Meeting: 1000, Albuquerque, New Mexico, SS 8A, Special Session on Interactions in Riemannian Geometry

1000-53-149David E. Blair* (blair@math.msu.edu), Department of Mathematics, Michigan State
University, East Lansing, MI 48824-1027, and Alfonso Carriazo, Universidad de Sevilla, Sevilla,
Spain. On Lagrangian Catenoids. Preliminary report.

Two differential geometric ideas often interact to give an interesting geometric situation. E.g. there are many surfaces of revolution and many minimal surfaces in Euclidean 3-space, but only a catenoid is both.

In 1973 I showed that a conformally flat, minimal hypersurface of Euclidean space is either totally geodesic or a hypersurface of revolution with a specific profile curve; these are called generalized catenoids.

Recently I. Castro and F. Urbano introduced the Lagrangian catenoid. Topologically it is $\mathbb{R} \times S^{n-1}$; its induced metric, $ds^2 = \cosh^{2/n}(nu)(du^2 + g_0)$, is conformally flat. Their result is that if a Lagrangian, minimal submanifold of \mathbb{C}^n is foliated round (n-1)-spheres, it is congruent to a Lagrangian catenoid. We ask if, aside from the totally geodesic case, the Lagrangian catenoids are the only conformally flat, minimal, Lagrangian submanifolds in \mathbb{C}^n . The problem is formidalbe but as the Schouten tensor of the Lagrangian catenoid has only two eigenvalues we restrict to this case and prove for a conformally flat, minimal, Lagrangian submanifold of \mathbb{C}^n , if the Schouten tensor has at most two eigenvalues, then either M^n is totally geodesic or a Lagrangian catenoid. (Received August 23, 2004)