Felix Lazebnik* (lazebnik@math.udel.edu), Department of Mathematical Sciences, University of Delaware, Newark, DE 19716, Oleg Pikhurko (pikhurko@cmu.edu), Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, and Andrew J. Woldar (andrew.woldar@villanova.edu), Department of Mathematical Sciences, Villanova Unversity, Villanova, PA 10085. Maximum Number of Colorings of $\left(2 k, k^{2}\right)$-Graphs.
Let $\mathcal{F}_{2 k, k^{2}}$ consist of all simple graphs on $2 k$ vertices and k^{2} edges. For a simple graph G and a positive integer λ, let $P_{G}(\lambda)$ denote the number of proper vertex colorings of G in at most λ colors, and let $f\left(2 k, k^{2}, \lambda\right)=\max \left\{P_{G}(\lambda): G \in \mathcal{F}_{2 k, k^{2}}\right\}$. Let $K_{k, k}$ denote the complete bipartite graph with each partition having k vertices. We prove that $f\left(2 k, k^{2}, 3\right)=P_{K_{k, k}}(3)$ and $K_{k, k}$ is the only extremal graph. We also prove that $f\left(2 k, k^{2}, 4\right)=(6+o(1)) 4^{k}$ as $k \rightarrow \infty$. (Received September 10, 2006)

