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NONSYMMETRIC MACDONALD POLYNOMIALS AND

A REFINEMENT OF KOSTKA–FOULKES POLYNOMIALS

SAMI ASSAF

Abstract. We study the specialization of the type A nonsymmetric Mac-
donald polynomials at t = 0 based on the combinatorial formula of Haglund,

Haiman, and Loehr. We prove that this specialization expands nonnegatively
into the fundamental slide polynomials, introduced by the author and Searles.
Using this and weak dual equivalence, we prove combinatorially that this spe-
cialization is a positive graded sum of Demazure characters. We use stability
results for fundamental slide polynomials to show that this specialization sta-
bilizes and to show that the Demazure character coefficients give a refinement
of the Kostka–Foulkes polynomials.

1. Introduction

Macdonald’s symmetric functions [Mac88] are two parameter generalizations
of classical symmetric functions [Mac95] that simultaneously generalize the Hall–
Littlewood symmetric functions and Jack symmetric functions. The transformed
Macdonald symmetric functions in type A, commonly denoted by Hμ(X; q, t), are
known to have deep connections to representation theory of the symmetric group
as shown by Garsia and Haiman [GH96] and geometry of Hilbert schemes as shown
by Haiman [Hai01]. Haglund [Hag04] gave an elegant combinatorial formula for the
monomial expansion of Macdonald symmetric functions, and Haglund, Haiman,
and Loehr [HHL05] proved and generalized this formula to include Macdonald in-
tegral forms Jμ(X; q, t), which are obtained from Macdonald’s original orthogonal
polynomials Pμ(X; q, t) by a scalar multiple.

The nonsymmetric Macdonald polynomials were introduced by Opdam [Opd95]
and Macdonald [Mac96] and generalized by Cherednik [Che95]. Results in this
nonsymmetric setting often extend to any root system, giving hope that by passing
through the nonsymmetric variations, one might shed more light on the symmetric
Macdonald polynomials in general types. Generalizing [HHL05], Haglund, Haiman,
and Loehr [HHL08] gave a combinatorial formula for the nonsymmetric Macdonald
polynomials in type A, commonly denoted by Ea(X; q, t). They prove, combina-
torially, that the nonsymmetric Ea(X; q, t) stabilizes to the symmetric Pμ(X; q, t),
emulating a similar result of Knop and Sahi [KS97] for Jack polynomials.
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Demazure [Dem74b] gave a generalization of the Weyl character formula that
applies to certain submodules generated by extremal weight spaces under the ac-
tion of a Borel subalgebra of a Lie algebra. These Demazure characters arose in
connection with Schubert calculus [Dem74a] and were later studied combinatorially
in type A by Lascoux and Schützenberger [LS90] in connection with their Schubert
polynomials [LS82].

The connection between specializations of Macdonald polynomials and Demazure
characters began with Sanderson [San00], who used the theory of nonsymmetric
Macdonald polynomials in type A to construct an affine Demazure module with
graded character Pμ(X; q, 0), similar to the construction of Garsia and Procesi
[GP92] for Hall–Littlewood symmetric functions Hμ(X; 0, t). Ion [Ion03] general-
ized this result to nonsymmetric Macdonald polynomials in general type using the
method of intertwiners in double affine Hecke algebras to realize Ea(X; q, 0) as an
affine Demazure character. He also showed that Ea(X; 0, 0) is a (finite) Demazure
character.

To clarify connections with other specializations, the specialization Ea(X; 0, t)
was studied by Ion [Ion08] and also by Descouens and Lascoux [DL07], who dubbed
these nonsymmetric Hall–Littlewood polynomials since they stabilize precisely to
the Hall–Littlewood polynomials Pμ(X; 0, t). The specialization we consider in this
paper, that of Ea(X; q, 0), stabilizes to ωPμ(X; 0, t), where ω is the well-known
involution on symmetric functions. That is, for a weakly increasing, Ea(X; 0, 1) is
a homogeneous symmetric polynomial, whereas Ea(X; 1, 0) is an elementary sym-
metric polynomial.

We mention one further specialization, that of Ea(X;∞,∞). Ion [Ion08], again
using Hecke algebras, showed that this is precisely a Demazure atom, and this
was also proved combinatorially by Haglund, Haiman, and Loehr [HHL08] in type
A. This specialization was studied further by Mason [Mas09], who developed a
combinatorial theory parallel to that for Schur functions.

In this paper, we consider the specialization Ea(X; q, 0) and relate this to the
(finite) type A Demazure characters Ea(X; 0, 0). This result suggests that an analo-
gous statement might hold in other types as well. For our purposes, since Demazure
characters stabilize to Schur functions, this paper provides a bridge between the
combinatorics of the symmetric and nonsymmetric settings by drawing direct par-
allels between expansions and specializations on both sides.

To begin, we show that the expansion of Ea(X; q, 0) into fundamental slide poly-
nomials Fb, introduced by Assaf and Searles [AS17] to study Schubert polynomials,
is a polynomial in q with nonnegative integer coefficients. This parallels the ex-
pansion of Hμ(X; q, t) into fundamental quasisymmetric functions Fβ, introduced
by Gessel [Ges84]. Assaf and Searles [AS17] showed that the fundamental slide
polynomials stabilize to fundamental quasisymmetric functions, so together this
recovers the stability results of [HHL08,KS97].

Utilizing the theory of weak dual equivalence [Ass], we group together terms
in the fundamental slide expansion of Ea(X; q, 0) to prove, combinatorially, that
the coefficients of Ea(X; q, 0), when expanded into Demazure characters, are poly-
nomials in q with nonnegative integer coefficients. This parallels the use of dual
equivalence [Ass15], which collects terms in the fundamental quasisymmetric ex-
pansion of Hμ(X; q, t) into classes that are conjecturally Schur positive [Ass15] and
were proved to be Schur positive for the case of Hμ(X; 0, t) by Roberts [Rob17].
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Moreover, we prove that the involutions that group terms commute with the com-
binatorial bijection that proves stability.

Finally, we interpret our results to give a refinement of the Kostka–Foulkes poly-
nomials Kλ,μ(t) that give the change of basis coefficients from Hμ(X; 0, t) to Schur
functions in terms of the nonsymmetric Kostka–Foulkes polynomials Ka,b(q) that
similarly give the change of basis coefficients from Eb(X; q, 0) to Demazure charac-
ters. Knop [Kno07] defines a composition analog for the Kostka–Macdonald polyno-
mials Kλ,μ(q, t) that specializes at q = 0 to type A Kazhdan–Lusztig polynomials
[KL79]. Knop conjectures that the composition Kostka–Macdonald polynomials
have positive coefficients, which refines Macdonald positivity. At t = 0, Knop’s
polynomials agree with Ka,b(q), thus establishing the positivity for this case.

Our proofs are purely combinatorial, and this paper is largely self-contained.
The main hurdle in pushing this work further is the lack of known (or even con-
jectured) positivity for Ea(X; q, t). Indeed, the Schur positivity for Hμ(X; q, t),
conjectured by Macdonald [Mac88] and proved by Haiman [Hai01], translates to
Macdonald’s original Pμ(X; q, t) and the integral form Jμ(X; q, t) via plethystic
substitution. There is no known analog of plethysm for the full polynomial ring.

2. Demazure characters

Throughout we let X denote the finite variable set x1, x2, . . . , xn. Polynomials
in n variables are naturally indexed by weak compositions of length at most n.
The key diagram of a weak composition a is the collection of cells in the N × N

lattice with ai cells left-justified in row i. Key diagrams play the analogous role for
polynomials that Young diagrams play for symmetric functions.

Standard key tableaux were introduced by Assaf [Ass] to develop a theory of
type A Demazure characters parallel to that of Schur functions. This connection
has recently been strengthened with a Demazure crystal structure constructed by
Assaf and Schilling [ASb].

Definition 2.1. A key tableau is a filling of a key diagram with positive integers
such that columns have distinct entries, rows weakly decrease, and if some entry i
is above and in the same column as an entry k with i < k, then there is an entry
immediately right of k, say j, and i < j.

A standard key tableau is a bijective filling of a key diagram. This coincides
precisely with the definition in [Ass] since standard key tableaux necessarily have
strictly decreasing rows. For examples, see Figure 1. Denote the set of standard
key tableaux of shape a by SKT(a).

5 2
4
3 1

5 3
4
2 1

5 4
3
2 1

5 4
1
3 2

5 3
1
4 2

(1, 2, 1, 1) (0, 2, 2, 1) (0, 2, 1, 2) (1, 2, 0, 2) ∅

Figure 1. Standard key tableaux of shape (0, 2, 1, 2) and their
weak descent compositions.
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Demazure characters for type A, which are also called key polynomials, were
studied combinatorially by Lascoux and Schützenberger [LS90], Kohnert [Koh91],
and most thoroughly by Reiner and Shimozono [RS95]. We choose to begin with a
different definition, due to Assaf [Ass], but we postpone this to introduce another
basis for polynomials that will facilitate our main results.

Assaf and Searles [AS17] introduced the fundamental slide basis for polynomi-
als that parallels Gessel’s fundamental basis for quasisymmetric functions [Ges84].
Given two weak compositions a and b of length n, write b ≥ a if b1 + · · · + bk ≥
a1+ · · ·+ak for all k = 1, . . . , n. Given compositions α, β, write β refines α if there
exist indices i1 < · · · < ik such that β1 + · · · + βij = α1 + · · · + αj . For example,
(1, 2, 2) refines (3, 2) but does not refine (2, 3).

Definition 2.2 ([AS17]). The fundamental slide polynomial Fa(X) is given by

(2.1) Fa(X) =
∑
b≥a

flat(b) refines flat(a)

Xb,

where flat(a) is the composition obtained by removing zero parts from a.

For example, we compute

F(0,2,1,2)(X) = x2
2x3x

2
4 + x1x2x3x

2
4 + x2

1x3x
2
4 + x2

1x2x
2
4 + x2

1x2x3x4 + x2
1x2x

2
3.

We use the fundamental slide polynomials to define Demazure characters as the
generating polynomials for standard key tableaux. To do so, we assign to each
standard key tableau (more generally, to each standard filling of a key diagram) a
weak composition.

Definition 2.3. Given a standard filling T of a key diagram, the weak descent
composition of T , denoted by des(T ), is constructed as follows. Partition the de-
creasing permutation n · · · 21 into blocks, say τ (k)| · · · |τ (1), broken between i + 1

and i precisely when i+1 lies weakly right of i in T . Set tk to be the row of τ
(k)
1 if it

lies in the first column and otherwise n. For i < k, set ti = min(row(τ
(i)
1 ), ti+1 − 1)

if τ
(i)
1 lies in the first column and otherwise ti+1 − 1. Set des(T )ti = |τ (i)| and all

other parts are zero if all ti > 0 and des(T ) = ∅ otherwise.

Remark 2.4. In [Ass], the weak descent composition of T is computed without
the first column caveat. However, when T is a standard key tableau, rows weakly

decrease, so any entry not in the first column that occurs as τ
(i)
1 will necessarily

result in ti = ti+1 − 1 since the entry to its left must lie in some previous block.
Thus the definitions agree when T is a standard key tableau.

For example, Figure 1 shows weak descent compositions for SKT(0, 2, 1, 2).
If des(T ) = ∅, then we say that T is virtual. Extend previous notation for

fundamental slide polynomials to avoid discounting virtual objects by setting

(2.2) F∅ = 0.

We have the following expansion for Demazure characters in terms of fundamen-
tal slide polynomials that we may take as our definition.

Proposition 2.5 ([Ass]). The Demazure character κa(X) is given by

(2.3) κa(X) =
∑

T∈SKT(a)

Fdes(T )(X).
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For example, from Figure 1 we compute

κ(0,2,1,2) = F(1,2,1,1) + F(0,2,2,1) + F(0,2,1,2) + F(1,2,0,2).

A semi-standard key tableau is a key tableau in which no entry exceeds its row
index. Denote the set of semi-standard key tableaux of shape a by SSKT(a). For
example, see Figure 2.

4 4
3
2 2

4 4
3
2 1

4 4
3
1 1

4 4
2
1 1

4 4
1
2 2

4 3
3
2 2

4 3
3
2 1

4 3
3
1 1

4 3
2
1 1

4 3
1
2 2

4 2
3
2 1

4 2
3
1 1

4 2
2
1 1

3 3
2
1 1

3 3
1
2 2

3 2
2
1 1

Figure 2. The semi-standard key tableaux of shape (0, 2, 1, 2).

Proposition 2.6. The Demazure character κa(X) is given by

(2.4) κa(X) =
∑

T∈SSKT(a)

Xwt(T ),

where wt(T ) is the weak composition whose ith part is the number of entries equal
to i.

Proof. We may define a standardization map from semi-standard key tableaux to
standard key tableaux as follows. Given T ∈ SSKT(a), relabel the cells of T from 1
to n in the following order: for k from 1 to n, relabel cells labeled k from right to left
in T . Since columns have distinct values, this is well-defined and necessarily results
in a filling with distinct column entries and strictly decreasing rows. Moreover, it
clearly preserves the property that if some entry i is above and in the same column
as an entry k with i < k, then there is an entry immediately right of k, say j, and
i < j. In particular, the result, denoted by std(T ), lies in SKT(a).

If std(T ) = S, then by construction flat(wt(T )) refines flat(des(S)). Conversely,
we claim that given S ∈ SKT(a), for every weak composition b such that b ≥ des(S)
and flat(b) refines flat(des(S)) as compositions, there is a unique T ∈ SSKT(a) with
wt(T ) = b such that std(T ) = S. From the claim, for S ∈ SKT(a), we have

∑
T∈std−1(S)

Xwt(T ) = Fdes(S)(X),

and the result follows. To construct T from b and S, for j = n, . . . , 1, change
entries des(S)1 + · · · + des(S)j−1 + 1, . . . , des(S)1 + · · · + des(S)j to j’s. Then, if
des(S)j = bij−1+1 + · · · + bij , from left to right change each of the first bij−1+1 j’s
to ij−1 + 1, the next bij−1+2 j’s to ij−1 + 2, and so on. Existence is proved, and
uniqueness follows from the lack of choice. �
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3. Nonsymmetric Macdonald polynomials

Given a weak composition a, two cells of the key diagram for a are attacking if
they lie in the same column or if they lie in adjacent columns with the cell on the
left strictly higher than the cell on the right. A filling is nonattacking if no two
attacking cells have the same value and no cell in the leftmost column exceeds its
row index. Note that this latter condition is equivalent to adding a basement in
the sense of Haglund, Haiman, and Loehr [HHL08].

For example, the filling in Figure 3 is nonattacking as are the SSKT(0, 2, 1, 2) in
Figure 2.

5 5

3 4 2
2
1 6

Figure 3. A nonattacking filling of the key diagram for (2, 1, 3, 0, 0, 2).

The leg of a cell of a key diagram is the number of cells weakly to its right.
Given a nonattacking filling T , define maj(T ) to be the sum of the legs of all cells
c such that the entry in c is strictly greater than the entry immediately to its left.
For example, the filling in Figure 3 has maj = 3.

A triple of a key diagram is a collection of three cells with two rows adjacent and
either (Type I) the third cell is above the left and the lower row is strictly longer
or (Type II) the third cell is below the right and the higher row is weakly longer.
For the general case, from which we will shortly depart, the row indices may be
regarded as the leftmost cell(s) of a triple. The orientation of a triple is determined
by reading the entries of the cells from smallest to largest. A co-inversion triple
is a Type I triple oriented counterclockwise or a Type II triple oriented clockwise,
where for equal entries in the same row we read the right entry as smaller. For
an illustration, see Figure 4. Given a nonattacking filling T , define coinv(T ) to be
the number of co-inversion triples of T . For example, the filling in Figure 3 has
coinv = 2.

... �

Type I

�
...

Type II

Figure 4. Co-inversion triples for key diagrams.

Proposition 3.1. The set of nonattacking fillings of a with maj(T ) = coinv(T ) = 0
is SSKT(a).

Proof. Suppose T ∈ SSKT(a). By definition, the left column of T has entries weakly
smaller than the row index. Since columns are distinct, no cells in the same column
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have the same values. Suppose cells c, d are attacking, say with c strictly above and
in the column immediately left of d, and have the same value, say i. Since rows of
T weakly decrease, the entry immediately left of d must be k for some k ≥ i. Since
columns are distinct, we must have k > i. Then the condition on key tableaux
forces d to have entry greater than i, a contradiction. Therefore T is nonattacking.
Since rows weakly decrease, maj(T ) = 0. Given a Type I triple, say with i in the
top row and k left of j in the bottom row, we must have k ≥ j since rows weakly
decrease, and the key tableaux condition forces either i > k ≥ j or k ≥ j > i, in
which case the orientation is clockwise and the triple is not a co-inversion triple.
Given a Type II triple, say with k left of j in the top row and i in the bottom row,
we must have k ≥ j. If j > i, then the orientation is counterclockwise and this is
not a co-inversion triple, and if j < i, then the lower row must be strictly longer
than the higher, so this is not a triple. Therefore coinv(T ) = 0 as well.

Conversely, suppose T is a nonattacking filling with maj(T ) = coinv(T ) = 0.
Since maj(T ) = 0, rows weakly decrease. Since T is nonattacking, columns are
distinct and entries in the first column may not exceed their row index. Again
using weakly decreasing rows, this means no entry in a row may exceed its row
index. Finally, suppose that some entry i is above and in the same column as an
entry k with i < k. If the row of k is strictly longer than the row of i, then in
particular there is an entry j immediately right of k with j < k since rows weakly
decrease. In order for these three entries not to form a co-inversion triple of Type
I, we must have j > i, satisfying the key tableau condition. Otherwise, if the row
of i is weakly longer than the row of k, then consider the entries beginning with
row index of i read to the right, say in, . . . , i1, i0 = i, and similarly for the row of
k, say kn, . . . , k1, k0 = k. If ij < kj , which holds for j = 0, then since ij+1 > ij , to
avoid a Type II inversion triple, we must have ij+1 < kj < kj+1. However, in > kn
since these are the row indices, giving a contradiction. Therefore the key tableau
condition holds, so T ∈ SSKT(a). �

Haglund, Haiman, and Loehr [HHL08] proved that the nonsymmetric Macdonald
polynomial Ea(X; q, t) is the generating polynomial of nonattacking fillings of the
key diagram for a q-counted by maj and t-counted by coinv with an additional
product term that collapses to 1 when t = 0.

Definition 3.2 ([HHL08]). The nonsymmetric Macdonald polynomial Ea(X; q, t)
is given by
(3.1)

Ea(X; q, t) =
∑

T :a→[n]
nonattacking

qmaj(T )tcoinv(T )Xwt(T )
∏

c�=left(c)

1− t

1− qleg(c)+1tarm(c)+1
,

where the product is over cells of the key diagram such that the cell to its left (or
the row index) has a different entry, and arm(c) is the number of cells below c in a
weakly shorter row or above c and one column to the left in a strictly shorter row.

By Proposition 3.1, we have a simple combinatorial proof that nonsymmetric
Macdonald polynomials specialize to Demazure characters. This was proved first
by Ion [Ion03].

Corollary 3.3. For a weak composition a, we have

(3.2) Ea(X; 0, 0) = κa(X).
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For our purposes, we will always take t = 0, in which case the product becomes
1, and the only terms that survive are those T with coinv(T ) = 0. This motivates
the following definitions.

Definition 3.4. The semi-standard key tabloids of shape a, denoted by SSKD(a),
are the nonattacking fillings with no co-inversion triples. The specialized nonsym-
metric Macdonald polynomial Ea(X; q, 0) is given by

(3.3) Ea(X; q, 0) =
∑

T∈SSKD(a)

qmaj(T )Xwt(T ).

4 4
3
2 2

4 4
3
2 1

4 4
3
1 1

4 4
2
1 1

4 4
1
2 2

4 3
3
2 2

4 3
3
2 1

4 3
3
1 1

4 3
2
1 1

4 3
1
2 2

4 2
3
2 1

4 2
3
1 1

4 2
2
1 1

3 3
2
1 1

3 3
1
2 2

3 2
2
1 1

4 4
2
1 3

3 3
2
1 4

3 2
2
1 4

3 1
2
1 4

Figure 5. The semi-standard key tabloids of shape (0, 2, 1, 2).

For example, the 20 semi-standard key tabloids of shape (0, 2, 1, 2) are given in
Figure 5. By Proposition 3.1, every semi-standard key tableau is a semi-standard
key tabloid, as evidenced by the fact that the first 16 tabloids in Figure 5 are the
SSKT(0, 2, 1, 2) from Figure 2.

Our next task is to turn the monomial expansion into a fundamental slide ex-
pansion. To that end, we have the following definition. Note that we do not assume
that the filling is nonattacking.

A standard key tabloid is a bijective filling of a key diagram with no co-inversion
triples. For example, there are ten standard key tabloids of shape (0, 2, 1, 2) as
shown in Figure 6. Note that the first five are the standard key tableaux of shape
(0, 2, 1, 2) shown in Figure 1.

5 2
4
3 1

5 3
4
2 1

5 4
3
2 1

5 4
1
3 2

5 3
1
4 2

5 4
2
1 3

4 3
2
1 5

4 2
3
1 5

4 1
3
2 5

3 5
2
1 4

Figure 6. The standard key tabloids of shape (0, 2, 1, 2).

The following characterization follows from the proof of Proposition 3.1.

Proposition 3.5. The set of standard key tabloids T of shape a with maj(T ) = 0
is SKT(a).

We use standard objects to collect together terms for the fundamental slide
expansion. Using Definition 2.3, we may associate a weak descent composition to
each standard key tabloid. For example, the latter 5 standard key tabloids of shape
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(0, 2, 1, 2) shown in Figure 6 have weak descent compositions (1, 1, 1, 2), (1, 1, 2, 1),
(1, 2, 1, 1), (2, 1, 1, 1), ∅, respectively. Correspondingly, we have

E(0,2,1,2)(X; q, 0) = F(1,2,1,1) + F(0,2,2,1) + F(0,2,1,2) + F(1,2,0,2)

q
(
F(1,1,1,2) + F(1,1,2,1) + F(1,2,1,1) + F(2,1,1,1)

)
.

We prove that this holds in general, that is, that specialized nonsymmetric Mac-
donald polynomials are the fundamental slide generating polynomials of standard
key tabloids.

Theorem 3.6. The specialized nonsymmetric Macdonald polynomial Ea(X; q, 0) is
given by

(3.4) Ea(X; q, 0) =
∑

T∈SKD(a)

qmaj(T )Fdes(T )(X),

where SKD(a) denotes the standard key tabloids of shape a.

Proof. Reversing the proof of Proposition 2.6, define a standardization map, de-
noted by std, from semi-standard key tabloids to standard key tabloids as follows.
Given T ∈ SSKD(a), relabel the cells of T from 1 to n in the following order: for
k from 1 to n, relabel cells labeled k from right to left in T . The nonattacking
condition ensures that columns have distinct values; therefore this is well-defined
and necessarily results in a filling with distinct column entries. Moreover, by read-
ing left to right beginning with the smallest entries, we ensure that the entry of
a cell c is strictly greater than the entry of the cell to its left in T if and only if
the entry of c is strictly greater than the entry of the cell to its left in std(T ). In
particular, maj(std(T )) = maj(T ). Given any triple, this observation together with
distinct column values ensures that the entries form a co-inversion triple for T if
and only if they do for std(T ), and thus std(T ) ∈ SKD(a). Exactly as in the proof
of Proposition 2.6, we conclude that for any S ∈ SKD(a), we have∑

T∈std−1(S)

qmaj(T )Xwt(T ) = qmaj(S)
Fdes(S)(X),

from which the result follows. �

4. Weak dual equivalence

Analogous to our use of standardization in Theorem 3.6 to group together mono-
mials into fundamental slide polynomials, we use weak dual equivalence to group
together fundamental slide polynomials into Demazure characters.

Weak dual equivalence, introduced by Assaf in [Ass], provides a general frame-
work for proving that a positive sum of fundamental slide polynomials is key posi-
tive. This generalizes dual equivalence [Ass07,Ass15], which provides the analogous
framework to prove Schur positivity of a function expressed in terms of Gessel’s fun-
damental quasisymmetric functions.

Given a set of combinatorial objects A endowed with a notion of weak descents,
we consider the fundamental slide generating polynomial for A given by∑

T∈A
Fdes(T ).

Weak dual equivalence collects terms into equivalence classes, each of which is a
single Demazure character. We recall the main definitions and theorems from [Ass].
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Definition 4.1 ([Ass]). Let A be a finite set, and let des be a map from A to weak
compositions of n. A weak dual equivalence for (A, des) is a family of involutions
{ψi}1<i<n on A such that:

(i) For all i−h ≤ 3 and all T ∈ A, there exists a weak composition a of i−h+3
such that ∑

U∈[T ](h,i)

Fdes(h−1,i+1)(U) = κa,

where [T ](h,i) denotes the equivalence class generated by ψh, . . . , ψi and
des(h,i)(T ) deletes the first h− 1 and last n− i nonzero parts from des(T ).

(ii) For all |i− j| ≥ 3 and all T ∈ A, we have ψjψi(T ) = ψiψj(T ).

That is, a weak dual equivalence is a family of involutions for which equivalence
classes of degree up to 6 correspond to Demazure characters and which commute
when indices are far apart.

The Demazure character κa is F-stable if both κa and κ0m×a have the same
number of terms in their fundamental slide expansions for any (equivalently some)
m > 0.

Theorem 4.2 ([Ass]). Let A be a set of combinatorial objects for which des is
never ∅ (i.e., A has no virtual elements). If {ψi} is a weak dual equivalence for
(A, des) and U ∈ A, then

(4.1)
∑

T∈[U ]

Fdes(T ) = κa

for some a. In particular, the fundamental slide generating polynomial for A is key
positive.

While the nonvirtual condition might appear restrictive, in practice it may be
ignored whenever the family of polynomials being considered behaves well under
stabilization, which is the case for nonsymmetric Macdonald polynomials.

We recall the weak dual equivalence involutions for standard key tableaux defined
in [Ass] and apply them to tabloids as well. For this definition, column reading order
begins in the leftmost column, reading bottom to top, then continuing right.

Definition 4.3. Given a bijective filling T of a key diagram, define ψi(T ) as follows.
Let b, c, d be the cells with entries i−1, i, i+1 taken in column reading order. Then

(4.2) ψi(T ) =

⎧⎪⎪⎨
⎪⎪⎩

T if c has entry i,
bi(T ) else if b, d are attacking or row adjacent,

si−1(T ) else if c has entry i+ 1,
si(T ) else if c has entry i− 1,

where bj cycles j − 1, j, j + 1 so that j is not in position c and sj interchanges j
and j + 1.

Remark 4.4. In [Ass], the involutions on standard key tableaux apply bi precisely
when b, d are in the same row and c is not. However, when T is a standard key
tableau, since b and d differ by 1, they cannot be attacking, so they must be in the
same row. Conversely, since rows weakly decrease, if b and d are in the same row,
then they must be adjacent in their row. Therefore these definitions agree when T
is a standard key tableau.
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For examples of bi, si, and ψi on standard key tabloids, see Figure 7. Notice
that these involutions exactly group terms into equivalence classes corresponding
to Demazure characters:

E(0,2,1,2)(X; q, 0) = κ(0,2,1,2)(X) + qκ(1,1,1,2)(X).

5 2
4
3 1

ψ2 = ψ3⇐⇒
s2

5 3
4
2 1

ψ4←→
s3

5 4
3
2 1

ψ2←→
b2

5 4
1
3 2

ψ3 = ψ4⇐⇒
s3

5 3
1
4 2

5 4
2
1 3

ψ4←→
b4

4 3
2
1 5

ψ3←→
s2

4 2
3
1 5

ψ2←→
s1

4 1
3
2 5

3 5
2
1 4

Figure 7. Weak dual equivalence on the standard key tabloids of
shape (2, 1, 2).

Before proving that these involutions give a weak dual equivalence for SKT(a),
we note that they are well-defined and preserve the maj and coinv statistics. In
fact, they preserve the set of cells for which the value exceeds that of the value to
its left (or the row index for cells in the first column).

Lemma 4.5. Given a standard filling T of a key diagram, we have maj(T ) =
maj(ψi(T )) and coinv(T ) = coinv(ψi(T )).

Proof. Let T be a standard filling of a key diagram. First we claim that for any
cell c of the key diagram for a, the entry of c is greater than that of the cell to its
left in T if and only if the same holds for ψi(T ). If ψi acts by swapping i and i± 1,
then the swapped entries are not row adjacent. For any k 
= i, i± 1, we have k > i
if and only if k > i ± 1, so the set of cells whose entry exceeds that of the cell to
its left is preserved. If ψi acts by bi, for any k 
= i− 1, i, i+ 1, we have k > i+ 1 or
k < i − 1, so the set of cells whose entry exceeds that of the cell to its left is also
preserved unless, perhaps, two of i−1, i, i+1 are row adjacent. In this case, setting
i = 2 for notational convenience, we must have one of the eight situations depicted
in Figure 8 since the other four possible arrangements have c = 2. Therefore bi

acts as depicted in Figure 8, resolving this case.

3
...
2 1

b2↔
1
...
3 2

3
...
1 2

b2↔
1
...
2 3

3 2
...
1

b2↔
2 1

...
3

1 2
...
3

b2↔
2 3

...
1

Figure 8. Possible instances of bi on standard fillings when two
of 1, 2, 3 are adjacent.

Second, we claim that coinv(ψi(T )) = coinv(T ). To prove this, we appeal to an
alternative characterization of the co-inversion number given in [HHL08] as

coinv(T )=
∑
c

arm(c)+
∑

left(c)<c

arm(c)+#{(i < j) | ai ≤ aj}−#{(c < d) | d attacks c},
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where left(c) denotes the cell to the left of c or the row index if c is in the first
column, arm(c) is the number of cells below c in a weakly shorter row or above
c and one column to the left in a strictly shorter row, and d attacks c whenever
the cells are attacking and d occurs later in the column reading order. From this
alternative characterization, it is enough to show that the number of these latter
inversion pairs is preserved since the other terms depend only on the shape or on
the set of cells c whose entry is greater than that of the entry to its left, which we
have shown already is preserved. If ψi acts by swapping i with i±1, then these two
entries cannot be attacking, so by the same reasoning as before, the set of inversion
pairs is preserved. Inspecting Figure 8, where now the corner cell could move up
for the four left cases or down for the four right cases, shows that the number of
inversion pairs, though not the set, is preserved by bi. �

In particular, since coinv(T ) = coinv(ψi(T )), Lemma 4.5 shows that the invo-
lutions ψi are well-defined on standard key tabloids. However, for this restricted
case, Figure 8 is overly general.

Lemma 4.6. If i− 1, i, i+1 occur in a filling T as in either the second pair or the
fourth pair of fillings in Figure 8, then coinv(T ) > 0.

Proof. Suppose that T is one of the second pair in Figure 8. Then there is a Type
I co-inversion triple for 1, 2, 3 unless the higher depicted row is weakly longer than
the lower, so assume the latter to be the case. For the left filling, there must be
an entry x immediately right of the 3, since that row is weakly longer, and since
x 
= 2, the triple 2, 3, x is a Type II co-inversion triple. For the right filling, there
must be an entry (or the row index) x immediately left of the 1, and so the triple
1, 2, x is a Type II co-inversion triple.

Suppose that T is one of the fourth pair in Figure 8. Then there is a Type II
co-inversion triple for 1, 2, 3 unless the lower depicted row is strictly longer than
the higher, so assume the latter to be the case. For the left filling, there must be
an entry x immediately right of the 3, since that row is strictly longer, and since
x 
= 2, the triple 2, 3, x is a Type I co-inversion triple. For the right filling, there
must be an entry x immediately left of the 1, and since x 
= 2, the triple 1, 2, x is a
Type I co-inversion triple. �

The two eliminated cases from Figure 8 would have created problems for the weak
descent sets in a potential weak dual equivalence. With those cases removed by
Lemma 4.6, we may now prove that the involutions ψi give a weak dual equivalence
whenever all standard key tabloids are nonvirtual.

Theorem 4.7. For a weak composition a such that SKD(a) has no virtual elements,
the maps {ψi} on SKD(a) give a weak dual equivalence for (SKD(a), des).

Proof. The action of ψi on T ∈ SKD(a) is completely determined by the positions
i+1, i, i− 1, and the relative positions of cells other than these remains unchanged
under ψi. Therefore, if |i−j| ≥ 3, then {i−1, i, i+1} and {j−1, j, j+1} are disjoint,
and the maps ψi and ψj commute. This establishes condition (ii) of Definition 4.1.

To prove condition (i) of Definition 4.1, we must consider restricted equivalence
classes under ψh, . . . , ψi for i− h ≤ 3. Consider the case i− h = 0. With notation
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as in Definition 4.3, if the entry of c is i, then both or neither of i − 1 and i is a
descent position, so the restricted weak descent composition flattens to (1, 1, 1) or
(3), respectively. In either case, the corresponding Demazure character is a single
fundamental slide polynomial, and so the generating polynomial of the equivalence
class, which is a single fundamental slide polynomial, is also a single Demazure
character.

If ψi(T ) = bi(T ), then we may assume c has entry i+ 1 since this is true either
for T or for ψi(T ). The partitioning from Definition 2.3 for T has i+1|ii−1, and
that for bi(T ) has i+1i|i− 1. Therefore des(i−1,i+1)(T ) = (0m, 2, 0n, 1), where
n = 0 if and only if either i + 1 sorts to the row immediately above i and i − 1
or if tj of the block containing i + 1 is forced to be tj+1 − 1. Either way, we
have des(i−1,i+1)(bi(T )) = (0m−1, 1, 2), and so the equivalence class has generating
polynomial F(0m,2,0n,1) + F(0m−1,1,2) = κ(0m,2,0n,1).

If ψi(T ) = si−1(T ), then c = i+1, and we may assume T has i− 1 left of i since
this is true either for T or for ψi(T ). Here, the partitioning for T is i+1i|i−1, and
that of si−1(T ) is i+1|ii−1. Moreover, in this case, for both T and si−1(T ), both
blocks of the run decomposition must be forced to have tj = tj+1 − 1 since there is
an entry larger than i left of i and above i−1. Therefore des(i−1,i+1)(T ) = (0m, 1, 2)
and des(i−1,i+1)(si−1(T )) = (0m, 2, 1), and so the equivalence class corresponds to
the polynomial F(0m,1,2) + F(0m,2,1) = κ(0m,1,2). The argument for ψi(T ) = si(T ) is
completely analogous.

One can either carry out similar analyses for the cases i−h = 1, 2, 3 or, to avoid
tedium, since the action of ψi is determined by relative positions of these cells based
on their rows and columns, there is a reasonable finite number of configurations to
check by computer. �

Remark 4.8. For an alternate proof of Theorem 4.7, one can look ahead to the
proof of Theorem 5.6 to see that, under the bijection between key tabloids and
Young tabloids, the weak dual equivalence involutions ψi on standard key tabloids
commute with the dual equivalence involutions on standard Young tabloids [Ass15]
used by Roberts [Rob17] to prove that Hall–Littlewood symmetric functions are
Schur positive. By this observation, the weak compositions of a weak dual equiva-
lence class flatten to give a Schur function, so the case of i− h = 0 detailed in the
proof above is sufficient to prove that the unflattened compositions give a Demazure
character [Ass].

As detailed in [Ass], a (stable) weak dual equivalence for (A, des) implicitly
gives a des-preserving bijection between an equivalence class of A and SKT(a) for
some a. Using this, we say that an object of A is Yamanouchi if it maps under
this implicit bijection to the standard key tableau whose row reading word is the
reverse of the identity. This is the unique T ∈ SKT(a) for which des(T ) = a. That
is, Yamanouchi elements provide canonical representatives for equivalence classes
from which one can readily determine the generating polynomial.

Given a weak composition a, we have a natural bijection SKD(a)
∼→ SKD(0m×a)

for any positive integer m. If T ∈ SKD(a) is nonvirtual, then the weak descent
composition of the image of T is 0m × des(T ). We say that a standard key tabloid
T ∈ SKD(a) is Yamanouchi if the corresponding nonvirtual element SKD(0m × a)
is Yamanouchi for some m > 0. With this definition in place, we now arrive at our
main result.
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Theorem 4.9. The specialized nonsymmetric Macdonald polynomial Ea(X; q, 0) is
given by

(4.3) Ea(X; q, 0) =
∑

T∈YKD(a)

qmaj(T )κdes(T ).

In particular, Ea(X; q, 0) is a positive graded sum of Demazure characters.

Proof. If SKD(a) has no virtual elements, then by Theorems 4.7 and 4.2, each
equivalence class under {ψi} has generating polynomial a single Demazure charac-
ter. By Lemma 4.5, the maj statistic is constant on each class, so it factors out.
Combining this with Theorem 3.6, we have

(4.4) Ea(X; q, 0) =
∑

T∈SKD(a)

qmaj(T )Fdes(T ) =
∑

S∈YKD(a)

qmaj(S)κdes(S).

If SKD(a) has virtual elements, let m > 0 be any integer such that SKD(0m × a)
does not. The implicit bijection with standard key tableaux provided by the weak
dual equivalence commutes with this padding. Let Ψ be the induced des-preserving
map from SKD(0m × a) to SKT. For any nonvirtual elements of SKD(a), the
corresponding standard key tabloids for SKD(0m × a) are precisely those that map
to some standard key tableau with weak descent composition 0m × a. Given any
weak dual equivalence class, we may pull back both the standard key tabloids in
SKD(0m × a) that are nonvirtual in SKD(a) and those standard key tableaux that
have at least m leading 0’s. This gives a des-preserving bijection between nonvirtual
elements, so they must have the same generating polynomial. Hence Ea(X; q, 0) is
also key positive with the same leading terms. �

5. Symmetric polynomials

In this section we relate the combinatorics for nonsymmetric Macdonald poly-
nomials with that for the symmetric case, so that we now let X denote the infinite
set of variables x1, x2, . . . .

Gessel [Ges84] introduced quasisymmetric functions, functions that are invariant
under any shifting of the indices of the variables that maintains their relative order.
Quasisymmetric functions are naturally indexed by compositions, i.e., sequences of
positive integers. Gessel’s fundamental quasisymmetric function is given by

(5.1) Fα(X) =
∑

flat(b) refines α

Xb.

Assaf and Searles [AS17] showed that fundamental slide polynomials stabilize to
fundamental quasisymmetric functions, that is,

(5.2) lim
m→∞

F(0m×a)(X) = Fflat(a)(X).

A partition is a weakly decreasing sequence of nonnegative integers. The Young
diagram of a partition λ has λi cells left-justified in row i. For example, see Figure 9.

A Young tableau is a filling of a Young diagram such that entries weakly increase
along rows and strictly increase up columns. To emphasize the range of numbers
used, we let SSYTn(λ) denote the set of semi-standard Young tableaux of shape
λ with entries at most n. A standard Young tableau is a bijective filling, and so
it necessarily also has strictly increasing rows. Denote the set of standard Young
tableaux of shape λ by SYT(λ). For examples, see Figure 9.
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3 4
1 2 5

2 4
1 3 5

2 5
1 3 4

3 5
1 2 4

4 5
1 2 3

(2, 3) (1, 2, 2) (1, 3, 1) (2, 2, 1) (3, 2)

Figure 9. Standard Young tableaux of shape (3, 2) and their de-
scent compositions.

The Schur polynomials arise as characters for the irreducible representations of
the general linear group and also enjoy rich connections with geometry. The Schur
function sλ(X) is given by

(5.3) sλ(X) =
∑

T∈SSYT(λ)

Xwt(T ).

Given a standard filling T of a Young diagram, we may associate to it a compo-
sition called the descent composition of T , denoted by Des(T ), given by maximal
length runs between descents, where i is a descent if i + 1 lies weakly to its left.
For examples, see Figure 9.

Proposition 5.1 ([Ges84]). The Schur function sλ(X) is given by

(5.4) sλ(X) =
∑

T∈SYT(λ)

FDes(T )(X).

For example, from Figure 9 we compute

s(3,2) = F(2,3) + F(1,2,2) + F(1,3,1) + F(2,2,1) + F(3,2).

Proposition 5.2 ([Ass]). Given a weak composition a whose nonzero parts rear-
range λ, the map φ that drops boxes to Young diagram shape, sorts columns into
decreasing order (bottom to top), and replaces i with n − i + 1 gives a bijection
between SKT(a) and SYT(λ). Moreover, for T ∈ SKT(a), we have Des(φ(T )) =
reverse(flat(des(T ))).

From Proposition 5.2, we have the following result that is implicit in work of
Lascoux and Schützenberger [LS90]. For a a weak composition of length n, let
sort(a) be the partition with parts given by the nonzero entries of a. Then we have

(5.5) lim
m→∞

κ0m×a(X) = ssort(a)(X).

Haglund [Hag04] discovered an elegant combinatorial formula for the monomial
expansion of the transformed Macdonald functions that he proved together with
Haiman and Loehr [HHL05]. The combinatorial formula for transformed Mac-
donald functions is the sum over all fillings weighted by statistics that were the
precursors of coinv and maj in the nonsymmetric case.

5
2 3 1
5 2 4 6

Figure 10. A filling of the Young diagram for (4, 3, 1).
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The leg of a cell of a Young diagram is the number of cells weakly above it.
Given a filling T , define comaj(T ) to be the sum of the legs of all cells c such that
the entry in c is weakly less than the entry immediately below it. For example, the
filling in Figure 10 has comaj = 3.

A triple of a Young diagram is a collection of two or three cells with two in the
same row and either these are in the bottom row or we include the cell immediately
below the left cell. An inversion triple is a triple with two cells and the larger to the
left or with three cells oriented counterclockwise. For an illustration, see Figure 11.
The inversion number of a filling of a Young diagram is the number of inversion
triples. For example, the filling in Figure 10 has inv = 3.

· · ·
>

· · ·
�

Figure 11. Inversion triples for Young diagrams.

Proposition 5.3. The set of standard fillings of μ with comaj(T ) = inv(T ) = 0 is
SYT(mu).

Proof. The condition comaj = 0 forces columns to increase bottom to top. The
lack of two cell inversion triples forces the bottom row to increase left to right, and
this combined with increasing columns and no three cell inversion triples ensures
all higher rows increase left to right as well. �

Definition 5.4 ([HHL05]). The Macdonald polynomial Hμ(Xn; q, t) is given by

(5.6) Hμ(X; q, t) =
∑

T :μ
∼→[n]

qinv(T )tcomaj(T )FDes(T )(X),

where the sum is over all standard fillings of μ.

In particular, from Proposition 5.3, we have the following analog of (3.2):

(5.7) Hμ(X; 0, 0) = sμ(X).

There is a well-known q, t-symmetry for the transformed Macdonald polynomi-
als that follows from Macdonald’s original definition [Mac88] when interpreted as
triangularity conditions; it is

(5.8) Hμ(X; q, t) = Hμ′(X; t, q),

where μ′ is the conjugate of μ whose Young diagram is the transpose of the Young
diagram for μ.

Similarly to the nonsymmetric case, we are interested in the surviving objects
when q = 0.

Definition 5.5. The set of standard Young tabloids of shape μ, denoted by SYD(μ),
are bijective fillings of μ with no inversion triples. The Hall–Littlewood polynomial
Hμ(Xn; 0, t) is given by

(5.9) Hμ(X; 0, t) =
∑

T∈SYD(μ)

tcomaj(T )FDes(T )(X).
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4 5
1 2 3

d3⇐⇒
d4

3 5
1 2 4

d2←→ 2 5
1 3 4

d4←→ 2 4
1 3 5

d2⇐⇒
d3

3 4
1 2 5

2 3
1 4 5

d̃2←→ 3 1
2 4 5

d3←→ 4 1
2 3 5

d4←→ 5 1
2 3 4

1 2
3 4 5

Figure 12. Standard Young tabloids of shape (3, 2).

For example, there are ten standard Young tabloids of shape (3, 2) as shown in
Figure 12. From this we compute

H(3,2)(X; 0, t) =
(
F(2,3) + F(1,2,2) + F(1,3,1) + F(2,2,1) + F(3,2)

)
t
(
F(1,4) + F(2,3) + F(3,2) + F(4,1)

)
+ t2F(5).

In fact, Hall–Littlewood polynomials are well-known to be Schur positive; e.g.
see [Mac95]. For example, from the previous computation we see that

H(3,2)(X; 0, t) = s(3,2)(X) + ts(4,1)(X) + t2s(5)(X).

For comparison, using the stability of fundamental slide polynomials and De-
mazure characters, we see from Figure 7 that

lim
m→∞

E0m×(2,1,2)(X; q, 0) = s(2,2,1)(X) + qs(2,1,1,1)(X) + q2s(1,1,1,1,1)(X).

Recall the well-known symmetric function involution ω defined by ωsλ = sλ′ .
Then we have

lim
m→∞

E0m×(2,1,2)(X; q, 0) = ωH(3,2)(X; 0, q) = ωH(2,2,1)(X; q, 0).

We give a bijective proof of this stability result in general.

Theorem 5.6. For a weak composition a, we have

(5.10) lim
m→∞

E0m×a(X; q, 0) = ωHsort(a)′(X; 0, q) = ωHsort(a)(X; q, 0).

Proof. For each set partitioning of [n] into the rows (respectively, columns) of a
Young (respectively, key) diagram has a unique standard Young (respectively, key)
tabloid with those row (respectively, column) entries [Hag]. Composing this with
the map on entries that sends i to n − i + 1 gives a bijection, say θ, between
SKD(a) and SYD(λ) for any weak composition a whose nonzero parts rearrange
λ. We claim that this bijection commutes with the dual equivalence structures
on the corresponding sets in the following sense. Recall the involutions Di on
standard fillings of a Young diagram from [Ass15] that preserve Haglund’s inv
and maj statistics. Then for T ∈ SKT(λ), we have θ(ψi(T )) = Dn−i+1(θ(T ));
for example, compare Figures 7 and 12. Moreover, the descent composition for
SYD is with respect to the row reading word (left to right), and the weak descent
composition for SKD is with respect to the column reading word (bottom to top).
Identifying compositions of n with subsets of [n− 1], for T ∈ SKD(λ), flat(des(T ))
is the complement of Des(θ(T )). The theorem now follows from the stability of
fundamental slide polynomials (5.2). �
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For a final comparison, define the Kostka–Foulkes polynomial Kλ,μ(t) by

(5.11) Hμ(X; 0, t) =
∑
λ

Kλ,μ(t)sλ(X).

Then, considering the 30 standard Young tabloids of shape (2, 2, 1), exactly two of
the dual equivalences classes have generating function s(3,2)(X), giving

K(3,2),(2,2,1)(t) = t+ t2.

Define the nonsymmetric Kostka–Foulkes polynomial Ka,b(q) by

(5.12) Eb(X; q, 0) =
∑
a

Ka,b(q)κa(X).

Then, considering the 30 standard key tabloids of shape (3, 0, 2), exactly two of the
dual equivalences classes have generating polynomial that stabilizes to s(2,2,1)(X),
giving

K(2,1,2),(3,0,2)(q) = q and K(1,2,2),(3,0,2)(q) = q2.

Therefore we may reformulate Theorem 5.6 in terms of Kostka–Foulkes polyno-
mials as follows.

Corollary 5.7. Given a weak composition b with column lengths μ such that
SKT(b) has no virtual Yamanouchi elements, we have

(5.13) Kλ,μ(t) =
∑

sort(flat(a))=λ′

Ka,b(t).

It remains to be seen if the analogous statement holds for general types.
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English summary), C. R. Acad. Sci. Paris Sér. I Math. 294 (1982), no. 13, 447–450.
MR660739

[LS90] Alain Lascoux and Marcel-Paul Schützenberger, Keys & standard bases, Invariant the-
ory and tableaux (Minneapolis, MN, 1988), IMA Vol. Math. Appl., vol. 19, Springer,
New York, 1990, pp. 125–144. MR1035493

[Mac88] I. G. Macdonald, A new class of symmetric functions, Actes du 20e Seminaire

Lotharingien 372 (1988), 131–171.
[Mac95] I. G. Macdonald, Symmetric functions and Hall polynomials, 2nd ed., Oxford Mathe-

matical Monographs, The Clarendon Press, Oxford University Press, New York, 1995.
With contributions by A. Zelevinsky; Oxford Science Publications. MR1354144

[Mac96] I. G. Macdonald, Affine Hecke algebras and orthogonal polynomials, Séminaire Bour-
baki, Vol. 1994/95, Astérisque (1996), no. 237, Exp. No. 797, 4, 189–207. MR1423624

[Mas09] S. Mason, An explicit construction of type A Demazure atoms, J. Algebraic Combin.
29 (2009), no. 3, 295–313. MR2496309

[Opd95] Eric M. Opdam, Harmonic analysis for certain representations of graded Hecke alge-
bras, Acta Math. 175 (1995), no. 1, 75–121. MR1353018

https://www.ams.org/mathscinet-getitem?mr=0354697
https://www.ams.org/mathscinet-getitem?mr=0430001
https://www.ams.org/mathscinet-getitem?mr=2264938
https://www.ams.org/mathscinet-getitem?mr=777705
https://www.ams.org/mathscinet-getitem?mr=1392509
https://www.ams.org/mathscinet-getitem?mr=1168926
https://www.ams.org/mathscinet-getitem?mr=2371044
https://www.ams.org/mathscinet-getitem?mr=2114585
https://www.ams.org/mathscinet-getitem?mr=1839919
https://www.ams.org/mathscinet-getitem?mr=2138143
https://www.ams.org/mathscinet-getitem?mr=2405160
https://www.ams.org/mathscinet-getitem?mr=1953294
https://www.ams.org/mathscinet-getitem?mr=2408328
https://www.ams.org/mathscinet-getitem?mr=560412
https://www.ams.org/mathscinet-getitem?mr=2348910
https://www.ams.org/mathscinet-getitem?mr=1132534
https://www.ams.org/mathscinet-getitem?mr=1437493
https://www.ams.org/mathscinet-getitem?mr=660739
https://www.ams.org/mathscinet-getitem?mr=1035493
https://www.ams.org/mathscinet-getitem?mr=1354144
https://www.ams.org/mathscinet-getitem?mr=1423624
https://www.ams.org/mathscinet-getitem?mr=2496309
https://www.ams.org/mathscinet-getitem?mr=1353018


8796 SAMI ASSAF

[Rob17] Austin Roberts, On the Schur expansion of Hall-Littlewood and related polynomials via
Yamanouchi words, Electron. J. Combin. 24 (2017), no. 1, Paper 1.57, 30. MR3651939

[RS95] Victor Reiner and Mark Shimozono, Key polynomials and a flagged Littlewood-
Richardson rule, J. Combin. Theory Ser. A 70 (1995), no. 1, 107–143. MR1324004

[San00] Yasmine B. Sanderson, On the connection between Macdonald polynomials and De-
mazure characters, J. Algebraic Combin. 11 (2000), no. 3, 269–275. MR1771615

Department of Mathematics, University of Southern California, 3620 S. Vermont

Avenue, Los Angeles, California 90089-2532

Email address: shassaf@usc.edu

https://www.ams.org/mathscinet-getitem?mr=3651939
https://www.ams.org/mathscinet-getitem?mr=1324004
https://www.ams.org/mathscinet-getitem?mr=1771615

	1. Introduction
	2. Demazure characters
	3. Nonsymmetric Macdonald polynomials
	4. Weak dual equivalence
	5. Symmetric polynomials
	Acknowledgments
	References

