
AMS Short Course on Sums of Squares: Theory and Practice

Notes for lectures on Lifts of convex sets

Hamza Fawzi∗

December 14, 2018
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1 Lifts of convex sets

1.1 Introduction

In this short introductory section we give a brief overview of the lifting method and discuss its
importance in optimization when combined with the idea of convex reformulations. We illustrate the
power of the lifting method on a simple example and discuss in an informal way linear programming
and semidefinite programming lifts.

Convex reformulations Consider the following problem where we want to minimize a linear
function `(x) subject to the constraint x ∈ X:

minimize `(x) subject to x ∈ X. (1)

Here X is an arbitrary subset of Rn and need not be convex. It is a well-known fact that, since the
objective function is linear, the optimal value of (1) remains unchanged if we change the constraint
“x ∈ X” by “x ∈ conv(X)”, where conv(X) denotes the convex hull of X (see Figure 1 for an
illustration):

minimize `(x) subject to x ∈ conv(X). (2)

Recall that the convex hull of X is the set of all possible convex combinations of elements of X:

conv(X) =

{
m∑
i=1

λixi : m ∈ N, λ1, . . . , λm ≥ 0,
m∑
i=1

λi = 1, x1, . . . , xm ∈ X
}
.

Using this definition the equality of the optimal values of (1) and (2) is straightforward to verify.
Note that problem (2) is now formally convex since the cost function is linear and the feasible set
is convex.

The transformation from (1) to (2) seems to rely heavily on the fact that ` is a linear function. It
turns out however that a similar transformation can be applied more generally, even if the objective
is not linear, by introducing additional variables and constraints. To illustrate this, assume that
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X conv(X)

Figure 1: A nonconvex set X and its convex hull

our objective in (1) was quadratic instead of being linear, i.e., we are interested in minimizing
q(x) =

∑
i≤j qijxixj subject to x ∈ X:

minimize q(x) =
∑
i≤j

qijxixj subject to x ∈ X. (3)

If we introduce additional variables yij playing the role of xixj we can reformulate the problem
above as follows:

minimize
∑
i≤j

qijyij subject to y ∈ Y (4)

where Y is defined as

Y = {(yij)i≤j : ∃x ∈ X s.t. yij = xixj ∀1 ≤ i ≤ j ≤ n} .

The objective function of (4) is now linear and thus by the same reasoning as above the constraint
“y ∈ Y ” can be changed to “y ∈ conv(Y )”. In both cases we have transformed the original problem
to a new problem that is convex, at least formally. In order to solve the problem however we need
to find a tractable representation of the set conv(X) (or conv(Y )).

Lifts of convex sets When the set X is finite (e.g., in discrete and combinatorial optimization),
the corresponding convex set P = conv(X) is called a polytope and can be described using a finite
number of linear inequalities. The problem of optimizing a linear function over a polytope P is
known as linear programming. Interior-point methods are a popular class of algorithms for linear
programming, and the complexity of such algorithms typically depend on the size of the inequality
description of the polytope. The size of the trivial such description is equal to the number of facets
of P , a geometric quantity associated to P . Unfortunately, in many cases of interest, the number
of facets of P is prohibitively large to enumerate directly in a linear programming formulation.

The idea of lifting consists in expressing the polytope P as the projection of a higher-dimensional
polytope Q that has much fewer facets than P . We say in this case that Q is a (linear programming)
lift of P . For the purpose of optimization one can then work over Q rather than working over P .
Indeed if we are interested in minimizing ` over P and if P = π(Q) where π is a linear (projection)
map then we have:

min
x∈P

`(x) = min
y∈Q

` ◦ π(y). (5)

To give a simple example of a lift let P denote the `1 ball in Rn:

P = {x ∈ Rn : ‖x‖1 ≤ 1}.
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The trivial description of P obtained by enumerating the facets has size 2n since the facets of the
`1 ball are given by all possible inequalities of the form ±x1 ± x2 ± · · · ± xn ≤ 1, see Figure 2. It is
not difficult however to see that the `1 ball admits a description using only 2n linear inequalities,
namely:

P =

{
x ∈ Rn : ∃y ∈ Rn s.t. − yi ≤ xi ≤ yi,

n∑
i=1

yi = 1

}
. (6)

In this case the higher-dimensional polytope Q lives in R2n and consists of vectors (x, y) that satisfy
the constraints −yi ≤ xi ≤ yi and

∑n
i=1 yi = 1. The projection map is π : (x, y) 7→ x. The key

point to note here is that the number of inequalities in the description (6) is now 2n, instead of
the 2n we had before. Observe that the description (6) is the one that we often use in practice
when solving `1 optimization problems. Later we will give other examples of polytopes where lifting
allows us to get a description that is much smaller than the trivial one.

Figure 2: The `1 ball in R3 has 8 facets – it is an octahedron. The `1 ball in Rn has
2n facets. Figure from Wikipedia. Credits: “Original uploader was Cyp at English Wikipedia. Later ver-

sions were uploaded by Fropuff at en.wikipedia. - Transferred from en.wikipedia to Commons., CC BY-SA 3.0,

https://commons.wikimedia.org/w/index.php?curid=38706”

We have discussed lifts whereby the polytope P is expressed as the projection of another poly-
tope Q. What about if the convex set to start with is not a polytope? There is a more general
class of lifts known as semidefinite programming lifts. Here the goal is to express a convex set C
as the projection of the feasible set of a semidefinite program (SDP), i.e., a convex set Q that can
be described using linear matrix inequalities:

Q = {y ∈ Rm : F0 + y1F1 + · · ·+ ymFm � 0} . (7)

F0, . . . , Fm are d × d real symmetric matrices and the constraint in (7) indicates that the matrix
F0 + y1F1 + · · ·+ ymFm is positive semidefinite. Such a convex set is called a spectrahedron. When
the matrices F0, . . . , Fm are diagonal the set Q is a polytope; in general however Q is not necessarily
a polytope. It is clear from this observation that SDP lifts form a broader class than LP lifts, even
when C is a polytope (see e.g., Figure 7 for a SDP lift of a polytope). One of the main results we
will prove is a connection between semidefinite lifts and sums of squares. More precisely we will
prove in Theorem 5 that a convex set has a small semidefinite lift if and only if all its valid linear
inequalities admit sum-of-squares certificates from a low-dimensional subspace.

History The idea of lifting (also known as extended formulations) is well known in optimization.
The first paper that studies lifts in a systematic way, proving nonexistence of small lifts for certain
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polytopes, is due to Yannakakis in 1991 [Yan91]. In his paper Yannakakis showed that the trav-
eling salesman polytope and the matching polytope do not have polynomial-size symmetric linear
programming lifts.

The recent years have witnessed a resurgence of interest in this topic. From the lower bounds
point of view several results have been proved concerning the nonexistence of small lifts for polytopes
arising in combinatorial optimization. Fiorini et al. [FMP+12] resolved a conjecture left open
by Yannakakis and proved that the traveling salesman polytope does not admit any polynomial-
size linear programming lifts (without any symmetry requirement). Later, Lee, Raghavendra,
Steurer [LRS15] showed that the traveling salesman polytope has no polynomial-size semidefinite
programming lift. Another major result was also obtained recently by Rothvoß [Rot14] where he
showed that the matching polytope has no polynomial-size linear programming lift (again, with
no symmetry requirement). This result of Rothvoß is particularly striking since the matching
polytope is known to have a polynomial-time separation oracle. Several results have also been
obtained concerning approximate lifts, see for example [BFPS12, CLRS13, BM13].

From the upper bounds point of view new methods have been proposed to construct improved
lifts for certain classes of polytopes and convex sets, see for example [KP11, Goe15, KPT12, FSP16,
SPW14]. The problem of constructing semidefinite programming lifts for algebraic sets has been
of specific importance in the area of convex algebraic geometry [BPT13, GT12, Las09]. In [HN09]
Helton and Nie conjectured that any convex semialgebraic set admits a semidefinite programming
lift, however this was recently disproved in [Sch18].

1.2 Linear programming lifts and Yannakakis theorem

The main goal of this section is to give a concrete way to think about lifts of a polytope in terms
of nonnegative factorizations of a certain matrix associated to P . This matrix, known as the slack
matrix encodes information about the extreme points and the facet inequalities of P . We first need
to recall some basic and important facts about polytopes, and linear programming.

Polytopes A polytope is the convex hull of a finite number of points. Any polytope can also be
described using a finite number of linear inequalities

P = {x ∈ RN : b+Ax ≥ 0}. (8)

Here A ∈ Rd×N , b ∈ Rd and the inequality b+Ax ≥ 0 is understood componentwise. The number
of inequalities d is the number of facets of P , see Figure 3. Linear programming is the problem of

Polytope

facets

extreme
points

Figure 3: A polytope is the convex hull of a finite number of points, called extreme points or
vertices. Any polytope has also a dual description in terms of a finite number of linear inequalities.

minimizing (or maximizing) a linear function subject to linear inequalities. The standard form of
linear programming is

min
z∈RN

cT z subject to Az = b, z ≥ 0. (9)
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Again, the inequality z ≥ 0 is understood componentwise. It is not difficult to verify (exercise!)
that minimizing a linear function over a polytope can be modeled as a linear program (9) where N
(the dimension of the variable z in (9)) is equal to the number of facets of a polytope. A natural
question is to ask whether one can do better. This motivates the following definition:

Definition 1. Let P be a polytope in Rn. We say that P has a LP lift of size d if P can be written
as P = π(Rd

+ ∩ L) where π : Rd → Rn is a linear map, Rd
+ = {x ∈ Rd : x ≥ 0} and L is an affine

subspace of Rd. The size of the smallest LP lift of P is called the LP extension complexity of P
and denoted xcLP(P ).

If a polytope P ⊂ Rn has an LP lift of size d then any linear optimization problem over P can
be formulated as a linear program in standard form (9) of size d. Indeed, assume P = π(Rd

+ ∩ L).
For any c ∈ Rn we have

min
{
cTx : x ∈ P

}
= min

z∈Rd

{
c̃T z : z ∈ L, z ≥ 0

}
(10)

where c̃ = π∗(c) and π∗ is the adjoint of π. The problem on the right-hand side of (10) is precisely
of the form (9) when A, b are chosen to describe the affine subspace L.

One can equivalently define an LP lift as a representation P = π(Q) where Q is a polytope with
d facets. We leave it as an exercise to the reader to verify this. Figure 4 shows an LP lift of size 5
for the regular hexagon in the plane.

Figure 4: LP Lift of a hexagon of size 5. Note that hexagon has 6 facets whereas the higher-
dimensional polytope has 5 facets in R3.

Examples of LP lifts We now give some examples of polytopes P that admit nontrivial lifts.

• We saw earlier the example of the `1 ball in Rn which has 2n facets and which admits a simple
lift of size 2n.

• Another example of nontrivial lift is for the permutahedron. The permutahedron P ⊂ Rn is
defined as the convex hull of all possible permutations of the vector (1, 2, . . . , n), i.e.:

P = conv {(σ(1), . . . , σ(n)) : σ ∈ Sn}

where Sn is the set of permutations on {1, . . . , n}. This polytope arises naturally in ordering
problems such as in gene sequencing, see e.g. [LW14]. It is known that the permutahedron has
an exponential number of facets, precisely 2n−2. However it is not very difficult to construct
a lift of the permutahedron of size n2. Indeed let Q denote the convex hull of permutation
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matrices in Rn×n. The Birkhoff-von Neumann theorem asserts that Q is precisely the set of
doubly stochastic matrices, i.e.:

Q =
{
M ∈ Rn×n : Mij ≥ 0 ∀i, j = 1, . . . , n,

n∑
i=1

Mij = 1, ∀j = 1, . . . , n,

n∑
j=1

Mij = 1, ∀i = 1, . . . , n
}
.

It is easy to see that P is a projection of Q: indeed if we let π : Rn×n → Rn defined by
π(M) = Mu where u = (1, 2, . . . , n)T then we get that π(Q) = P . This lift has size n2

because Q requires exactly n2 inequalities for its description. It turns out however that this
lift is not optimal. Goemans showed in [Goe15] that the permutahedron admits a lift of size
O(n log n) which is optimal (i.e., there is no smaller possible lift). His construction however
is more complicated and makes use of sorting networks.

• Let P ⊂ R2 be the regular N -gon in the plane, i.e., the convex hull of the N complex roots
of unity. Even though P has N facets (and N vertices), a result of Ben-Tal and Nemirovski
[BTN01] shows that the regular N -gon admits a lifted description with only O(logN) in-
equalities. This construction was used in [BTN01] to obtain polyhedral approximations of
the second-order cone. Figure 4 shows a lift of the regular hexagon of size 5.

N = 5 N = 6 N = 7 N = 8

Figure 5: Ben-Tal and Nemirovski showed in [BTN01] that the regular N -gon admits a LP lift of
size O(logN).

• For other examples of lifts from the combinatorial optimization literature we refer the reader
to the surveys [CCZ10, Kai11].

Yannakakis’ theorem We mentioned earlier that any polytope P ⊂ Rn is described by a finite
set of linear inequalities `(x) ≤ `max where ` is a linear function and `max := maxx∈P `(x). The
set of facet inequalities is the minimal set of inequalities needed to completely describe P . For
example Figure 6 shows a facet inequality of the regular hexagon: in this case `(x) = x + 1√

3
y

and `max = 1. We now introduce the crucial concept of slack matrix needed for the statement of
Yannakakis theorem:

Definition 2 (Slack matrix). Let P be a polytope in Rn. The slack matrix of P is a matrix where
rows are indexed by extreme points of P and columns are indexed by facets of P , and is defined as
follows: The value at the (x, `) entry of P (where x is an extreme point and ` ≤ `max is a facet
inequality of P ) is given by:

Sx,` = `max − `(x).
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The slack matrix of P is not, strictly speaking, uniquely defined since it depends on the ordering
of the facets/extreme points and the scaling of the facet inequalities. The results stated here however
will be independent of the choice of slack matrix and that is why we will often talk about “the”
slack matrix of P .

Example 1 (Slack matrix of the regular hexagon). To illustrate the definition of the slack matrix
consider the case of the regular hexagon in R2. This polytope has |X| = 6 vertices, as well as 6
facets so its slack matrix is 6× 6. Figure 6 (left) gives the slack matrix.



0 1 2 2 1 0
0 0 1 2 2 1
1 0 0 1 2 2
2 1 0 0 1 2
2 2 1 0 0 1
1 2 2 1 0 0

 (11)

1− x− 1√
3
y ≥ 0

Figure 6: Slack matrix of the regular hexagon

For example to see how the first column is formed consider the facet inequality of the hexagon
given by 1−x−y/

√
3 ≥ 0. The k’th vertex of the hexagon has coordinates (cos(2(k−1)π/6), sin(2(k−

1)π/6)). The k’th component of the first column is thus given by 1− cos(2(k − 1)π/6)− sin(2(k −
1)π/6)/

√
3. Note that each column has exactly two zeros: this is because each facet of the regular

hexagon passes through exactly two vertices.

The entries of a slack matrix are all nonnegative, by definition. We now introduce a second
important definition needed for the statement of Yannakakis theorem.

Definition 3 (Nonnegative matrix factorization / nonnegative rank). Let S ∈ Rp×q
+ be a matrix

with nonnegative entries. We say that S has a nonnegative factorization of size r if we can write
S = AB where A ∈ Rp×r

+ and B ∈ Rr×q
+ have nonnegative entries. The smallest r for which such a

factorization exists is called the nonnegative rank of S and denoted rank+(S).

One can show that if S is a nonnegative matrix then rank(S) ≤ rank+(S) and that the inequality
can be strict. Exercise: check that rank(S) < rank+(S) for the 4× 4 matrix

S =


1 1 0 0
1 0 1 0
0 1 0 1
0 0 1 1

 .
Yannakakis’ theorem We are now ready to state Yannakakis’ theorem which establishes a
connection between LP lifts of a polytope, and nonnegative factorizations of its slack matrix.

Theorem 1 (Yannakakis [Yan91]). Let P be a full-dimensional polytope and let S be its slack
matrix. Then P has a LP lift of size d if, and only if, S has a nonnegative factorization of size d.
As a consequence, the smallest size of a LP lift of P is equal to rank+(S).

Before presenting the proof of the theorem we discuss an example and an interpretation of
Yannakakis’ theorem that will be useful later.
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Example 2 (Regular hexagon continued). One can show that the slack matrix of the regular
hexagon has the following nonnegative factorization of size 5:

0 1 2 2 1 0
0 0 1 2 2 1
1 0 0 1 2 2
2 1 0 0 1 2
2 2 1 0 0 1
1 2 2 1 0 0


︸ ︷︷ ︸

slack matrix of hexagon

=



0 1 0 0 1
0 2 0 1 0
0 1 1 0 0
1 0 1 0 0
2 0 0 1 0
1 0 0 0 1




1 1 0 0 0 0
0 0 0 1 1 0
1 0 0 0 1 2
0 0 1 0 0 1
0 1 2 1 0 0

 . (12)

Note that the matrices on the right-hand side are elementwise nonnegative. By Yannakakis’ theorem
this factorization says that the regular hexagon has a LP lift of size 5, see Figure 4. One can actually
show that the regular hexagon has no smaller LP lift.

Interpretation of Yannakakis’ theorem in terms of certificates of nonnegativity Let
P be a polytope and let X be the set of extreme points of the polytope P . If ` ≤ `max is a
facet inequality for P then this implies that `max − `|X (i.e., the restriction of `max − ` to X) is a
nonnegative function on X. Yannakakis’ theorem can be restated as follows:

Theorem 2 (Yannakakis [Yan91]; restatement of Theorem 1). Let P = conv(X) ⊂ Rn be a full-
dimensional polytope. Then P has an LP lift of size d if and only if, there exist d nonnegative
functions on X, a1, . . . , ad : X → R+ such that the following holds: for any facet inequality
`(x) ≤ `max of P there exist nonnegative coefficients b1, . . . , bd ≥ 0 such that

`max − `|X =

d∑
i=1

biai. (13)

To make the connection with Theorem 1, the functions a1, . . . , aD : X → R+ are nothing but
the columns of A in a nonnegative factorization of the slack matrix S = AB, and the coefficients
b1, . . . , bd are the entries in the `’th column of B.

Equation (13) is an equality of functions on X. It should be interpreted as a certificate of
nonnegativity of `max−` on X: indeed the right hand side is a linear combination with nonnegative
weights (the bi’s) of nonnegative functions a1, . . . , ad, and so is “obviously” nonnegative on X. The
size of the certificate, here the number of functions a1, . . . , ad, gives us the size of the LP lift.
The main question in constructing a lift is of course to come up with the nonnegative functions
a1, . . . , ad. This point of view will be useful later when we consider semidefinite programming lifts
since it will allow us to establish the connection with sums of squares.

Proof of Yannakakis’ theorem We now present a proof of Yannakakis’ theorem.

Proof of Theorem 1. We first prove necessity. Assume P = π(Rd
+ ∩ L) is an LP lift of P of size d,

where L is an affine subspace of Rd and π a linear map. Let `max ≤ ` be any facet inequality of P .
Since π(Rd

+ ∩ L) ⊆ P it is clear that the following implication holds for any y:{
y ≥ 0

y ∈ L
⇒ ` ◦ π(y) ≤ `max.
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One can show using Farkas’ lemma/strong duality for LP, that there exist coefficients b1, . . . , bd ≥ 0
and an affine form γ that vanishes on L such that

`max − ` ◦ π(y) =

d∑
i=1

biyi + γ(y). (14)

Note that Equation (14) automatically implies that `max − ` ◦ π is nonnegative on Rd
+ ∩ L. To

see why (14) is true let L0 be the linear subspace of Rd parallel to L and let y0 ∈ Rd such that
L = y0 + L0. Consider the following primal/dual pair of LPs whose value is `max:

max
y∈Rd

(` ◦ π)(y)

s.t. y ∈ Rd
+

y − y0 ∈ L0

min
b,h∈Rd

−〈h, y0〉
s.t. −` ◦ π = b+ h

b ∈ Rd
+, h ∈ L⊥0

(15)

By strong duality, there exists b ∈ Rd
+ and h ∈ L⊥0 such that −` ◦ π = b + h and −〈h, y0〉 = `max.

Thus this means that
`max − ` ◦ π = b+ h− 〈h, y0〉

which is exactly (14) with γ(y) = 〈h, y − y0〉. Now for any x ∈ X we know that there exists
A(x) = (a1(x), . . . , ad(x)) ∈ Rd

+ ∩ L such that π(A(x)) = x. By evaluating Equation (14) at
y = A(x) we get (using the fact that A(x) ∈ L and so γ(A(x)) = 0):

`max − `(x) =

d∑
i=1

biai(x) ∀x ∈ X.

Thus this proves the claim.
We now show sufficiency. Assume P = {x ∈ Rn : Fx ≤ g} is a facet description of our polytope

P where F ∈ RN×n and g ∈ RN . Assume S = AB is a nonnegative factorization of the slack

matrix of size d, where A ∈ R|X|×d+ and B ∈ Rd×N
+ . Then it is easy to verify that P can be written

as:
P = {x ∈ Rn : ∃a ∈ Rd s.t. a ≥ 0, g − Fx = BTa}. (16)

To see why the inclusion “⊆” holds, note that if x ∈ X is a vertex of P then by letting a be
the row of A indexed by x the constraints on the right-hand side are satisfied. The inclusion “⊇”
is trivial since BTa ≥ 0 for a ≥ 0. The proof is almost complete since the right-hand side of
(16) is defined using only d linear inequalities. To be sure we just need to show that (16) can
be put in the form P = π(Rd

+ ∩ L) for some linear map π and affine subspace L ⊂ Rd. Since
P is bounded and dim(P ) > 0, we know that rank(F ) = n and g /∈ Im(F ). Since rank(F ) = n
the equation Fx = g − BTa (in x) has a unique solution xa if g − BTa ∈ Im(F ) and no solution
otherwise. It is easy to see that the map that sends a to xa, defined on the affine subspace
L = {a ∈ Rd : g − BTa ∈ Im(F )}, is affine. Since 0 does not belong to L (this is because
g /∈ Im(F )) this affine map can be extended to a linear map π on the whole space. We thus finally
get that P = π(Rd

+ ∩ L). This shows that P admits a LP lift of size d.

1.3 Semidefinite programming lifts, positive semidefinite factorizations, and
sums of squares

In this section we extend the concepts and results to semidefinite programming lifts.
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Semidefinite programming A semidefinite program (SDP) in standard form is an optimization
problem of the form:

min
Y ∈Sd

Tr(CY ) subject to A(Y ) = b, Y ∈ Sd
+ (17)

where Sd is the space of d× d real symmetric matrices, and Sd
+ is the cone of positive semidefinite

matrices. A semidefinite program is completely specified by the triple (C,A, b) where the matrix
C ∈ Sd specifies the objective function, A : Sd → Rm is a linear map and b ∈ Rm. The feasible set
of a semidefinite program is called a spectrahedron and is an intersection of the positive semidefinite
cone Sd

+ with an affine subspace {Y : A(Y ) = b}.
A natural question is to understand which optimization problems can be put in semidefinite

programming form. This motivates the following definition of SDP lift:

Definition 4. Let C be a convex set. We say that C has a SDP lift of size d if it can be written
as C = π(Sd

+ ∩L) where Sd
+ is the cone of d× d real symmetric positive semidefinite matrices, and

L is an affine subspace of Sd. The size of the smallest SDP lift of C is called the SDP extension
complexity of C and denoted xcSDP(C).

If C has an SDP lift of size d, then any linear optimization problem over C can be modeled as
an SDP in standard form of size d. Indeed if C = π(Sd

+ ∩ L) for some affine subspace L of Sd and
linear map π, then we have:

min
{
cTx : x ∈ C

}
= min

Y ∈Sd

{
Tr(C̃Y ) : Y ∈ L, Y ∈ Sd

+

}
where C̃ = π∗(c) with π∗ being the adjoint of π. The right-hand side is an SDP in standard form
(17) with an appropriate choice of A, b.

Example 3 (Disk). Let D = {(x1, x2) ∈ R2 : x21 + x22 ≤ 1}. One can check that D has an SDP lift
of size 2, namely D = π(S2

+ ∩ L) where L =
{
Y ∈ S2 : Tr(Y ) = 2

}
and π

([
a b
b c

])
= ((c− a)/2, b).

We leave it as an exercise to the reader to verify this.

Example 4. Figure 7 illustrates a SDP lift of the square [−1, 1]2 of size 3, given by:

[−1, 1]2 =

(x1, x2) ∈ R2 : ∃u ∈ R

 1 x1 x2
x1 1 u
x2 u 1

 � 0

 . (18)

Using the notations of Definition 4, L = {Y ∈ S3 : Y11 = Y22 = Y33 = 1} and π(Y ) = (Y11, Y12).
To see why (18) is true note that if (x1, x2) ∈ {−1, 1}2 then by letting u = x1x2 we have: 1 x1 x2

x1 1 u
x2 u 1

 =

 1
x1
x2

 1
x1
x2

T

� 0.

Since the right-hand side of (18) is convex this shows that conv({−1, 1}2) = [−1, 1]2 is contained
in it. Conversely if (x1, x2) belongs to the right-hand side of (18) then by looking at the 2 × 2
minors of the 3 × 3 positive semidefinite matrix we easily get that 1 − x21 ≥ 0 and 1 − x22 ≥ 0 i.e.,
(x1, x2) ∈ [−1, 1]2.

Our goal now is to state a result similar to Yannakakis theorem to characterize SDP lifts. Before
we do so, we need to recall some basic facts about general convex sets.
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Figure 7: SDP lift of the square [−1, 1]2 of size 3 (cf. Equation (18)). The three-dimensional
convex set shown in the figure is the set of (x1, x2, u) such that the 3× 3 symmetric matrix on the
right-hand side of (18) is positive semidefinite. Projecting this set onto (x1, x2) yields the square
[−1, 1]2.

Polars of convex sets and biduality Let C ⊂ Rn be a closed convex set and assume (without
loss of generality) that C has non-empty interior and that the origin is in its interior. Any such
convex set will be called a convex body. The following are two important definitions related to
convex sets:

Definition 5 (Extreme point). Let C be a convex set. A point x ∈ C is called an extreme point
if whenever x = (a + b)/2 with a, b ∈ C then a = b = x. The set of extreme points of C will be
denoted extreme(C).

The Minkowski theorem (also called the Krein-Milman theorem) says that if C is a closed and
bounded convex set in Rn then C is the convex hull of its extreme points.

Definition 6 (Polar). The polar of a convex body C is defined as:

C◦ = {y ∈ Rn : 〈y, x〉 ≤ 1 ∀x ∈ C} .

In words, C◦ is the set of linear forms 〈y, ·〉 whose maximum on C is at most 1. The biduality
theorem tells us that these linear forms give a complete inequality description of C, namely:

C = {x ∈ Rn : 〈y, x〉 ≤ 1 ∀y ∈ C◦} = (C◦)◦. (19)

One should compare the equation above with the inequality description of a polytope P = {x :
Ax ≤ b}. By convexity it is enough in Equation (19) to consider y ∈ extreme(C◦), i.e., we can
write C = {x ∈ Rn : 〈y, x〉 ≤ 1 ∀y ∈ extreme(C◦)}. If C is a polytope then C◦ has finitely many
extreme points which are in one-to-one correspondence with the facets of C.

Slack matrix of convex sets In the previous section we defined the slack matrix of a polytope.
We are now going to generalize this definition to convex bodies.

Definition 7 (Slack matrix of a convex body). Let C ⊂ Rn be a convex body. The slack matrix of
C is a (potentially infinite) matrix S whose rows are indexed by the extreme points of C, columns
are indexed by the extreme points of C◦ and is defined as follows:

Sx,y = 1− 〈y, x〉 ∀x ∈ extreme(C), y ∈ extreme(C◦).

11



Note that if C is a polytope then we recover the same definition from the previous section. This
is because when C is a polytope the facet inequalities are precisely of the form 〈y, x〉 ≤ 1 where
y ∈ extreme(C◦).

Positive semidefinite factorization We now introduce the notion of positive semidefinite fac-
torization of a nonnegative matrix introduced in [GPT13].

Definition 8 (Positive semidefinite factorization [GPT13, FGP+15]). Let S ∈ Rp×q
+ be a matrix

with nonnegative entries. We say that S has a positive semidefinite factorization (psd factorization)
of size d if there exist positive semidefinite matrices A1, . . . , Ap ∈ Sd

+ and B1, . . . , Bq ∈ Sd
+ such

that Sij = 〈Ai, Bj〉 for all i = 1, . . . , p and j = 1, . . . , q. The size of the smallest psd factorization
of S is called the psd rank of S and denoted rankpsd(S).

We are now ready to state a result similar to that of Yannakakis to characterize the existence
of SDP lifts. It is due to Gouveia, Parrilo, Thomas [GPT13].

Theorem 3 (Gouveia, Parrilo, Thomas [GPT13]). Let C be a convex body and let S be its slack
matrix. Then C has a SDP lift of size d if, and only if, S has a positive semidefinite factorization
of size d. As a consequence, the smallest size of a SDP lift of P is equal to rankpsd(S).

Example 5 (Disk). Consider the example of the disk D = {(x1, x2) : x21 +x22 ≤ 1}. The polar of D
is D itself, D◦ = D. One can verify that the slack matrix of D is the infinite matrix Sx,y = 1−〈x, y〉
where rows and columns are indexed by x, y ∈ R2 with ‖x‖2 = ‖y‖2 = 1. We can give a positive
semidefinite factorization of size 2 of S as follows: Sx,y = 〈A(x), B(y)〉 where

A(x) =

[
1− x1 x2
x2 1 + x1

]
B(y) =

1

2

[
1 + y1 −y2
−y2 1− y1

]
.

Since ‖x‖2 = ‖y‖2 = 1 we have A(x), B(y) � 0 and

〈A(x), B(y)〉 =
1

2
[(1− x1)(1 + y1)− 2x2y2 + (1 + x1)(1− y1)] = 1− 〈x, y〉 = Sx,y

as desired. Theorem 3 tells us that we must have a SDP lift of size 2, which we have already seen
in Example 3.

Interpretation of Theorem 3 in terms of certificates of nonnegativity As for the case of
LP lifts, we can give an interpretation of Theorem 3 in terms of certificates of nonnegativity for
valid linear inequalities.

Theorem 4 (Gouveia, Parrilo, Thomas, [GPT13]; restatement of Theorem 3). Let C be a convex
body and let X be its set of extreme points. Then C has a SDP lift of size d if, and only if, there
exists a map A : X → Sd

+ such that the following holds: for any valid linear inequality ` ≤ `max of
C there exists B ∈ Sd

+ such that

`max − `(x) = 〈A(x), B〉 ∀x ∈ X. (20)

Note that Equation (20) is an equality of functions on X. Just like in the LP case, it should be
understood as a certificate of nonnegativity for `max − `|X . Indeed the function x 7→ 〈A(x), B〉 is
“obviously” nonnegative on X since A(x) ∈ Sd

+ and B ∈ Sd
+.
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Example 6. In Example 4 (see also Figure 7) we saw that the square [−1, 1]2 has an SDP lift
of size 3. Let us exhibit the function A : X → S3

+ in this case corresponding to this lift. In this
example the vertex set is X = {−1, 1}2. Consider the map A given by:

A(x) =

 1 x1 x2
x1 1 x1x2
x2 x1x2 1

 .
Note that A(x) ∈ S3

+ for x ∈ X since we have, for any x ∈ X (using the fact that x21 = x22 = 1):

A(x) =

 1
x1
x2

 1
x1
x2

T

� 0.

To show that the condition of Theorem 4 is satisfied consider the facet inequality 1−x1 ≥ 0. Define

B =
1

2

 1
−1
0

 1
−1
0

T

and note that B � 0. Then we have for any x ∈ {−1, 1}2

〈A(x), B〉 =

〈 1 x1 x2
x1 1 x1x2
x2 x1x2 1

 , 1

2

 1 −1 0
−1 1 0
0 0 0

〉 =
1

2
(1− 2x1 + 1) = 1− x1.

Similarly one can show that the three other facet inequalities 1 + x1 ≥ 0, 1− x2 ≥ 0 and 1 + x2 ≥ 0
can be written as 〈A(x), B〉 for a suitable choice of B. This shows that the map A satisfies the
condition of Theorem 4.

Sums of squares In this section we show that SDP lifts can also be interpreted in terms of sum
of squares certificates of the facet inequalities `max − `|X . Such a certificate consists in expressing
`max − `|X as a sum of squares of functions on X. More formally we have:

Theorem 5. Let C be a convex body and let X be its extreme points. Assume there is a subspace
V of RX (the space of functions X → R) such that the following holds:

(*) for any valid linear inequality ` ≤ `max of C there are elements h1, . . . , hJ ∈ V such that

`max − `|X =

J∑
j=1

h2j . (21)

Then C has a SDP lift of size dimV .
Conversely if C has a SDP lift of size d, then there is a subspace V of RX of dimension at most

d2 such that condition (*) holds.

Proof. We show how to prove Theorem 5 from Theorem 4. We start by proving the first part.
Assume we have a subspace V of dimension d such that condition (*) holds. Let f1, . . . , fd be a
basis of this subspace and define the map A : X → Sd

+ as follows:

A(x) =

f1(x)
...

fd(x)


f1(x)

...
fd(x)


T

= [fi(x)fj(x)]1≤i,j≤d.
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Clearly A(x) � 0 (note also that A(x) is rank-one for any x ∈ X). Now let ` ≤ `max be a valid
inequality for C. By (*) we know that there exists elements h1, . . . , hJ ∈ V such that (21) holds.
We will show that there exists B ∈ Sd

+ such that `max − `|X = 〈A(·), B〉. Since each hj is in V
we can write hj(x) = bTj f(x) where bj ∈ Rd and f(x) is the column vector [f1(x); . . . ; fd(x)]. Now

note that (hj(x))2 = (bTj f(x))2 = 〈f(x)f(x)T , bjb
T
j 〉 = 〈A(x), bjb

T
j 〉. Thus if we let B =

∑J
j=1 bjb

T
j

we get
`max − `(x) = 〈A(x), B〉 ∀x ∈ X

which is what we wanted. Thus using Theorem 4, this shows that P has an SDP lift of size d.
We now prove the other direction. Assume that C has a SDP lift of size d. According to

Theorem 4 this means that there exists A : X → Sd
+ such that the following holds: for any valid

inequality ` ≤ `max there is B ∈ Sd
+ such that `max − `(x) = 〈A(x), B〉, for all x ∈ X. Since

A(x) ∈ Sd
+ we can factorize it as A(x) = R(x)R(x)T . Let V be the subspace of RX spanned by the

entries of R, i.e., V = span(x 7→ Rij(x), i, j = 1, . . . , d) ⊂ RX and note that dimV ≤ d2. Now given
` ≤ `max a valid inequality of P we know that there exists B ∈ Sd

+ such that `max−`(x) = 〈A(x), B〉
for all x ∈ X. We can write B as B = CCT to get

`max − `(x) = 〈R(x)R(x)T , CCT 〉 = ‖CTR(x)‖2F .

Since each entry of x 7→ CTR(x) is an element of V the previous equation gives a sum-of-squares
certificate of `max − `|X using functions from V . This completes the proof.

Example 7. The lift of the square [−1, 1]2 discussed earlier can be explained in terms of sum-of-
squares certificates. Note that the valid inequality 1− x1 ≥ 0 can be certified using sum-of-squares
as follows:

1− x1 =
1

2
(1− x1)2 ∀x ∈ {−1, 1}2.

It is crucial to note that the equality above is understood on {−1, 1}2 (the equality is of course
not true globally because the left hand side is a polynomial of degree 1 whereas the right-hand side
is a polynomial of degree 2). Since we are working on {−1, 1}2 the right-hand side expands to
1
2(1 − 2x1 + x21) = 1

2(1 − 2x1 + 1) = 1 − x1 where we used the fact that x21 = 1. Similarly one can
show that the other facet inequalities have the following sum-of-squares certificates:

1− x2 =
1

2
(1− x2)2 ∀x ∈ {−1, 1}2,

1 + x1 =
1

2
(1 + x1)

2 ∀x ∈ {−1, 1}2,

1 + x2 =
1

2
(1 + x2)

2 ∀x ∈ {−1, 1}2.

Thus if we let V be the space of polynomials of degree at most 1 on {−1, 1}2 (i.e., by an abuse
of notation V = span(1, x1, x2)) the condition (*) of Theorem 5 holds true. Thus this shows that
[−1, 1]2 has a SDP lift of size dimV = 3.

Proof of the factorization theorem for SDP lifts We now give a proof of Theorem 4, which
is essentially the same as the proof in [GPT13, Theorem 1].

Proof of Theorem 4. The proof follows the same steps as the proof of Theorem 2 for LP lifts. The
only difference is that we use the generalized Farkas’ lemma/strong duality for SDPs.

14



Assume that C = π(Sd
+ ∩ L) is an SDP lift of C of size d where L is an affine subspace of Sd

and π a linear map. Let ` ≤ `max be a valid linear inequality for C. Since π(Sd
+ ∩ L) ⊆ C the

following implication holds for all Y ∈ Sd:{
Y � 0

Y ∈ L
⇒ `max − ` ◦ π(Y ) ≥ 0.

We will now show using Farkas’ lemma/strong duality for SDP that there is a positive semidefinite
matrix B ∈ Sd

+, an affine form γ that vanishes on L such that

`max − ` ◦ π(Y ) = 〈B, Y 〉+ γ(Y ) ∀Y ∈ Sd. (22)

To see why (22) is true let L0 be the linear space in Sd parallel to L and let Y0 ∈ Sd such
that L = Y0 + L0. The following problems are dual to each other and the value of the primal
(maximization) problem is equal to `max:

max
Y ∈Sd

(` ◦ π)(Y )

s.t. Y ∈ Sd
+

Y − Y0 ∈ L0

min
B,H∈Sd

−〈H,Y0〉
s.t. −` ◦ π = B +H

B ∈ Sd
+, H ∈ L⊥0

(23)

We can assume that the intersection of L with the interior of Sd
+ is nonempty (otherwise the

intersection lies on a strict face of Sd
+ which means that one can reduce the size of the SDP lift).

In this case strong duality holds, the optimal values of the two SDPs (23) are equal to `max and
the dual (minimization) problem is attained. Let B,H be the optimal points of the dual problem
in (23). From dual feasibility we have −` ◦ π = B +H and so since `max = −〈H,Y0〉 we get that:

`max − ` ◦ π = B +H − 〈H,Y0〉.

Note that this shows (22) where the affine map γ is γ(Y ) = 〈H,Y − Y0〉. For x ∈ X let A(x) be
any element in Sd

+ ∩ L such that π(A(x)) = x. Evaluating (22) at A(x), for any x ∈ X we get:

`max − `(x) = 〈B,A(x)〉

where we used the fact that π(A(x)) = x and that γ(A(x)) = 0 since A(x) ∈ L. This proves our
claim.

We now prove the converse. We show how to construct an SDP lift of P from a psd factorization
of its slack matrix. By bipolarity we know that C = {x ∈ Rn : `(x) ≤ 1 ∀` ∈ C◦} is an inequality
description of C. Let S be the slack matrix of C and let Sx,` = 〈A(x), B(`)〉 be a psd factorization
of S of size d, where A(x), B(`) ∈ Sd

+ (here x ∈ X is an extreme point of C and ` is an extreme
point of C◦). It is easy to verify that we have the following description of C:

C =
{
x ∈ Rn : ∃A ∈ Sd, A � 0 and 1− `(x) = 〈A,B`〉 ∀` ∈ extreme(C◦)

}
(24)

To see why the inclusion “⊆” holds let x ∈ X be an extreme point of C and take A = A(x) in
the right-hand side. The reverse inclusion “⊇” follows immediately by observing that 〈A,B`〉 ≥ 0
since A and B` are positive semidefinite. It remains to show that one can put (24) into the form
C = π(Sd

+∩L) for some linear map π and affine subspace L. This can be done in a way very similar
to the proof of Yannakakis theorem for LP lifts (see paragraph following Equation (16)).
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1.4 Summary

We summarize briefly the main results in this section.

• Let P = conv(X) be a polytope. The slack matrix of P is defined as Sx,` = `max− `(x) where
rows are indexed by extreme points x ∈ X and columns are indexed by facets ` ≤ `max of P .
The entries of S are nonnegative.

• Finding an LP lift of P is equivalent to finding a nonnegative factorization of S (Yannakakis’
theorem, Theorem 1) of the form S = AB where A and B are elementwise nonnegative
matrices. Thus the size of the smallest LP lift of P is equal to the nonnegative rank of S.

• Finding an SDP lift of P is equivalent to finding a positive semidefinite factorization of S
(Theorem 3) of the form Sx,` = 〈A(x), B(`)〉 where A(x), B(`) are real symmetric d× d ma-
trices that are positive semidefinite. Thus, the size of the smallest semidefinite programming
lift is equal to the positive semidefinite rank of S.

• Sum-of-squares lifts (which are a special case of SDP lifts when the map A(x) is rank-one)
consist in finding a subspace V of RX such that any facet inequality `max − `|X ≥ 0 has a
certificate:

`max − `|X =
J∑

j=1

h2j

where h1, . . . , hJ ∈ V . Such a subspace yields an SDP lift of P of size dimV .
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