1020-14-117 Dieter S Schmidt* (dieter.schmidt@uc.edu), Department of Computer Science, Cincinnati, OH 45221-0030. Zhuang-Zi: A new algorithm for solving multivariable polynomial equations over a finite field. Preliminary report.
The Zhuang-Zi algorithm was proposed by Jintai Ding for solving polynomial equations

$$
\begin{equation*}
f_{i}\left(x_{1}, \ldots, x_{n}\right)=0, \quad i=1, \ldots, n \tag{1}
\end{equation*}
$$

when the coefficients come from a finite field G of size q and the solutions x_{1}, \ldots, x_{n} have to be found in the same field. With the help of an extension field the set of polynomials can be written as a single polynomial $F(X)=0$. The solution X has to be found in a field of size q^{n} and it will correspond to the solutions of (1).

In practical examples the degree of $F(X)$ will be very high. We will present methods for reducing the degree of $F(X)$, so that the roots of the polynomial can be found by one of the standard methods. We will discuss our experience in implementing this algorithm on a computer. Since solving (1) is known to be NP-hard we can not expect that the Zhuang-Zi algorithm will always succeed. Nevertheless, it will succeed in some cases where the Gröbner bases method fails and vice versa. (Received August 22, 2006)

