In several applications of coloring as a partition problem there is an additional requirement that color classes be not so large or be of approximately the same size. A model imposing such a requirement is equitable coloring - a proper coloring such that color classes differ in size by at most one. A classical result on equitable colorings is the Hajnal-Szemerédi Theorem stating that every graph with maximum degree at most r is equitably $(r+1)$-colorable. We give a simple proof of this result and prove the following its extension conjectured recently by Kostochka and Yu: If for every edge xy of a graph G the sum of degrees of x and y is at most $2 r+1$, then G is equitably $(r+1)$-colorable. (Received September 05, 2006)

