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THE NONPROPER DISSIPATIVE EXTENSIONS

OF A DUAL PAIR

CHRISTOPH FISCHBACHER

Abstract. We consider dissipative operators A of the form A = S + iV ,
where both S and V ≥ 0 are assumed to be symmetric, but neither of them
needs to be (essentially) self-adjoint. After a brief discussion of the relation of

the operators S ± iV to dual pairs with the so-called common core property,
we present a necessary and sufficient condition for any extension of A with
domain contained in D((S − iV )∗) to be dissipative. We will discuss several
special situations in which this condition can be expressed in a particularly
nice form—accessible to direct computations. Examples involving ordinary
differential operators are given.

1. Introduction

In this note, we want to contribute toward the extension theory of dissipative
operators A of the form A = S + iV , where S and V ≥ 0 are both symmetric but
neither of them needs to be self-adjoint or essentially self-adjoint. In this sense,
we will obtain a more general result than that of Crandall and Phillips [16], who
considered dissipative operators A that were of the form1 A = S + iV , where S
is symmetric, but V ≥ 0 is assumed to be self-adjoint. However, we have stricter
conditions on the domains of our extensions.

1.1. Dissipative operators and extension theory. The studyof non-self-adjoint
operators has proven itself to be a very fruitful field of mathematical research. For
an introduction to the many new phenomena and problems that arise if one gives
up the condition of self-adjointness, we refer the interested reader to the classic
monograph [24] and the references therein. We mention in particular the work
of Brodskii and Livšic who addressed questions such as the completeness of root
vectors and introduced characteristic matrix functions and triangular models of
non-self-adjoint operators [12, 27, 28].

In what follows, we will call a densely defined operator A on a Hilbert space H
dissipative if and only if its numerical range is confined to the upper complex plane;
i.e., if and only if

Im〈ψ,Aψ〉 ≥ 0

Received by the editors June 13, 2017, and, in revised form, October 26, 2017.
2010 Mathematics Subject Classification. Primary 47B44, 47A20; Secondary 47E05.
The author is indebted to the UK Engineering and Physical Sciences Research Council (Doc-

toral Training Grant Ref. EP/K50306X/1).
1In [16], a densely defined operator is called dissipative if its numerical range is confined to

the left half-plane Π− := {z ∈ C : Re(z) ≤ 0}. Since we will call an operator dissipative if its
numerical range is confined to the upper complex plane, we have changed the presentation of the
results in [16] accordingly.

c©2018 American Mathematical Society

8895

https://www.ams.org/tran/
https://www.ams.org/tran/
https://doi.org/10.1090/tran/7511


8896 C. FISCHBACHER

for any ψ ∈ D(A). Note that we have defined the sesquilinear form 〈·, ·〉 to be
antilinear in the first and linear in the second component. Moreover, we call a dis-
sipative operator A maximally dissipative if it has no nontrivial dissipative operator
extension; i.e, A being maximally dissipative and B being a dissipative operator
extension of A implies that A = B. Maximally dissipative operators possess various
interesting features; e.g. they generate strongly continuous semigroups of contrac-
tions [34] and always have a self-adjoint dilation [35].

Thus, the theory of dissipative extensions of a given operator is an extensively
studied problem (for an overview, we recommend the surveys [5, 9] and all the ref-
erences therein). Besides the classical results of von Neumann on the theory of
self-adjoint extensions of a given symmetric operator [33] and of Krĕın, Birman,
Vishik, and Grubb on positive self-adjoint and maximally sectorial extensions of a
given symmetric operator with positive numerical range [1, 2, 11, 25, 26, 38], let us
also mention the results of authors like Arlinskĭı, Belyi, Derkach, Kovalev, Mala-
mud, Mogilevskii, and Tsekanovskĭı [4, 6–8, 17, 18, 30–32, 36, 37] who have made
many contributions using form methods and boundary triples in order to deter-
mine maximally sectorial and maximally accretive extensions of a given sectorial
operator.2 Let us also mention examples where explicit computations of maximally
dissipative (resp., accretive) extensions for positive symmetric differential operators
[20], [21] and for sectorial Sturm–Liouville operators [13] have been made.

For the general problem of finding dissipative extensions of truly dissipative
operators, Phillips showed—via the Cayley transform and its inverse—that this is
equivalent to finding contractive extensions of a nondensely defined contraction.
This problem has been solved by Crandall [15, Thm. 1 and Cor. 1] who provided
a full solution to the extension problem (note also the results in [10]). Crandall
established that if C is a contraction defined on a closed subspace C of a Hilbert

space H and mapping to H, all contractive extensions C̃ of C can be described via

C̃ = CPC + (1− CPC(CPC)
∗)1/2B(1− PC) ,

where PC is the orthogonal projection onto C, and B is an arbitrary contraction on
H. However, for concrete applications, the operators involved in this construction
are often very difficult to compute. Thus, in [16], Crandall and Phillips made extra
assumptions on the structure of the considered dissipative operator A, and required
that it could be written in the form

(1.1) A = S + iV ,

where S is symmetric, V ≥ 0 is self-adjoint, and D(A) = D(S) = D(V ). Let us
briefly describe their approach in the next section.

1.2. The construction of Crandall and Phillips. For the case (1.1) considered
by Crandall and Phillips, it follows from nonnegativity and self-adjointness of V
that the operator (1 + V ) is a boundedly invertible bijection from D(V ) onto H.
They then introduce the weighted Hilbert space H+1 which is the linear space
D(V 1/2) equipped with the inner product 〈f, g〉+1 := 〈(1 + V )1/2f, (1 + V )1/2g〉.
Using standard ideas of the construction of Gel’fand triples, they associate every

2A densely defined operator A is called (maximally) accretive if (iA) is (maximally) dissipative.
If, in addition, there exists a φ �= π/2 such that (eiφA) is (maximally) dissipative as well, then it
is called (maximally) sectorial.
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element f of H with an element �f of the dual space H∗
+1 of H+1 via

�f (g) := 〈f, g〉 for any g ∈ H+1 ,

which has norm equal to

‖�f‖ = ‖(1+ V )−1/2f‖ =: ‖f‖−1 .

The spaceH−1 is then obtained as the completion ofH inH∗
+1 with respect to ‖·‖−1.

Since for any f ∈ D(V 1/2) and for any g ∈ H we have that ‖f‖ ≤ ‖(1+ V )1/2f‖ =
‖f‖+1 and ‖g‖ ≥ ‖(1+ V )−1/2g‖ = ‖g‖−1, we obtain the following inclusions:

H+1 ⊂ H ⊂ H−1 .

In particular, this implies that V is bounded as an operator from H+1 to H−1 —a
feature that Crandall and Phillips use in order to determine all maximally dissi-
pative extensions of A as an operator from H+1 to H−1 [16, Thm. 1.1]. Having

obtained a maximally dissipative operator Â from H+1 to H−1, they then construct

a dissipative extension Â0 of A (as an operator in H) via

Â0 : D(Â0) = {f ∈ D(Â) : Âf ∈ H}, Â0f := Âf .

If V is bounded, this provides a full characterization of all maximally dissipative
extensions of A, since the spaces H+1,H, and H−1 are equivalent in this case. For
the unbounded case, this construction yields dissipative extensions of A that have
domain contained in D(V 1/2), which does not always provide a full description of

all maximally dissipative extensions of A (cf. [16, Example 2]). Also, even if Â

is a maximally dissipative operator from H+1 to H−1, it is possible that Â0 is
not a maximally dissipative operator in H [16, Example 1]. However, Crandall and
Phillips prove a necessary and sufficient condition for when all maximally dissipative

extensions Â from H+1 to H−1 induce also a maximally dissipative extension Â0

in H [16, Thm. 3.3].

1.3. Our approach. In a previous note [23], we considered so-called dual pairs of

operators (A, Ã), where A and (−Ã) were assumed to be dissipative and to possess

a common core, which means that there exists a linear space D ⊂ D(A) ∩ D(Ã)

such that A = A �D and Ã = Ã �D. Given A = S + iV , we will define Ã := S − iV

and show that (A, Ã) is such a dual pair (with common core). We then show that
considering such dual pairs is an equivalent point of view to assuming that A is of
the form A = S + iV (Lemma 3.3). In this sense, our results are going to be an

extension of [23], where we gave a criterion to determine whether an extension Â

with the property thatA ⊂ Â ⊂ Ã∗ is dissipative, since we will drop the requirement

that Â ⊂ Ã∗, while keeping the condition that D(Â) ⊂ D(Ã∗); i.e. the restrictions

on the domain of Â remain but the action of the extensions Â may differ from that

of Ã∗.
As it turns out, the square roots of the self-adjoint Friedrichs and Krĕın–von

Neumann extensions of V – denoted by V
1/2
F by V

1/2
K , respectively, will play an

important part in the presentation of our main result (Theorem 4.4). In particular,
we will single out three cases in which it will be possible to simplify the result of

Theorem 4.4 and express the necessary and sufficient condition for an extension Â

to be dissipative in terms that only involve V
1/2
F and V

1/2
K in terms of the quadratic

forms ψ 
→ ‖V 1/2
∗ ψ‖2, where ∗ ∈ {F,K} —a feature which makes it accessible to
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direct calculation. These three cases are given by (i) an additional restriction on

the action of Â, (ii) V ≥ ε > 0, and (iii) V has only one nonnegative self-adjoint
extension (i.e. VF = VK). We will also discuss the interplay between boundary

conditions (determined by the choice of D(Â)) and the “deviation” of Â from being

a “proper” extension of (A, Ã) —(determined by (Ã∗ − Â) �D( ̂A)). We will show

that there is a fundamentally different behavior between the case where V has only
one nonnegative self-adjoint extension VF = VK (Corollary 5.9) and the case that
VF 
= VK (Example 5.5).

2. Some definitions and previous results

We start with a few basic definitions and results on dissipative operators. First,
let us state a lemma telling us by how many linearly independent vectors the domain
of a given closed dissipative operator with a finite defect index has to increase in
order to obtain a maximally dissipative extension.

Lemma 2.1 (Mentioned in [16], see also [22] for a proof). Let A be a closed and
dissipative operator on a separable Hilbert space H such that dimker(A∗ − i) < ∞.

Moreover, let Â be a dissipative extension of A. Then, Â is maximally dissipative
if and only if

dimD(Â)/D(A) = dimker(A∗ − i) .

Next, let us introduce some convenient notation for complementary subspaces.

Definition 2.2. Let N ,M be (not necessarily closed) linear spaces such that M ⊂
N . With the notation N//M we mean any subspace of N , which is complementary
to M; i.e.,

(N//M) +M = N and (N//M) ∩M = {0} .

Finally, we will need the characterization of the Krĕın–von Neumann extension
of a given nonnegative symmetric operator V , which has been shown by Ando and
Nishio.

Proposition 2.3 ([3, Thm. 1]). Let V be a nonnegative closed symmetric operator.
The self-adjoint and nonnegative square root of the Krĕın—von Neumann extension

of V , which we denote by V
1/2
K , can be characterized as follows:

D(V
1/2
K ) =

{
h ∈ H : sup

f∈D(V ):V f �=0

|〈h, V f〉|2
〈f, V f〉 < ∞

}
,

for any h ∈ D(V
1/2
K ) : ‖V 1/2

K h‖2 = sup
f∈D(V ):V f �=0

|〈h, V f〉|2
〈f, V f〉 .

For our purposes, it will be more convenient to use the following characterization

of D(V
1/2
K ) and ‖V 1/2

K h‖:
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Corollary 2.4. Let V be a nonnegative closed symmetric operator on a Hilbert
space H. Then, the square root of its Krĕın–von Neumann extension can be char-
acterized as follows

D(V
1/2
K ) =

{
h ∈ H : sup

g∈ran(̂V 1/2�D(V )):‖g‖=1

|〈h, V̂ 1/2g〉| < ∞
}

,(2.1)

for any h ∈ D(V
1/2
K ) : ‖V 1/2

K h‖2 = sup
g∈ran(̂V 1/2�D(V )):‖g‖=1

|〈h, V̂ 1/2g〉|2 ,(2.2)

where V̂ is any nonnegative self-adjoint extension of V .

Proof. Let us consider any f ∈ D(V ) such that V f 
= 0. Since V f = V̂ f =

V̂ 1/2V̂ 1/2f , we then get

|〈h, V f〉|2
〈f, V f〉 =

|〈h, V̂ 1/2V̂ 1/2f〉|2

‖V̂ 1/2f‖2
=

∣∣∣∣∣
〈
h, V̂ 1/2

(
V̂ 1/2f

‖V̂ 1/2f‖

)〉∣∣∣∣∣
2

.

Now observe that
̂V 1/2f

‖̂V 1/2f‖ is a normalized element of ran(V̂ 1/2 �D(V )). Conversely,

for any normalized g ∈ ran(V̂ 1/2 �D(V )), there exists a f ∈ D(V ) with V f 
= 0 such

that g =
̂V 1/2f

‖̂V 1/2f‖ . This implies that

sup
f∈D(V ):V f �=0

∣∣∣∣∣
〈
h, V̂ 1/2

(
V̂ 1/2f

‖V̂ 1/2f‖

)〉∣∣∣∣∣
2

= sup
g∈ran(̂V 1/2�D(V )):‖g‖=1

|〈h, V̂ 1/2g〉|2 ,

which—together with Proposition 2.3—yields the corollary. �

3. The common core property

Given any bounded operator A, the decomposition into its self-adjoint real part
S := (A + A∗)/2 and self-adjoint imaginary part V := (A − A∗)/(2i) allows us
to always write A as A = S + iV . For the unbounded case, this is generally not
possible as one has to be careful with the domains. However, in the case where it
is possible to decompose A as

(3.1) A = S + iV ,

where both S and V ≥ 0 are symmetric and D(A) = D(S) = D(V ), one can use

the framework of dual pairs (A, Ã) of operators to decompose A analogously as in
the bounded case. To this end, let us first recall their definition (see also [19, 29]
for more details):

Definition 3.1. Let (A, Ã) be a pair of densely defined and closable operators. We
say that they form a dual pair if

A ⊂ Ã∗ resp., Ã ⊂ A∗ .

In this case, A is called a formal adjoint of Ã and vice versa. Moreover, an operator

Â such that A ⊂ Â ⊂ Ã∗ is called a proper extension of the dual pair (A, Ã).

It is then not hard to see that with the choice Ã := S − iV (D(Ã) = D(S) =

D(V )), we have that (A, Ã) is a dual pair since

(3.2) 〈f, Ãg〉 = 〈f, (S − iV )g〉 = 〈(S + iV )f, g〉 = 〈Af, g〉
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for any f ∈ D(S + iV ) and any g ∈ D(S − iV ).

For the presentation of our results in [23], the notion of dual pairs (A, Ã) sat-
isfying the so-called common core property was particularly useful. Let us restate
the definition.

Definition 3.2. Let (A, Ã) be a dual pair of closed operators. We say that it has

the common core property if there exists a subset D ⊂ D(A)∩D(Ã) such that it is

a core for A as well as for Ã:

A �D = A and Ã = Ã �D .

We are now prepared to show the link between dual pairs (A, Ã) satisfying the
common core property and dissipative operators A that can be decomposed accord-
ing to (3.1).

Lemma 3.3. Let (A, Ã) be a dual pair of closed operators satisfying the common
core property with a common core D, where A is dissipative. Then there exist two
symmetric operators S and V ≥ 0 with D = D(S) = D(V ) such that

A �D= S + iV and Ã �D= S − iV .

Conversely, let A be a dissipative operator of the form A = S + iV , where S
and V ≥ 0 are symmetric operators and D(A) = D(S) = D(V ). If we define

Ã := S− iV , where D(Ã) = D, then their closures (A, Ã) form a dual pair that has
the common core property.

Proof. If (A, Ã) is a dual pair satisfying the common core condition, with D being
a common core, we may define

(3.3) S :=
A+ Ã

2
�D and V :=

A− Ã

2i
�D .

First, observe that A �D= S+ iV and Ã �D= S− iV . Next, let us show that S and
V are symmetric and also that V ≥ 0. To this end, let ψ ∈ D and consider

〈ψ, Sψ〉 = 1

2
〈ψ, (A+ Ã)ψ〉 = 1

2
(〈ψ,Aψ〉+ 〈ψ,A∗ψ〉) = Re(〈ψ,Aψ〉) ∈ R

〈ψ, V ψ〉 = 1

2i
〈ψ, (A− Ã)ψ〉 = 1

2i
(〈ψ,Aψ〉 − 〈ψ,A∗ψ〉) = Im(〈ψ,Aψ〉) ≥ 0 ,

where the inequality follows from dissipativity of A. Now, let A be a dissipative
operator of the form A = S + iV , where S and V ≥ 0 are symmetric and D(A) =

D(S) = D(V ). In (3.2), we have already shown that A and Ã := S − iV form a

dual pair and so do their closures (A, Ã), which therefore is a dual pair that has
the common core property with common core D = D(S) = D(V ). �

4. The main result

We are now prepared to prove our main result. Before we proceed, we need to
show the following two lemmas.

Lemma 4.1. Let V be a nonnegative symmetric operator. Then

(i) ran(V
1/2
F �D(V )) is dense in ran(V

1/2
F ) and

(ii) ran(V
1/2
K �D(V )) is dense in ran(V

1/2
K ).
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Proof. (i) By construction of the Friedrichs extension, we know that for any ψ ∈
D(V

1/2
F ), there exists a sequence {ψn} ⊂ D(V ), such that

lim
n→∞

(‖ψ − ψn‖2 + ‖V 1/2
F (ψ − ψn)‖2) = 0 ,

which implies in particular that

lim
n→∞

V
1/2
F ψn = V

1/2
F ψ; i.e., ran(V

1/2
F ) ⊂ ran(V

1/2
F �D(V )) .

On the other hand, since ran(V
1/2
F �D(V )) ⊂ ran(V

1/2
F ), the assertion follows from

taking closures.

(ii) Any element of ran(V
1/2
K ) is of the form V

1/2
K h, where h ∈ D(V

1/2
K ). By

Corollary 2.4, with the choice V̂ = VK , we have that

‖V 1/2
K h‖2 = sup

{
|〈V 1/2

K h, g〉|2, g ∈ ran(V
1/2
K �D(V )) : ‖g‖ = 1

}
.(4.1)

But this implies that ran(V
1/2
K �D(V )) is dense in ran(V

1/2
K ). To see why, assume

that there exists a ϕ ∈ ran(V
1/2
K ) such that ‖ϕ‖ = 1 and 〈ϕ, g〉 = 0 for all g ∈

ran(V
1/2
K �D(V )). Take a V

1/2
K h ∈ ran(V

1/2
K ), with ‖V 1/2

K h‖ = 1 such that ‖V 1/2
K h−

ϕ‖2 < ε for some 0 < ε < 1 small enough. Then, for any g ∈ ran(V
1/2
K �D(V )), we

get

|〈V 1/2
K h, g〉|2 = |〈V 1/2

K h− ϕ, g〉|2 ≤ ‖V 1/2
K h− ϕ‖2‖g‖2 ≤ ε‖g‖2 .

Taking the supremum over all g ∈ ran(V
1/2
K �D(V )) with ‖g‖ = 1, we arrive at a

contradiction, since the supremum of the left-hand side is 1, whereas the supremum
of the right hand side is ε < 1. This shows the lemma. �

Lemma 4.2. Let V be a nonnegative symmetric operator, and let VF and VK

denote its Friedrichs (resp., its Krĕın–von Neumann) extension. Then there exists
a partial isometry U on H such that

(4.2) V
1/2
K h = UV 1/2

F h

for all h ∈ D(V
1/2
F ). The map U is an isometry on ran(V

1/2
F ) and its range ran(U)

is contained in ran(V
1/2
K ).

Proof. Since we have that VK ≤ VF , it is clear that D(V
1/2
F ) ⊂ D(V

1/2
K ). Moreover,

by Proposition 2.3, for any h ∈ D(V
1/2
F ) ⊂ D(V

1/2
K ), we have that

‖V 1/2
K h‖2 = sup

f∈D(V ):V f �=0

|〈h, V f〉|2
〈f, V f〉 = sup

f∈D(V ):V f �=0

|〈h, V 1/2
F V

1/2
F f〉|2

〈f, V 1/2
F V

1/2
F f〉

= sup
f∈D(V ):V f �=0

|〈V 1/2
F h, V

1/2
F f〉|2

‖V 1/2
F f‖2

= ‖V 1/2
F h‖2 ,

where we have used that ran(V
1/2
F �D(V )) is dense in ran(V

1/2
F ) by Lemma 4.1. This

implies that the linear map

U0 : ran(V
1/2
F ) → ran

(
V

1/2
K �D(V

1/2
F )

)
V

1/2
F h 
→ V

1/2
K h
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is isometric. Since, trivially, ran(V
1/2
F ) is dense in ran(V

1/2
F ), there exists a unique

isometric extension U0 ⊂ U on ran(V
1/2
F ). Setting Uk = 0 for all k ∈ ker(V

1/2
F ) =

ran(V
1/2
F )⊥ defines U as a partial isometry on the whole Hilbert space H. Here,

M⊥ denotes the orthogonal complement of a linear space M. Moreover, since

ran(U0) = ran
(
V

1/2
K �D(V

1/2
F )

)
⊂ ran(V

1/2
K ) ,

this implies that ran(U) is contained in ran(V
1/2
K ) and thus the lemma. �

Given a dual pair (A, Ã), let us introduce the following convenient way of pa-

rameterizing all extensions of A which have domain contained in D(Ã∗):

Definition 4.3. Let (A, Ã) be a dual pair, where A is dissipative and Ã is anti-

dissipative. Let V ⊂ D(Ã∗)//D(A) be a linear space, which means that V ⊂ D(Ã∗)
and V ∩ D(A) = {0}. Moreover, let L be a linear operator from V into H. Then,
the operator AV,L is given by

AV,L : D(AV,L) = D(A)+̇V
(f + v) 
→ Ã∗(f + v) + Lv ,

where f ∈ D(A) and v ∈ V . If L is the zero operator; i.e., L = 0, we define
AV,0 =: AV .

Note that the operator L can be interpreted as the deviation of AL,V from Ã∗,
since for any v ∈ V , we get that

(Ã∗ − AV,L)v = Lv .

Let us now show the main theorem.

Theorem 4.4. Let (A, Ã) be a dual pair that has the common core property, where
A is dissipative. Moreover, assume that

v ∈ D(V
1/2
K ) and Lv ∈ ran(V

1/2
F ) = D(V

−1/2
F )

for all v ∈ V. Then, AV,L is dissipative if and only if for all v ∈ V we have

(4.3) Im〈v, (Ã∗ + L)v〉 ≥ 1

4
‖UV −1/2

F Lv + 2iV
1/2
K v‖2 .

Here, V
−1/2
F denotes the inverse of V

1/2
F as an operator in ran(V

1/2
F ), which is

given by

V
−1/2
F : D(V

−1/2
F ) = ranV

1/2
F → D(V

1/2
F ) ∩ ran(V

1/2
F )

V
1/2
F f 
→ f ,(4.4)

which a well-defined nonnegative self-adjoint operator on the Hilbert space

ran(V
1/2
F ). The operator U is the partial isometry as defined in Lemma 4.2.

Proof. Let us start by showing that the above conditions are sufficient. To this

end, let D ⊂ D(A)∩D(Ã) denote a common core for A and Ã. For any f ∈ D and
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any v ∈ V , we then get

Im〈f + v,AV,L(f + v)〉 = Im〈f + v, Ã∗(f + v)〉+ Im〈f + v,Lv〉
= 〈f, V f〉+ Im〈v, 2iV f〉+ Im〈v, (Ã∗ + L)v〉+ Im〈f,Lv〉

= ‖V 1/2
K f‖2 + Im〈v, 2iV 1/2

K V
1/2
K f〉+ Im〈v, (Ã∗ + L)v〉+ Im〈V −1/2

F V
1/2
F f,Lv〉

= ‖V 1/2
K f‖2 + Im〈V 1/2

K v, 2iV
1/2
K f〉+ Im〈v, (Ã∗ + L)v〉

+ Im〈UV 1/2
F f,UV −1/2

F Lv〉

= ‖V 1/2
K f‖2 + Im〈V 1/2

K v, 2iV
1/2
K f〉+ Im〈v, (Ã∗ + L)v〉

+ Im〈V 1/2
K f,UV −1/2

F Lv〉

= ‖V 1/2
K f‖2 + Im〈v, (Ã∗ + L)v〉+ Im〈V 1/2

K f, (UV −1/2
F L+ 2iV

1/2
K )v〉

≥ ‖V 1/2
K f‖2 + 1

4
‖UV −1/2

F Lv + 2iV
1/2
K v‖2 + Im〈V 1/2

K f, (UV −1/2
F L+ 2iV

1/2
K )v〉

≥ ‖V 1/2
K f‖2 + 1

4
‖UV −1/2

F Lv + 2iV
1/2
K v‖2 − ‖V 1/2

K f‖‖(UV −1/2
F L+ 2iV

1/2
K )v‖

=

(
‖V 1/2

K f‖ − 1

2
‖UV −1/2

F Lv + 2iV
1/2
K v‖

)2

≥ 0 .

Let us now show that condition (4.3) is also necessary. Assume that it is not
satisfied; i.e., that there exists a v ∈ V such that

(4.5) Im〈v, (Ã∗ + L)v〉 − 1

4
‖UV −1/2

F Lv + 2iV
1/2
K v‖2 ≤ −ε

for some ε > 0. By Lemma 4.2, we have that (UV −1/2
F Lv + 2iV

1/2
K v) ∈ ran(V

1/2
K ).

Thus, by Lemma 4.1(ii), there exists a sequence {fn} ⊂ D(V ) such that

V
1/2
K fn

n→∞−→ −i

2
(UV −1/2

F Lv + 2iV
1/2
K v) ,

which means by (4.5) that

Im〈fn + v,AV,L(fn + v)〉

= ‖V 1/2
K fn‖2 + Im〈v, (Ã∗+L)v〉+ Im〈V 1/2

K fn,UV −1/2
F Lv + 2iV

1/2
K v〉 n→∞−→ −ε < 0 ,

which means that AV,L is not dissipative in this case. This shows the theorem. �

Note that for the proof of Theorem 4.4, we have assumed that

v ∈ D(V
1/2
K ) and Lv ∈ ran(V

1/2
F ) = D(V

−1/2
F ) .

Let us now show that given either condition, the other is necessary for (we will
comment on the case where neither condition is satisfied after the proof of the
following theorem).

Theorem 4.5. Let (A, Ã) be a dual pair satisfying the common core condition,
where A is dissipative.

(i) If ran(L) ⊂ ran(V
1/2
F ), then it is necessary that V ⊂ D(V

1/2
K ) for AV,L to be

dissipative.

(ii) If V ⊂ D(V
1/2
K ), then it is necessary that ran(L) ⊂ ran(V

1/2
F ) for AV,L to be

dissipative.
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Proof. (i) If ran(L) ⊂ ran(V
1/2
F ), this means that for any v ∈ V there exists a

φv ∈ D(V
1/2
F ) such that Lv = V

1/2
F φv. Thus, for any f ∈ D we can write

Im〈f + v,AV,L(f + v)〉 = ‖V 1/2
F f‖2 + Im〈v, 2iV 1/2

F V
1/2
F f〉(4.6)

+ Im〈v, (Ã∗ + L)v〉 − Im〈φv, V
1/2
F f〉 .

Now, assume that there exists a v ∈ V such that v /∈ D(V
1/2
K ). By Corollary 2.4

with the choice V̂ = VF and Lemma 4.1(i), this means that there exists a sequence

{fn} ⊂ D(V ) with ‖V 1/2
F fn‖ = 1 for any n and a sequence of complex phases {eiϕn}

such that

lim
n→∞

Im〈v, 2ieiϕnV
1/2
F V

1/2
F fn〉 = − lim

n→∞

∣∣∣〈v, 2V 1/2
F V

1/2
F fn〉

∣∣∣ = −∞ .

Since all other terms in (4.6) stay bounded, this shows that AV,L cannot be dissi-
pative in this case.

(ii) We start by showing that in this case, it is necessary that Lv ⊥ kerV
1/2
F for

all v ∈ V . Assume this is not the case; i.e., that there exists a v ∈ V and a

k ∈ ker(V
1/2
F ) = ker(VF ) such that 〈Lv, k〉 
= 0. Without loss of generality we may

assume that Im〈Lv, k〉 = 1. Now, since D(V ) is a core for V
1/2
F , we can pick a

sequence {fn} ⊂ D(V ) such that fn → λk and V
1/2
F fn → λV

1/2
F k = 0, where λ ∈ C

is an arbitrary complex number. We then get

lim
n→∞

Im〈(fn + v,AV,L(fn + v)〉

= lim
n→∞

(
‖V 1/2

F fn‖2 + Im〈v, 2iV 1/2
K V

1/2
K fn〉+ Im〈v, (Ã∗ + L)v〉 − Im〈Lv, fn〉

)
(4.2)
= lim

n→∞

(
‖V 1/2

F fn‖2 + Im〈V 1/2
K v, 2iUV 1/2

F fn〉+ Im〈v, (Ã∗ + L)v〉 − Im〈Lv, fn〉
)

= lim
n→∞

(
‖V 1/2

F fn‖2 + Im〈U∗V
1/2
K v, 2iV

1/2
F fn〉+ Im〈v, (Ã∗ + L)v〉 − Im〈Lv, fn〉

)
=Im〈v, (Ã∗ + L)v〉 − Imλ ,

which is negative if we choose Imλ large enough. This contradicts the dissipativity

of AV,L. Hence ran(L) ⊂ (kerV
1/2
F )⊥ = ran(V

1/2
F ). Now, since kerV

1/2
F is a

reducing subspace for V
1/2
F , we have that the operator V

−1/2
F is a well-defined

nonnegative self-adjoint operator on the Hilbert space ran(V
1/2
F ). Also, note that

ran(V
1/2
F ) reduces V

1/2
F . Now, assume that there is a v ∈ V , such that Lv /∈

ran(V
1/2
F ) = D(V

−1/2
F ). This means that we can pick a sequence {fn} ⊂ D(V ),

where ‖V 1/2
F fn‖ = 1 for all n, such that

lim
n→∞

Im〈Lv, V −1/2
F V

1/2
F fn〉 = +∞ ,

since otherwise the map g 
→ 〈Lv, V −1/2
F g〉 would be a bounded linear functional

on ran(V
1/2
F �D(V )), which by Lemma 4.1(i) is dense in ran(V

1/2
F ) —a contradiction
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to Lv /∈ D(V
−1/2
F ). Thus, we get

Im〈fn + v,AV,L(fn + v)〉

=‖V 1/2
F fn‖2 + Im〈U∗V

1/2
K v, 2iV

1/2
F fn〉+ Im〈v, (Ã∗ + L)v〉 − Im〈Lv, fn〉

≤1 + 2‖U∗V
1/2
K v‖+ Im〈v, (Ã∗ + L)v〉 − Im〈Lv, V −1/2

F V
1/2
F fn〉 n→∞−→ −∞ ,

which means that AV,L cannot be dissipative in this case either. This finishes the
proof. �

Remark 4.6. For the case of proper extensions; i.e., for L = 0, Theorems 4.4 and
4.5 readily imply our previous result [23, Thm. 4.7].

Remark 4.7. Since for any fn ∈ D(A) and v ∈ V we get

Im〈fn + v,AV,L(fn + v)〉 = Im〈v, (Ã∗ + L)v〉+ ‖V 1/2
K fn‖2

+ Im〈v, 2iV 1/2
K V

1/2
K fn〉+ Im〈V −1/2

F V
1/2
F fn,Lv〉 ,

(4.7)

the condition V ⊂ D(V
1/2
K ) controls the term Im〈v, 2iV 1/2

K V
1/2
K fn〉 while the con-

dition ran(L) ⊂ ran(V
1/2
F ) ensures that the term Im〈V −1/2

F V
1/2
F fn,Lv〉 can be

controlled when minimizing Im〈fn + v,AV,L(fn + v)〉.
But in the case that neither condition is satisfied it could happen that the last

term in (4.7) does not stay bounded either and instead “competes” against the

Im〈v, 2iV 1/2
K V

1/2
K fn〉 that would go to −∞ for a suitable choice of a sequence {fn}.

Thus, in the situation v /∈ D(V
1/2
K ) and Lv /∈ ran(V

1/2
F ) it is not clear whether it is

generally possible that AV,L is dissipative. Moreover, since it is difficult to compute

V
1/2
F , V

−1/2
F , and V

1/2
K explicitly, we were not able to construct such an example.

(The elementary case of V being a multiplication operator or—more generally—–
an essentially self-adjoint operator will be discussed in Lemma 5.7.)

5. Applications of the main theorem

Despite its theoretical merit, Theorem 4.4 does not seem to be very useful for
practical applications, since it is generally very difficult to explicitly compute the

square roots V
1/2
K and V

−1/2
F as they occur in the statement of the theorem. More-

over, we do not have explicit knowledge of the partial isometry U . In this section,
we are therefore going to single out three situations in which condition (4.3) can be
simplified and made accessible to direct computations.

5.1. An additional restriction on ran(L). For the statement of Theorem 4.4,

we have assumed that ran(L) ⊂ ran(V
1/2
F ). If we make the even stricter assumption

that ran(L) ⊂ ran(VF ), we can simplify the result of Theorem 4.4:

Corollary 5.1. Let (A, Ã) be dual pair satisfying the common core property, where
A is dissipative. Moreover, assume that ran(L) ⊂ ran(VF ). In this case, we write
Lv = VFφv, where φv ∈ D(VF ), which is determined up to elements in ker(VF ).

Then, AV,L is dissipative if and only if V ⊂ D(V
1/2
K ) and for all v ∈ V, we have

that

(5.1) Im〈v, Ã∗v〉+ Im〈v, VFφv〉 ≥
1

4
‖V 1/2

K (φv + 2iv)‖2 .
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Proof. Since ran(L) ⊂ ran(VF ) ⊂ ran(V
1/2
F ) by assumption, it follows from The-

orem 4.5(i), that it is necessary that V ⊂ D(V
1/2
K ) for AV,L to be dissipative.

condition (5.1) follows from (4.3), where we substitute Lv = VFφv to get

Im〈v, Ã∗v〉+ Im〈v, VFφv〉 ≥
1

4
‖UV −1/2

F VFφv + 2iV
1/2
K v‖2 =

1

4
‖V 1/2

K (φv + 2iv)‖2 ,

which is the desired result. �

Example 5.2. Let H = L2(0,∞), assume that the real potential W ∈ L2(0,∞),

and consider the dual pair of closed operators (A, Ã) given by

A : D(A) = H2
0 (0,∞), (Af)(x) = −if ′′(x) +W (x)f(x)

Ã : D(Ã) = H2
0 (0,∞), (Ãf)(x) = if ′′(x) +W (x)f(x) ,

which has the common core property since D(A) = D(Ã) and (A, Ã) are closed.
Their adjoints are given by

Ã∗ : D(Ã∗) = H2(0,∞), (Ã∗f)(x) = −if ′′(x) +W (x)f(x)

A∗ : D(A∗) = H2(0,∞), (A∗f)(x) = if ′′(x) +W (x)f(x) .

Moreover, the “imaginary part” V and its adjoint V ∗ are given by

V : D(V ) = H2
0 (0,∞), f 
→ −f ′′

V ∗ : D(V ∗) = H2(0,∞), f 
→ −f ′′ .

Since

ker(V ∗ ± i) = span

{
exp

(
−1± i√

2
x

)}
,

and

D(Ã∗) = D(V ∗) = D(V )+̇ ker(V ∗+i)+̇ ker(V ∗−i)=D(A)+̇ ker(V ∗+i)+̇ ker(V ∗−i),

we may choose

D(V ∗)//D(V ) = D(Ã∗)//D(A)

= span

{
exp

(
−1 + i√

2
x

)
, exp

(
−1− i√

2
x

)}
= span{σ, τ} .

The functions σ and τ are suitable linear combinations of the elements of
D(Ã∗)//D(A) such that σ(0) = τ ′(0) = 1 and σ′(0) = τ (0) = 0. For ρ ∈ C,
define the function ζρ(x) := σ(x) + ρτ (x) and let ζ∞(x) := τ (x). In order to be
able to use Corollary 5.1, we will only consider Lζρ ∈ ran(VF ); i.e., we can write
Lζρ = VFφ for some φ ∈ D(VF ) = {f ∈ H2(0,∞), f(0) = 0}. Let us therefore use
the parameter ρ ∈ C ∪ {∞} and the function φ ∈ D(VF ) to describe all extensions
Aρ,φ of the form

Aρ,φ : D(Aρ,φ) = D(A)+̇span{ζρ}
(Aρ,φ(f + λζρ)) (x) = −i(f ′′(x) + λζ ′′ρ (x)) +W (x)(f(x) + λζρ(x))− λφ′′(x) ,

where f ∈ D(A) and λ ∈ C. Next, let us use Corollary 5.1 to find the conditions on
ρ and φ for Aρ,φ to be dissipative. First, observe that VK is the Neumann–Laplacian
on the half line. This can be seen from

(5.2) 〈f, V ∗f〉 = f(0)f ′(0) +

∫ ∞

0

|f ′(x)|2dx
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for all f ∈ D(V ∗). In order to find the self-adjoint restrictions of V ∗, observe that
any additional self-adjoint boundary condition has to be of the form f ′(0) = rf(0),
where r ∈ R. The additional choice r = ∞ corresponds to a Dirichlet condition at 0;
i.e., f(0) = 0 and describes the Friedrichs extension of V . For any r < 0, we get that
〈f, V ∗f〉 can be made negative, which therefore does not describe a non-negative
self-adjoint extension of V . For r ≥ 0, it is obvious that r = 0 describes the smallest
nonnegative extension of V . Hence, the Krĕın–von Neumann extension is given by
the Neumann–Laplacian with domain D(VK) = {f ∈ H2(0,∞), f ′(0) = 0}. It
is also not hard to see that if we close D(VK) with respect to the norm induced

by (5.2), we get D(V
1/2
K ) = H1(0,∞). Now, since D(Ã∗)//D(A) ⊂ H1(0,∞) =

D(V
1/2
K ), we get that the first necessary condition from Corollary 5.1, which requires

that span{ζρ} ⊂ D(V
1/2
K ) in order for Aρ,φ to be dissipative is satisfied for any

ρ ∈ C ∪ {∞}. Next, let us determine for which ρ ∈ C ∪ {∞} and φ ∈ D(VF )
condition (5.1) is satisfied. For ρ ∈ C, it reads as

Im〈ζρ, Ã∗ζρ〉+ Im〈ζρ, VFφ〉 ≥
1

4
‖V 1/2

K (φ+ 2iζρ)‖2

⇔ Im〈ζρ,−iζ ′′ρ 〉+ Im〈ζρ,−φ′′〉 ≥ 1

4
‖φ′ + 2iζ ′ρ‖2 =

1

4
‖φ′‖2 + ‖ζ ′ρ‖2 +Re〈φ′, iζ ′ρ〉

⇔ Im(ζρ(0)iζ
′
ρ(0)) + ‖ζ ′ρ‖2 + Im〈φ′′, ζρ〉 ≥

1

4
‖φ′‖2 + ‖ζ ′ρ‖2 + Im〈φ′′, ζρ〉

+ Im(φ′(0)ζρ(0))

⇔ Reρ ≥ 1

4
‖φ′‖2 − Im(φ′(0)) .

For ρ = ∞, we get the condition that

0 ≥ 1

4
‖φ′‖2 ,

which means that the only allowed choice is φ(x) ≡ 0 in this case.

5.2. The strictly positive case. Next, let us consider the case when the imagi-
nary part V is strictly positive; i.e., when there exists a positive number ε > 0 such
that 〈f, V f〉 ≥ ε‖f‖2 for all f ∈ D(V ). We introduce the notation V ≥ ε > 0 in
this case.

Corollary 5.3. Let (A, Ã) be a dual pair satisfying the common core property,
where A is dissipative. Moreover, let the imaginary part V be strictly positive.

Then, AV,L is dissipative if and only if V ⊂ D(V
1/2
K ) and for all v ∈ V we have that

(5.3) Im〈v, Ã∗v〉+ Im〈Pv,Lv〉 ≥ 1

4
‖V −1/2

F Lv‖2 + ‖V 1/2
K v‖2 .

Here, P denotes the unbounded projection onto kerV ∗ along D(V
1/2
F ), according to

the decomposition D(V
1/2
K ) = D(V

1/2
F )+̇ kerV ∗.

Proof. Since V ≥ ε > 0, we have that ran(VF ) = ran(V
1/2
F ) = H, which means that

the condition ran(L) ⊂ ran(V
1/2
F ) is always satisfied. Thus, by Theorem 4.5, it is

necessary that V ⊂ D(V
1/2
K ) for AV,L to be dissipative.

Since V ≥ ε > 0, we have that D(VK) = D(V )+̇ kerV ∗ with VK = V ∗ �D(VK).
This implies that kerV ∗ = kerVK and since VK is nonnegative, we also get that
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kerV
1/2
K = kerV ∗. It is known that D(V

1/2
K ) = D(V

1/2
F )+̇ kerV ∗ (cf. [1]). Thus,

we can rewrite

1

4
‖UV −1/2

F Lv + 2iV
1/2
K v‖2 =

1

4
‖UV −1/2

F Lv + 2iV
1/2
K (1− P)v‖2

(4.2)
=

1

4
‖U(V −1/2

F Lv + 2iV
1/2
F (1− P))v‖2 =

1

4
‖V −1/2

F Lv + 2iV
1/2
F (1− P)v‖2

=
1

4
‖V −1/2

F Lv‖2 + ‖V 1/2
F (1− P)v‖2 + Im〈V 1/2

F (1− P)v, V
−1/2
F Lv〉

=
1

4
‖V −1/2

F Lv‖2 + ‖V 1/2
K v‖2 + Im〈(1− P)v,Lv〉 .

With this, condition (4.3) from Theorem 4.4 can be rewritten as

Im〈v, Ã∗v〉+ Im〈Pv,Lv〉 ≥ 1

4
‖V −1/2

F Lv‖2 + ‖V 1/2
K v‖2 ,

which is the desired result. �

Remark 5.4. From V ≥ ε it follows that both VF and V
1/2
F are boundedly invertible

and thus ran(VF ) = ran(V
1/2
F ) = H. Hence, the strictly positive case is a special

case of Section 5.1, since ran(L) ⊂ ran(VF ) = H is always satisfied. As in Corollary
5.1, it is helpful to write Lv = VFφv for any v ∈ V , where φv is uniquely determined
by Lv since VF ≥ ε. Then, we can rewrite (5.3) as follows

(5.4) Im〈v, Ã∗v〉+ Im〈Pv, VFφv〉 ≥
1

4
‖V 1/2

F φv‖2 + ‖V 1/2
K v‖2 ,

which is more accessible to explicit computations.

Example 5.5. Let H = L2(0, 1), assume that γ ≥
√
3 and consider the dual pair

(A0, Ã0), given by

A0 : D(A0) = C∞
c (0, 1), (A0f) (x) = −if ′′(x)− γ

f(x)

x2
,

Ã0 : D(Ã0) = C∞
c (0, 1),

(
Ã0f

)
(x) = if ′′(x)− γ

f(x)

x2
.

Define the dual pair (A, Ã), where A := A0 and Ã := Ã0. By construction, (A, Ã)
has the common core property, where we choose C∞

c (0, 1) =: D to be the common
core. The “imaginary part” V is given by

V : D(V ) = C∞
c (0, 1)

f 
→ −f ′′ ,

which is a strictly positive operator, since its closure is a restriction of the
Dirichlet–Laplacian on the unit interval:

〈f, V f〉 ≥ π2‖f‖2 for all f ∈ C∞
c (0, 1) .

Moreover, its adjoint V ∗ is given by

V ∗ : D(V ∗) = H2(0, 1) , f 
→ −f ′′

and its kernel is ker(V ∗) = span{1, x}. Thus, observe that for any f ∈ H2(0, 1),

the projection P onto ker(V ∗) along D(V
1/2
F ) is given by

(5.5) (Pf)(x) = (1− x)f(0) + xf(1) .
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The choice γ ≥
√
3 ensures that dim ker Ã∗ = dimkerA∗ = 1, which keeps the

extension problem simpler. It can be shown by straightforward calculation that

D(Ã∗) can be written as

D(Ã∗) = D(A)+̇span{xω, xω+2} ,

where we have defined ω := (1+
√
1 + 4iγ)/2. We therefore choose D(Ã∗)//D(A) =

span{xω, xω+2}. Let us now parameterize all proper one-dimensional extensions of

(A, Ã), with the family of operators {Aρ}ρ∈C∪{∞} given by

Aρ : D(Aρ) = D(A)+̇span{ξρ}, Aρ = Ã∗ �D(Aρ) ,

where

span{xω, xω+2} � ξρ(x) :=

⎧⎨⎩ρ
(

(2+ω)xω−ωxω+2

2+ω−ω

)
− xω−xω+2

2+ω−ω for ρ ∈ C

(2+ω)xω−ωxω+2

2+ω−ω for ρ = ∞

satisfies the boundary conditions

ξρ(0) = ξ′ρ(0) = 0 for ρ ∈ C ∪ {∞}
ξρ(1) = ρ, ξ′ρ(1) = 1 for ρ ∈ C, and ξρ(1) = 1, ξ′ρ(1) = 0 for ρ = ∞ .

Next, (5.5) implies that for ρ ∈ C, we get Pξρ(x) = ρx, whereas for ρ = ∞, we

get Pξ∞(x) = x. This follows from the fact that D(V
1/2
F ) = H1

0 (0, 1), and for any
ρ ∈ C we have ξρ(0) = ξ∞(0) = 0 as well as ξρ(1) = ρ and ξ∞(1) = 1. Now,
since V is strictly positive, we know that its Friedrichs extension VF is bijective,
which means that any function Lξρ ∈ L2(0, 1) can be written as Lξρ = VFφ = −φ′′

for some unique φ ∈ D(VF ) = {φ ∈ H2(0, 1), φ(0) = φ(1) = 0}. Hence, let us
use the parameter ρ ∈ C ∪ {∞} and the arbitrary function φ ∈ D(VF ) to label all

one-dimensional extensions of D(A) that have domain contained in D(Ã∗). They
are given by

Aρ,φ : D(Aρ,φ) = D(A)+̇span{ξρ}

[Aρ,φ(f + λξρ)](x) = (−if ′′(x)− λiξ′′ρ (x))− γ
f(x) + λξρ(x)

x2
− λφ′′(x) ,

where f ∈ D(A) and λ ∈ C. By (5.4), we have that Aρ,φ is dissipative if and only if

Im〈ξρ, Ã∗ξρ〉 − ‖V 1/2
K ξρ‖2 ≥ 1

4
‖V 1/2

F φ‖2 − Im〈Pξρ, VFφ〉

is satisfied. Using that for any v ∈ D(V
1/2
K ) = H1(0, 1), we have

‖V 1/2
K v‖2 = ‖v′‖2 − |v(1)− v(0)|2 .

It can be shown that for any v ∈ span{xω, xω+2}, we have

Im〈v, Ã∗v〉 − ‖V 1/2
K v‖2 = −Re

(
v(1)v′(1)

)
+ |v(1)|2 ,

which means that

Im〈ξρ, Ã∗ξρ〉 − ‖V 1/2
K ξρ‖2 =

{
|ρ|2 − Re(ρ) if ρ ∈ C

1 if ρ = ∞ .
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Moreover, since ‖V 1/2
F φ‖ = ‖φ′‖ and

(5.6) Im

(∫ 1

0

xφ′′(x)dx

)
= Im(φ′(1))

for any φ ∈ D(VF ), the above yields the conditions on ρ and φ for Aρ,φ to be
dissipative;

1

4
‖φ′‖2 + Im(ρφ′(1)) ≤ |ρ|2 − Reρ for ρ ∈ C

1

4
‖φ′‖2 + Im(φ′(1)) ≤ 1 for ρ = ∞ .

For the case of proper extensions, where φ = 0; i.e., for Aρ,0 we have the condition
that either ρ = ∞ or |ρ|2−Reρ ≥ 0 for Aρ,0 to be dissipative. In the nonproper case,
for a suitable choice of φ, it is no longer necessary that ρ satisfies this condition.
For instance, let φ(x) := (x2 − x) ∈ D(VF ). We then get the condition

1

4
‖φ′‖2 + Im(ρφ′(1)) =

1

12
− Im(ρ) ≤ |ρ|2 − Reρ

forAρ,(x2−x) to be dissipative. This condition is satisfied, for example, by ρ = 1
2+

3
8 i;

i.e., A( 1
2+

3
8 i),(x2−x) is dissipative, while A( 1

2+
3
8 i),0

is not. In Corollary 5.9, we will

show that the phenomenon that a dissipative nonproper extension, defined on a
domain on which the corresponding proper extension would not be dissipative,
can only occur if the Friedrichs and Krĕın–von Neumann extensions of V do not
coincide, as is the case in this example.

Remark 5.6. The choice of the highly singular x−2 potential allowed us to com-
pute everything explicitly. It is however not very difficult to add a “small” extra
potential.

5.3. The case of coinciding Friedrichs and Krĕın–von Neumann exten-
sion. Let us now consider the case where the Friedrichs and Krĕın-von Neumann
extensions of V coincide: VF = VK =: V̂ . Before we simplify Theorem 4.4 with
the help of this extra assumption, let us prove that in this case, both conditions,

V ⊂ D(V̂ 1/2) and ran(L) ⊂ ran(V̂ 1/2), are independently necessary for AV,L to be
dissipative.

Lemma 5.7. Let (A, Ã) be a dual pair satisfying the common core condition, where
A is dissipative and assume in addition that for the imaginary part V we have

VF = VK =: V̂ . Then, for AV,L to be dissipative it is necessary that V ⊂ D(V̂ 1/2)

and ran(L) ⊂ ran(V̂ 1/2).

Proof. We only need to show that V ⊂ D(V̂ 1/2) is necessary for AV,L to be dis-

sipative. The condition ran(L) ⊂ ran(V̂ 1/2) will then just follow from Theorem

4.5(ii). Thus, assume that there exists a v ∈ V such that v /∈ D(V̂ 1/2). Since for
any f ∈ D(A), v ∈ V we have

Im〈f + v,AV,L(f + v)〉 = 〈f, V f〉+ Im〈v, 2iV f〉+ Im〈v, (Ã∗ + L)v〉+ Im〈f,Lv〉 ,
showing that

(5.7) inf
f∈D(V )

(〈f, V f〉+ Im(〈v, 2iV f〉 − 〈Lv, f〉)) = −∞ ,
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will imply that AV,L cannot be dissipative. We will proceed to show that

(5.8) inf
f∈D(V )

(〈f, V f〉+ Im(〈v, 2iV f〉 − 〈Lv, f〉)) = −∞,

and using the fact that D(V ) is a core for V , this implies that for each f̃n ∈ D(V ) we

can choose a sequence {f̃n,m}∞m=1 ⊂ D(V ) such that f̃n,m
m→∞−→ f̃n and V f̃n,m

m→∞−→
V f̃n. A diagonal sequence argument then shows (5.7) and thus the lemma.

Let us thus now show (5.8). To this end, let P denote the projection-valued spec-

tral measure corresponding to V̂ , and define P1 := P ([0, 1)) and P2 := P ([1,∞)) as

well as H1,2 := P1,2H. Since V̂ ≥ 0, we have P1+P2 = 1, resp. H1⊕H2 = H. Now,

observe that v /∈ D(V̂ 1/2) if and only if P2v /∈ D(V̂ 1/2). Since V
1/2
F = V

1/2
K = V̂ 1/2,

we get that ran(V
1/2
F �D(V )) = ran(V̂ 1/2 �D(V )). Hence, if P2v /∈ D(V̂ 1/2) =

D(V
1/2
K ), we have by Corollary 2.4 that there exists a sequence {fn} ⊂ D(V ) such

that ‖V̂ 1/2fn‖ = 1 for all n ∈ N and

(5.9) lim
n→∞

|〈P2v, V̂
1/2V̂ 1/2fn〉| = +∞ .

We now claim that the sequence {V̂ 1/2P2fn} satisfies

‖V̂ 1/2P2fn‖ ≤ 1 and lim
n→∞

|〈v, V̂ 1/2V̂ 1/2P2fn〉| = +∞ .

The first statement follows immediately from

(5.10) ‖V̂ 1/2P2fn‖ = ‖P2V̂
1/2fn‖ ≤ ‖V̂ 1/2fn‖ = 1 ,

while the second statement follows from (5.9). Next, observe that
(5.11)

‖P2fn‖2 =

∫
[1,∞)

d‖P (λ)fn‖2 ≤
∫
[1,∞)

λd‖P (λ)fn‖2 = ‖V̂ 1/2P2fn‖2
(5.10)

≤ 1 .

For any n ∈ N choose φn ∈ [0, 2π) such that

Im〈v, V̂ 1/2V̂ 1/2eiφnP2fn〉 = −|〈v, V̂ 1/2V̂ 1/2P2fn〉| .
Choosing gn = eiϕnP2fn for any n ∈ N now yields (5.8) since

〈gn, V gn〉+ Im(〈v, 2iV gn〉 − 〈Lv, gn〉)
= ‖V̂ 1/2P2fn‖2 − 2|〈v, V̂ 1/2V̂ 1/2P2fn〉| − Im〈Lv, eiϕnP2fn〉
(5.10)

≤ 1− 2|〈v, V̂ 1/2V̂ 1/2P2fn〉|+ ‖Lv‖‖P2fn‖
(5.11)

≤ 1− 2|〈v, V̂ 1/2V̂ 1/2P2fn〉|+ ‖Lv‖ n→∞−→ −∞ .

This finishes the proof. �

Remark 5.8. This result applies in particular to the case of V being essentially
self-adjoint, where we have V = VF = VK . However, note that the previous lemma
and the following corollary cover a wider class of imaginary parts V than just
the essentially self-adjoint ones. For example, let H = L2(R+) and consider the
imaginary part V given by

V : D(V ) = C∞
c (R+), (V f) (x) = −f ′′(x)− 1/4

x2
f(x) .
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It is a well known fact that V is not essentially self-adjoint but that its Friedrichs and
Krĕın–von Neumann extension coincide (cf. e.g. [14, Prop. 4.21]). For an abstract
criterion as to whether a nonnegative symmetric and nonessentially self-adjoint
operator has a unique nonnegative self-adjoint extension, we refer to Krĕın’s result
in [26] and its presentation in [1, Thm. 2.12].

Let us now simplify Theorem 4.4 for the case that the Friedrichs and Krĕın–von

Neumann extension VF and VK of V coincide: VF = VK =: V̂ . Note that the
situation of V being essentially self-adjoint is a special case of this. We also want
to show that AV,L can only be dissipative if AV already is; i.e., there necessarily
needs to be a dissipative boundary condition—described by a suitable choice of

V —before one can consider deviations from the action of Ã∗ via nonzero opera-
tors L. This is fundamentally different from the case VF 
= VK , where we have
found an example of an extension AV,L, which was dissipative although AV was
not (Example 5.5).

Corollary 5.9. Let (A, Ã) be dual pair satisfying the common core property, where
A is dissipative. Moreover, let the imaginary part V be such that its Friedrichs

and Krĕın–von Neumann extension coincide; i.e., VF = VK =: V̂ . Then, AV,L is

dissipative if and only if V ⊂ D(V̂ 1/2), ran(L) ⊂ ran(V̂ 1/2), and for all v ∈ V we
have that

(5.12) Im〈v, Ã∗v〉 ≥ 1

4
‖V̂ −1/2Lv‖2 + ‖V̂ 1/2v‖2 .

In particular, this implies that for AV,L to be dissipative, it is necessary that AV is
dissipative.

Proof. The conditions that V ⊂ D(V̂ 1/2) and ran(L) ⊂ ran(V̂ 1/2) for AV,L to
be dissipative follow from Lemma 5.7. Condition (5.12) follows from (4.3) using

VK = VF = V̂ , which implies that U acts like the identity on ran(V̂ 1/2). Moreover,

for L = 0, we get that AV is dissipative if and only if V ⊂ D(V̂ 1/2) and Im〈v, Ã∗v〉 ≥
‖V̂ 1/2v‖2 for all v ∈ V . Thus, if AV is not dissipative, then it is either true that

V 
⊂ D(V̂ 1/2) or we have V ⊂ D(V̂ 1/2) but there exists a v ∈ V such that

Im〈v, Ã∗v〉 − ‖V̂ 1/2v‖2 < 0 ,

both implying that AV,L cannot be dissipative either. This shows the corollary. �
Example 5.10. Let 0 < γ < 1/2 and consider the dual pair of operators

A0 : D(A0) = C∞
c (0, 1), (A0f)(x) := if ′(x) +

iγ

x
f(x)

Ã0 : D(Ã0) = C∞
c (0, 1), (Ã0f)(x) := if ′(x)− iγ

x
f(x) ,

where A0 is dissipative and Ã0 is antidissipative. We denote their closures by

A = A0 and Ã = Ã0. It can be shown that

D(Ã∗) = D(A)+̇span{x−γ , xγ+1},
and we therefore choose D(Ã∗)//D(A) = span{x−γ , xγ+1}. Moreover, it is easy to
see that the imaginary part V is the essentially self-adjoint multiplication operator
by the function γ

x with domain C∞
c (0, 1) which has closure to the self-adjoint max-

imal multiplication operator by γ
x , which we denote by V . Since x−γ /∈ D(V

1/2
);



ON NONPROPER DISSIPATIVE EXTENSIONS 8913

this means that the only choice for V ⊂ span{x−γ , xγ+1} in order to have a chance
for AV,L to be dissipative is V := span{xγ+1}. Let us define v(x) =: xγ+1 and
Lv =: � ∈ H, and let us use the functions v and � to label AV,L =: Av,�. Since

〈f, V f〉 ≥ γ‖f‖2 for all f ∈ D(V ), we get that V and V
1/2

are both boundedly in-

vertible, in particular that ran(V
1/2

) = H. Thus, by Corollary 5.9, it only remains
to check whether condition (5.12) is satisfied, which reads as

Im〈v, Ã∗v〉 − ‖V 1/2
v‖2 ≥ 1

4
‖V −1/2

�‖2 .

It can be easily shown that

Im〈v, Ã∗v〉 − ‖V 1/2
v‖2=1

2

(
|v(1)|2 − |v(0)|2

)
=

1

2
.

Hence, Av,� is dissipative if and only if

‖V −1/2
�‖2 =

1

γ

∫ 1

0

x|�(x)|2dx ≤ 2 .

This means that all dissipative extensions of A that have domain contained in

D(Ã∗) are given by

Av,� : D(Av,�) = D(A)+̇span{v}

(Av,�(f + λv)) (x) = if ′(x) + iλv′(x) + iγ
f(x) + λv(x)

x
+ λ�(x) ,(5.13)

where f ∈ D(A) and λ ∈ C. The function � ∈ L2(0, 1) has to satisfy

(5.14)

∫ 1

0

x|�(x)|2dx ≤ 2γ .

Moreover, by Lemma 2.1, we have that Av,� is maximally dissipative since it is a
one-dimensional extension of A.

Remark 5.11. As in Example 5.2, one could easily add a sufficiently “small” real

potential W to the operators A0 and Ã0.

6. Operators with bounded imaginary part

In this section, we will apply the result of Corollary 5.9 in order to construct all
dissipative extensions of a dissipative operator with bounded imaginary part, where
D(A) = D(S) = D(V ). While this is not a new result (it can for example essentially
be found in [16, Theorem 1] with a different way of proof), we want to give more
attention to the interplay between boundary conditions and bounded dissipative
perturbations. In particular, we will show that if an operator with nondissipative
boundary condition is considered, it is impossible to add a bounded dissipative
perturbation such that the result is a dissipative operator (Corollary 6.5(ii)). On
the other hand, we will show that the “more dissipative” a boundary condition is,
the more freedom one has in describing dissipative extensions of a given operator
(Corollary 6.5(iii)).
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To start with, let us show that it is sufficient to only consider operators of the
form S + iV , where S is symmetric and V ≥ 0 is bounded:

Lemma 6.1. Let A be a dissipative operator and assume that the quadratic form
q given by

q : D(q) = D(A), f 
→ Im〈f,Af〉
is bounded. Then there exists a symmetric operator S with D(S) = D(A) and
an essentially self-adjoint bounded operator V ≥ 0 with D(V ) = D(A) such that
A = S + iV .

Proof. Since q is bounded, it is closable. Let V ′ denote the bounded self-adjoint
operator associated to it, and let V = V ′ �D(A). It is not hard to see that S := A−iV
is symmetric and trivially A = S + iV . �

Next, let us show that for any dissipative extension of S + iV , it is necessary
that its domain is contained in D(S∗). Since V is assumed to be bounded, note
that A = S+ iV is closed if and only if S is closed. Also note that we are describing

general extensions of A that need not be of the form Ŝ+iV , where Ŝ is a symmetric
extension of S.

Lemma 6.2. Let A := S + iV , where S is closed and symmetric and V ≥ 0
is bounded. Then, for an extension A ⊂ B to be dissipative, it is necessary that
D(B) ⊂ D(S∗).

Proof. Assume that D(B) 
⊂ D(S∗); i.e., that there exists a v ∈ D(B) such that
v /∈ D(S∗). For any f ∈ D(A) = D(S), consider

Im〈f + v,B(f + v)〉 = Im〈f, (S + iV )f〉+ Im〈v, (S + iV )f〉+ Im〈f + v,Bv〉
= 〈f, V f〉+ Im〈v, Sf〉+ Im〈v, iV f〉+ Im〈f + v,Bv〉
≤ ‖V ‖‖f‖2 + Im〈v, Sf〉+ ‖V ‖‖v‖‖f‖+ ‖f‖‖Bv‖+ ‖v‖‖Bv‖ .(6.1)

Since v /∈ D(S∗), there exists a normalized sequence {fn} ⊂ D(S) such that

lim
n→∞

Im〈v, Sfn〉 = −∞ .

Using (6.1), we therefore get

Im〈fn + v,B(fn + v)〉≤‖V ‖+ ‖V ‖‖v‖+ ‖Bv‖+ ‖v‖‖Bv‖+ Im〈v, Sfn〉 n→∞−→ −∞ ,

which shows that B cannot be dissipative in this case. This finishes the proof. �

We are now able to describe all dissipative extensions of A = S + iV .

Theorem 6.3. Let A = S + iV be a dissipative operator with bounded imaginary
part. Then SV,L + iV , where SV,L is defined as in Definition 4.3, is a dissipative
extension of S + iV if and only if for all v ∈ V ⊂ D(S∗)//D(S) we have that

Lv ∈ ran(V
1/2

) and the condition

(6.2) Im〈v, S∗v〉 ≥ 1

4
‖V −1/2Lv‖2

is satisfied. As before, V
−1/2

denotes the inverse of V
1/2

on the reducing subspace

ran(V
1/2

) as described in (4.4). Moreover, all dissipative extensions of S + iV are
of this form.
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Remark 6.4. For the case that V ≡ 0, this means in particular that condition (6.2)
simplifies to the condition that Im〈v, S∗v〉 ≥ 0 for all v ∈ V .

Proof. Since V is bounded, SV,L is an extension of S if and only if AV,L = SV,L+iV

is an extension of A := S + iV . Clearly, for A := S + iV and Ã := S − iV , we have

that (A, Ã) is a dual pair and we get that D(A) = D(Ã) = D(S), which means
that it has the common core property. Moreover, by boundedness of V , we get that

Ã∗ = S∗ + iV , where D(Ã∗) = D(S∗). Also, observe that V �D(S) is essentially
self-adjoint, which means that we can apply Corollary 5.9. Since V is bounded, we

have that D(V
1/2

) = D(V ) = H, which means that the condition that V ⊂ D(V
1/2

)

is always satisfied. Thus, by Corollary 5.9, it is necessary that ran(L) ⊂ ran(V
1/2

)
for AV,L to be dissipative. Condition (5.12) reads as

Im〈v, (S∗ + iV )v〉 ≥ ‖V 1/2
v‖2 + 1

4
‖V −1/2Lv‖2 ⇔ Im〈v, S∗v〉 ≥ 1

4
‖V −1/2Lv‖2 ,

which is the desired result. Let us finish by showing that all dissipative extensions
of S + iV are parameterized by the operators SV,L + iV . By Lemma 6.2, we know

that all dissipative extensions have domain contained in D(S∗) = D(Ã∗). On the
other hand, since V is an arbitrary subspace of D(S∗)//D(S), the extensions SV,L
describe all possible extensions of S that have domain contained in D(S∗). As they
are dissipative if and only if V and L satisfy the assumptions of this theorem, we
have found all dissipative extensions of (S + iV ). �

Let us now investigate the relation between the choice of V and L.

Corollary 6.5. Let V ⊂ D(S∗)//D(S).
(i) If SV is symmetric, then (SV + iV ) is the only dissipative extension of (S+ iV )
with domain equal to D(SV). Moreover, the imaginary part of any other extension
of the form (SV,L + iV ) is not bounded from below; i.e. for L 
= 0, there exists no
γ ∈ R+ such that

(6.3) inf
ψ∈D(SV,L):‖ψ‖=1

Im〈ψ, (SV,L + iV )ψ〉 ≥ −γ‖ψ‖2 .

(ii) If SV is not dissipative; i.e., if there exists a v ∈ V such that

Im〈v, SVv〉 < 0 ,

then there exists no extension SV,L and no bounded nonnegative operator V ≥ 0
such that SV,L + iV is dissipative.
(iii) If there exists an ε > 0 such that

Im〈v, SVv〉 ≥ ε‖v‖2

for all v ∈ V and if the operator L is bounded, we get that

(6.4) Im〈ψ, SV,Lψ〉 ≥ −‖L‖2
4ε

‖ψ‖2

for all ψ ∈ D(SV,L). This implies in particular that for any bounded V ≥ ‖L‖2

4ε , we
get

Im〈ψ, (SV,L + iV )ψ〉 ≥ 0

for all ψ ∈ D(SV,L).
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Proof. (i) By Theorem 6.3, condition (6.2), it is necessary that

Im〈v, S∗v〉 ≥ 1

4
‖V −1/2Lv‖2

for all v ∈ V . But since SV = S∗ �D(SV) is symmetric, we get Im〈v, S∗v〉 = 0 for
all v ∈ V , which makes it necessary that Lv = 0 for all v ∈ V for (SV,L + iV ) to be
dissipative. In other words, only for L ≡ 0 do we have that AV,L=0 = (SV,L=0+iV )
is dissipative. For the second part of (i), assume that the imaginary part of AV,L
is semibounded with semibound −γ (cf. (6.3)). This would mean that the operator
SV,L + i(V + γ) is dissipative, which by condition (6.2) would imply that for all
v ∈ V , the condition

0 = Im〈v, S∗v〉 ≥ 1

4
‖(V + γ)−1/2Lv‖2 ,

is satisfied, which is impossible if L 
= 0.
(ii) Let v be an element of V such that Im〈v, SVv〉 < 0. Thus, by condition (6.2)

from Theorem 6.3, the operator (SV,L+ iV ) cannot be dissipative for any choice of
L or V .

(iii) Assume now that there exists an ε > 0 such that Im〈v, SVv〉 = Im〈v, S∗v〉 ≥
ε‖v‖2 for all v ∈ V . If L = 0, (6.4) clearly holds with ‖L‖ = 0. Now, let L 
= 0.

Again, by condition (6.2) of Theorem 6.3, the operator SV,L + i‖L‖2

4ε is dissipative
if and only if

(6.5) Im〈v, S∗v〉 ≥ 1

4

∥∥∥∥∥
(
‖L‖2
4ε

)−1/2

Lv
∥∥∥∥∥
2

for all v ∈ V . Since for all v ∈ V we may estimate

1

4

∥∥∥∥∥
(
‖L‖2
4ε

)−1/2

Lv
∥∥∥∥∥
2

=
4ε

4‖L‖2 ‖Lv‖
2 ≤ ε‖v‖2 ≤ Im〈v, S∗v〉 ,

this proves that (6.5) is satisfied. Hence the operator SV,L + i‖L‖2

4ε is dissipative,
which is equivalent to

Im〈ψ, SV,Lψ〉 ≥ −‖L‖2
4ε

‖ψ‖2

for all ψ ∈ D(SV,L). This finishes the proof. �

Example 6.6 (Schrödinger operator on the half line). Let H = L2(R+) and con-
sider the closed symmetric operator S given by:

S : D(S) = {f ∈ H2(R+) : f(0) = f ′(0) = 0}, f 
→ −f ′′ .

Its adjoint is given by

S∗ : D(S∗) = H2(R+), f 
→ −f ′′ ,

where in both cases, f ′′ denotes the second weak derivative of f . Since for any
f ∈ D(S∗) we have

Im〈f, S∗f〉 = −Im

(∫ ∞

0

f(x)f ′′(x)dx

)
= Im

(
f(0)f ′(0)

)
,
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from which it can be easily shown that all maximally dissipative extensions of S
are parameterized by the boundary condition

Sh : D(Sh) = {f ∈ H2(R+) : f ′(0) = hf(0)}
f 
→ −f ′′ ,

where Im(h) ≥ 0. Since S is symmetric, we may choose

D(S∗)//D(S) = ker(S∗ + i)+̇ ker(S∗ − i) .

Now pick ηh ∈ D(S∗)//D(S) such that η′h(0) = h and ηh(0) = 1, which means
that D(Sh) = D(S)+̇span{ηh} with the understanding that h = ∞ corresponds to
Dirichlet boundary conditions at the origin. This implies that

(6.6) Im〈ηh, S∗ηh〉 = Imh ,

where we introduce the convention that Im(∞) = 0 since S∞ is self-adjoint. By
Theorem 6.3, condition (6.2), we get that for h = ∞ the only linear map L that
describes a dissipative extension SV∞,L is given by L ≡ 0, which corresponds to a
proper dissipative extension. Here, V∞ := span{η∞}. Hence, we will not treat this
case anymore from now on. Now, for h 
= ∞, the map L from V = span{ηh} has
to be of the form Lηh = k for some k ∈ H. Thus, any f ∈ D(Sh) can be written
as f = (f − f(0)ηh) + f(0)ηh, where (f − f(0)ηh) ∈ D(S). This means that the
operator SV,L is given by

SV,L : D(SV,L) = D(Sh)

SV,Lf = −f ′′ + f(0)k .

Since SV,L only depends on our choice of h ∈ C and k ∈ H, let us use these two
parameters to label SV,L = Sh,k. Let us now consider a two different bounded
dissipative perturbations:

• Let us start with a rank-one perturbation of the form V = α|ϕ〉〈ϕ|, where
α > 0 and ‖ϕ‖ = 1. Since ranV = ranV 1/2 = span{ϕ}, the first condition
of Theorem 6.3 yields that k ∈ span{ϕ}. Moreover, on span{ϕ}, the opera-
tor V −1/2 is given by ϕ 
→ α−1/2ϕ. Thus, the second condition of Theorem
6.3 reads as

(6.7)
1

4
‖α−1/2λϕ‖2 ≤ Imh ⇔ |λ|2 ≤ 4αImh ,

where we have parameterized k = λϕ. Thus, all (maximally) dissipative
extensions of the operator

A : D(A) = {f ∈ H2(R+) : f(0) = f ′(0) = 0}
f 
→ −f ′′ + iα〈ϕ, f〉ϕ

are given by the family of operators Ah,λ, where |λ|2 ≤ 4αImh:

Ah,λ : D(Ah,λ) = {f ∈ H2(R+) : f ′(0) = hf(0)}
f 
→ −f ′′ + f(0)λϕ+ iαϕ〈ϕ, f〉 .

• Now, let V be the multiplication operator by an a.e. nonnegative function
V (x) ∈ L∞(R+). Moreover, for any function h ∈ L2(R+), let Eh := {x :
h(x) 
= 0}, which is defined up to a set of Lebesgue measure zero. Clearly,
ranV = L2(EV ). Hence, the first condition of Theorem 6.3 yields the
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requirement that Ek ⊂ EV up to a set of Lebesgue measure zero. Next,
k ∈ D(V −1/2) implies that k has to be such that∫

EV

|k(x)|2
V (x)

dx < ∞ .

Last, the second condition of Theorem 6.3 reads as∫
EV

|k(x)|2
V (x)

dx ≤ 4Imh .

Thus, all (maximally) dissipative extensions of the operator

A : D(A) = {f ∈ H2(R+) : f(0) = f ′(0) = 0}
(Af)(x) = −f ′′(x) + iV (x)f(x)

are given by the family of operators Ah,k, where k ∈ H such that Ek ⊂ EV
(up to a set of Lebesgue measure zero) and∫

EV

|k(x)|2
V (x)

dx ≤ 4Imh .

They are given by:

Ah,k : D(Ah,λ) = {f ∈ H2(R+) : f ′(0) = hf(0)}
(Ah,kf)(x) = −f ′′(x) + f(0)k(x) + iV (x)f(x) .
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