1038-05-196 Tao Jiang (jiangt@muohio.edu), Department of Mathematics and Statistics, Miami University, Oxford, OH 45056, Zevi Miller* (millerz@muohio.edu), Department of Mathematics and Statistics, Miami University, Oxford, OH 45056, and Dan Pritikin (pritikd@muohio.edu), Department of Mathematics and Statistics, Miami University, Oxford, OH 45056. Separation in trees. Preliminary report.
Let G be a graph on n vertices. Given a labeling f of $V(G)$ with the integers 1 through n, define the separation of f to be

$$
s(f)=\min \{|f(u)-f(v)|: u v \in E(G)\} .
$$

Then the separation number of G is defined as

$$
s(G)=\max \{s(f)\} \text { over all such labelings } f \text { of } G \text {. }
$$

Focusing our attention on the separation of trees, we obtain the following results.

1. Let F be a forest in which every component is a star. Then $s(F)=1 / 2(n-\mu)$, where μ is the minimum difference of sizes of the two partite sets over all bipartitions of F.
2. Let d be the maximum degree of a tree. Then
a) $s(T) \geq n / 2-C \sqrt{n d}$, when $n^{1 / 3}<d<n$
b) $s(T) \geq n / 2-C d^{2} \log (n) / \log (d)$ when $d<n^{1 / 3}$
as n grows, where C is some constant.
We give constructions showing that the bound a) is sharp, and that b) is sharp for d in the range $n^{p}<d<n^{1 / 3}$ for any constant $0<p<1 / 3$. (Received February 10, 2008)
