Meeting: 1000, Albuquerque, New Mexico, SS 10A, Special Session on Multiscale Methods and Sampling in Time-Frequency Analysis

1000-43-184 Stephanie Anne Molnar* (smolnar@math.ucla.edu), 10144 Tabor St. #212, Los Angeles, CA 90034. Sharp Growth Estimates for Several T(b) Theorems.

Using Haar wavelets on dyadic intervals and stopping-time arguments, we seek sharp growth estimates for several T(b) theorems. We consider the problem to be two-sided; given a perfect Calderón-Zygmund operator T, and $b \in BMO$, we can use b as an input and look at T(b) and its norm, or we can use b as an output, create a norm based on the b-adapted Haar wavelets, and use it to measure T(1). We consider first a global b, and then local functions b_I , each supported on a dyadic interval I. In the global cases, we take $||b||_{BMO} \leq \gamma^{-1}$ for a fixed $\gamma \in (0, 1)$ and that for all I dyadic, $\frac{1}{|I|} \int_I b > C$ for fixed C > 0. In the local cases, we look at the L^2 -norm of b_I . In both cases, we get that T is bounded on L^2 , and that the bound is dependent on a power of γ . For each theorem, we wish to find the power that gives the best possible bound.

This two-sided approach allows us to understand the T(b) theorem in which there are two functions, b_1 and b_2 , which act as inputs for T and T^* respectively, as successive smaller theorems. Proofs of these results use the Carleson Embedding theorem and several paraproduct estimates. (Received August 24, 2004)