Meeting: 1007, Santa Barbara, California, CHANG, Invited Address

1007-05-118 Mei-Chu Chang* (mcc@math.ucr.edu), Mathematics Department, University of California, Riverside, CA 92521. Set addition and set multiplication.
Let A, B be finite subsets of a ring R. The sum set and the product set are $A+B=\{a+b \mid a \in A, b \in B\}$, and $A B=\{a b \mid a \in A, b \in B\}$. In a 1983 paper Erdős and Szemerédi conjectured that for sets of integers, either the sum set or the product set is large. More precisely, taking $A=B$ with n elements, either the sum set or the product set should have nearly n^{2} elements.

This problem is still unsolved, in spite of a considerable number of recent results.
We will describe the present status of the conjecture and several related developments. For example, we will give results for sets A and B of different sizes. We will also discuss generalizations to rings that are different from \mathbb{Z} or \mathbb{C}, including noncommutative settings. Finally we will give some applications to the theory of exponential sums. (Received February 14, 2005)

