Meeting: 1000, Albuquerque, New Mexico, SS 16A, Special Session on Mathematics for Secondary Teachers: Curriculum and Assessment

1000-15-24 Donald Beken, Dept. of Mathematics and Computer Science, University of North Carolina at Pembroke, Pembroke, NC 28372, and Ralph DeMarr* (demarr@unm. edu), Dept. of Mathematics and Statistics, University of New Mexico, Albuquerque, NM 87131. An initial value problem for eigenvalues of certain matrices. Preliminary report.
We consider real matrices A and B of order n. We let t be a real parameter. We obtain a function $f(t)$ to satisfy the statement: if $A+B$ has eigenvalue c, then $A+t B$ has eigenvalue $f(t)$. The initial value is $f(1)=c$. The matrices A and B are selected from the four squares: nilpotent $\left(M^{2}=0\right)$, idempotent $\left(E^{2}=E\right)$, involution $\left(S^{2}=I\right)$ or imaginary $\left(J^{2}=-I\right)$. We have obtained the function $f(t)$ for every combination of these four squares. Example: for A and B nilpotent we have: if $A+B$ has eigenvalue c, then $A+t B$ has eigenvalue $f(t)=c \sqrt{t}$. These results are easily tested by using MATLAB. (Received July 06, 2004)

