Adam J Hammett* (hammett@math. ohio-state.edu), 231 W. 18th Avenue, Columbus, OH 43210, and Boris G Pittel, 231 W. 18th Avenue, Columbus, OH 43210. On the Likelihood of Comparability in Bruhat Order.
Two permutations of $[n]:=\{1,2, \ldots, n\}$ are comparable in the Bruhat order if one can be obtained from the other by a sequence of transpositions decreasing the number of inversions. We show that the total number of pairs of permutations (π, σ) with $\pi \leq \sigma$ is of order $(n!)^{2} / n^{2}$ at most. Equivalently, if π, σ are chosen uniformly at random and independently of each other, then $\operatorname{Pr}\{\pi \leq \sigma\}$ is of order n^{-2} at most. By a direct probabilistic argument we prove $\operatorname{Pr}\{\pi \leq \sigma\}$ is of order $(0.708)^{n}$ at least, so that there is currently a wide qualitative gap between the upper and lower bounds.

For the weak Bruhat order " \preceq " - when only adjacent transpositions are admissible - we use a non-inversion set criterion to prove that $P_{n}^{*}:=\operatorname{Pr}\{\pi \preceq \sigma\}$ is submultiplicative, thus showing existence of $\rho=\lim \sqrt[n]{P_{n}^{*}}$. We demonstrate that ρ is 0.362 at most. Moreover, we prove the lower bound $\prod_{i=1}^{n}(H(i) / i)$ for P_{n}^{*}, where $H(i):=\sum_{j=1}^{i} 1 / j$. In light of numerical experiments, we conjecture that for each order the upper bound is qualitatively close to the actual behavior. (Received August 22, 2006)

