1007-16-173 Gary Brookfield* (gbrookf@calstatela.edu), Dept. of Math, California State University, 5151 State University Dr., Los Angeles, CA 90032. Categories, Monoids and Geometry.

Given a category of modules \mathbb{S} , there is a universal monoid $(M(\mathbb{S}), +, 0)$ and a map $[\cdot] : \mathbb{S} \to M(\mathbb{S})$ such that, if $0 \to A \to B \to C \to 0$ is an exact sequence in \mathbb{S} , then [A] + [C] = [B] in $M(\mathbb{S})$. In the case that \mathbb{S} is the category of finitely generated modules over a Noetherian commutative ring, then $M(\mathbb{S})$ contains the same geometric information, but in a simpler form, as the corresponding affine scheme. In this talk, I will justify this claim and discuss extensions of this idea to projective schemes and noncommutative rings. (Received February 20, 2005)