1020-06-114 Donald Beken (beken@uncp.edu), Department of Mathematics and Computer Scienc, University of North Carolina at Pembroke, Pembroke, NC 28372, and Ralph DeMarr* (demarr@unm.edu), Department of Mathematics, University of New Mexico, Albuquerque, NM 87131. Strange inequalities in a partially ordered linear algebra. Preliminary report.
We first consider the linear algebra of all matrices with real entries of some fixed order n. We use I to denote the identity matrix. We partially order these matrices entrywise to obtain a partially ordered linear algebra (POLA). We next select an idempotent matrix $E\left(E^{2}=E\right)$ and a nilpotent matrix $M\left(M^{2}=0\right)$. Is it possible that $2 I \leq E+M$? No, this inequality is not possible in this POLA.

We next consider the infinite matrix algebra of column-finite matrices with real entries. As above, we partially order these matrices entrywise to get a POLA. In this case it is possible to find idempotent E and nilpotent M such that $2 I \leq E+M$. We refer to this latter inequality as a strange inequality.

If we consider four types of matrices: idempotent $E^{2}=E$, nilpotent $M^{2}=0$, involution $S^{2}=I$ and imaginary $J^{2}=-I$, then there are ten basic strange inequalities involving these types of matrices. All of these inequalities can be obtained in the POLA of column-finite matrices.
Sample result 1. If $I \leq S+J$, then S and J cannot commute.
Sample result 2. If $3 I \leq E+S$, then E and S cannot be nonnegative matrices.
Many other results will be discussed. (Received August 21, 2006)

