Tejaswi Navilarekallu* (tejaswi@caltech.edu), California Institute of Technology, 1200 E California Blvd MC 253-37, Pasadena, CA 91125. Equivariant Tamagawa Number Conjecture for Elliptic Curves. Preliminary report.
Let K / Q be a Galois extension of number fields with Galois group G. Let E be an elliptic curve over Q and let E_{K} be its lift to K. For a rational prime l let $T_{l}:=\lim _{n} E_{l^{n}}(\bar{Q})$ and let $V_{l}:=T_{l} \otimes_{Z_{l}} Q_{l}$. Let S_{l} be a finite set of primes in K containing the infinite primes, primes over l and primes of bad reduction.

One can then define a perfect $Z_{l}[G]$ complex $R \Gamma_{c}\left(O_{K, S_{l}}, T_{l}\right)$. To these complexes we can associate an element

$$
R \Omega(E, Z[G]) \in K_{0}(Z[G] ; R)
$$

Now, for a character χ of G let $L(E, \chi, s)$ denote the L-function of E twisted by χ. Let $L^{*}(E, \chi, 1)$ denote the leading coefficient in its Taylor expansion. Then, $\left(L^{*}(E, \chi, 1)\right)_{\chi \in \hat{G}} \in \zeta(R[G])^{\times}$, where ζ denotes the center. The equivariant conjecture (for the order $Z[G]$) asserts that

$$
\hat{\delta}\left(\left(L^{*}(E, \chi, 1)\right)_{\chi \in \hat{G}}\right)=R \Omega(E, Z[G])
$$

where $\hat{\delta}: \zeta(R[G])^{\times} \rightarrow K_{0}(Z[G] ; R)$ is a natural map.
The conjecture is known in very few cases for non-maximal orders such as $Z[G]$. In this presentation we shall look at some possible ways of verifying this conjecture for the order $Z[G]$. (Received February 22, 2005)

