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Let n be a positive integer and let α satisfy 0 < α < n. Consider a positive regular solution u(x) to the integral equation

u(x) =

∫
Rn

1

|x − y|n−α
u(y)(n+α)/(n−α)dy.

In previous papers we have used the method of moving planes to prove that for every direction u(x) is symmetric about

a plane perpendicular to the direction and that u(x) is monotone on the two sides of the plane. It follows that u(x) is

radially symmetric about a point and is a strictly decreasing function of the radius. It then follows that u(x) must be a

constant multiple of a function of form

(
t

t2 + |x − x0|2
)(n−α)/2

where t > 0 and x0 ∈ Rn. Here we supply alternative proofs on the result and provide further remarks. (Received August

05, 2006)
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