si1+1, . . . , Sid ∈ H±(Si1 , . . . , Sid)
}

=
{
S1(σ), . . . , Sid−i1(σ) ∈ H±(0, Si2−i1(σ), . . . , Sid−i1(σ))

}
.
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Figure 1. The path transform for d = 2.

Combining the above gives

P
(
0, S1, . . . , Sn ∈ H±(Si1 , . . . , Sid)

)
= P

(
S1, . . . , Sid−i1 ∈ H±(0, Si2−i1 , . . . , Sid−i1);

(38)

0, Sid−i1+1, . . . , Sn ∈ H±(0, Si2−i1 , . . . , Sid−i1) + Sid

)
.

By projecting on the orthogonal compliment, we see that Sid is a most distant point
from H±(. . . ) among 0, Sid−i1+1, . . . , Sn. Such a point is a.s. unique by assumption
(G). Note that (38) is also valid for i1 = 0 since in this case H± + Sid = H±.
Therefore, (38) can be written for all 0 ≤ i1 < i2 as

P(0, S1, . . . , Sn ∈ H±(Si1 , . . . , Sid)) = P

(
S1, . . . , Sid−i1 ∈ H±(0, Si2−i1 , . . . , Sid−i1);

(39)

argmin
0≤k≤n−(id−i1)

det[Si2−i1 , . . . , Sid−i1 , Sid−i1+k] = {i1}
)
,

For a fixed temporal structure, i.e., the tuple (i2− i1, . . . , id− i1), it remains to sum
in (39) over i1 from 0 to n− (id − i1). The argmin disappears, and (13) follows by
(34) and Lemma 2. Proposition 1 is now proved.

�

Remark on footnote 2. Note that under assumptions made, (1) does hold true
in the one-dimensional case; see Sparre Andersen [25, Theorem 1] or [26, Theo-
rem 4]. Strictly speaking, both theorems are stated under slightly stronger as-
sumptions which actually can be weakened to fit our requirements. The latter
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theorem yields (15) when applied for the partial sums of (n− id+ i1)-exchangeable
one-dimensional increments X ′

k := ± det[Si2−i1 , . . . , Sid−i1 , Xid−i1+k] (where 1 ≤
k ≤ n − id + i1) with n − id + i1 substituted for n and the first event in the r.h.s.
of (39) substituted for the Cn of [26, Theorem 4].

Proof of Proposition 2. The main ingredient is the following asymptotic version of
Lemma 4. Recall that for any half-space H of Rd, by uH we denote the unit vector
that is orthogonal to ∂H and belongs toH and, conversely, for any non-zero u ∈ R

d,
we put H(u) = {z ∈ R

d : 〈z, u〉 ≥ 0}.

Lemma 5. Let Sk be a random walk in R
d, d ≥ 1, with increments that have zero

mean, a finite covariance matrix Σ, and satisfy (H). Then

(40) lim
n→∞

√
nP(S1, . . . , Sn ∈ H) =

√
2

π
R(uH)

uniformly over all half-spaces H of Rd such that 0 ∈ ∂H. The limit function R(u)
is continuous and positive on S

d−1.

We will see that the pointwise convergence in (40) holds by a simple reduction
to the well-known one-dimensional result of fluctuation theory. The difficulty is in
showing that the convergence is uniform. Since this is quite a technical statement
and the main message of our paper is in combinatorial methods, we postpone the
proof of Lemma 5 until the Appendix.

Let us conclude the proof of Proposition 2. We first recall that the cross product

of x1, . . . , xd−1 ∈ R
d is given by x1 × · · · × xd−1 =

∑d
k=1 det[x1, . . . , xd−1, ek]ek,

where e1, . . . , ed is the standard basis of Rd. Now consider (37) with i1 = 0. The
first probability in the last equation in (37) does not appear. Conditioning on
Si2 , Si3 , . . . , Sid , which determine

u± := ±Si2 × · · · × Sid = ±(Si2 − Si1)× · · · × (Sid − Sid−1
)

and thus fix H(u±) = H±(0, Si2 , . . . , Sid), and using Lemma 2 for the third proba-
bility in (37), we get

P
(
0, S1, . . . , Sn ∈ H±(0, Si2 , . . . , Sid)

)
i2(i3 − i2) · . . . · (id − id−1)

= E
[
P
(
S′
1, . . . , S

′
n−id

∈ H(u±)
∣∣u±

)]
.

The r.h.s. is O( 1√
n−id+1

) by Lemma 5, implying the required uniform bound-

edness of the o(1) term in Proposition 2. Applying Lemma 5 one more time gives
that
(41)

P
(
0, S1, . . . , Sn ∈ H±(0, Si2 , . . . , Sid)

)
i2(i3 − i2) · . . . · (id − id−1)

=
(√ 2

π
+ o(1)

)
ER

(
±Si2 × · · · × Sid−id−1

)
√
n− id

uniformly in 1 ≤ i2 < i3 < · · · < id ≤ n − hn, since by its definition, R(u) is an
angular function and u± is a.s. non-zero by assumption (H). Then

ER
(
±Si2 × · · · × Sid−id−1

)
= ER

(
±
S
(1)
i2√
i2

×
S
(2)
i3−i2√
i3 − i2

× · · · ×
S
(d−1)
id−id−1√
id − id−1

)
,

where recall that S
(1)
k , . . . , S

(d−1)
k are independent copies of the random walk Sk.

Let N1, . . . , Nd−1 be independent standard Gaussian random vectors in
R

d. Since R(u) is a continuous bounded function on R
d \{0} and the cross product
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x1×· · ·×xd−1 is continuous on R
d×(d−1), the central limit theorem combined with

the continuous mapping theorem and the fact that N1
d
= −N1 implies that

(42) lim
n→∞

ER
(
±Si2 × · · · × Sid−id−1

)
= ER

(
Σ1/2N1 × · · · × Σ1/2Nd−1

)

uniformly in 1 ≤ i2 < i3 < · · · < id ≤ n such that min(i2, i3−i2, . . . , id−id−1) ≥ hn.
Finally, for any non-degenerate d× d matrix A one has

AN1 × · · · ×ANd−1 =

d∑
k=1

det[AN1, . . . , ANd−1, ek]ek

=
d∑

k=1

det(A · [N1, . . . , Nd−1, A
−1ek])ek = detA · (A−1)T (N1 × · · · ×Nd−1).

In particular, this shows that the distribution of N1×· · ·×Nd−1 is invariant under
orthogonal transformations since the standard Gaussian distribution is so. Hence
the angular component of this distribution is uniform on S

d−1 by the uniqueness of
Haar measure (on the special orthogonal group SO(n)). Then, since the covariance
matrix Σ is symmetric and R is an angular function, we have

R
(
Σ1/2N1 × · · · × Σ1/2Nd−1

)
= R

(
Σ−1/2(N1 × · · · ×Nd−1)

) d
= R(Σ−1/2U).

Combining this fact with (34), (41), and (42) yields the main assertion of Proposi-
tion 2.

Proof of Theorem 4. A straightforward extension of the path-transform argument
in the proof of (13) in Proposition 1 gives a little strengthening of (39): for any
non-negative Borel function g : Rd×(d−1) → R,

E

[
g(Si2 − Si1 , . . . , Sid − Sid−1

)�(0, S1, . . . , Sn ∈ H±(Si1 , . . . , Sid))
]

=E

[
g(Si2−i1 , Si3−i1 − Si2−i1 , . . . , Sid−i1 − Sid−1−i1)

× �(S1, . . . , Sid−i1 ∈ H±(0, Si2−i1 , . . . , Sid−i1

)

× �( argmin
0≤k≤n−(id−i1)

det[Si2−i1 , . . . , Sid−i1 , Sid−i1+k] = {i1}
)]

.

For any fixed tuple (i2 − i1, . . . , id − i1) =: (i′1, . . . , i
′
d−1), we sum over i1 =: i from

0 to n− i′d−1 to obtain a conditional version of (13):

n−i′d−1∑
i=0

E
(
conv(Si, Si+i′1

, . . . , Si+i′d−1
) ∈ Fn

∣∣Si+i′1
− Si, Si+i′2

− Si+i′1
,

. . . , Si+i′d−1
− Si+i′d−2

)

=
2

i′1(i
′
2 − i′1) · . . . · (i′d−1 − i′d−2)

a.s.(43)

Theorem 4 then follows immediately by summation over all temporal structures
(i′1, . . . , i

′
d−1).
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Computation of the asymptotics. (1) We claim that for any sequence an such
that an ∼ (log n)an−1/2 for some a ≥ 0, it holds that

(44)
n∑

k=1

an−k

k
∼ (log n)a+1

√
n

.

In particular, by (5) this implies (4) if we take a = 0.
Let us check that the main contribution to the asymptotics in (44) comes from

the terms k = o(n). Since the sum of an diverges, for any ε ∈ (0, 1),

n∑
k=εn

an−k

k
≤ 1

εn

n∑
k=εn

an−k ∼ 1

εn

(1−ε)n∑
k=1

(log k)a√
k

≤ 2(logn)a

ε
√
n

.

The last expression is of a smaller order of asymptotics than

εn−1∑
k=1

an−k

k
∼

εn−1∑
k=1

(log(n− k))a

k
√

(n− k)
,

since

(logn)a+1

√
n

∼ (log(1− ε)n)a√
n

εn−1∑
k=1

1

k
≤

εn−1∑
k=1

(log(n− k))a

k
√

(n− k)

≤ (log n)a√
(1− ε)n

εn−1∑
k=1

1

k
∼ (log n)a+1√

(1− ε)n
.

These inequalities clearly imply (44).
(2) We prove (19) by induction in d. The base d = 2 holds by (4), which we

proved above. Since

∑
1≤i2<···<id≤n

(2n− 2id − 1)!!

i2 · (2n− 2id)!!

d−1∏
k=2

1

ik+1 − ik

=

n−d+2∑
i2=1

1

i2

⎡
⎣ ∑
1≤i′2<···<i′d−1≤n−i2

(2(n− i2)− 2i′d−1 − 1)!!

i′2 · (2(n− i2)− 2i′d−1)!!

d−2∏
k=2

1

i′k+1 − i′k

⎤
⎦ ,

(16) (or (15)) implies that

(45) E
(d)
RW |F ′

n| =
n∑

k=1

1

k
E
(d−1)
RW |F ′

n−k|,

where the upper indices show dimension and by definition, E
(d)
RW |F ′

n| := 0 for n ≤
d− 1. It remains to use (44) to obtain (19).

(3) Arguing as above and using (14) instead of (15), one can easily show that
(45) also holds for a random walk bridge of length n+1. For any sequence bn such
that bn ∼ (log n)bn−1 for some b ≥ 0, one has

(46)
n∑

k=1

bn−k

k
∼ (b+ 2)(logn)b+1

(b+ 1)n
.

The difference with (44) is due to the fact that the main contribution to the asymp-
totics comes from the indices k that are either k = o(n) or k = n − o(n). The
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asymptotics for the base d = 2 is then different, namely,

E
(2)
Br|F ′

n| =
n∑

k=1

2

k(n− k + 1)
∼ 4 logn

n
,

but the rest is analogous and (20) follows easily.
(4) The assertion (21) immediately follows from (19) once we check that in both

summations resulting in these asymptotics, for any slowly varying sequence cn
tending to infinity, the contributions of the indices 1 ≤ i2 < i3 < · · · < id ≤ n with
min(i2, i3 − i2, . . . , id − id−1, n− id) ≤ cn are of a smaller order of asymptotics.

We already saw that the main contribution to the asymptotics of the sum in (44)
comes from the indices k = o(n). Consequently, the indices with n − id ≤ cn do
not contribute to the asymptotics in (19) and (21). On the other hand,

cn∑
k=1

an−k

k
∼

cn∑
k=1

(log(n− k))a

k
√
n− k

∼ (log n)a√
n

cn∑
k=1

1

k
∼ log cn

(log n)a√
n

= o
( (logn)a+1

√
n

)
;

hence the indices k ≤ cn do not contribute as well to the sum in (44). Consequently,
neither do any of the indices satisfying min(i2, i3 − i2, . . . , id − id−1) ≤ cn. �

Appendix

Proof of Lemma 5. For any direction u ∈ S
d−1, the one-dimensional random walk

S
(u)
k := 〈Sk, u〉, k ≥ 1, has increments 〈Xk, u〉 with zero mean and strictly positive

variance 〈Σu, u〉; recall that Σ is non-degenerate as follows by assumption (H). The
random variable T (u), which is the exit time of the random walk Sk from the half-

space H(u), coincides with the exit time of the walk S
(u)
k from the non-negative

half-line. Then

R(u) = −
E〈ST (u), u〉√

〈Σu, u〉
= −

ES
(u)
T (u)√

Var(〈X1, u〉)
.

The last expression admits (Feller [8, Section XVIII.5]) representation in terms of
the so-called Spitzer series:

(47) R(u) =
1√
2
exp

( ∞∑
k=1

1

n

[
P(S(u)

n > 0)− 1/2
])

.

The series is known to converge under the zero mean and finite variance assumption
on the increments so R(u) is positive and finite on S

d−1.
The convergence in (40) holds pointwise (cf. (47) and Feller [8, Section XII.8])

for every fixed H = H(uH). We will show that the standard proof of this statement
can be strengthened to obtain the required uniform version. Let us recall this proof.

For a fixed direction u ∈ S
d−1, we are interested in the asymptotics of the tail

probabilities

P(S1, . . . , Sn ∈ H(u)) = P(S
(u)
1 > 0, . . . , S(u)

n > 0) = P(T (u) > n).

The moment-generating function of T (u) is given by the Spitzer identity

1− EsT (u) = exp
( ∞∑
n=1

sn

n
P(S(u)

n ≥ 0)
)
, 0 ≤ s < 1,
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which is valid for any random walk. Since the Spitzer series converges under the

zero mean and finite variance assumption on the increments of S
(u)
k , we have

1− EsT (u) =
√
1− s exp

( ∞∑
n=1

sn

n

[
P(S(u)

n ≥ 0)− 1/2
])

.

Then
∞∑

n=0

P(T (u) > n)sn =
1√
1− s

exp
( ∞∑
n=1

sn

n

[
P(S(u)

n ≥ 0)− 1/2
])

,

which can be verified by summation by parts in the l.h.s.
Since the Spitzer series converges, by Abel’s theorem and (47) we have

(48) lim
s→1−

exp
( ∞∑
n=1

sn

n

[
P(S(u)

n ≥ 0)− 1/2
])

=
√
2R(u).

Hence

(49)
∞∑

n=0

P(T (u) > n)sn ∼
√
2R(u)√
1− s

, s → 1−,

and the pointwise version of (40) follows by a Tauberian theorem for power series
of sequences with monotone differences. In fact, U(n) :=

∑n
k=0 P(T (u) > k) has

monotone differences U(n)− U(n+ 1) = P(T (u) > n).
Now we explain how to modify the above argument to obtain the uniform asymp-

totics. The key ingredient is that the Spitzer series converges absolutely4 uniformly
in u ∈ S

d−1. This is true by Lemma 6 below applied to the family of random vari-

ables 〈X1,u〉√
Var(〈X1,u〉)

, u ∈ S
d−1, which is uniformly square integrable by the inequality

〈X1,u〉2
Var(〈X1,u〉) ≤ σ−1

1 ‖X1‖22, where σ1 denotes the smallest eigenvalue of Σ.

Since the Spitzer series converges absolutely uniformly in u and it dominates
termwise the absolute values of the series in (48), the convergence in (48) is uniform.
Then the equivalence in (49) is also uniform in u ∈ S

d−1, and by the second assertion
of the uniform Tauberian Theorem 5 below, this implies (40).

Finally, note that each term of the Spitzer series, namely n−1
[
P(S

(u)
n > 0)−1/2

]
,

depends continuously on u ∈ S
d−1. This is readily seen from the continuity of

probability measures and the fact that the distribution of Sn does not put mass on
hyperplanes due to assumption (H). Then R(u) is continuous on S

d−1 as a uniform
limit of continuous functions. �

Uniform absolute convergence of the Spitzer series. We present a statement
stronger than needed for use in the current paper.

Lemma 6. Let {Yα}α∈I , where I is some index set, be random variables with

zero mean and unit variance. Let S
(α)
n , n ≥ 1, be a random walk with increments

4For our proof, it actually suffices to use uniform convergence rather than the uniform absolute
convergence. Indeed, it can be shown using Abel’s uniform convergence test that the convergence
in (48) is uniform as required.
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distributed as Yα, α ∈ I. If the family {Yα}α∈I is uniformly square integrable, then
the series

∞∑
n=1

1

n

∣∣P(S(α)
n ≥ 0)− 1/2

∣∣
converges uniformly in α ∈ I.

This statement fully rests on the series remainder estimate by Nagaev [20].

Proof. As in [20], for any α ∈ I denote n1(α) = min(k ≥ 1 : EY 2
α�{Y 2

α<k} > 3/4)
and n0(α) = max(8, n1(α)). Putting together equations (6), (9), and (10) from [20]
that estimate the terms of the main bound equation (2) gives that for any k ≥ n0(α),

∞∑
n=k

1

n

∣∣P(S(α)
n ≥ 0)− 1/2

∣∣ ≤ 19

4
√
k
+

3√
2
EY 2

α�{Y 2
α≥k} +

2√
k
E|Yα|3�{|Yα|≤

√
k}

+ 4E|Yα|�{|Yα|>
√
k}.

The only difference with Nagaev’s estimates is that this inequality is obtained by
summation in (2) over n ≥ k rather than n ≥ n0(α) as in [20]. We also introduced
a minor correction to (9).

Since n0 := supα n0(α) is finite by the uniform square-integrability, the remain-
der estimate applies to all α ∈ I if k is large enough. The first term vanishes as
k → ∞, and by the uniform square-integrability, so does the second one uniformly
in α ∈ I. For the fourth term, use the Cauchy–Bunyakovsky–Schwarz inequality.
For the remaining third term, for any ε > 0, we have

1√
k
E|Yα|3�{|Yα|≤

√
k} ≤ εEY 2

α�{|Yα|≤ε
√
k} + EY 2

α�{ε
√
k≤|Yα|≤

√
k}

≤ ε+ EY 2
α�{ε

√
k≤|Yα|},

where the last term again vanishes uniformly. �

A uniform Tauberian theorem. Although Tauberian theory is a very well stud-
ied subject and there are many results on the remainder terms in asymptotics, to
our surprise we did not find any reference on uniform convergence. The next result
is presented in greater generality than needed for use in the current paper.

Theorem 5 (Uniform Tauberian theorem). Let {Uα}α∈I , where I is some index
set, be non-decreasing right-continuous functions on R with Uα(0−) = 0 for every
α ∈ I, and let {Lα}α∈I be slowly varying functions. Assume that for some ρ ≥ 0,

Ûα(s) :=

∫ ∞

0

e−sxdUα(x) ∼ s−ρLα(1/s), s → 0 + uniformly in α ∈ I.

Then

Uα(x) ∼
xρLα(x)

Γ(1 + ρ)
, x → ∞ uniformly in α ∈ I.

If, in addition, Uα is absolutely continuous with a monotone density uα and Lα(x) ≡
cα is a positive constant for every α ∈ I and ρ > 0, then

(50) uα(x) ∼
xρ−1Lα(x)

Γ(ρ)
, x → ∞ uniformly in α ∈ I.
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Remark. It is possible to show that (50) holds under the less strenuous (than
Lα(x) ≡ cα) assumption of uniform slow variation for {Lα}α∈I :

lim
x→∞

sup
1≤s≤2

∣∣∣Lα(sx)

Lα(x)
− 1

∣∣∣ = 0 uniformly in α ∈ I.

Our proof fully follows the one of Korevaar [16, Theorem I.15.3], which is based
on explicit estimates of Uα(x) as opposed to more elegant standard proofs (as in
Feller [8, Theorem XIII.5.2]) relying on the continuity theorem for Laplace trans-
form.

Proof. For any positive integer m,

(51) Ûα(ks) ∼ k−ρs−ρLα(1/s), s → 0 + uniformly in α ∈ I, k ∈ {1, . . . ,m}.

Then, since for any positive integer k, one has∫ ∞

0

e−kxd(xρ) = k−ρΓ(1 + ρ),

we see from (51) that for any polynomial P (z) =
∑m

k=1 akz
k,

(52)∫ ∞

0

P (e−sx)dUα(x)∼
s−ρLα(1/s)

Γ(1 + ρ)

∫ ∞

0

P (e−x)d(xρ), s → 0+ uniformly in α∈I.

As in [16, Theorem I.15.3], denote g(z) := �[e−1,1](z) and, for any ε > 0, consider
a polynomial Pε(z) approximating the indicator function g(z) on [0, 1] such that

Pε(z) ≥ g(z), z ∈ [0, 1], and

∫ 1

0

(Pε(z)− g(z))ρ(− log z)ρ−1z−1dz ≤ ε.

The latter condition ensures that∫ ∞

0

Pε(e
−x)d(xρ) ≤

∫ ∞

0

g(e−x)d(xρ) + ε =

∫ 1

0

d(xρ) + ε = 1 + ε.

Finally, since by the choice of Pε,∫ ∞

0

Pε(e
−sx)dUα(x) ≥

∫ ∞

0

g(e−sx)dUα(x) = Uα(1/s),

from (52) we see that there exists an sε > 0 such that

Uα(1/s) ≤ (1 + ε)
s−ρLα(1/s)

Γ(1 + ρ)
, α ∈ I, s ∈ (0, sε).

Similarly, we obtain an analogous lower bound. Both inequalities imply the first
assertion of the theorem.

The second assertion (50) that the uniformity is preserved under “differentiation”
of the asymptotics can be checked by repeating the elementary proof of Lemma 17.1
in [16]. We omit the details. The assertion of the remark follows along the same
lines. �
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Probab. 21 (2016), Paper No. 69, 11 pp., DOI 10.1214/16-ECP19. MR3564216

[20] S. V. Nagaev, A new proof of the absolute convergence of the Spitzer series (Russian,
with Russian summary), Teor. Veroyatn. Primen. 54 (2009), no. 1, 149–152, DOI
10.1137/S0040585X97984024; English transl., Theory Probab. Appl. 54 (2009), no. 1, 151–
154. MR2766651

http://www.ams.org/mathscinet-getitem?mr=2831081
http://www.ams.org/mathscinet-getitem?mr=3468226
http://www.ams.org/mathscinet-getitem?mr=0156261
http://www.ams.org/mathscinet-getitem?mr=0126290
http://www.ams.org/mathscinet-getitem?mr=3161524
http://www.ams.org/mathscinet-getitem?mr=3210546
http://www.ams.org/mathscinet-getitem?mr=0270403
http://www.ams.org/mathscinet-getitem?mr=2049442
http://www.ams.org/mathscinet-getitem?mr=1832728
http://www.ams.org/mathscinet-getitem?mr=3678504
http://www.ams.org/mathscinet-getitem?mr=3032216
http://www.ams.org/mathscinet-getitem?mr=3551592
http://www.ams.org/mathscinet-getitem?mr=2898714
http://www.ams.org/mathscinet-getitem?mr=2073637
http://www.ams.org/mathscinet-getitem?mr=2601420
http://www.ams.org/mathscinet-getitem?mr=3216671
http://www.ams.org/mathscinet-getitem?mr=3564216
http://www.ams.org/mathscinet-getitem?mr=2766651


8012 VLADISLAV VYSOTSKY AND DMITRY ZAPOROZHETS

[21] Jim Pitman and Gerónimo Uribe Bravo, The convex minorant of a Lévy process, Ann.
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