Meeting: 1000, Albuquerque, New Mexico, SS 2A, Special Session on Several Complex Variables and CR Geometry

1000-32-34 John T Anderson* (anderson@mathcs.holycross.edu), Department of Mathematics \& Computer Science, College of the Holy Cross, Worcester, MA 01610-2395, and John Wermer (wermer@math.brown.edu), Department of Mathematics, Brown University, Providence, RI 02917. Rational Approximation on the Unit Sphere in \mathbb{C}^{2}. Preliminary report.
For a smoothly bounded relatively open subset Ω of the unit sphere in \mathbb{C}^{2} we derive, using a kernel $H(\zeta, z)$ introduced by G. Henkin, an analogue of the Cauchy-Green formula in the plane:

$$
\phi(z)=\Psi(z)+\frac{1}{4 \pi^{2}} \int_{\Omega} \bar{\partial} \phi(\zeta) H(\zeta, z) d \sigma(\zeta)-\frac{1}{4 \pi^{2}} \int_{\partial \Omega} \phi(\zeta) H(\zeta, z) \omega(\zeta), z \in \Omega
$$

valid for $\phi \in C^{1}(\bar{\Omega})$, where Ψ is a CR function on Ω, σ is the usual invariant measure on S, and $\omega(\zeta)=d \zeta_{1} \wedge d \zeta_{2}$. We employ this formula to estimate the distance in $C(K)$ of ϕ to the CR functions on a neighborhood Ω of K. This requires an examination of the integral over $\partial \Omega$ appearing in the above formula, which we denote by $F_{\Omega}(z)$; in some circumstances we can show that F_{Ω} also defines a CR function on Ω, and thereby estimate the distance of ϕ to the CR functions on Ω in terms of $\bar{\partial}_{b} \phi$. For certain K we can show that $R(K)=C(K)$ by showing that the distance of \bar{z}_{j} to the CR functions on Ω tends to zero as Ω shrinks to K. (Received July 30, 2004)

