1020-35-45 Wenxiong Chen (wchen@ymail.yu.edu), Department of Mathematics, Yeshiva University, New York, NY 10033, Congming Li (cli@colorado.edu), Department of Applied Mathematics, University of Colorado at Boulder, Boulder, CO 80309, and Biao Ou* (bou@math.utoledo.edu), Department of Mathematics, University of Toledo, Toledo, OH 43606. Alternative proofs on the radial symmetry and monotonicity for positive regular solutions to a singular integral equation.
Let n be a positive integer and let α satisfy $0<\alpha<n$. Consider a positive regular solution $u(x)$ to the integral equation

$$
u(x)=\int_{R^{n}} \frac{1}{|x-y|^{n-\alpha}} u(y)^{(n+\alpha) /(n-\alpha)} d y
$$

In previous papers we have used the method of moving planes to prove that for every direction $u(x)$ is symmetric about a plane perpendicular to the direction and that $u(x)$ is monotone on the two sides of the plane. It follows that $u(x)$ is radially symmetric about a point and is a strictly decreasing function of the radius. It then follows that $u(x)$ must be a constant multiple of a function of form

$$
\left(\frac{t}{t^{2}+\left|x-x_{0}\right|^{2}}\right)^{(n-\alpha) / 2}
$$

where $t>0$ and $x_{0} \in R^{n}$. Here we supply alternative proofs on the result and provide further remarks. (Received August 05, 2006)

