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SHARP GAGLIARDO–NIRENBERG INEQUALITIES
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AND JEAN VAN SCHAFTINGEN

Abstract. We prove scaling invariant Gagliardo–Nirenberg type inequalities

of the form

‖ϕ‖Lp(Rd) ≤ C‖ϕ‖β
Ḣs(Rd)

(¨
Rd×Rd

|ϕ(x)|q |ϕ(y)|q
|x− y|d−α

dx dy

)γ

,

involving fractional Sobolev norms with s > 0 and Coulomb type energies
with 0 < α < d and q ≥ 1. We establish optimal ranges of parameters for
the validity of such inequalities and discuss the existence of the optimizers. In
the special case p = 2d

d−2s
our results include a new refinement of the frac-

tional Sobolev inequality by a Coulomb term. We also prove that if the radial
symmetry is taken into account, then the ranges of validity of the inequalities
could be extended and such a radial improvement is possible if and only if
α > 1.
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1. Introduction and statement of results

1.1. Introduction. Given d ∈ N, s > 0, α ∈ (0, d), and q ∈ [1,∞), we define the
fractional Coulomb–Sobolev space by

Es,α,q(Rd) =
{
ϕ : Rd → R :

¨
Rd×Rd

|ϕ(x)|q |ϕ(y)|q
|x− y|d−α

dx dy < ∞

and

ˆ
Rd

∣∣|ξ|sϕ̂(ξ)∣∣2 dξ < ∞
}
.

Since for every measurable function ϕ : Rd → R,

(1.1)
(ˆ

BR(0)

|ϕ|q dx
)2

≤ CRd−α

¨
Rd×Rd

|ϕ(x)|q |ϕ(y)|q
|x− y|d−α

dx dy,

the boundedness of the double integral on the right-hand side of (1.1) ensures
that ϕ is a tempered distribution and that its Fourier transform ϕ̂ is a well-
defined tempered distribution. In particular |ξ|sϕ̂ is a well-defined distribution on
Rd \ {0}. The integrability condition in the definition of Es,α,q(Rd) means that this
distribution can be represented by an L2–function.

In the sequel we define the fractional Laplacian (−Δ)
s
2ϕ by

( ̂(−Δ)
s
2ϕ)(ξ) =

(
2π|ξ|2

) s
2 ϕ̂(ξ).

Recall that the homogeneous Sobolev space Ḣs(Rd) is the space of tempered distri-
butions ϕ over Rd, the Fourier transform of which belongs to L1

loc(R
d) and satisfies

‖ϕ‖Ḣs(Rd) :=
∥∥(−Δ)

s
2ϕ

∥∥
L2(Rd)

< +∞; see [1, Definition 1.31]. The space Ḣs(Rd)

is a Hilbert space if and only if s < d
2 [1, Proposition 1.34].

We endow the space Es,α,q(Rd) with the norm

‖ϕ‖Es,α,q(Rd) =

(∥∥(−Δ)
s
2ϕ

∥∥2
L2(Rd)

+

( ¨
Rd×Rd

|ϕ(x)|q |ϕ(y)|q
|x− y|d−α

dx dy

) 1
q

) 1
2

.

In particular, when s < d
2 , a function ϕ is in the space Es,α,q(Rd) if and only if

ϕ ∈ Ḣs(Rd) and ¨
Rd×Rd

|ϕ(x)|q |ϕ(y)|q
|x− y|d−α

dx dy < ∞.

Following the arguments in [28, Section 2], the space Es,α,q(Rd) is a Banach space
(see Proposition 2.1 below).

The space Es,α,q(Rd) is the natural domain for the fractional Coulomb–Dirichlet
type energy ∥∥(−Δ)

s
2ϕ

∥∥2
L2(Rd)

+

¨
Rd×Rd

|ϕ(x)|q |ϕ(y)|q
|x− y|d−α

dx dy,

which appears in models of mathematical physics related to multi-particle systems.
Typically, the Coulomb term with q = 2 represents the electrostatic repulsion be-
tween the particles. Relevant models include Thomas–Fermi–Dirac–vonWeizsäcker
(TFDW) models of density functional theory [5, 19, 21] or Schrödinger–Poisson–
Slater approximation to Hartree–Fock theory [9]. Nonquadratic (q �= 2) Coulombic
energies appear in a possible zero mass limit of the relativistic Thomas–Fermi–
vonWeizsacker (TFW) energy; see [7, 8], where d = 3, s = 1, α = 2, q = 3, or
[6, Section 2], where d = 2, s = 1, α = 1, q = 4. The fractional case s = 1/2
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occurs in the ultra-relativistic models; cf. [22, 23]. In particular, d = 2, s = 1/2,
and α = 1 appear in the recent TFDW theory of charge screening in graphene [26],
where relevant powers are q = 2 or q = 1. Interpolation inequalities (1.3) associ-
ated with the space Es,2s,2(Rd) are in some cases equivalent to the Lieb–Thirring
type inequalities [27, Theorem 3], which are fundamental in the study of stability
of nonrelativistic (s = 1) and ultra-relativistic (s = 1/2) matter [23].

Mathematically, the space E1,2,2(R3) has been introduced and studied by
P.-L. Lions [24, Lemma 4], [25, (55)] and in D.Ruiz [31, Section 2]. In particu-
lar, Lions established a Coulomb–Sobolev interpolation inequality

(1.2) ‖ϕ‖L3(R3) ≤ C‖∇ϕ‖1/3L2(R3)

( ¨
R3×R3

|ϕ(x)|2 |ϕ(y)|2
|x− y| dx dy

)1/6

,

which holds for all ϕ ∈ E1,2,2(R3). Lions’ proof relies on the quadratic structure of
the nonlocal term (q = 2) and the special relation α = 2s and cannot be extended
beyond these restrictions. Coulomb–Sobolev inequalities in the fractional space
Es,α,2(Rd) had been studied in [2,4] using methods of fractional calculus, while the
nonquadratic case E1,α,q(Rd) had been introduced and studied in [28] using Morrey
type estimates.

We emphasize that unlike the classical Hardy–Littlewood–Sobolev inequality,
Coulomb–Sobolev inequality is a lower bound on the nonlocal Coulomb energy. In
particular, (1.2) ensures the continuous embedding E1,2,2(R3) ⊂ L3(R3) ∩ L6(R3).
D.Ruiz in [31, Theorem 1.2] observed that if the radial symmetry is taken into
account, then the ranges of validity of the Coulomb–Sobolev inequalities could be
extended. As a consequence, he established an improved embedding E1,2,2

rad (R3) ⊂
Lp(R3) ∩ L6(R3), for any p > 18/7. In [28] the radial improvement was extended

to E1,α,q
rad (Rd) with any α > 1. It was also shown that no radial improvement

occurs when α ≤ 1. In [3], the radial improvement was obtained in Es,2,2
rad (R3) for

1/2 < s < 3/2. The result however did not include the physically important ultra-
relativistic case s = 1/2. Technically, this was related to the failure of pointwise
Strauss type estimates on the radial functions in fractional Sobolev spaces of order
s ≤ 1/2.

The aim of the present paper is threefold:

• We extend Coulomb–Sobolev inequalities associated to the space Es,α,q(Rd)
to arbitrary s > 0 and q ≥ 1, thus completing the studies in [2] (q = 2)
and [28] (s = 1). Our proof is different from the proofs in [2, 28]. It is
based only on the standard fractional Gagliardo–Nirenberg inequality and
a fractional chain rule.

• We analyze a family of refined Sobolev inequalities, which appear as a

special endpoint case of the interpolation inequalities in Es,α, d+α
d−2s (Rd). For

some values of parameters we establish the existence of optimizers to the
refined Sobolev inequalities. The existence of the optimizers is new even in
the previously studied case s = 1.

• We obtain a radial improvement of Coulomb–Sobolev inequalities in the
space Es,α,q

rad (Rd) of radially symmetric functions for the complete range
s > 0, q ≥ 1, α > 1. This includes, in particular, the previously open case
s ≤ 1/2. We also show that a radial improvement is possible if and only
if α > 1, so α = 1 is a universal critical constant which does not depend
on any other parameter. In addition, we observe that q =

(
2

1−2s

)
+

plays
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a special role as the only value of q where the radial embedding interval is
closed.

All of our results are essentially sharp, which is demonstrated by a range of coun-
terexamples confirming optimality.

1.2. Coulomb–Sobolev inequalities. Our first main result in this paper is the
continuous embedding

Es,α,q(Rd) ↪→ L
2(2qs+α)

2s+α (Rd).

More specifically, we establish a family of scaling-invariant interpolation inequalities
for the space Es,α,p(Rd).

Theorem 1.1 (Coulomb–Sobolev inequalities). Let d ∈ N, s > 0, 0 < α < d,
q, p ∈ [1,∞), and q(d−2s) �= d+α. There exists a constant C = C(d, s, α, q, p) > 0
such that the scaling-invariant inequality

(1.3) ‖ϕ‖p ≤ C‖ϕ‖
p(d+α)−2dq

p(d+α−q(d−2s))

Ḣs(Rd)

( ¨
Rd×Rd

|ϕ(x)|q |ϕ(y)|q
|x− y|d−α

dx dy

) 2d−p(d−2s)
2p(d+α−q(d−2s))

holds for every function ϕ ∈ Es,α,q(Rd) if and only if

p ≥ 2(2qs+ α)

2s+ α
if s ≥ d

2
,(1.4)

p ∈
[2(2qs+ α)

2s+ α
,

2d

d− 2s

]
if s <

d

2
and

1

q
>

d− 2s

d+ α
,(1.5)

p ∈
[ 2d

d− 2s
,
2(2qs+ α)

2s+ α

]
if s <

d

2
and

1

q
<

d− 2s

d+ α
.(1.6)

Moreover, if p is not an endpoint of the intervals (1.4)–(1.6), i.e., p �= 2(2qs+α)
2s+α and

p �= 2d
d−2s , then the best constant for (1.3) is achieved.

In the case s = 1 inequality (1.3) was known for d = 3, α = 2, and q = 2
[25, (55)], [31, Theorem 1.5], and for d ∈ N, α ∈ (0, d), and q ≥ 1 [28, Theorem
1]. The fractional inequality (1.3) first appeared for d = 3, s = 1/2, α = 2, and
q = 2 in [4, Proposition 2.1], and for d ∈ N, s > 0, α ∈ (0, d), and q = 2 in
[2, Proposition 2.1].

1.3. Refined Sobolev inequalities. The special case q(d − 2s) = d + α, which
corresponds to p = 2d

d−2s and q = d+α
d−2s , is not covered by the previous theorem and

the exponents in (1.3) are meaningless. In this special case we obtain a refinement
of the Sobolev embedding, extending the one observed for s = 1 [28, (1.7)] and for
q = 2 [2, Proposition 2.1].

Theorem 1.2 (Endpoint refined Sobolev inequality). Let d ∈ N, 0 < s < d
2 ,

0 < α < d. Then there exists C = C(d, s, α) > 0 such that the inequality

(1.7) ‖ϕ‖
L

2d
d−2s (Rd)

≤ C‖ϕ‖
α(d−2s)
d(2s+α)

Ḣs(Rd)

(¨
Rd×Rd

|ϕ(x)|
d+α
d−2s |ϕ(y)|

d+α
d−2s

|x− y|d−α
dx dy

) s(d−2s)
d(2s+α)

holds for all ϕ ∈ Es,α, d+α
d−2s (Rd).
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Remark 1.1. It is interesting to compare our refinement for Sobolev embedding
with two other improvements. The Gérard–Meyer–Oru improvement [1, Theorem

1.43], [20] states that if 0 < s < d
2 and θ ∈ S(Rd) is such that θ̂ has compact

support, has value 1 near the origin, and satisfies 0 ≤ θ̂ ≤ 1, then
(1.8)

‖ϕ‖
L

2d
d−2s (Rd)

≤ C(d, s, θ)‖ϕ‖1−
2s
d

Ḣs(Rd)

(
sup
λ>0

λ
d
2+s‖θ(λ ·) 	 ϕ‖∞

) 2s
d

∀ϕ ∈ Ḣs(Rd).

The Palatucci–Pisante improvement [29, Theorem 1.1] (see also [34, (4.2)]) states
that if 0 < s < d

2 , then

(1.9) ‖ϕ‖
L

2d
d−2s (Rd)

≤ C(d, s)‖ϕ‖1−
2s
d

Ḣs(Rd)
‖ϕ‖

2s
d

M1, d
2
−s

∀ϕ ∈ Ḣs(Rd).

In the last inequality, the Morrey norm is defined as

‖ϕ‖Mr,γ := sup
R>0, x∈Rd

Rγ
( 

BR(x)

|ϕ|r
) 1

r

;

one proof of (1.9) relies on (1.8) and on the observation that

λ
d
2+s‖θ(λ ·) 	 ϕ‖∞ ≤ C‖ϕ‖

M1, d−2s
2

.

In our case we have by Hölder’s inequality and monotonicity of the integral(
R

d
2−s

 
BR(x)

|ϕ|
) d+α

d−2s

≤ R
d+α
2

 
BR(x)

|ϕ|
d+α
d−2s

≤ C

( ¨
Rd×Rd

|ϕ(x)|
d+α
d−2s |ϕ(y)|

d+α
d−2s

|x− y|d−α
dx dy

) 1
2

so that it is clear that Coulomb norm controls the Morrey norm M1, d2−s. On the

other hand, the exponent α(d−2s)
d(2s+α) = (1− 2s

d ) 1
1+2s/α for Ḣs-norm in our improvement

is always less than the exponent 1− 2s
d for Ḣs-norm in (1.8) and (1.9). This suggests

that the inequality (1.7) cannot be derived directly from the already known ones.

Remark 1.2. The refinement of the Sobolev inequality in Theorem 1.2 is sharp.
Indeed, by scaling it can be proved that if a scaling-invariant inequality of the form
(1.10)

‖ϕ‖
L

2d
d−2s (Rd)

≤ C(d, s, α)‖ϕ‖β
Ḣs(Rd)

(¨
Rd×Rd

|ϕ(x)|
d+α
d−2s |ϕ(y)|

d+α
d−2s

|x− y|d−α
dx dy

)γ

holds, then the exponents γ and β are related by the equation

d− 2s

2
=

(d
2
− s

)
β + (d+ α)γ.

On the other hand, estimates (3.7)–(3.9) in the proof of Theorem 1.1 below imply
that

d− 2s

2d
≤ β

2
+ γ.

We conclude that β ≥ α(d−2s)
d(2s+α) is necessary for (1.10) to hold.

Interpolating between the refined and classical Sobolev inequalities, we obtain a
new family of interpolation inequalities, for which the best constant is achieved.



8290 J. BELLAZZINI ET AL.

Theorem 1.3 (Nonendpoint refined Sobolev inequalities). Let d ∈ N, 0 < s < d
2 ,

0 < α < d, and 0 < ε < s(d−2s)
d(2s+α) . Then there exists C = C(d, s, α, ε) > 0 such that

the inequality
(1.11)

||ϕ|| 2d
d−2s

≤ C‖ϕ‖
α(d−2s)
2sd+αd +ε 2(α+d)

d−2s

Ḣs(Rd)

(¨
Rd×Rd

|ϕ(x)|
d+α
d−2s |ϕ(y)|

d+α
d−2s

|x− y|d−α
dx dy

) s(d−2s)
d(2s+α)

−ε

holds for all ϕ ∈ Es,α, d+α
d−2s (Rd). Moreover, the best constant for (1.11) is achieved.

When ε = s(d−2s)
d(2s+α) the inequality (1.11) is the classical Sobolev inequality.

The existence of optimizers for the nonendpoint inequality (1.7) provides a par-
tial answer towards the question raised in the case s = 1 in [28, Section 1.5.5]. The
existence of optimizers for the endpoint inequality (1.7) remains open.

1.4. Radial improvements. We now consider the question of embeddings for
radial functions. Since the symmetric decreasing rearrangement increases the non-
linear nonlocal Coulomb energy term, the situation might be more favorable for
radial functions. Our next result shows that for the subspace of radially symmetric
functions in the Coulomb–Sobolev space Es,α,q

rad (Rd) the intervals (1.4)–(1.6) of the
validity of the Coulomb–Sobolev inequality (1.3) can be extended provided that
α > 1.

Theorem 1.4 (Sharp improvement in the radial case for α > 1). Let d ≥ 2, s > 0,
1 < α < d, q, p ∈ [1,∞), q(d− 2s) �= d+ α, and

prad := q +

(
(2s− 1)q + 2

)
(d− α)

2s(d+ α− 2) + d− α
.

There exists a constant Crad = Crad(d, s, α, q, p) > 0 such that the scaling-invariant
inequality
(1.12)

‖ϕ‖Lp(Rd) ≤ Crad‖ϕ‖
p(d+α)−2dq

p(d+α−q(d−2s))

Ḣs(Rd)

( ¨
Rd×Rd

|ϕ(x)|q |ϕ(y)|q
|x− y|d−α

dx dy

) 2d−p(d−2s)
2p(d+α−q(d−2s))

holds for all radially symmetric functions ϕ ∈ Es,α,q
rad (Rd) if and only if

p > prad if s ≥ d

2
,(1.13)

p ∈
(
prad,

2d

d− 2s

]
if s <

d

2
and

1

q
>

d− 2s

d+ α
,(1.14)

p ∈
[ 2d

d− 2s
, prad

)
if s <

d

2
and

1

q
<

d− 2s

d+ α
,

1

q
�= 1− 2s

2
,(1.15)

p ∈
[ 2d

d− 2s
, q
]

if s <
1

2
and

1

q
=

1− 2s

2
.(1.16)

If 0 < α ≤ 1, then inequality (1.12) holds on Es,α,q
rad (Rd) if and only if (1.3) holds

on Es,α,q(Rd).

In the important special case s = 1/2 we have the simplified expression prad =
q + d−α

d−1 , while for s = 0 we formally obtain prad = 2.
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In the special case d = 3, s = 1, α = 2, and q = 2 the improved radial inequality
(1.12) was first established in [31, Theorem 1.2]. For d ∈ N, s = 1, α ∈ (0, d), and
q ≥ 1 the improved radial inequalities (1.3) were studied in [28, Theorem 4]. The
fractional case d = 3, 1/2 < s < 3/2, α = 2, q = 2 was considered in [3].

We shall emphasize that the radial improvement is possible for any s > 0 but if
and only if α > 1. The universality of the threshold α = 1 which does not depend
on any other parameter in the problem is quite interesting.

Another new and purely fractional phenomenon is the special role of the exponent
q = 2

1−2s in the case s < 1/2. Observe that for s ≥ 1/2 we always have prad > q,

while prad < q if s < 1/2 and q > 2
1−2s ; the latter requires q > d+α

d−2s . If s < 1/2 and

q = 2
1−2s , then prad = q, and this is the only case when the endpoint embedding

Es,α,q
rad (Rd) ↪→ Lprad(Rd) is valid.
Finally, we prove that the embedding Es,α,q

rad (Rd) ↪→ Lp(Rd) is compact provided
that p is not an endpoint of the embedding intervals.

Theorem 1.5 (Compact embeddings for radial functions). Let d ≥ 2, s > 0, and
q ∈ [1,∞). Moreover we assume that p is away from the endpoints of the intervals
in (1.4)–(1.6) when 0 < α ≤ 1 and in (1.13)–(1.16) when 1 < α < d. Then, the
embedding Es,α,q

rad (Rd) ↪→ Lp(Rd) is compact.

Compactness of the radial embedding implies in a standard way the existence of
radial optimizers associated to the inequalities (1.12); cf. [28, Section 7], where the
case s = 1 was considered.

1.5. Open questions. Here we list some of the open problems related to the results
in the present work.

1.5.1. Radial symmetry breaking. It is an open question whether the optimal con-
stants C and Crad in (1.3) and (1.12) share the same value for p in the intervals
(1.4)–(1.6), where both constants are well-defined. A result by Ruiz [31, Theo-
rem 1.7] gives an indirect indication that C < Crad might be possible, at least for

the values of p close to 2(2qs+α)
2s+α . However the problem remains open even in the

well-studied case s = 1, α = 2, q = 2.

1.5.2. Radial compactness in the borderline case α = 1 and p = 2(2qs+α)
2s+α . Compact-

ness of the borderline embedding Es,1,q
rad (Rd) ↪→ L

2(2qs+1)
2s+1 (Rd) is open. This includes

E1/2,1,2
rad (R2) ↪→ L3(R2), which appears in the ultra-relativistic TFDW model for

graphene studied in [26].

1.5.3. Other symmetries. We believe that the critical threshold α = 1 for the radial
improvement is related to the essential uni-dimensionality of radial functions. It
seems plausible that the Coulomb–Sobolev embeddings can be improved for other
types of symmetries. A natural conjecture would be that the relevant value of the
critical constant α is the number of variables on which the symmetric functions
depend. For example, for axisymmetric functions in R3, we would expect a critical
value α = 2.
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1.6. Outline. The rest of the paper is organized as follows. Section 2 contains a
short proof of the completeness of the Coulomb–Sobolev spaces. In Section 3 we
discuss the spaces Es,α,q(Rd) in the nonradial context and show that interpolation
inequalities of Theorems 1.1 and 1.2 can be deduced from the standard fractional
Gagliardo–Nirenberg inequality (3.3) using a fractional chain rule. We also discuss
the existence of the optimizers and prove Theorem 1.3. In Section 4 we derive
the radial improvement of Theorem 1.4 as a consequence of Ruiz’s inequality for
Coulomb energy (see Theorem 4.1) and de Napoli’s interpolation inequality (see
Theorem 4.2), which is a fractional extension of the classical pointwise Strauss
type bounds valid only for s > 1/2. In case s ≤ 1/2 we replace de Napoli’s
pointwise bounds by Rubin’s inequality (Theorem 4.3), which is a refinement for
radial functions of the classical Stein–Weiss inequality. In Section 5 we construct
special families of functions which are used to prove the optimality of the radial
embeddings, while in Section 6 we prove the compactness of the radial embedding.

1.7. Asymptotic notation. For real-valued functions f(t), g(t) ≥ 0, we write:
f(t) � g(t) if there exists C > 0 independent of t such that f(t) ≤ Cg(t);
f(t) 
 g(t) if f(t) � g(t) and g(t) � f(t).
As usual, C, c, c1, etc., denote generic positive constants independent of t.

2. Completeness of the fractional Coulomb–Sobolev space

As in [28, Section 2], it is not difficult to see that the space Es,α,q(Rd) is a normed
space.

Proposition 2.1. For every d ∈ N, s > 0, 0 < α < d, and q ∈ [1,∞), the normed
space Es,α,q(Rd) is complete.

Proof. If (un)n∈N is a Cauchy sequence in Es,α,q(Rd), then ((−Δ)
s
2 un)n∈N is a

Cauchy sequence in L2(Rd) and thus there exists f ∈L2(Rd) such that the sequence
((−Δ)

s
2un)n∈N converges strongly to f in L2(Rd). On the other hand, by (1.1) we

have for every R > 0,

lim
m,n→∞

ˆ
BR(0)

|un − um|q = 0.

There thus exists a measurable function u : Rd → R such that (un)n∈N converges
to u in Lq

loc(R
d). By Fatou’s lemma, we have

lim
n→∞

¨
Rd×Rd

|un(x)− u(x)|q |un(y)− un(y)|q
|x− y|d−α

dx dy

≤ lim
n→∞

lim inf
m→∞

¨
Rd×Rd

|un(x)− um(x)|q |un(y)− um(y)|q
|x− y|d−α

dx dy.

It remains now to prove that (−Δ)
s
2 u = f . We observe that by (1.1),

lim
n→∞

sup
R>0

1

R
d−α

2

ˆ
BR(0)

|un − u|q = 0.

Therefore (un)n∈N converges to u as tempered distributions on Rd, and thus the
sequence (ûn)n∈N converges to û as tempered distributions on Rd. It follows that
((2π)s/2|ξ|sûn)n∈N converges to 2πs/2|ξ|s|ξ|sû as distributions on Rd. Since on the

other hand, ((2π)s/2|ξ|sûn)n∈N converges to f̂ , it follows that (−Δ)
s
2 u = f . �
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3. Gagliardo–Nirenberg inequalities: Proof of Theorems 1.1, 1.2,
and 1.3

We first establish the endpoint inequality.

Theorem 3.1. Let d ∈ N, s > 0, 0 < α < d, and q ∈ [1,∞). Then the following
inequality holds:

‖ϕ‖
L

2(2qs+α)
2s+α (Rd)

�
∥∥(−Δ)

s
2ϕ

∥∥ α
2qs+α

L2(Rd)

(¨
Rd×Rd

|ϕ(x)|q |ϕ(y)|q
|x− y|d−α

dx dy

) s
2qs+α

∀ϕ ∈ Es,α,q(Rd).

In particular, Es,α,q(Rd) ↪→ L
2(2qs+α)

2s+α (Rd) continuously.

The above inequality in the particular case q = 1 implies that Es,α,1(Rd) embeds
continuously into Hs(Rd).

Proof of Theorem 3.1. Recall that for all φ ∈ L1
loc(R

d) such that

(3.1)

¨
Rd×Rd

φ(x)φ(y)

|x− y|d−α
dx dy < ∞,

it holds that

(3.2)
∥∥(−Δ)−

α
4 φ

∥∥2
L2(Rd)

= c

¨
Rd×Rd

φ(x)φ(y)

|x− y|d−α
dx dy.

Moreover we recall the endpoint Gagliardo–Nirenberg inequality (see for example
[1, Theorem 2.44])

(3.3)
∥∥(−Δ)

α
4 ψ

∥∥
Lp(Rd)

≤ C‖ψ‖
2s

α+2s

L2(Rd)

∥∥(−Δ)
α
4 + s

2ψ
∥∥ α

α+2s

Lr(Rd)
,

where
1

p
=

1

2

( 2s

α+ 2s

)
+

1

r

( α

α+ 2s

)
.

When q = 1 by (3.1) and (3.2) it holds that
(3.4)∥∥(−Δ)−

α
4 ϕ

∥∥2
L2(Rd)

= c

¨
Rd×Rd

ϕ(x)ϕ(y)

|x− y|d−α
dx dy ≤ c

¨
Rd×Rd

|ϕ(x)| |ϕ(y)|
|x− y|d−α

dx dy.

Setting ψ = (−Δ)−
α
4 ϕ and p = r = 2, (3.3) together with (3.4) yields the inequality

for q = 1.
Let q > 1. Setting ψ = (−Δ)−

α
4 |ϕ|q in (3.3), we get∥∥|ϕ|q∥∥

Lp(Rd)
≤ C

∥∥(−Δ)−
α
4 |ϕ|q

∥∥ 2s
α+2s

L2(Rd)

∥∥(−Δ)
s
2 |ϕ|q

∥∥ α
α+2s

Lr(Rd)
,

which implies that

(3.5) ‖ϕ‖q
Lqp(Rd)

≤ C
∥∥(−Δ)−

α
4 |ϕ|q

∥∥ 2s
α+2s

L2(Rd)

∥∥(−Δ)
s
2ϕ

∥∥ α
α+2s

L2(Rd)
‖ϕ‖(q−1) α

α+2s

L(q−1)l(Rd)

by the fractional chain rule where 1
r = 1

2 + 1
l [17, Corollary of Theorem 5]. Now

choosing l such that (q − 1)l = qp, i.e., such that

1

l
=

q − 1

qp
,

we conclude that p = 2α+4qs
q(2s+α) . By (3.5) and setting φ = |ϕ|q in (3.2), this concludes

the proof. �



8294 J. BELLAZZINI ET AL.

Proof of Theorems 1.1 and 1.2. The exponents for the refined Sobolev inequality
given by Theorem 1.2 are derived directly from the endpoint Gagliardo–Nirenberg
inequality of Theorem 3.1.

The scaling-invariant inequalities of Theorem 1.1 follow from the fact that by
interpolation between Theorem 3.1 and the classical fractional Sobolev embedding,
Es,α,q(Rd) ↪→ Lp(Rd) continuously for

p ∈
(
2(2qs+ α)

2s+ α
,

2d

d− 2s

]
if 1 < q <

d+ α

d− 2s
,

p ∈
[

2d

d− 2s
,
2(2qs+ α)

2s+ α

)
if q >

d+ α

d− 2s
.

Indeed, let us consider the scaling uλ(x) = λ
d
pu(λx) such that ‖uλ‖Lp(Rd) =

||u||Lp(Rd). From the embedding we get

‖uλ‖2Lp(Rd) �
∥∥(−Δ)

s
2 uλ

∥∥2
L̇2(Rd)

+

(¨
Rd×Rd

|uλ(x)|q |uλ(y)|q
|x− y|d−α

dx dy

) 1
q

,

which gives by scaling

‖u‖2Lp(Rd) � λ
2d
p −d+2s

∥∥(−Δ)
s
2 uλ

∥∥2
L2(Rd)

+ λ
2d
p − (d+α)

q

(¨
Rd×Rd

|uλ(x)|q |uλ(y)|q
|x− y|d−α

dx dy

) 1
q

.
(3.6)

Notice that when q = d+α
d−2s and p = 2d

d−2s we obtain as expected 2d
p − d + 2s = 0,

2d
p − (d+α)

q = 0. Minimizing the right-hand side of (3.6) with respect to λ we get

the scaling-invariant inequality given by Theorem 1.1. The same computation of
course works in the radial case.

Optimality of the embedding intervals. Given a nonnegative function η ∈ C∞
c (Rd)\

{0} and a vector a ∈ Rd \ {0}, for k ∈ N set

ua,k(x) = η(x+ ka).

Following [31, Section 5], we define the functions va,m ∈ C∞
c (RN ) by

va,m =

m∑
k=1

ua,k.

Then for |a| → ∞ we obtain

‖va,m‖p
Lp(Rd)


 m,(3.7)

‖va,m‖2
Ḣs(Rd)

� m,(3.8) ¨
Rd×Rd

|va,m(x)|q |va,m(y)|q
|x− y|d−α

dx dy � m.(3.9)

To deduce (3.8), choose k ∈ N such that k ≥ s. Interpolating between homogeneous

L2 and Ḣk norms (cf. [1, Proposition 1.32]), for |a| → ∞ we conclude that

‖va,m‖2
Ḣs(Rd)

≤ ‖va,m‖
2s
k

Ḣk(Rd)
‖va,m‖2

(
1− s

k

)
L2(Rd)

�
(
m‖η‖2

Ḣk(Rd)

) s
k
(
m‖η‖2L2(Rd)

)1− s
k

� m.
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Using the diagonal argument, from (1.3) we deduce that for all sufficiently large
m ∈ N it must hold that

m � m
p(d+α)−2dq

2(d+α−q(d−2s))m
2d−p(d−2s)

2(d+α−q(d−2s)) ,

which implies the optimality of the embedding intervals (1.4)–(1.6).

3.0.1. Existence of the optimizers. The existence of optimizers follows almost iden-
tically to the proof of [2, Theorem 2.2]; see also [3, proof of Corollary 0.1]. We only
sketch the argument.

Fix p inside one of the intervals (1.4)–(1.6). By homogeneity and scaling we can
assume that an optimizing sequence (ϕn)n∈N in Es,α,q(Rd) satisfies

‖ϕn‖Ḣs(Rd) =

¨
Rd×Rd

|ϕn(x)|q|ϕn(y)|q
|x− y|d−α

dx dy = 1,

and ‖ϕn‖Lp(Rd) = C(d, s, α) + o(1).
Since p is not an endpoint of the intervals (1.4)–(1.6), we can use interpolation

inequality (1.3) to find a uniform upper bound on ‖ϕn‖Lp1 (Rd) and ‖ϕn‖Lp2 (Rd), for
some p1 < p < p2. Therefore, via the pqr-lemma [16, Lemma 2.1, p. 258] and Lieb’s

compactness lemma in Ḣs(Rd) [2, Lemma 2.1], we conclude that ϕn ⇀ ϕ̄ �= 0 in
Hs(Rd). Finally, using the nonlocal Brezis–Lieb splitting lemma for the Coulomb
term [28, Proposition 4.8], the existence of a maximizer could be proved similarly
to the arguments in [2, pp. 661–662] (see also the proof of Theorem 1.3 below for
similar estimates). �
Proof of Theorem 1.3. Inequality (1.11) is obtained directly by interpolation be-
tween the classical Sobolev inequality and endpoint refined Sobolev inequality (1.7).

To prove that the best constant C(d, s, α, ε) in (1.11) is achieved, we will use the
following result.

Theorem 3.2 (Gerard–Meyer–Oru). Let 0 < s < d/2 and let θ ∈ S(Rd) be such

that θ̂ has compact support, has value 1 near the origin, and satisfies 0 ≤ θ̂ ≤ 1.
Then there is a constant C = Cs,d(θ) such that for all u ∈ Ḣs(Rd),

‖u‖ 2d
d−2s

≤ C‖u‖
d−2s

d

Ḣs

(
sup
A>0

Ad/2+s‖θ(A ·) 	 u‖∞
) 2s

d

.

Consider a maximizing sequence (ϕn)n∈N for (1.11) such that ‖ϕn‖Ḣs(Rd) = 1

and

||ϕn|| 2d
d−2s

= (C(d, s, α, ε) + o(1))
(
D(ϕn)

) s(d−2s)
d(2s+α)

−ε
,

where for brevity, we denote

D(ϕ) :=

¨
Rd×Rd

|ϕ(x)|
d+α
d−2s |ϕ(y)|

d+α
d−2s

|x− y|d−α
dx dy.

Using the endpoint refined Sobolev inequality we infer that(
D(ϕn)

) s(d−2s)
d(2s+α)−ε � ||ϕn|| 2d

d−2s
�

(
D(ϕn)

) s(d−2s)
d(2s+α) .

This implies that
1 � D(ϕn)

and hence

(3.10) 1 � ||ϕn|| 2d
d−2s

.
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Let ϕ̄ denote the weak limit of (ϕn) in Ḣs(Rd). Recall that our inequality (1.11) is
critical; i.e., it is both scaling and translation invariant. From Theorem 3.2 together
with (3.10) there exist sequences (xn)n∈N in Rd of translations and (An)n∈N in R+

of dilations such that

inf
n

A
d
2+s
n

ˆ
Rd

θ(An(xn − y))ϕn(y)dy > 0.

This fact implies by the change of variable that

A
s− d

2
n ϕn

(x− xn

An

)
⇀ ϕ̄ �= 0.

The fact that ϕ̄ is an optimizer is now standard. By the Brezis–Lieb type splitting
properties [10] of the three terms in (1.11) (for the splitting of the nonlocal term
D see [28, Proposition 4.7]), we obtain

C(d, s, α, ε)−
2d

d−2s

(
||ϕ̄||

2d
d−2s
2d

d−2s

+ ||ϕn − ϕ̄||
2d

d−2s
2d

d−2s

+ o(1)

)
≥

(
‖ϕ̄‖2

Ḣs(Rd)
+ ‖ϕn − ϕ̄‖2

Ḣs(Rd)
+ o(1)

) dα
d(2s+α)+ε

2d(α+d)

(d−2s)2

×
(
D(ϕ̄) +D(ϕn − ϕ̄)

) 2ds
d(2s+α)

−ε 2d
d−2s ,

since( dα

d(2s+ α)
+ ε

2d(α+ d)

(d− 2s)2

)
+
( 2ds

d(2s+ α)
− ε

2d

d− 2s

)
= 1 + ε

2d(α+ 2s)

(d− 2s)2
> 1.

As a consequence of the discrete Hölder inequality we have

a
2dα

d(2s+α)
+ε 4d(α+d)

(d−2s)2 c
2ds

d(2s+α)−ε 2d
d−2s + b

2dα
d(2s+α)

+ε 4d(α+d)

(d−2s)2 e
2ds

d(2s+α)−ε 2d
d−2s

≤
(
a2 + b2

) dα
d(2s+α)

+ε 2d(α+d)

(d−2s)2 (c+ e)
2ds

d(2s+α)
−ε 2d

d−2s

for all a, b, c, e ≥ 0. Hence

C(d, s, α, ε)−
2d

d−2s

(
||ϕ̄||

2d
d−2s
2d

d−2s

+ ||ϕn − ϕ̄||
2d

d−2s
2d

d−2s

+ o(1)

)
≥ ‖ϕ̄‖

2dα
d(2s+α)+ε

4d(α+d)

(d−2s)2

Ḣs(Rd)
D(ϕ̄)

2ds
d(2s+α)−ε 2d

d−2s

+ ‖ϕn − ϕ̄‖
2dα

d(2s+α)
+ε 4d(α+d)

(d−2s)2

Ḣs(Rd)
D(ϕn − ϕ̄)

2ds
d(2s+α)

−ε 2d
d−2s + o(1).

Therefore we can conclude that

C(d, s, α, ε)−
2d

d−2s ||ϕ̄||
2d

d−2s
2d

d−2s

≥ ‖ϕ̄‖
2dα

d(2s+α)
+ε 4d(α+d)

(d−2s)2

Ḣs(Rd)
D(ϕ̄)

2ds
d(2s+α)

−ε 2d
d−2s + o(1),

which implies that ϕ is an optimizer. �

4. Sharp improvement in the radial case

In order to establish the radial inequality (1.12) we will use a version of the
weighted estimate involving the Coulomb term which was originally established by
Ruiz [31].
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Theorem 4.1 (Ruiz [31, Theorem 1.1]; see also [28, Proposition 3.8]). Let d ∈ N,
0 < α < d, q ∈ [1,∞). Then for every ε > 0 and R > 0 there exists C =

C(d, α, q, ε) > 0 such that for all ϕ ∈ L
2dq
d+α (Rd),

(4.1)

ˆ
Rd\BR(0)

|ϕ(x)|q

|x| d−α
2 +ε

dx ≤ C

Rε

( ¨
Rd×Rd

|ϕ(x)|q |ϕ(y)|q
|x− y|d−α

dx dy

) 1
2

,

(4.2)

ˆ
BR(0)

|ϕ(x)|q

|x| d−α
2 −ε

dx ≤ CRε

( ¨
Rd×Rd

|ϕ(x)|q |ϕ(y)|q
|x− y|d−α

dx dy

) 1
2

.

We will also employ two different estimates on the functions in Ḣs
rad(R

d). In the
case s > 1/2 our proof of (1.12) relies on the following interpolation result.

Theorem 4.2 (De Nápoli [12, Theorem 3.1]). Let d ≥ 2, s > 1
2 , r > 1, and

(4.3) −(d− 1) ≤ a < d(r − 1).

Then
(4.4)

|ϕ(x)| ≤ C(d, s, r, a)|x|−σ‖(−Δ)
s
2ϕ‖θL2(Rd)‖ϕ‖

1−θ
Lr

a(R
d)

∀ϕ ∈ Ḣs
rad(R

d) ∩ Lr
a(R

d),

where σ = 2s(d−1)+(2s−1)a
(2s−1)r+2 , θ = 2

(2s−1)r+2 , and Lr
a(R

d) is the weighted Lebesgue

space with the norm

‖u‖Lr
a(R

d) =

(ˆ
Rd

|x|a|u(x)|r dx
) 1

r

.

Remark 4.1. The inequality (4.4) has important special cases:

(i) When r = 2d
d−2s and a = 0 we obtain Cho–Ozawa’s inequality [11]:

(4.5) sup
|x|>0

|ϕ(x)| � |x|−
d−2s

2 ‖ϕ‖Ḣs(Rd) ∀ϕ ∈ Ḣs
rad(R

d).

(ii) When r = 2 and a = 0 we obtain Ni type inequality

sup
|x|>0

|ϕ(x)| � |x|−
d−1
2 ‖ϕ‖

1
2s

Ḣs(Rd)
‖ϕ‖1−

1
2s

L2(Rd)
∀ϕ ∈ Ḣs

rad(R
d).

In the case s ≤ 1/2 pointwise estimates on functions in Ḣs
rad(R

d) are no longer
available. Instead, our proof of (1.12) relies on the radial version of the classical
Stein–Weiss estimate [32].

Theorem 4.3 (Rubin [13], [14, Theorem 1.2], [30]). Let d ≥ 2 and 0 < s < d/2.
Then

(4.6)

(ˆ
Rd

|ϕ(x)|r|x|−βr dx

) 1
r

≤ C(d, s, r, β)‖ϕ‖Ḣs(Rd) ∀ϕ ∈ Ḣs
rad(R

d),

where r ≥ 2 and

(4.7) −(d− 1)
(1
2
− 1

r

)
≤ β <

d

r
,

(4.8)
1

r
=

1

2
+

β − s

d
.
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Remark 4.2. The difference from the classical (nonradial) Stein–Weiss estimate
[32] is only in the extended range (4.7) for β (in the nonradial case we must have
0 ≤ β < d

r ). Note special cases of (4.6):

(i) When β = s and s < d
2 we obtain r = 2, which gives the Hardy inequality:(ˆ

Rd

|ϕ(x)|2|x|−2s dx

) 1
2

� ‖ϕ‖Ḣs(Rd) ∀ϕ ∈ Ḣs
rad(R

d).

(ii) When β = 0 and s < d
2 we obtain r = 2d

d−2s , which gives the Sobolev
estimate:(ˆ

Rd

|ϕ| 2d
d−2s

) 1
2−

s
d

� ‖ϕ‖Ḣs(Rd) ∀ϕ ∈ Ḣs
rad(R

d).

(iii) When β = −(d− 1)
(
1
2 −

1
r

)
and s < 1

2 we see from (4.8) that r = 2
1−2s and

hence β = −(d− 1)s, so we obtain a “limiting” inequality(ˆ
Rd

|ϕ| 2
1−2s |x|

2s(d−1)
1−2s dx

) 1
2−s

� ‖ϕ‖Ḣs(Rd) ∀ϕ ∈ Ḣs
rad(R

d).

A corollary of Rubin’s inequality is an integral replacement of the Cho–Ozawa
bound (4.5).

Lemma 4.1 (Weak Ni’s inequality). Let d ≥ 2, 0 < s ≤ 1/2, and 1
2−s ≤ 1

p ≤ 1
2−

s
d .

Then for R > 0,

(4.9)

ˆ
Rd\BR(0)

|ϕ|p ≤ C(d, s, p)Rd−p( d
2−s)‖ϕ‖p

Ḣs
rad(R

d)
∀ϕ ∈ Ḣs

rad(R
d).

Proof. Follows from Rubin’s inequality (4.6) by setting r = p and β = 2d−p(d−2s)
2p .

�
Using (4.1), (4.4), and (4.6) in the exterior and the classical Sobolev inequality

in the interior of a ball we deduce the following.

Proposition 4.1. Let d ≥ 2, s > 0, 1 < α < d, and
(
d−2s
d+α

)
+
< 1

q ≤ 1. Then the

space Es,α,q
rad (Rd) is continuously embedded into Lp(Rd) for

p ∈
(
prad,

2d

d− 2s

]
and s <

d

2
,(4.10)

p > prad and s ≥ d

2
.(4.11)

Proof. It is sufficient to establish continuous embedding Es,α,q
rad (Rd) ↪→ Lp(Rd) only

for p in a small right neighborhood of prad. The remaining values of p are then
covered by interpolation via Theorem 3.1. Given R > 0, we shall estimate the Lp–
norm of a function ϕ ∈ Es,α,q

rad (Rd) separately in the interior and exterior of the ball

BR(0). Since p < 2d
d−2s , in the interior of the ball BR(0) we estimate by Sobolev

inequality: ˆ
BR(0)

|ϕ|p ≤ CR1−p( 1
2−

s
d )‖ϕ‖p

Ḣs(Rd)
.

The estimate in the exterior of the ball BR(0) will be split into the cases s > 1/2
and s ≤ 1/2. Observe that p > prad > q, since q < d+α

d−2s . For a small ε > 0, denote

γ :=
d− α

2
+ ε.



SHARP GAGLIARDO–NIRENBERG INEQUALITIES 8299

Case (s > 1/2). Using successively the inequalities (4.4), (4.1), and (4.5), we esti-
mate that

(4.12)

ˆ
Rd\BR(0)

|ϕ|p ≤ sup
|x|>R

(
|ϕ(x)| |x|

γ
p−q

)p−q
ˆ
Rd\BR(0)

|ϕ(x)|q
|x|γ dx

� ‖ϕ‖θ(p−q)

Ḣs(Rd)

(ˆ
Rd

|ϕ(x)|q
|x|γ dx

) (1−θ)(p−q)
q

ˆ
Rd\BR(0)

|ϕ(x)|q
|x|γ dx

� ‖ϕ‖θ(p−q)

Ḣs(Rd)

(
1

R2ε

¨
RN

|ϕ(x)|q |ϕ(y)|q
|x− y|d−α

dx dy

) 1
2+

(1−θ)(p−q)
2q

+ ‖ϕ‖p−q

Ḣs(Rd)

(
1

R2ε

¨
RN

|ϕ(x)|q |ϕ(y)|q
|x− y|d−α

dx dy

) 1
2

×
(ˆ

BR(0)

|x|−
d−2s

2 q−γ dx

) (1−θ)(p−q)
q

,

where θ = 2
(2s−1)q+2 . The application of (4.4) requires that

(4.13)
γ

p− q
≤ σ =

2s(d− 1− γ) + γ

(2s− 1)q + 2
,

which is fulfilled for a sufficiently small ε > 0 if p > prad. The last integral in (4.12)
is finite when

(4.14) −d− 2s

2
q − γ < −d;

this is the case for a sufficiently small ε > 0 when q < d+α
d−2s .

Case (s ≤ 1/2). Let r > p > q and θ ∈ [0, 1] be such that θ
q + 1−θ

r = 1
p , i.e.,

θ = q
p
r−p
r−q . By the Hölder inequality together with (4.1) and (4.6), we estimate

ˆ
Rd\BR(0)

|ϕ|p ≤
(ˆ

Rd\BR(0)

|ϕ(x)|r|x|γ
r−p
p−q dx

) p−q
r−q

(ˆ
Rd\BR(0)

|ϕ(x)|q
|x|γ dx

) r−p
r−q

�
(ˆ

Rd\BR(0)

|ϕ(x)|r|x|−rβ dx

) p−q
r−q

(
1

R2ε

¨
RN

|ϕ(x)|q |ϕ(y)|q
|x− y|d−α

dx dy

) 1
2

r−p
r−q

� ‖ϕ‖r
p−q
r−q

Ḣs(Rd)

(
1

R2ε

¨
RN

|ϕ(x)|q |ϕ(y)|q
|x− y|d−α

dx dy

) 1
2

r−p
r−q

,

(4.15)

where in view of (4.8) we must express r and β as

r =
2(γp− d(p− q))

2γ − (d− 2s)(p− q)
, β =

1

2

γ(2d− p(d− 2s))

γp− d(p− q)
.

Note that β < 0 for sufficiently small ε > 0, since q < d+α
d−2s and p < 2d

d−2s . Hence

(4.7) requires that

β ≥ −d− 1

2

γ(p− 2)− 2s(p− q)

γp− d(p− q)
.
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The latter is satisfied provided that

(4.16) p ≥ pε := 2
qs(d− 1) + γ

2s(d− 1) + γ(1− 2s)
,

where pε ↘ prad as ε → 0. In addition, observe that r ↗ 2
1−2s as p = pε and

ε → 0, which in particular ensures that we can choose r > p and r > 2 in (4.6). We
conclude that (4.15) holds for p > prad, provided that ε > 0 is sufficiently small. �

Proposition 4.2. Let d ≥ 2, 0 < s < d
2 , 1 < α < d, and d+α

d−2s < q < ∞. Then the

space Es,α,q
rad (Rd) is continuously embedded into Lp(Rd) for

p ∈
[ 2d

d− 2s
, prad

)
and

1

q
�= 1

2
− s,(4.17)

p ∈
[ 2d

d− 2s
, prad

]
and

1

q
=

1

2
− s.(4.18)

Proof. Note that for 1
q �= 1

2 − s it is sufficient to establish continuous embedding

Es,α,q
rad (Rd) ↪→ Lp(Rd) only for p in a small left neighborhood of prad. The remaining

values of p are then covered by interpolation via Theorem 3.1.
Given R > 0, we shall estimate the Lp–norm of a function ϕ ∈ Es,α,q

rad (Rd)
separately in the interior and exterior of the ball BR(0). The proof will be split
into a number of separate cases, which we outline in Table 1.

Table 1. Different cases in the proof of Proposition 4.2.

s q BR(0) Rd \BR(0)

s > 1/2 q > d+α
d−2s De Napoli Sobolev

+ Ruiz as in (4.12) + Cho-Ozawa (4.5)

s ≤ 1/2

d+α
d−2s < q < 2

1−2s Rubin Weak Ni (4.9)

+ Ruiz as in (4.15)

q = 2
1−2s Lq-estimate (1.1) Weak Ni (4.9)

q > 2
1−2s Lq-estimate (1.1) Rubin

+ Ruiz as in (4.15)

Case (s > 1/2). In the exterior of the ball BR(0), for any p > 2d
d−2s we can estimate

(4.19)

ˆ
Rd\BR(0)

|ϕ|p ≤ CRd−p( d
2−s)‖ϕ‖p

Ḣs(Rd)
,

using the classical Sobolev inequality and Cho–Ozawa’s inequality (4.5). To obtain
an estimate in the interior of the ball BR(0), we observe that for s > 1/2 we
have q < prad and hence we can assume that q < p < prad. For a small ε > 0, set
γ := d−α

2 −ε. Then the estimate on
´
BR(0)

|ϕ|p is identical to the argument in (4.12),

but carried out in the interior of the ball BR(0), which reverses the inequalities in
(4.13) and (4.14).
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Case (s ≤ 1/2 and d+α
d−2s < q < 2

1−2s ). In the exterior of the ball BR(0) the estimate

(4.19) follows directly from the weak Ni’s inequality (4.9). To obtain an estimate
in the interior of the ball BR(0), observe that for q < 2

1−2s we have q < prad and

hence we can assume that q < p < prad. For a small ε > 0, set γ := d−α
2 − ε. Then

the estimate on
´
BR(0)

|ϕ|p is identical to the argument in (4.15), but carried out

in the interior of the ball BR(0) with q < p < r. The only difference is that for
q > d+α

d−2s the inequality in (4.16) reverses and pε ↗ prad as ε → 0, since γ < d−α
2 .

Note that for 0 < s < 1/2 and q ≥ 2
1−2s we have q ≥ prad and a Hölder inequality

estimate of type (4.15) on
´
BR(0)

|ϕ|p is no longer possible.

Case (s < 1/2 and q = 2
1−2s ). Observe that in this case we have prad = q. In the

exterior of the ball BR(0) the estimate

(4.20)

ˆ
Rd\BR(0)

|ϕ|q ≤ CRd−q( d
2−s)‖ϕ‖q

Ḣs(Rd)

follows directly from the weak Ni’s inequality (4.9), which is valid for q = 2
1−2s . To

estimate
´
BR(0)

|ϕ|q, we can use the Lq–estimate (1.1), i.e.,

(4.21)

ˆ
BR(0)

|ϕ|q ≤ CR
d−α

2

( ¨
Rd×Rd

|ϕ(x)|q |ϕ(y)|q
|x− y|d−α

dx dy

) 1
2

.

Combining (4.20) and (4.21) we conclude that Es,α,q
rad (Rd) ↪→ Lq(Rd). The remaining

range of p follows by interpolation.

Case (s < 1/2 and q > 2
1−2s ). Observe that in this case p < prad < q. To estimate´

BR(0)
|ϕ|p, we use the Lq–estimate (1.1) to obtain

ˆ
BR(0)

|ϕ|p ≤ CR

(
1− p

q

)
d−α

2

(¨
Rd×Rd

|ϕ(x)|q |ϕ(y)|q
|x− y|d−α

dx dy

) p
2q

.

To obtain an estimate in the exteriour of the ball BR(0), we will use Hölder’s,
Rubin’s, and Ruiz’s inequalities similarly to (4.15), with γ = d−α

2 +ε and r < p < q,
which could be carried out for p < prad provided that ε > 0 is sufficiently small,
because prad > 2

1−2s . �

Proof of Theorem 1.4. The scaling invariant inequalities of Theorem 1.4 follow from
Propositions 4.1 and 4.2 by the same scaling consideration as in the proof of The-
orem 1.1. �

The estimates of Propositions 4.1 and 4.2 improve upon the estimate of The-
orem 3.1 only when α > 1. In the next section we show that the intervals of
Propositions 4.1 and 4.2 are optimal and that for α ≤ 1 there is no improvement
for the radial embedding.

5. Optimality of the radial embeddings

The optimality of the intervals in Theorems 1.1 and 1.4 for s ≤ 1 is a consequence
of the following.

Theorem 5.1. Let d ≥ 2, 1 < α < d, 0 < s < 1/2, and q = 2
1−2s . Then the space

Es,α,q
rad (Rd) is not continuously embedded in Lp(Rd) for p > q = prad.
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Theorem 5.2. Let d ≥ 2, 1 < α < d, 0 < s ≤ 1, and p, q ∈ [1,+∞). Then the
space Es,α,q

rad (Rd) is not continuously embedded in Lp(Rd) for

p ≤ prad and
1

q
>

d− 2s

d+ α
,(5.1)

p ≥ prad and
1

q
<

d− 2s

d+ α
,
1

q
�= 1− 2s

2
.(5.2)

Theorem 5.3. Let d ≥ 2, 0 < α ≤ 1, 0 < s ≤ 1, and p, q ∈ [1,+∞). Then the
space Es,α,q

rad (Rd) is not continuously embedded in Lp(Rd) for

p <
2(2qs+ α)

2s+ α
and

1

q
>

d− 2s

d+ α
,(5.3)

p >
2(2qs+ α)

2s+ α
and

1

q
<

d− 2s

d+ α
.(5.4)

The proof of Theorems 5.2 and 5.3 is obtained by constructing counterexamples,
i.e., a family of functions u such that for a suitable p it holds that

‖u‖2
Ḣs(Rd)


 1,¨
Rd×Rd

|u(x)|q |u(y)|q
|x− y|d−α

dx dy 
 1,

||u||p
Lp(Rd)

→ +∞.

Given a nonnegative function η ∈ C∞(R) \ {0} such that supp η ⊂ [−1, 1], we
consider the family of functions

(5.5) uλ,R,S(x) = λ η
( |x| −R

S

)
,

where R > S > 0 and λ > 0 will be specified in the sequel.
By elementary computation we obtain

(5.6) ‖uλ,R,S‖pp 
 λpRd−1S.

We also claim that

(5.7) ‖uλ,R,S‖2Ḣs(Rd)

 λ2Rd−1S1−2s

and
(5.8)

¨
Rd×Rd

|uλ,R,S(x)|q |uλ,R,S(y)|q
|x− y|d−α

dx dy �

⎧⎪⎨⎪⎩
λ2qRd+α−2S2 if 1 < α < d,

λ2qRd−1S2 log(R/S) if α = 1,

λ2qRd−1S1+α if 0 < α < 1.

The estimate (5.8) is proved in Appendix A below.



SHARP GAGLIARDO–NIRENBERG INEQUALITIES 8303

To prove (5.7), for any s > 0 choose k ∈ N such that 2k ≥ s. Taking into account
that S < R, by the change of variables and scaling we compute

‖uλ,R,S‖2Ḣ2k(Rd)


ˆ
Rd

|Δkuλ,R,S |2 dx

ˆ ∞

0

∣∣∣∣{ ∂2

∂r2
+

d− 1

r

∂

∂r

}k

uλ,R,S(r)

∣∣∣∣2 rd−1 dr

=

ˆ ∞

0

∣∣∣∣{ ∂2k

∂r2k
+

a1
r

∂2k−1

∂r2k−1
+ · · ·+ ak

rk
∂k

∂rk

}
uλ,R,S(r)

∣∣∣∣2 rd−1dr

≤ λ2d

(ˆ ∞

0

∣∣∣η(2k)( r−R
S

)∣∣∣2rd−1dr + |a1|
ˆ ∞

0

η(2k−1)
∣∣∣( r−R

S

)∣∣∣2rd−3dr

+ · · ·+ |ad|
ˆ ∞

0

η(k)
∣∣∣( r−R

S

)∣∣∣2rd−1−2kdr

)
� λ2

(
S1−4kRd−1 + S1−2(2k−1)Rd−3 + · · ·+ S1−2kRd−1−k

)
� λ2S1−4kRd−1.

(5.9)

Interpolating between the L2 and Ḣ2k–norm of uλ,R,S (cf. [1, Proposition 1.32]),
we conclude from (5.6) and (5.9) that

‖uλ,R,S‖2Ḣs(Rd)
≤ ‖uλ,R,S‖

s
k

Ḣ2k(Rd)
‖uλ,R,S‖

2− s
k

L2(Rd)
� λ2Rd−1S1−2s.

Proof of Theorem 5.1. Let uS := uλ,R,S be the function in (5.5), where we fix R > 0
and for S < R set

λ = S− 1
q .

Then, since by our assumption 1 < α < d,

‖uS‖2Ḣs(Rd)
� Rd−1,(5.10) ¨

Rd×Rd

|uS(x)|q |uS(y)|q
|x− y|d−α

dx dy � Rd+α−2,(5.11)

‖uS‖pLp(Rd)

 λpSRd−1 
 λp−qRd−1 
 S1− p

q Rd−1.(5.12)

Since R is fixed, we conclude that ‖uS‖Lp(Rd) → ∞ for p > q when S → 0. �

Proof of Theorem 5.2. Let uR :=λ,R,S be the function in (5.5), where we set

λ = Rβ and S =
(
λ2Rd−1

) 1
2s−1 = Rγ ,

with

(5.13) β = −2(d− 1) + (d+ α− 2)(2s− 1)

2q(2s− 1) + 4
, γ =

q(d− 1)− (d+ α− 2)

q(2s− 1) + 2
.

Then we compute

‖uR‖2Ḣs(Rd)
� 1,(5.14) ¨

Rd×Rd

|uR(x)|q |uR(y)|q
|x− y|d−α

dx dy � 1,(5.15)

‖uR‖pLp(Rd)

 λpRd−1S 
 Rβ(p−prad),(5.16)

provided that R > S, that is, either R > 1 and γ < 1 or R < 1 and γ > 1. To
complete the proof of Theorem 5.2 for p �= prad we select R according to Table 2.
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Table 2. Choice of R which ensures R > S and ‖uR‖pLp(Rd)
→ ∞

for α > 1.

q β γ Choice of R Conclusion

1
q > d−2s

α+d β < 0 0 < γ < 1 R → ∞ ‖uR‖pLp(Rd)

→ ∞ for p < prad

1
q ∈

((
1−2s

2

)
+
, d−2s
α+d

)
β < 0 γ > 1 R → 0 ‖uR‖pLp(Rd)

→ ∞ for p > prad

s < 1/2 and 1
q < 1−2s

2 β > 0 γ < 0 R → ∞ ‖uR‖pLp(Rd)

→ ∞ for p > prad

Next we prove that Es,α,q
rad (Rd) �⊂ Lprad(Rd) when 1

q �= 1−2s
2 . Similarly to [28,

Lemma 6.4], we consider the “multi-bump” sequence

vR,m =

m∑
k=1

uRk ,

where the functions uRk are as in (5.5) with R = Rk, λ = Rkβ, S = Rk 2β+d−1
2s−1 and

where β is given in (5.13). Note that for R �= 1 and sufficiently large quotient R/S
the functions uRk (k = 1, . . . ,m) have mutually disjoint supports.

If 1
q > d−2s

α+d or s < 1/2 and 1
q < 1−2s

2 , then we let R → ∞. We obtain

‖vR,m‖p
Lp(Rd)


 m,(5.17)

‖vR,m‖2
Ḣs(Rd)

� m,(5.18) ¨
Rd×Rd

|vR,m(x)|q |vR,m(y)|q
|x− y|d−α

dx dy � m.(5.19)

For the derivation of (5.19) see [28, proof of Lemma 6.4]. To obtain (5.18), we
observe that

(5.20) ‖vR,m‖2
Ḣs(Rd)

=

m∑
k=1

‖uRk‖2
Ḣs(Rd)

+ 2

m∑
i,j=1,i>j

(uRi , uRj )Ḣs(Rd).

If s is an integer the second term vanishes or if s < 1, then the second term is
negative. Otherwise, s = � + σ, with � ∈ N and σ ∈ (0, 1). Thus by the Gagliardo

seminorm characterization of Ḣs(Rd), if uRi and uRj have disjoint supports, then

(uRi , uRj )Ḣs(Rd) =

¨
Rd×Rd

(∇	uRi(x)−∇	uRi(y)) · (∇	uRj (x)−∇	uRj (y))

|x− y|d+2σ
dx dy

= −2C

¨
Rd×Rd

∇	uRi(x) · ∇	uRj (y)

|x− y|d+2σ
dx dy.

(5.21)

Similarly to (5.9), we deduce that ‖D	uλ,R,S‖L1(Rd) � λRd−1S1−	 and hence

(5.22) ‖D	uRk‖L1(Rd) � Rk(β+d−1+γ(1−	)).
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If 1
q > d−2s

α+d , then β < 0 and 0 < γ < 1. For i > j and if Ri � Rj we estimate

(5.21) as

(uRi , uRj )Ḣs(Rd) �
‖D	uRi‖L1(Rd)‖D	uRj‖L1(Rd)(

Ri −Rj
)d+2σ

� R−i(d+2σ)R(i+j)(β+d−1+γ(1−	))

� R−i(d+2σ)Ri(2(γs−β)+2σγ) � R−i(2σ(1−γ)),

(5.23)

since we note that 2(γs − β) < d, provided that q < d+α
d−2s . Then in (5.20) for all

sufficiently large R we have

(5.24) ‖vR,m‖2
Ḣs(Rd)

� m+

m∑
i,j=1,i>j

R−i(2σ(1−γ)) � m.

The case 1
q ∈

((
1−2s

2

)
+
, d−2s
α+d

)
is similar, but letting R → 0 and observing that

γ < 0.
Now, set

wR,m(x) = mθvR,m

( x

mσ

)
.

Then by the standard scaling we have

‖wR,m‖p
Lp(Rd)


 mpθ+σd+1,(5.25)

‖wR,m‖2
Ḣs(Rd)

� m2θ+σ(d−2s)+1,(5.26) ¨
Rd×Rd

|wR,m(x)|q |wR,m(y)|q
|x− y|d−α

dx dy � m2qθ+σ(d+α)+1.(5.27)

If we set

σ =
q − 1

d+ α− q(d− 2s)
, θ = − 2s+ α

2(d+ α− q(d− 2s))
,

then for R → ∞ and m → ∞ we obtain

‖wR,m‖2
Ḣs(Rd)

� 1,(5.28) ¨
Rd×Rd

|wR,m(x)|q |wR,m(y)|q
|x− y|d−α

dx dy � 1,(5.29)

‖wR,m‖p
Lp(Rd)


 mpθ+σd+1 
 m
2s(α−1)

2s(d+α−2)+d−α → ∞,(5.30)

since α > 1 and d ≥ 2.

The case 1
q ∈

((
1−2s
2

)
+
, d−2s
α+d

)
is similar by letting R → 0. �

Proof of Theorem 5.3. The strategy in the case 0 < α < 1 and 1
q �= 1−2s

1+α is the

same as in the first part of the proof of Theorem 5.2. Let uR := uλ,R,S be the
function in (5.5) and choose

λ = Rβ , S =
(
λ2Rd−1

) 1
2s−1 = Rγ ,

where

β = − (d− 1)(2s+ α)

2(q(2s− 1) + 1 + α)
, γ =

(d− 1)(q − 1)

q(2s− 1) + 1 + α
.
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Then (5.14) and (5.15) hold, and

‖uR‖pLp(Rd)

 λpRd−1S 
 Rβ(p− 2(2qs+α)

2s+α ),

provided that R > S. Then to construct the required counterexamples, we select
R according to Table 3.

Table 3. Choice of R which ensures R > S and ‖uR‖pLp(Rd)
→ ∞

for α ≤ 1.

q β γ Choice of R Conclusion

1
q > d−2s

α+d β < 0 0 < γ < 1 R → ∞ ‖uR‖pLp(Rd)
→ ∞

for p < 2(2qs+α)
2s+α

1
q ∈

((
1−2s
1+α

)
+
, d−2s
α+d

)
β < 0 γ > 1 R → 0 ‖uR‖pLp(Rd)

→ ∞
for p > 2(2qs+α)

2s+α

s < 1/2 and 1
q < 1−2s

1+α β > 0 γ < 0 R → ∞ ‖uR‖pLp(Rd)
→ ∞

for p > 2(2qs+α)
2s+α

In the case 0 < α < 1, s < 1/2, and q = 1+α
1−2s we note that 2(2qs+α)

2s+α = 2
1−2s > q.

Similarly to the proof of Theorem 5.1, for uS := uλ,R,S with a fixed R > 0 and for
S < R we set

λ = S− α+2s
2(q−1) = S

2s−1
2 .

Then

‖uS‖2Ḣs(Rd)

 Rd−1,(5.31) ¨

Rd×Rd

|uS(x)|q |uS(y)|q
|x− y|d−α

dx dy � Rd−1,(5.32)

‖uS‖pLp(Rd)

 λpSRd−1 
 λp− 2

2s−1Rd−1 
 S1− p(1−2s)
2 Rd−1.(5.33)

Since R is fixed, we conclude that ‖uS‖Lp(Rd) → ∞ for p > 2(2qs+α)
2s+α = 2

1−2s when
S → 0.

The case α = 1 is similar but takes into account the logarithmic correction in
(5.8). We omit the details. �

6. Radial compactness: Proof of Theorem 1.5

We need the following preliminary local compactness result.

Lemma 6.1 (Local compactness). Let d ∈ N, s > 0, α ∈ (0, d), and q ∈ [1,∞).
Then the embedding Es,α,q(Rd) ↪→ L1

loc(R
d) is compact.

Proof. Multiplication by θ ∈ S(Rd) is a continuous mapping Es,α,q(Rd) → Ḣs(Rd).
Indeed by the fractional Leibniz rule (see e.g. [18, Theorem 1.4]), we obtain

‖(−Δ)
s
2 θu‖L2(Rd) � ‖(−Δ)

s
2 u‖L2(Rd)‖θ‖L∞(Rd) + ‖(−Δ)

s
2 θ‖Lr(Rd)‖u‖

L
2(2qs+α)

2s+α (Rd)
,
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with r such that 2s+α
2(2qs+α)+

1
r = 1

2 . For q = 1, we set r = ∞. Hence by Theorem 3.1,

‖θu‖Ḣs(Rd) ≤ C(θ)‖u‖Es,α,q(Rd).

For every ρ > 0, we choose θ ∈ C∞(Rd) such that θ = 1 on Bρ and θ = 0 in Rd\B2ρ.
Let (un)n∈N be a bounded sequence in Es,α,q(Rd). Setting vn = θun, Theorem 3.1
implies that (vn)n∈N is also bounded in Hs(Rd). We can assume that vn converges
weakly to some v in L2(Rd). By testing against suitable test functions, it follows
that v is also supported in B2ρ and thus v̂ ∈ L∞(Rd). By Plancharel’s identity we
have

‖vn − v‖2L2(Rd) =

ˆ
|ξ|≤R

|v̂n(ξ)− v̂(ξ)|2 dξ +
ˆ
|ξ|>R

|v̂n(ξ)− v̂(ξ)|2 dξ.

By showing that the right-hand side goes to zero we will infer by Hölder’s in-
equality that ‖un − v‖L1(Bρ) → 0. We haveˆ
|ξ|>R

|v̂n(ξ)− v̂(ξ)|2 dξ ≤ 1

(1 +R2)s

ˆ
Rd

(
1 + |ξ|2

)s|v̂n(ξ)− v̂(ξ)|2 dξ ≤ C

(1 +R2)s
.

Since eix·ξ ∈ L2
x(B2ρ), by weak convergence in L2(B2ρ) we have v̂n(ξ) → v̂(ξ)

almost everywhere. To conclude it suffices to show that

(6.1)

ˆ
|ξ|≤R

|v̂n(ξ)− v̂(ξ)|2 dξ = o(1).

Notice that ‖v̂n‖∞ ≤ ‖vn‖L1(B2ρ) ≤ μ(B2ρ)
1
2 ‖vn‖L2(B2ρ) ≤ μ(B2ρ)

1
2 ‖vn‖Hs(Rd) and

hence |v̂n(ξ) − v̂(ξ)|2 is estimated by a uniform constant so that by Lebesgue’s
dominated convergence theorem (6.1) holds. This concludes the proof. �

Proof of Theorem 1.5. We sketch the proof only in the most interesting case α > 1,
s < 1/2, and q ≥ 2

1−2s , namely when prad ≤ q. Notice that for all R > 0, by (1.1)

and Lemma 6.1, interpolation between q and p′ = 1 yields the compact embedding
Es,α,q
rad (Rd) ↪→ Lp

loc(R
d) for all 1 ≤ p < q. Thus it suffices to show that for any

bounded sequence (un)n∈N in Es,α,q
rad (Rd) it holds that

sup
n∈N

ˆ
Rd\BR(0)

|un|p → 0, R → ∞.

When p ≤ 2
1−2s , we use Lemma 4.1, which yields

ˆ
Rd\BR(0)

|un|p ≤ o(1)‖un‖pEs,α,q(Rd)
, R → ∞.

When p > 2
1−2s the same conclusion holds by arguing as in the proof of (4.15) and

using the strict inequality p < prad. This is enough to prove the theorem for α > 1,
s < 1/2, and q ≥ 2

1−2s .
The other cases are similar, estimating the various integrals as in Proposition 4.1

for q < d+α
d−2s and according to Table 1 for q > d+α

d−2s . This concludes the proof. �

Appendix A. Proof of claim (5.8)

Proof of (5.8). We use an estimate for radial functions from [28]. Similar estimates
were previously obtained in [15, 30, 33].
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Lemma A.1 ([28, Lemma 6.3]). Let d ≥ 2 and α ∈ (0, d). Then for every mea-
surable function f : [0,∞) → [0,∞),¨

Rd×Rd

f(|x|)f(|y|)
|x− y|d−α

dx dy =

ˆ ∞

0

ˆ ∞

0

f(r)KR
α,d(r, s)f(s)r

d−1sd−1 dr ds,

where the kernel KR
α,d : [0,∞)× [0,∞) → ∞ is defined for r, s ∈ [0,∞)× [0,∞) by

KR
α,d(r, s) = Cd

ˆ 1

0

z
d−3
2 (1− z)

d−3
2

((s+ r)2 − 4srz)
d−α

2

dz.

Moreover, there exists M > 0 such that

(A.1) KR
α,d(r, s) ≤ M

⎧⎪⎪⎨⎪⎪⎩
( 1
rs )

d−1
2

1
|r−s|1−α if α < 1,

( 1
rs )

d−1
2 ln 2|r+s|

|r−s| if α = 1,

( 1
rs )

d−α
2 if α > 1.

Case (α > 1). From (A.1) we obtain for radially symmetric functions that¨
Rd×Rd

|ϕ(x)|q |ϕ(y)|q
|x− y|d−α

dx dy ≤ C

ˆ ∞

0

ˆ ∞

0

|ϕ(r)|q |ϕ(s) |qrd−1sd−1

(rs)
d−α
2

dr ds,

and hence that¨
Rd×Rd

|ϕ(x)|q |ϕ(y)|q
|x− y|d−α

dx dy ≤ C

(ˆ ∞

0

|ϕ(r)|q r d
2+

α
2 −1 dr

)2

.

Let u = uλ,R,S be defined in (5.5). Then

¨
Rd×Rd

|u(x)|q |u(y)|q
|x− y|d−α

dx dy ≤ Cλ2q

(ˆ R+S

R−S

(
S −

∣∣r −R
∣∣

S

)q

r
d
2+

α
2 −1 dr

)2

.

Using the trivial estimate
S−

∣∣r−R
∣∣

S < 1 it follows that¨
Rd×Rd

|u(x)|q |u(y)|q
|x− y|d−α

dx dy ≤ Cλ2q
(
(R+ S)

d
2+

α
2 − (R− S)

d
2+

α
2

)2

,

and we get the desired estimate.

Case (α = 1). From (A.1) we obtain for radially symmetric functions that¨
Rd×Rd

|ϕ(x)|q |ϕ(y)|q
|x− y|d−α

dx dy ≤ C

ˆ ∞

0

ˆ ∞

0

|ϕ(r)|q|ϕ(s)|qrd−1sd−1

(rs)
d−1
2

ln
2|r + s|
|r − s| dr ds,

and hence that¨
Rd×Rd

|ϕ(x)|q |ϕ(y)|q
|x− y|d−α

dx dy ≤ C

ˆ ∞

0

ˆ ∞

0

|ϕ(r)|q|ϕ(s)|qr d
2−

1
2 s

d
2−

1
2 ln

2|r + s|
|r − s| dr ds.

Let u = uλ,R,S be defined in (5.5). Using the estimates
S−

∣∣r−R
∣∣

S < 1 and r ≤ R+S,
s ≤ R+ S we have¨

Rd×Rd

|u(x)|q |u(y)|q
|x− y|d−α

dx dy ≤ Cλ2q(R+ S)d−1

ˆ R+S

R−S

ˆ R+S

R−S

ln
2|r + s|
|r − s| dr ds

and we can conclude that¨
Rd×Rd

|u(x)|q |u(y)|q
|x− y|d−α

dx dy ≤ Cλ2qRd−1

ˆ R+S

R−S

ˆ R+S

R−S

ln
2|r + s|
|r − s| dr ds
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i.e.,

¨
Rd×Rd

|u(x)|q |u(y)|q
|x− y|d−α

dx dy ≤ Cλ2qRd−1S2(lnR − lnS + 1) = O(λ2qRd−1+βS2).

Case (0 < α < 1). This case is similar to α = 1, so we omit the details. �
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