Meeting: 1007, Santa Barbara, California, AMS CP 1, Session for Contributed Papers

1007-11-61 Hung-ping Tsao* (hptsao@hotmail.com), 1151 Highland Drive, Novato, CA 94949. Sums of Powers of Arithmetic Progressions.
The main purpose is to find the polynomial expression in $n$ for the sum of the first n kth powers of an arithmetic progression with the leading term a and the difference d. By considering such sum $S(k)$ to be the kth power of $S$, we can define the linear factorization of a "polynomial" in $S$ by way of that of ordinary polynomials. For example, (S-a)(S-a-d) denotes $S(2)-$ $(2 a+d) S(1)+a(a+d) S(0)$, which can further be denoted as $P(S-a, 2 ; d)$, where $P(n, r ; d)=n(n-d)(n-2 d) \ldots[n-(r-1) d]$. Then we can prove the following theorem by using the mathematical induction on $n$.

Theorem. $\mathrm{P}(\mathrm{dn}, \mathrm{r} ; \mathrm{d})=\mathrm{rdP}(\mathrm{S}-\mathrm{a}, \mathrm{r}-1 ; \mathrm{d})$.
As a result, the permutation $\mathrm{P}(\mathrm{n}, \mathrm{r})$ can be expressed as a linear combination of $\mathrm{S}(\mathrm{k})$ 's with the coefficients being functions of $\mathrm{a}, \mathrm{d}$ and r (binomial coefficients and Stirling's numbers of the first kind involving r ), from which the polynomial expression for each $S(k)$ can be obtained explicitly. As a special case, the sum of the first $n$ kth powers of the natural numbers can be expressed as a polynomial in $n$ with the coefficients involving Stirling's numbers of both kinds. As a side product, we have a formula to construct Stirling's numbers of the second kind from the first kind. (Received January 26, 2005)

